qemu/hw/block/m25p80.c
<<
>>
Prefs
   1/*
   2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
   3 * set. Known devices table current as of Jun/2012 and taken from linux.
   4 * See drivers/mtd/devices/m25p80.c.
   5 *
   6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
   7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   8 * Copyright (C) 2012 PetaLogix
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 or
  13 * (at your option) a later version of the License.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "qemu/units.h"
  26#include "sysemu/block-backend.h"
  27#include "hw/qdev-properties.h"
  28#include "hw/qdev-properties-system.h"
  29#include "hw/ssi/ssi.h"
  30#include "migration/vmstate.h"
  31#include "qemu/bitops.h"
  32#include "qemu/log.h"
  33#include "qemu/module.h"
  34#include "qemu/error-report.h"
  35#include "qapi/error.h"
  36#include "trace.h"
  37#include "qom/object.h"
  38
  39/* Fields for FlashPartInfo->flags */
  40
  41/* erase capabilities */
  42#define ER_4K 1
  43#define ER_32K 2
  44/* set to allow the page program command to write 0s back to 1. Useful for
  45 * modelling EEPROM with SPI flash command set
  46 */
  47#define EEPROM 0x100
  48
  49/* 16 MiB max in 3 byte address mode */
  50#define MAX_3BYTES_SIZE 0x1000000
  51
  52#define SPI_NOR_MAX_ID_LEN 6
  53
  54typedef struct FlashPartInfo {
  55    const char *part_name;
  56    /*
  57     * This array stores the ID bytes.
  58     * The first three bytes are the JEDIC ID.
  59     * JEDEC ID zero means "no ID" (mostly older chips).
  60     */
  61    uint8_t id[SPI_NOR_MAX_ID_LEN];
  62    uint8_t id_len;
  63    /* there is confusion between manufacturers as to what a sector is. In this
  64     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
  65     * command (opcode 0xd8).
  66     */
  67    uint32_t sector_size;
  68    uint32_t n_sectors;
  69    uint32_t page_size;
  70    uint16_t flags;
  71    /*
  72     * Big sized spi nor are often stacked devices, thus sometime
  73     * replace chip erase with die erase.
  74     * This field inform how many die is in the chip.
  75     */
  76    uint8_t die_cnt;
  77} FlashPartInfo;
  78
  79/* adapted from linux */
  80/* Used when the "_ext_id" is two bytes at most */
  81#define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  82    .part_name = _part_name,\
  83    .id = {\
  84        ((_jedec_id) >> 16) & 0xff,\
  85        ((_jedec_id) >> 8) & 0xff,\
  86        (_jedec_id) & 0xff,\
  87        ((_ext_id) >> 8) & 0xff,\
  88        (_ext_id) & 0xff,\
  89          },\
  90    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
  91    .sector_size = (_sector_size),\
  92    .n_sectors = (_n_sectors),\
  93    .page_size = 256,\
  94    .flags = (_flags),\
  95    .die_cnt = 0
  96
  97#define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
  98    .part_name = _part_name,\
  99    .id = {\
 100        ((_jedec_id) >> 16) & 0xff,\
 101        ((_jedec_id) >> 8) & 0xff,\
 102        (_jedec_id) & 0xff,\
 103        ((_ext_id) >> 16) & 0xff,\
 104        ((_ext_id) >> 8) & 0xff,\
 105        (_ext_id) & 0xff,\
 106          },\
 107    .id_len = 6,\
 108    .sector_size = (_sector_size),\
 109    .n_sectors = (_n_sectors),\
 110    .page_size = 256,\
 111    .flags = (_flags),\
 112    .die_cnt = 0
 113
 114#define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
 115                    _flags, _die_cnt)\
 116    .part_name = _part_name,\
 117    .id = {\
 118        ((_jedec_id) >> 16) & 0xff,\
 119        ((_jedec_id) >> 8) & 0xff,\
 120        (_jedec_id) & 0xff,\
 121        ((_ext_id) >> 8) & 0xff,\
 122        (_ext_id) & 0xff,\
 123          },\
 124    .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
 125    .sector_size = (_sector_size),\
 126    .n_sectors = (_n_sectors),\
 127    .page_size = 256,\
 128    .flags = (_flags),\
 129    .die_cnt = _die_cnt
 130
 131#define JEDEC_NUMONYX 0x20
 132#define JEDEC_WINBOND 0xEF
 133#define JEDEC_SPANSION 0x01
 134
 135/* Numonyx (Micron) Configuration register macros */
 136#define VCFG_DUMMY 0x1
 137#define VCFG_WRAP_SEQUENTIAL 0x2
 138#define NVCFG_XIP_MODE_DISABLED (7 << 9)
 139#define NVCFG_XIP_MODE_MASK (7 << 9)
 140#define VCFG_XIP_MODE_DISABLED (1 << 3)
 141#define CFG_DUMMY_CLK_LEN 4
 142#define NVCFG_DUMMY_CLK_POS 12
 143#define VCFG_DUMMY_CLK_POS 4
 144#define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
 145#define EVCFG_VPP_ACCELERATOR (1 << 3)
 146#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
 147#define NVCFG_DUAL_IO_MASK (1 << 2)
 148#define EVCFG_DUAL_IO_DISABLED (1 << 6)
 149#define NVCFG_QUAD_IO_MASK (1 << 3)
 150#define EVCFG_QUAD_IO_DISABLED (1 << 7)
 151#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
 152#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
 153
 154/* Numonyx (Micron) Flag Status Register macros */
 155#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
 156#define FSR_FLASH_READY (1 << 7)
 157
 158/* Spansion configuration registers macros. */
 159#define SPANSION_QUAD_CFG_POS 0
 160#define SPANSION_QUAD_CFG_LEN 1
 161#define SPANSION_DUMMY_CLK_POS 0
 162#define SPANSION_DUMMY_CLK_LEN 4
 163#define SPANSION_ADDR_LEN_POS 7
 164#define SPANSION_ADDR_LEN_LEN 1
 165
 166/*
 167 * Spansion read mode command length in bytes,
 168 * the mode is currently not supported.
 169*/
 170
 171#define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
 172#define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
 173
 174static const FlashPartInfo known_devices[] = {
 175    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 176    { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
 177    { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
 178
 179    { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
 180    { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
 181    { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
 182
 183    { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
 184    { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
 185    { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
 186    { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
 187
 188    { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
 189
 190    /* Atmel EEPROMS - it is assumed, that don't care bit in command
 191     * is set to 0. Block protection is not supported.
 192     */
 193    { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
 194    { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
 195
 196    /* EON -- en25xxx */
 197    { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
 198    { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
 199    { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
 200    { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
 201    { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
 202
 203    /* GigaDevice */
 204    { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
 205    { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
 206
 207    /* Intel/Numonyx -- xxxs33b */
 208    { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
 209    { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
 210    { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
 211    { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
 212
 213    /* ISSI */
 214    { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
 215    { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
 216    { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
 217    { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
 218    { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
 219    { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
 220    { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
 221    { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
 222    { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
 223    { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
 224    { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K) },
 225
 226    /* Macronix */
 227    { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
 228    { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
 229    { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
 230    { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
 231    { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
 232    { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
 233    { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
 234    { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
 235    { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512, 0) },
 236    { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
 237    { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
 238    { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
 239    { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 240    { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
 241
 242    /* Micron */
 243    { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
 244    { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
 245    { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
 246    { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
 247    { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
 248    { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
 249    { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
 250    { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K) },
 251    { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
 252    { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 253    { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
 254    { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512, ER_4K) },
 255    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
 256    { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
 257    { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
 258    { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 259    { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
 260    { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 261    { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
 262
 263    /* Spansion -- single (large) sector size only, at least
 264     * for the chips listed here (without boot sectors).
 265     */
 266    { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
 267    { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
 268    { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
 269    { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
 270    { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
 271    { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
 272    { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
 273    { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
 274    { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
 275    { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
 276    { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
 277    { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
 278    { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
 279    { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
 280    { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
 281    { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
 282    { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
 283
 284    /* Spansion --  boot sectors support  */
 285    { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
 286    { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
 287
 288    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
 289    { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
 290    { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
 291    { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
 292    { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
 293    { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
 294    { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
 295    { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
 296    { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
 297    { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
 298
 299    /* ST Microelectronics -- newer production may have feature updates */
 300    { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
 301    { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
 302    { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
 303    { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
 304    { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
 305    { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
 306    { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
 307    { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
 308    { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
 309    { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
 310
 311    { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
 312    { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
 313    { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
 314
 315    { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
 316    { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
 317    { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
 318
 319    { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
 320    { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
 321    { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
 322    { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
 323
 324    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
 325    { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
 326    { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
 327    { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
 328    { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
 329    { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
 330    { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
 331    { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
 332    { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
 333    { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
 334    { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
 335    { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
 336    { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
 337    { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K) },
 338    { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K) },
 339};
 340
 341typedef enum {
 342    NOP = 0,
 343    WRSR = 0x1,
 344    WRDI = 0x4,
 345    RDSR = 0x5,
 346    WREN = 0x6,
 347    BRRD = 0x16,
 348    BRWR = 0x17,
 349    JEDEC_READ = 0x9f,
 350    BULK_ERASE_60 = 0x60,
 351    BULK_ERASE = 0xc7,
 352    READ_FSR = 0x70,
 353    RDCR = 0x15,
 354
 355    READ = 0x03,
 356    READ4 = 0x13,
 357    FAST_READ = 0x0b,
 358    FAST_READ4 = 0x0c,
 359    DOR = 0x3b,
 360    DOR4 = 0x3c,
 361    QOR = 0x6b,
 362    QOR4 = 0x6c,
 363    DIOR = 0xbb,
 364    DIOR4 = 0xbc,
 365    QIOR = 0xeb,
 366    QIOR4 = 0xec,
 367
 368    PP = 0x02,
 369    PP4 = 0x12,
 370    PP4_4 = 0x3e,
 371    DPP = 0xa2,
 372    QPP = 0x32,
 373    QPP_4 = 0x34,
 374    RDID_90 = 0x90,
 375    RDID_AB = 0xab,
 376    AAI_WP = 0xad,
 377
 378    ERASE_4K = 0x20,
 379    ERASE4_4K = 0x21,
 380    ERASE_32K = 0x52,
 381    ERASE4_32K = 0x5c,
 382    ERASE_SECTOR = 0xd8,
 383    ERASE4_SECTOR = 0xdc,
 384
 385    EN_4BYTE_ADDR = 0xB7,
 386    EX_4BYTE_ADDR = 0xE9,
 387
 388    EXTEND_ADDR_READ = 0xC8,
 389    EXTEND_ADDR_WRITE = 0xC5,
 390
 391    RESET_ENABLE = 0x66,
 392    RESET_MEMORY = 0x99,
 393
 394    /*
 395     * Micron: 0x35 - enable QPI
 396     * Spansion: 0x35 - read control register
 397     */
 398    RDCR_EQIO = 0x35,
 399    RSTQIO = 0xf5,
 400
 401    RNVCR = 0xB5,
 402    WNVCR = 0xB1,
 403
 404    RVCR = 0x85,
 405    WVCR = 0x81,
 406
 407    REVCR = 0x65,
 408    WEVCR = 0x61,
 409
 410    DIE_ERASE = 0xC4,
 411} FlashCMD;
 412
 413typedef enum {
 414    STATE_IDLE,
 415    STATE_PAGE_PROGRAM,
 416    STATE_READ,
 417    STATE_COLLECTING_DATA,
 418    STATE_COLLECTING_VAR_LEN_DATA,
 419    STATE_READING_DATA,
 420} CMDState;
 421
 422typedef enum {
 423    MAN_SPANSION,
 424    MAN_MACRONIX,
 425    MAN_NUMONYX,
 426    MAN_WINBOND,
 427    MAN_SST,
 428    MAN_ISSI,
 429    MAN_GENERIC,
 430} Manufacturer;
 431
 432typedef enum {
 433    MODE_STD = 0,
 434    MODE_DIO = 1,
 435    MODE_QIO = 2
 436} SPIMode;
 437
 438#define M25P80_INTERNAL_DATA_BUFFER_SZ 16
 439
 440struct Flash {
 441    SSIPeripheral parent_obj;
 442
 443    BlockBackend *blk;
 444
 445    uint8_t *storage;
 446    uint32_t size;
 447    int page_size;
 448
 449    uint8_t state;
 450    uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
 451    uint32_t len;
 452    uint32_t pos;
 453    bool data_read_loop;
 454    uint8_t needed_bytes;
 455    uint8_t cmd_in_progress;
 456    uint32_t cur_addr;
 457    uint32_t nonvolatile_cfg;
 458    /* Configuration register for Macronix */
 459    uint32_t volatile_cfg;
 460    uint32_t enh_volatile_cfg;
 461    /* Spansion cfg registers. */
 462    uint8_t spansion_cr1nv;
 463    uint8_t spansion_cr2nv;
 464    uint8_t spansion_cr3nv;
 465    uint8_t spansion_cr4nv;
 466    uint8_t spansion_cr1v;
 467    uint8_t spansion_cr2v;
 468    uint8_t spansion_cr3v;
 469    uint8_t spansion_cr4v;
 470    bool write_enable;
 471    bool four_bytes_address_mode;
 472    bool reset_enable;
 473    bool quad_enable;
 474    bool aai_enable;
 475    uint8_t ear;
 476
 477    int64_t dirty_page;
 478
 479    const FlashPartInfo *pi;
 480
 481};
 482
 483struct M25P80Class {
 484    SSIPeripheralClass parent_class;
 485    FlashPartInfo *pi;
 486};
 487
 488#define TYPE_M25P80 "m25p80-generic"
 489OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
 490
 491static inline Manufacturer get_man(Flash *s)
 492{
 493    switch (s->pi->id[0]) {
 494    case 0x20:
 495        return MAN_NUMONYX;
 496    case 0xEF:
 497        return MAN_WINBOND;
 498    case 0x01:
 499        return MAN_SPANSION;
 500    case 0xC2:
 501        return MAN_MACRONIX;
 502    case 0xBF:
 503        return MAN_SST;
 504    case 0x9D:
 505        return MAN_ISSI;
 506    default:
 507        return MAN_GENERIC;
 508    }
 509}
 510
 511static void blk_sync_complete(void *opaque, int ret)
 512{
 513    QEMUIOVector *iov = opaque;
 514
 515    qemu_iovec_destroy(iov);
 516    g_free(iov);
 517
 518    /* do nothing. Masters do not directly interact with the backing store,
 519     * only the working copy so no mutexing required.
 520     */
 521}
 522
 523static void flash_sync_page(Flash *s, int page)
 524{
 525    QEMUIOVector *iov;
 526
 527    if (!s->blk || !blk_is_writable(s->blk)) {
 528        return;
 529    }
 530
 531    iov = g_new(QEMUIOVector, 1);
 532    qemu_iovec_init(iov, 1);
 533    qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
 534                   s->pi->page_size);
 535    blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
 536                    blk_sync_complete, iov);
 537}
 538
 539static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
 540{
 541    QEMUIOVector *iov;
 542
 543    if (!s->blk || !blk_is_writable(s->blk)) {
 544        return;
 545    }
 546
 547    assert(!(len % BDRV_SECTOR_SIZE));
 548    iov = g_new(QEMUIOVector, 1);
 549    qemu_iovec_init(iov, 1);
 550    qemu_iovec_add(iov, s->storage + off, len);
 551    blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
 552}
 553
 554static void flash_erase(Flash *s, int offset, FlashCMD cmd)
 555{
 556    uint32_t len;
 557    uint8_t capa_to_assert = 0;
 558
 559    switch (cmd) {
 560    case ERASE_4K:
 561    case ERASE4_4K:
 562        len = 4 * KiB;
 563        capa_to_assert = ER_4K;
 564        break;
 565    case ERASE_32K:
 566    case ERASE4_32K:
 567        len = 32 * KiB;
 568        capa_to_assert = ER_32K;
 569        break;
 570    case ERASE_SECTOR:
 571    case ERASE4_SECTOR:
 572        len = s->pi->sector_size;
 573        break;
 574    case BULK_ERASE:
 575        len = s->size;
 576        break;
 577    case DIE_ERASE:
 578        if (s->pi->die_cnt) {
 579            len = s->size / s->pi->die_cnt;
 580            offset = offset & (~(len - 1));
 581        } else {
 582            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
 583                          " by device\n");
 584            return;
 585        }
 586        break;
 587    default:
 588        abort();
 589    }
 590
 591    trace_m25p80_flash_erase(s, offset, len);
 592
 593    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
 594        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
 595                      " device\n", len);
 596    }
 597
 598    if (!s->write_enable) {
 599        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
 600        return;
 601    }
 602    memset(s->storage + offset, 0xff, len);
 603    flash_sync_area(s, offset, len);
 604}
 605
 606static inline void flash_sync_dirty(Flash *s, int64_t newpage)
 607{
 608    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
 609        flash_sync_page(s, s->dirty_page);
 610        s->dirty_page = newpage;
 611    }
 612}
 613
 614static inline
 615void flash_write8(Flash *s, uint32_t addr, uint8_t data)
 616{
 617    uint32_t page = addr / s->pi->page_size;
 618    uint8_t prev = s->storage[s->cur_addr];
 619
 620    if (!s->write_enable) {
 621        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 622        return;
 623    }
 624
 625    if ((prev ^ data) & data) {
 626        trace_m25p80_programming_zero_to_one(s, addr, prev, data);
 627    }
 628
 629    if (s->pi->flags & EEPROM) {
 630        s->storage[s->cur_addr] = data;
 631    } else {
 632        s->storage[s->cur_addr] &= data;
 633    }
 634
 635    flash_sync_dirty(s, page);
 636    s->dirty_page = page;
 637}
 638
 639static inline int get_addr_length(Flash *s)
 640{
 641   /* check if eeprom is in use */
 642    if (s->pi->flags == EEPROM) {
 643        return 2;
 644    }
 645
 646   switch (s->cmd_in_progress) {
 647   case PP4:
 648   case PP4_4:
 649   case QPP_4:
 650   case READ4:
 651   case QIOR4:
 652   case ERASE4_4K:
 653   case ERASE4_32K:
 654   case ERASE4_SECTOR:
 655   case FAST_READ4:
 656   case DOR4:
 657   case QOR4:
 658   case DIOR4:
 659       return 4;
 660   default:
 661       return s->four_bytes_address_mode ? 4 : 3;
 662   }
 663}
 664
 665static void complete_collecting_data(Flash *s)
 666{
 667    int i, n;
 668
 669    n = get_addr_length(s);
 670    s->cur_addr = (n == 3 ? s->ear : 0);
 671    for (i = 0; i < n; ++i) {
 672        s->cur_addr <<= 8;
 673        s->cur_addr |= s->data[i];
 674    }
 675
 676    s->cur_addr &= s->size - 1;
 677
 678    s->state = STATE_IDLE;
 679
 680    trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
 681                                     s->cur_addr);
 682
 683    switch (s->cmd_in_progress) {
 684    case DPP:
 685    case QPP:
 686    case QPP_4:
 687    case PP:
 688    case PP4:
 689    case PP4_4:
 690        s->state = STATE_PAGE_PROGRAM;
 691        break;
 692    case AAI_WP:
 693        /* AAI programming starts from the even address */
 694        s->cur_addr &= ~BIT(0);
 695        s->state = STATE_PAGE_PROGRAM;
 696        break;
 697    case READ:
 698    case READ4:
 699    case FAST_READ:
 700    case FAST_READ4:
 701    case DOR:
 702    case DOR4:
 703    case QOR:
 704    case QOR4:
 705    case DIOR:
 706    case DIOR4:
 707    case QIOR:
 708    case QIOR4:
 709        s->state = STATE_READ;
 710        break;
 711    case ERASE_4K:
 712    case ERASE4_4K:
 713    case ERASE_32K:
 714    case ERASE4_32K:
 715    case ERASE_SECTOR:
 716    case ERASE4_SECTOR:
 717    case DIE_ERASE:
 718        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 719        break;
 720    case WRSR:
 721        switch (get_man(s)) {
 722        case MAN_SPANSION:
 723            s->quad_enable = !!(s->data[1] & 0x02);
 724            break;
 725        case MAN_ISSI:
 726            s->quad_enable = extract32(s->data[0], 6, 1);
 727            break;
 728        case MAN_MACRONIX:
 729            s->quad_enable = extract32(s->data[0], 6, 1);
 730            if (s->len > 1) {
 731                s->volatile_cfg = s->data[1];
 732                s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
 733            }
 734            break;
 735        default:
 736            break;
 737        }
 738        if (s->write_enable) {
 739            s->write_enable = false;
 740        }
 741        break;
 742    case BRWR:
 743    case EXTEND_ADDR_WRITE:
 744        s->ear = s->data[0];
 745        break;
 746    case WNVCR:
 747        s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
 748        break;
 749    case WVCR:
 750        s->volatile_cfg = s->data[0];
 751        break;
 752    case WEVCR:
 753        s->enh_volatile_cfg = s->data[0];
 754        break;
 755    case RDID_90:
 756    case RDID_AB:
 757        if (get_man(s) == MAN_SST) {
 758            if (s->cur_addr <= 1) {
 759                if (s->cur_addr) {
 760                    s->data[0] = s->pi->id[2];
 761                    s->data[1] = s->pi->id[0];
 762                } else {
 763                    s->data[0] = s->pi->id[0];
 764                    s->data[1] = s->pi->id[2];
 765                }
 766                s->pos = 0;
 767                s->len = 2;
 768                s->data_read_loop = true;
 769                s->state = STATE_READING_DATA;
 770            } else {
 771                qemu_log_mask(LOG_GUEST_ERROR,
 772                              "M25P80: Invalid read id address\n");
 773            }
 774        } else {
 775            qemu_log_mask(LOG_GUEST_ERROR,
 776                          "M25P80: Read id (command 0x90/0xAB) is not supported"
 777                          " by device\n");
 778        }
 779        break;
 780    default:
 781        break;
 782    }
 783}
 784
 785static void reset_memory(Flash *s)
 786{
 787    s->cmd_in_progress = NOP;
 788    s->cur_addr = 0;
 789    s->ear = 0;
 790    s->four_bytes_address_mode = false;
 791    s->len = 0;
 792    s->needed_bytes = 0;
 793    s->pos = 0;
 794    s->state = STATE_IDLE;
 795    s->write_enable = false;
 796    s->reset_enable = false;
 797    s->quad_enable = false;
 798    s->aai_enable = false;
 799
 800    switch (get_man(s)) {
 801    case MAN_NUMONYX:
 802        s->volatile_cfg = 0;
 803        s->volatile_cfg |= VCFG_DUMMY;
 804        s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
 805        if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
 806                                == NVCFG_XIP_MODE_DISABLED) {
 807            s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
 808        }
 809        s->volatile_cfg |= deposit32(s->volatile_cfg,
 810                            VCFG_DUMMY_CLK_POS,
 811                            CFG_DUMMY_CLK_LEN,
 812                            extract32(s->nonvolatile_cfg,
 813                                        NVCFG_DUMMY_CLK_POS,
 814                                        CFG_DUMMY_CLK_LEN)
 815                            );
 816
 817        s->enh_volatile_cfg = 0;
 818        s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
 819        s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
 820        s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
 821        if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
 822            s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
 823        }
 824        if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
 825            s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
 826        }
 827        if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
 828            s->four_bytes_address_mode = true;
 829        }
 830        if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
 831            s->ear = s->size / MAX_3BYTES_SIZE - 1;
 832        }
 833        break;
 834    case MAN_MACRONIX:
 835        s->volatile_cfg = 0x7;
 836        break;
 837    case MAN_SPANSION:
 838        s->spansion_cr1v = s->spansion_cr1nv;
 839        s->spansion_cr2v = s->spansion_cr2nv;
 840        s->spansion_cr3v = s->spansion_cr3nv;
 841        s->spansion_cr4v = s->spansion_cr4nv;
 842        s->quad_enable = extract32(s->spansion_cr1v,
 843                                   SPANSION_QUAD_CFG_POS,
 844                                   SPANSION_QUAD_CFG_LEN
 845                                   );
 846        s->four_bytes_address_mode = extract32(s->spansion_cr2v,
 847                SPANSION_ADDR_LEN_POS,
 848                SPANSION_ADDR_LEN_LEN
 849                );
 850        break;
 851    default:
 852        break;
 853    }
 854
 855    trace_m25p80_reset_done(s);
 856}
 857
 858static uint8_t numonyx_mode(Flash *s)
 859{
 860    if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
 861        return MODE_QIO;
 862    } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
 863        return MODE_DIO;
 864    } else {
 865        return MODE_STD;
 866    }
 867}
 868
 869static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
 870{
 871    uint8_t num_dummies;
 872    uint8_t mode;
 873    assert(get_man(s) == MAN_NUMONYX);
 874
 875    mode = numonyx_mode(s);
 876    num_dummies = extract32(s->volatile_cfg, 4, 4);
 877
 878    if (num_dummies == 0x0 || num_dummies == 0xf) {
 879        switch (s->cmd_in_progress) {
 880        case QIOR:
 881        case QIOR4:
 882            num_dummies = 10;
 883            break;
 884        default:
 885            num_dummies = (mode == MODE_QIO) ? 10 : 8;
 886            break;
 887        }
 888    }
 889
 890    return num_dummies;
 891}
 892
 893static void decode_fast_read_cmd(Flash *s)
 894{
 895    s->needed_bytes = get_addr_length(s);
 896    switch (get_man(s)) {
 897    /* Dummy cycles - modeled with bytes writes instead of bits */
 898    case MAN_SST:
 899        s->needed_bytes += 1;
 900        break;
 901    case MAN_WINBOND:
 902        s->needed_bytes += 8;
 903        break;
 904    case MAN_NUMONYX:
 905        s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
 906        break;
 907    case MAN_MACRONIX:
 908        if (extract32(s->volatile_cfg, 6, 2) == 1) {
 909            s->needed_bytes += 6;
 910        } else {
 911            s->needed_bytes += 8;
 912        }
 913        break;
 914    case MAN_SPANSION:
 915        s->needed_bytes += extract32(s->spansion_cr2v,
 916                                    SPANSION_DUMMY_CLK_POS,
 917                                    SPANSION_DUMMY_CLK_LEN
 918                                    );
 919        break;
 920    case MAN_ISSI:
 921        /*
 922         * The Fast Read instruction code is followed by address bytes and
 923         * dummy cycles, transmitted via the SI line.
 924         *
 925         * The number of dummy cycles is configurable but this is currently
 926         * unmodeled, hence the default value 8 is used.
 927         *
 928         * QPI (Quad Peripheral Interface) mode has different default value
 929         * of dummy cycles, but this is unsupported at the time being.
 930         */
 931        s->needed_bytes += 1;
 932        break;
 933    default:
 934        break;
 935    }
 936    s->pos = 0;
 937    s->len = 0;
 938    s->state = STATE_COLLECTING_DATA;
 939}
 940
 941static void decode_dio_read_cmd(Flash *s)
 942{
 943    s->needed_bytes = get_addr_length(s);
 944    /* Dummy cycles modeled with bytes writes instead of bits */
 945    switch (get_man(s)) {
 946    case MAN_WINBOND:
 947        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 948        break;
 949    case MAN_SPANSION:
 950        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
 951        s->needed_bytes += extract32(s->spansion_cr2v,
 952                                    SPANSION_DUMMY_CLK_POS,
 953                                    SPANSION_DUMMY_CLK_LEN
 954                                    );
 955        break;
 956    case MAN_NUMONYX:
 957        s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
 958        break;
 959    case MAN_MACRONIX:
 960        switch (extract32(s->volatile_cfg, 6, 2)) {
 961        case 1:
 962            s->needed_bytes += 6;
 963            break;
 964        case 2:
 965            s->needed_bytes += 8;
 966            break;
 967        default:
 968            s->needed_bytes += 4;
 969            break;
 970        }
 971        break;
 972    case MAN_ISSI:
 973        /*
 974         * The Fast Read Dual I/O instruction code is followed by address bytes
 975         * and dummy cycles, transmitted via the IO1 and IO0 line.
 976         *
 977         * The number of dummy cycles is configurable but this is currently
 978         * unmodeled, hence the default value 4 is used.
 979         */
 980        s->needed_bytes += 1;
 981        break;
 982    default:
 983        break;
 984    }
 985    s->pos = 0;
 986    s->len = 0;
 987    s->state = STATE_COLLECTING_DATA;
 988}
 989
 990static void decode_qio_read_cmd(Flash *s)
 991{
 992    s->needed_bytes = get_addr_length(s);
 993    /* Dummy cycles modeled with bytes writes instead of bits */
 994    switch (get_man(s)) {
 995    case MAN_WINBOND:
 996        s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
 997        s->needed_bytes += 4;
 998        break;
 999    case MAN_SPANSION:
1000        s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1001        s->needed_bytes += extract32(s->spansion_cr2v,
1002                                    SPANSION_DUMMY_CLK_POS,
1003                                    SPANSION_DUMMY_CLK_LEN
1004                                    );
1005        break;
1006    case MAN_NUMONYX:
1007        s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1008        break;
1009    case MAN_MACRONIX:
1010        switch (extract32(s->volatile_cfg, 6, 2)) {
1011        case 1:
1012            s->needed_bytes += 4;
1013            break;
1014        case 2:
1015            s->needed_bytes += 8;
1016            break;
1017        default:
1018            s->needed_bytes += 6;
1019            break;
1020        }
1021        break;
1022    case MAN_ISSI:
1023        /*
1024         * The Fast Read Quad I/O instruction code is followed by address bytes
1025         * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1026         *
1027         * The number of dummy cycles is configurable but this is currently
1028         * unmodeled, hence the default value 6 is used.
1029         *
1030         * QPI (Quad Peripheral Interface) mode has different default value
1031         * of dummy cycles, but this is unsupported at the time being.
1032         */
1033        s->needed_bytes += 3;
1034        break;
1035    default:
1036        break;
1037    }
1038    s->pos = 0;
1039    s->len = 0;
1040    s->state = STATE_COLLECTING_DATA;
1041}
1042
1043static bool is_valid_aai_cmd(uint32_t cmd)
1044{
1045    return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1046}
1047
1048static void decode_new_cmd(Flash *s, uint32_t value)
1049{
1050    int i;
1051
1052    s->cmd_in_progress = value;
1053    trace_m25p80_command_decoded(s, value);
1054
1055    if (value != RESET_MEMORY) {
1056        s->reset_enable = false;
1057    }
1058
1059    if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1060        qemu_log_mask(LOG_GUEST_ERROR,
1061                      "M25P80: Invalid cmd within AAI programming sequence");
1062    }
1063
1064    switch (value) {
1065
1066    case ERASE_4K:
1067    case ERASE4_4K:
1068    case ERASE_32K:
1069    case ERASE4_32K:
1070    case ERASE_SECTOR:
1071    case ERASE4_SECTOR:
1072    case PP:
1073    case PP4:
1074    case DIE_ERASE:
1075    case RDID_90:
1076    case RDID_AB:
1077        s->needed_bytes = get_addr_length(s);
1078        s->pos = 0;
1079        s->len = 0;
1080        s->state = STATE_COLLECTING_DATA;
1081        break;
1082    case READ:
1083    case READ4:
1084        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1085            s->needed_bytes = get_addr_length(s);
1086            s->pos = 0;
1087            s->len = 0;
1088            s->state = STATE_COLLECTING_DATA;
1089        } else {
1090            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1091                          "DIO or QIO mode\n", s->cmd_in_progress);
1092        }
1093        break;
1094    case DPP:
1095        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1096            s->needed_bytes = get_addr_length(s);
1097            s->pos = 0;
1098            s->len = 0;
1099            s->state = STATE_COLLECTING_DATA;
1100        } else {
1101            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1102                          "QIO mode\n", s->cmd_in_progress);
1103        }
1104        break;
1105    case QPP:
1106    case QPP_4:
1107    case PP4_4:
1108        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1109            s->needed_bytes = get_addr_length(s);
1110            s->pos = 0;
1111            s->len = 0;
1112            s->state = STATE_COLLECTING_DATA;
1113        } else {
1114            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1115                          "DIO mode\n", s->cmd_in_progress);
1116        }
1117        break;
1118
1119    case FAST_READ:
1120    case FAST_READ4:
1121        decode_fast_read_cmd(s);
1122        break;
1123    case DOR:
1124    case DOR4:
1125        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1126            decode_fast_read_cmd(s);
1127        } else {
1128            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1129                          "QIO mode\n", s->cmd_in_progress);
1130        }
1131        break;
1132    case QOR:
1133    case QOR4:
1134        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1135            decode_fast_read_cmd(s);
1136        } else {
1137            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1138                          "DIO mode\n", s->cmd_in_progress);
1139        }
1140        break;
1141
1142    case DIOR:
1143    case DIOR4:
1144        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1145            decode_dio_read_cmd(s);
1146        } else {
1147            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1148                          "QIO mode\n", s->cmd_in_progress);
1149        }
1150        break;
1151
1152    case QIOR:
1153    case QIOR4:
1154        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1155            decode_qio_read_cmd(s);
1156        } else {
1157            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1158                          "DIO mode\n", s->cmd_in_progress);
1159        }
1160        break;
1161
1162    case WRSR:
1163        if (s->write_enable) {
1164            switch (get_man(s)) {
1165            case MAN_SPANSION:
1166                s->needed_bytes = 2;
1167                s->state = STATE_COLLECTING_DATA;
1168                break;
1169            case MAN_MACRONIX:
1170                s->needed_bytes = 2;
1171                s->state = STATE_COLLECTING_VAR_LEN_DATA;
1172                break;
1173            default:
1174                s->needed_bytes = 1;
1175                s->state = STATE_COLLECTING_DATA;
1176            }
1177            s->pos = 0;
1178        }
1179        break;
1180
1181    case WRDI:
1182        s->write_enable = false;
1183        if (get_man(s) == MAN_SST) {
1184            s->aai_enable = false;
1185        }
1186        break;
1187    case WREN:
1188        s->write_enable = true;
1189        break;
1190
1191    case RDSR:
1192        s->data[0] = (!!s->write_enable) << 1;
1193        if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1194            s->data[0] |= (!!s->quad_enable) << 6;
1195        }
1196        if (get_man(s) == MAN_SST) {
1197            s->data[0] |= (!!s->aai_enable) << 6;
1198        }
1199
1200        s->pos = 0;
1201        s->len = 1;
1202        s->data_read_loop = true;
1203        s->state = STATE_READING_DATA;
1204        break;
1205
1206    case READ_FSR:
1207        s->data[0] = FSR_FLASH_READY;
1208        if (s->four_bytes_address_mode) {
1209            s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1210        }
1211        s->pos = 0;
1212        s->len = 1;
1213        s->data_read_loop = true;
1214        s->state = STATE_READING_DATA;
1215        break;
1216
1217    case JEDEC_READ:
1218        if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1219            trace_m25p80_populated_jedec(s);
1220            for (i = 0; i < s->pi->id_len; i++) {
1221                s->data[i] = s->pi->id[i];
1222            }
1223            for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1224                s->data[i] = 0;
1225            }
1226
1227            s->len = SPI_NOR_MAX_ID_LEN;
1228            s->pos = 0;
1229            s->state = STATE_READING_DATA;
1230        } else {
1231            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1232                          "in DIO or QIO mode\n");
1233        }
1234        break;
1235
1236    case RDCR:
1237        s->data[0] = s->volatile_cfg & 0xFF;
1238        s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1239        s->pos = 0;
1240        s->len = 1;
1241        s->state = STATE_READING_DATA;
1242        break;
1243
1244    case BULK_ERASE_60:
1245    case BULK_ERASE:
1246        if (s->write_enable) {
1247            trace_m25p80_chip_erase(s);
1248            flash_erase(s, 0, BULK_ERASE);
1249        } else {
1250            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1251                          "protect!\n");
1252        }
1253        break;
1254    case NOP:
1255        break;
1256    case EN_4BYTE_ADDR:
1257        s->four_bytes_address_mode = true;
1258        break;
1259    case EX_4BYTE_ADDR:
1260        s->four_bytes_address_mode = false;
1261        break;
1262    case BRRD:
1263    case EXTEND_ADDR_READ:
1264        s->data[0] = s->ear;
1265        s->pos = 0;
1266        s->len = 1;
1267        s->state = STATE_READING_DATA;
1268        break;
1269    case BRWR:
1270    case EXTEND_ADDR_WRITE:
1271        if (s->write_enable) {
1272            s->needed_bytes = 1;
1273            s->pos = 0;
1274            s->len = 0;
1275            s->state = STATE_COLLECTING_DATA;
1276        }
1277        break;
1278    case RNVCR:
1279        s->data[0] = s->nonvolatile_cfg & 0xFF;
1280        s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1281        s->pos = 0;
1282        s->len = 2;
1283        s->state = STATE_READING_DATA;
1284        break;
1285    case WNVCR:
1286        if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1287            s->needed_bytes = 2;
1288            s->pos = 0;
1289            s->len = 0;
1290            s->state = STATE_COLLECTING_DATA;
1291        }
1292        break;
1293    case RVCR:
1294        s->data[0] = s->volatile_cfg & 0xFF;
1295        s->pos = 0;
1296        s->len = 1;
1297        s->state = STATE_READING_DATA;
1298        break;
1299    case WVCR:
1300        if (s->write_enable) {
1301            s->needed_bytes = 1;
1302            s->pos = 0;
1303            s->len = 0;
1304            s->state = STATE_COLLECTING_DATA;
1305        }
1306        break;
1307    case REVCR:
1308        s->data[0] = s->enh_volatile_cfg & 0xFF;
1309        s->pos = 0;
1310        s->len = 1;
1311        s->state = STATE_READING_DATA;
1312        break;
1313    case WEVCR:
1314        if (s->write_enable) {
1315            s->needed_bytes = 1;
1316            s->pos = 0;
1317            s->len = 0;
1318            s->state = STATE_COLLECTING_DATA;
1319        }
1320        break;
1321    case RESET_ENABLE:
1322        s->reset_enable = true;
1323        break;
1324    case RESET_MEMORY:
1325        if (s->reset_enable) {
1326            reset_memory(s);
1327        }
1328        break;
1329    case RDCR_EQIO:
1330        switch (get_man(s)) {
1331        case MAN_SPANSION:
1332            s->data[0] = (!!s->quad_enable) << 1;
1333            s->pos = 0;
1334            s->len = 1;
1335            s->state = STATE_READING_DATA;
1336            break;
1337        case MAN_MACRONIX:
1338            s->quad_enable = true;
1339            break;
1340        default:
1341            break;
1342        }
1343        break;
1344    case RSTQIO:
1345        s->quad_enable = false;
1346        break;
1347    case AAI_WP:
1348        if (get_man(s) == MAN_SST) {
1349            if (s->write_enable) {
1350                if (s->aai_enable) {
1351                    s->state = STATE_PAGE_PROGRAM;
1352                } else {
1353                    s->aai_enable = true;
1354                    s->needed_bytes = get_addr_length(s);
1355                    s->state = STATE_COLLECTING_DATA;
1356                }
1357            } else {
1358                qemu_log_mask(LOG_GUEST_ERROR,
1359                              "M25P80: AAI_WP with write protect\n");
1360            }
1361        } else {
1362            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1363        }
1364        break;
1365    default:
1366        s->pos = 0;
1367        s->len = 1;
1368        s->state = STATE_READING_DATA;
1369        s->data_read_loop = true;
1370        s->data[0] = 0;
1371        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1372        break;
1373    }
1374}
1375
1376static int m25p80_cs(SSIPeripheral *ss, bool select)
1377{
1378    Flash *s = M25P80(ss);
1379
1380    if (select) {
1381        if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1382            complete_collecting_data(s);
1383        }
1384        s->len = 0;
1385        s->pos = 0;
1386        s->state = STATE_IDLE;
1387        flash_sync_dirty(s, -1);
1388        s->data_read_loop = false;
1389    }
1390
1391    trace_m25p80_select(s, select ? "de" : "");
1392
1393    return 0;
1394}
1395
1396static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1397{
1398    Flash *s = M25P80(ss);
1399    uint32_t r = 0;
1400
1401    trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1402                          s->cur_addr, (uint8_t)tx);
1403
1404    switch (s->state) {
1405
1406    case STATE_PAGE_PROGRAM:
1407        trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1408        flash_write8(s, s->cur_addr, (uint8_t)tx);
1409        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1410
1411        if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1412            /*
1413             * There is no wrap mode during AAI programming once the highest
1414             * unprotected memory address is reached. The Write-Enable-Latch
1415             * bit is automatically reset, and AAI programming mode aborts.
1416             */
1417            s->write_enable = false;
1418            s->aai_enable = false;
1419        }
1420
1421        break;
1422
1423    case STATE_READ:
1424        r = s->storage[s->cur_addr];
1425        trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1426        s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1427        break;
1428
1429    case STATE_COLLECTING_DATA:
1430    case STATE_COLLECTING_VAR_LEN_DATA:
1431
1432        if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1433            qemu_log_mask(LOG_GUEST_ERROR,
1434                          "M25P80: Write overrun internal data buffer. "
1435                          "SPI controller (QEMU emulator or guest driver) "
1436                          "is misbehaving\n");
1437            s->len = s->pos = 0;
1438            s->state = STATE_IDLE;
1439            break;
1440        }
1441
1442        s->data[s->len] = (uint8_t)tx;
1443        s->len++;
1444
1445        if (s->len == s->needed_bytes) {
1446            complete_collecting_data(s);
1447        }
1448        break;
1449
1450    case STATE_READING_DATA:
1451
1452        if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1453            qemu_log_mask(LOG_GUEST_ERROR,
1454                          "M25P80: Read overrun internal data buffer. "
1455                          "SPI controller (QEMU emulator or guest driver) "
1456                          "is misbehaving\n");
1457            s->len = s->pos = 0;
1458            s->state = STATE_IDLE;
1459            break;
1460        }
1461
1462        r = s->data[s->pos];
1463        trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1464        s->pos++;
1465        if (s->pos == s->len) {
1466            s->pos = 0;
1467            if (!s->data_read_loop) {
1468                s->state = STATE_IDLE;
1469            }
1470        }
1471        break;
1472
1473    default:
1474    case STATE_IDLE:
1475        decode_new_cmd(s, (uint8_t)tx);
1476        break;
1477    }
1478
1479    return r;
1480}
1481
1482static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1483{
1484    Flash *s = M25P80(ss);
1485    M25P80Class *mc = M25P80_GET_CLASS(s);
1486    int ret;
1487
1488    s->pi = mc->pi;
1489
1490    s->size = s->pi->sector_size * s->pi->n_sectors;
1491    s->dirty_page = -1;
1492
1493    if (s->blk) {
1494        uint64_t perm = BLK_PERM_CONSISTENT_READ |
1495                        (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1496        ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1497        if (ret < 0) {
1498            return;
1499        }
1500
1501        trace_m25p80_binding(s);
1502        s->storage = blk_blockalign(s->blk, s->size);
1503
1504        if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1505            error_setg(errp, "failed to read the initial flash content");
1506            return;
1507        }
1508    } else {
1509        trace_m25p80_binding_no_bdrv(s);
1510        s->storage = blk_blockalign(NULL, s->size);
1511        memset(s->storage, 0xFF, s->size);
1512    }
1513}
1514
1515static void m25p80_reset(DeviceState *d)
1516{
1517    Flash *s = M25P80(d);
1518
1519    reset_memory(s);
1520}
1521
1522static int m25p80_pre_save(void *opaque)
1523{
1524    flash_sync_dirty((Flash *)opaque, -1);
1525
1526    return 0;
1527}
1528
1529static Property m25p80_properties[] = {
1530    /* This is default value for Micron flash */
1531    DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1532    DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1533    DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1534    DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1535    DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1536    DEFINE_PROP_DRIVE("drive", Flash, blk),
1537    DEFINE_PROP_END_OF_LIST(),
1538};
1539
1540static int m25p80_pre_load(void *opaque)
1541{
1542    Flash *s = (Flash *)opaque;
1543
1544    s->data_read_loop = false;
1545    return 0;
1546}
1547
1548static bool m25p80_data_read_loop_needed(void *opaque)
1549{
1550    Flash *s = (Flash *)opaque;
1551
1552    return s->data_read_loop;
1553}
1554
1555static const VMStateDescription vmstate_m25p80_data_read_loop = {
1556    .name = "m25p80/data_read_loop",
1557    .version_id = 1,
1558    .minimum_version_id = 1,
1559    .needed = m25p80_data_read_loop_needed,
1560    .fields = (VMStateField[]) {
1561        VMSTATE_BOOL(data_read_loop, Flash),
1562        VMSTATE_END_OF_LIST()
1563    }
1564};
1565
1566static bool m25p80_aai_enable_needed(void *opaque)
1567{
1568    Flash *s = (Flash *)opaque;
1569
1570    return s->aai_enable;
1571}
1572
1573static const VMStateDescription vmstate_m25p80_aai_enable = {
1574    .name = "m25p80/aai_enable",
1575    .version_id = 1,
1576    .minimum_version_id = 1,
1577    .needed = m25p80_aai_enable_needed,
1578    .fields = (VMStateField[]) {
1579        VMSTATE_BOOL(aai_enable, Flash),
1580        VMSTATE_END_OF_LIST()
1581    }
1582};
1583
1584static const VMStateDescription vmstate_m25p80 = {
1585    .name = "m25p80",
1586    .version_id = 0,
1587    .minimum_version_id = 0,
1588    .pre_save = m25p80_pre_save,
1589    .pre_load = m25p80_pre_load,
1590    .fields = (VMStateField[]) {
1591        VMSTATE_UINT8(state, Flash),
1592        VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1593        VMSTATE_UINT32(len, Flash),
1594        VMSTATE_UINT32(pos, Flash),
1595        VMSTATE_UINT8(needed_bytes, Flash),
1596        VMSTATE_UINT8(cmd_in_progress, Flash),
1597        VMSTATE_UINT32(cur_addr, Flash),
1598        VMSTATE_BOOL(write_enable, Flash),
1599        VMSTATE_BOOL(reset_enable, Flash),
1600        VMSTATE_UINT8(ear, Flash),
1601        VMSTATE_BOOL(four_bytes_address_mode, Flash),
1602        VMSTATE_UINT32(nonvolatile_cfg, Flash),
1603        VMSTATE_UINT32(volatile_cfg, Flash),
1604        VMSTATE_UINT32(enh_volatile_cfg, Flash),
1605        VMSTATE_BOOL(quad_enable, Flash),
1606        VMSTATE_UINT8(spansion_cr1nv, Flash),
1607        VMSTATE_UINT8(spansion_cr2nv, Flash),
1608        VMSTATE_UINT8(spansion_cr3nv, Flash),
1609        VMSTATE_UINT8(spansion_cr4nv, Flash),
1610        VMSTATE_END_OF_LIST()
1611    },
1612    .subsections = (const VMStateDescription * []) {
1613        &vmstate_m25p80_data_read_loop,
1614        &vmstate_m25p80_aai_enable,
1615        NULL
1616    }
1617};
1618
1619static void m25p80_class_init(ObjectClass *klass, void *data)
1620{
1621    DeviceClass *dc = DEVICE_CLASS(klass);
1622    SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1623    M25P80Class *mc = M25P80_CLASS(klass);
1624
1625    k->realize = m25p80_realize;
1626    k->transfer = m25p80_transfer8;
1627    k->set_cs = m25p80_cs;
1628    k->cs_polarity = SSI_CS_LOW;
1629    dc->vmsd = &vmstate_m25p80;
1630    device_class_set_props(dc, m25p80_properties);
1631    dc->reset = m25p80_reset;
1632    mc->pi = data;
1633}
1634
1635static const TypeInfo m25p80_info = {
1636    .name           = TYPE_M25P80,
1637    .parent         = TYPE_SSI_PERIPHERAL,
1638    .instance_size  = sizeof(Flash),
1639    .class_size     = sizeof(M25P80Class),
1640    .abstract       = true,
1641};
1642
1643static void m25p80_register_types(void)
1644{
1645    int i;
1646
1647    type_register_static(&m25p80_info);
1648    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1649        TypeInfo ti = {
1650            .name       = known_devices[i].part_name,
1651            .parent     = TYPE_M25P80,
1652            .class_init = m25p80_class_init,
1653            .class_data = (void *)&known_devices[i],
1654        };
1655        type_register(&ti);
1656    }
1657}
1658
1659type_init(m25p80_register_types)
1660