qemu/qapi/machine.json
<<
>>
Prefs
   1# -*- Mode: Python -*-
   2# vim: filetype=python
   3#
   4# This work is licensed under the terms of the GNU GPL, version 2 or later.
   5# See the COPYING file in the top-level directory.
   6
   7##
   8# = Machines
   9##
  10
  11{ 'include': 'common.json' }
  12
  13##
  14# @SysEmuTarget:
  15#
  16# The comprehensive enumeration of QEMU system emulation ("softmmu")
  17# targets. Run "./configure --help" in the project root directory, and
  18# look for the \*-softmmu targets near the "--target-list" option. The
  19# individual target constants are not documented here, for the time
  20# being.
  21#
  22# @rx: since 5.0
  23# @avr: since 5.1
  24#
  25# Notes: The resulting QMP strings can be appended to the "qemu-system-"
  26#        prefix to produce the corresponding QEMU executable name. This
  27#        is true even for "qemu-system-x86_64".
  28#
  29# Since: 3.0
  30##
  31{ 'enum' : 'SysEmuTarget',
  32  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 'lm32',
  33             'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
  34             'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc',
  35             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
  36             'sh4eb', 'sparc', 'sparc64', 'tricore', 'unicore32',
  37             'x86_64', 'xtensa', 'xtensaeb' ] }
  38
  39##
  40# @CpuS390State:
  41#
  42# An enumeration of cpu states that can be assumed by a virtual
  43# S390 CPU
  44#
  45# Since: 2.12
  46##
  47{ 'enum': 'CpuS390State',
  48  'prefix': 'S390_CPU_STATE',
  49  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
  50
  51##
  52# @CpuInfoS390:
  53#
  54# Additional information about a virtual S390 CPU
  55#
  56# @cpu-state: the virtual CPU's state
  57#
  58# Since: 2.12
  59##
  60{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
  61
  62##
  63# @CpuInfoFast:
  64#
  65# Information about a virtual CPU
  66#
  67# @cpu-index: index of the virtual CPU
  68#
  69# @qom-path: path to the CPU object in the QOM tree
  70#
  71# @thread-id: ID of the underlying host thread
  72#
  73# @props: properties describing to which node/socket/core/thread
  74#         virtual CPU belongs to, provided if supported by board
  75#
  76# @target: the QEMU system emulation target, which determines which
  77#          additional fields will be listed (since 3.0)
  78#
  79# Since: 2.12
  80#
  81##
  82{ 'union'         : 'CpuInfoFast',
  83  'base'          : { 'cpu-index'    : 'int',
  84                      'qom-path'     : 'str',
  85                      'thread-id'    : 'int',
  86                      '*props'       : 'CpuInstanceProperties',
  87                      'target'       : 'SysEmuTarget' },
  88  'discriminator' : 'target',
  89  'data'          : { 's390x'        : 'CpuInfoS390' } }
  90
  91##
  92# @query-cpus-fast:
  93#
  94# Returns information about all virtual CPUs.
  95#
  96# Returns: list of @CpuInfoFast
  97#
  98# Since: 2.12
  99#
 100# Example:
 101#
 102# -> { "execute": "query-cpus-fast" }
 103# <- { "return": [
 104#         {
 105#             "thread-id": 25627,
 106#             "props": {
 107#                 "core-id": 0,
 108#                 "thread-id": 0,
 109#                 "socket-id": 0
 110#             },
 111#             "qom-path": "/machine/unattached/device[0]",
 112#             "arch":"x86",
 113#             "target":"x86_64",
 114#             "cpu-index": 0
 115#         },
 116#         {
 117#             "thread-id": 25628,
 118#             "props": {
 119#                 "core-id": 0,
 120#                 "thread-id": 0,
 121#                 "socket-id": 1
 122#             },
 123#             "qom-path": "/machine/unattached/device[2]",
 124#             "arch":"x86",
 125#             "target":"x86_64",
 126#             "cpu-index": 1
 127#         }
 128#     ]
 129# }
 130##
 131{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
 132
 133##
 134# @MachineInfo:
 135#
 136# Information describing a machine.
 137#
 138# @name: the name of the machine
 139#
 140# @alias: an alias for the machine name
 141#
 142# @is-default: whether the machine is default
 143#
 144# @cpu-max: maximum number of CPUs supported by the machine type
 145#           (since 1.5)
 146#
 147# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
 148#
 149# @numa-mem-supported: true if '-numa node,mem' option is supported by
 150#                      the machine type and false otherwise (since 4.1)
 151#
 152# @deprecated: if true, the machine type is deprecated and may be removed
 153#              in future versions of QEMU according to the QEMU deprecation
 154#              policy (since 4.1)
 155#
 156# @default-cpu-type: default CPU model typename if none is requested via
 157#                    the -cpu argument. (since 4.2)
 158#
 159# @default-ram-id: the default ID of initial RAM memory backend (since 5.2)
 160#
 161# Since: 1.2
 162##
 163{ 'struct': 'MachineInfo',
 164  'data': { 'name': 'str', '*alias': 'str',
 165            '*is-default': 'bool', 'cpu-max': 'int',
 166            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
 167            'deprecated': 'bool', '*default-cpu-type': 'str',
 168            '*default-ram-id': 'str' } }
 169
 170##
 171# @query-machines:
 172#
 173# Return a list of supported machines
 174#
 175# Returns: a list of MachineInfo
 176#
 177# Since: 1.2
 178##
 179{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
 180
 181##
 182# @CurrentMachineParams:
 183#
 184# Information describing the running machine parameters.
 185#
 186# @wakeup-suspend-support: true if the machine supports wake up from
 187#                          suspend
 188#
 189# Since: 4.0
 190##
 191{ 'struct': 'CurrentMachineParams',
 192  'data': { 'wakeup-suspend-support': 'bool'} }
 193
 194##
 195# @query-current-machine:
 196#
 197# Return information on the current virtual machine.
 198#
 199# Returns: CurrentMachineParams
 200#
 201# Since: 4.0
 202##
 203{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
 204
 205##
 206# @TargetInfo:
 207#
 208# Information describing the QEMU target.
 209#
 210# @arch: the target architecture
 211#
 212# Since: 1.2
 213##
 214{ 'struct': 'TargetInfo',
 215  'data': { 'arch': 'SysEmuTarget' } }
 216
 217##
 218# @query-target:
 219#
 220# Return information about the target for this QEMU
 221#
 222# Returns: TargetInfo
 223#
 224# Since: 1.2
 225##
 226{ 'command': 'query-target', 'returns': 'TargetInfo' }
 227
 228##
 229# @UuidInfo:
 230#
 231# Guest UUID information (Universally Unique Identifier).
 232#
 233# @UUID: the UUID of the guest
 234#
 235# Since: 0.14
 236#
 237# Notes: If no UUID was specified for the guest, a null UUID is returned.
 238##
 239{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
 240
 241##
 242# @query-uuid:
 243#
 244# Query the guest UUID information.
 245#
 246# Returns: The @UuidInfo for the guest
 247#
 248# Since: 0.14
 249#
 250# Example:
 251#
 252# -> { "execute": "query-uuid" }
 253# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
 254#
 255##
 256{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
 257
 258##
 259# @GuidInfo:
 260#
 261# GUID information.
 262#
 263# @guid: the globally unique identifier
 264#
 265# Since: 2.9
 266##
 267{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
 268
 269##
 270# @query-vm-generation-id:
 271#
 272# Show Virtual Machine Generation ID
 273#
 274# Since: 2.9
 275##
 276{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
 277
 278##
 279# @system_reset:
 280#
 281# Performs a hard reset of a guest.
 282#
 283# Since: 0.14
 284#
 285# Example:
 286#
 287# -> { "execute": "system_reset" }
 288# <- { "return": {} }
 289#
 290##
 291{ 'command': 'system_reset' }
 292
 293##
 294# @system_powerdown:
 295#
 296# Requests that a guest perform a powerdown operation.
 297#
 298# Since: 0.14
 299#
 300# Notes: A guest may or may not respond to this command.  This command
 301#        returning does not indicate that a guest has accepted the request or
 302#        that it has shut down.  Many guests will respond to this command by
 303#        prompting the user in some way.
 304# Example:
 305#
 306# -> { "execute": "system_powerdown" }
 307# <- { "return": {} }
 308#
 309##
 310{ 'command': 'system_powerdown' }
 311
 312##
 313# @system_wakeup:
 314#
 315# Wake up guest from suspend. If the guest has wake-up from suspend
 316# support enabled (wakeup-suspend-support flag from
 317# query-current-machine), wake-up guest from suspend if the guest is
 318# in SUSPENDED state. Return an error otherwise.
 319#
 320# Since:  1.1
 321#
 322# Returns:  nothing.
 323#
 324# Note: prior to 4.0, this command does nothing in case the guest
 325#       isn't suspended.
 326#
 327# Example:
 328#
 329# -> { "execute": "system_wakeup" }
 330# <- { "return": {} }
 331#
 332##
 333{ 'command': 'system_wakeup' }
 334
 335##
 336# @LostTickPolicy:
 337#
 338# Policy for handling lost ticks in timer devices.  Ticks end up getting
 339# lost when, for example, the guest is paused.
 340#
 341# @discard: throw away the missed ticks and continue with future injection
 342#           normally.  The guest OS will see the timer jump ahead by a
 343#           potentially quite significant amount all at once, as if the
 344#           intervening chunk of time had simply not existed; needless to
 345#           say, such a sudden jump can easily confuse a guest OS which is
 346#           not specifically prepared to deal with it.  Assuming the guest
 347#           OS can deal correctly with the time jump, the time in the guest
 348#           and in the host should now match.
 349#
 350# @delay: continue to deliver ticks at the normal rate.  The guest OS will
 351#         not notice anything is amiss, as from its point of view time will
 352#         have continued to flow normally.  The time in the guest should now
 353#         be behind the time in the host by exactly the amount of time during
 354#         which ticks have been missed.
 355#
 356# @slew: deliver ticks at a higher rate to catch up with the missed ticks.
 357#        The guest OS will not notice anything is amiss, as from its point
 358#        of view time will have continued to flow normally.  Once the timer
 359#        has managed to catch up with all the missing ticks, the time in
 360#        the guest and in the host should match.
 361#
 362# Since: 2.0
 363##
 364{ 'enum': 'LostTickPolicy',
 365  'data': ['discard', 'delay', 'slew' ] }
 366
 367##
 368# @inject-nmi:
 369#
 370# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
 371# The command fails when the guest doesn't support injecting.
 372#
 373# Returns:  If successful, nothing
 374#
 375# Since:  0.14
 376#
 377# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
 378#
 379# Example:
 380#
 381# -> { "execute": "inject-nmi" }
 382# <- { "return": {} }
 383#
 384##
 385{ 'command': 'inject-nmi' }
 386
 387##
 388# @KvmInfo:
 389#
 390# Information about support for KVM acceleration
 391#
 392# @enabled: true if KVM acceleration is active
 393#
 394# @present: true if KVM acceleration is built into this executable
 395#
 396# Since: 0.14
 397##
 398{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
 399
 400##
 401# @query-kvm:
 402#
 403# Returns information about KVM acceleration
 404#
 405# Returns: @KvmInfo
 406#
 407# Since: 0.14
 408#
 409# Example:
 410#
 411# -> { "execute": "query-kvm" }
 412# <- { "return": { "enabled": true, "present": true } }
 413#
 414##
 415{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
 416
 417##
 418# @NumaOptionsType:
 419#
 420# @node: NUMA nodes configuration
 421#
 422# @dist: NUMA distance configuration (since 2.10)
 423#
 424# @cpu: property based CPU(s) to node mapping (Since: 2.10)
 425#
 426# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
 427#
 428# @hmat-cache: memory side cache information (Since: 5.0)
 429#
 430# Since: 2.1
 431##
 432{ 'enum': 'NumaOptionsType',
 433  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
 434
 435##
 436# @NumaOptions:
 437#
 438# A discriminated record of NUMA options. (for OptsVisitor)
 439#
 440# Since: 2.1
 441##
 442{ 'union': 'NumaOptions',
 443  'base': { 'type': 'NumaOptionsType' },
 444  'discriminator': 'type',
 445  'data': {
 446    'node': 'NumaNodeOptions',
 447    'dist': 'NumaDistOptions',
 448    'cpu': 'NumaCpuOptions',
 449    'hmat-lb': 'NumaHmatLBOptions',
 450    'hmat-cache': 'NumaHmatCacheOptions' }}
 451
 452##
 453# @NumaNodeOptions:
 454#
 455# Create a guest NUMA node. (for OptsVisitor)
 456#
 457# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
 458#
 459# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
 460#         if omitted)
 461#
 462# @mem: memory size of this node; mutually exclusive with @memdev.
 463#       Equally divide total memory among nodes if both @mem and @memdev are
 464#       omitted.
 465#
 466# @memdev: memory backend object.  If specified for one node,
 467#          it must be specified for all nodes.
 468#
 469# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145,
 470#             points to the nodeid which has the memory controller
 471#             responsible for this NUMA node. This field provides
 472#             additional information as to the initiator node that
 473#             is closest (as in directly attached) to this node, and
 474#             therefore has the best performance (since 5.0)
 475#
 476# Since: 2.1
 477##
 478{ 'struct': 'NumaNodeOptions',
 479  'data': {
 480   '*nodeid': 'uint16',
 481   '*cpus':   ['uint16'],
 482   '*mem':    'size',
 483   '*memdev': 'str',
 484   '*initiator': 'uint16' }}
 485
 486##
 487# @NumaDistOptions:
 488#
 489# Set the distance between 2 NUMA nodes.
 490#
 491# @src: source NUMA node.
 492#
 493# @dst: destination NUMA node.
 494#
 495# @val: NUMA distance from source node to destination node.
 496#       When a node is unreachable from another node, set the distance
 497#       between them to 255.
 498#
 499# Since: 2.10
 500##
 501{ 'struct': 'NumaDistOptions',
 502  'data': {
 503   'src': 'uint16',
 504   'dst': 'uint16',
 505   'val': 'uint8' }}
 506
 507##
 508# @X86CPURegister32:
 509#
 510# A X86 32-bit register
 511#
 512# Since: 1.5
 513##
 514{ 'enum': 'X86CPURegister32',
 515  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
 516
 517##
 518# @X86CPUFeatureWordInfo:
 519#
 520# Information about a X86 CPU feature word
 521#
 522# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
 523#
 524# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
 525#                   feature word
 526#
 527# @cpuid-register: Output register containing the feature bits
 528#
 529# @features: value of output register, containing the feature bits
 530#
 531# Since: 1.5
 532##
 533{ 'struct': 'X86CPUFeatureWordInfo',
 534  'data': { 'cpuid-input-eax': 'int',
 535            '*cpuid-input-ecx': 'int',
 536            'cpuid-register': 'X86CPURegister32',
 537            'features': 'int' } }
 538
 539##
 540# @DummyForceArrays:
 541#
 542# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
 543#
 544# Since: 2.5
 545##
 546{ 'struct': 'DummyForceArrays',
 547  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
 548
 549##
 550# @NumaCpuOptions:
 551#
 552# Option "-numa cpu" overrides default cpu to node mapping.
 553# It accepts the same set of cpu properties as returned by
 554# query-hotpluggable-cpus[].props, where node-id could be used to
 555# override default node mapping.
 556#
 557# Since: 2.10
 558##
 559{ 'struct': 'NumaCpuOptions',
 560   'base': 'CpuInstanceProperties',
 561   'data' : {} }
 562
 563##
 564# @HmatLBMemoryHierarchy:
 565#
 566# The memory hierarchy in the System Locality Latency and Bandwidth
 567# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
 568#
 569# For more information about @HmatLBMemoryHierarchy, see chapter
 570# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
 571#
 572# @memory: the structure represents the memory performance
 573#
 574# @first-level: first level of memory side cache
 575#
 576# @second-level: second level of memory side cache
 577#
 578# @third-level: third level of memory side cache
 579#
 580# Since: 5.0
 581##
 582{ 'enum': 'HmatLBMemoryHierarchy',
 583  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
 584
 585##
 586# @HmatLBDataType:
 587#
 588# Data type in the System Locality Latency and Bandwidth
 589# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
 590#
 591# For more information about @HmatLBDataType, see chapter
 592# 5.2.27.4: Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
 593#
 594# @access-latency: access latency (nanoseconds)
 595#
 596# @read-latency: read latency (nanoseconds)
 597#
 598# @write-latency: write latency (nanoseconds)
 599#
 600# @access-bandwidth: access bandwidth (Bytes per second)
 601#
 602# @read-bandwidth: read bandwidth (Bytes per second)
 603#
 604# @write-bandwidth: write bandwidth (Bytes per second)
 605#
 606# Since: 5.0
 607##
 608{ 'enum': 'HmatLBDataType',
 609  'data': [ 'access-latency', 'read-latency', 'write-latency',
 610            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
 611
 612##
 613# @NumaHmatLBOptions:
 614#
 615# Set the system locality latency and bandwidth information
 616# between Initiator and Target proximity Domains.
 617#
 618# For more information about @NumaHmatLBOptions, see chapter
 619# 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
 620#
 621# @initiator: the Initiator Proximity Domain.
 622#
 623# @target: the Target Proximity Domain.
 624#
 625# @hierarchy: the Memory Hierarchy. Indicates the performance
 626#             of memory or side cache.
 627#
 628# @data-type: presents the type of data, access/read/write
 629#             latency or hit latency.
 630#
 631# @latency: the value of latency from @initiator to @target
 632#           proximity domain, the latency unit is "ns(nanosecond)".
 633#
 634# @bandwidth: the value of bandwidth between @initiator and @target
 635#             proximity domain, the bandwidth unit is
 636#             "Bytes per second".
 637#
 638# Since: 5.0
 639##
 640{ 'struct': 'NumaHmatLBOptions',
 641    'data': {
 642    'initiator': 'uint16',
 643    'target': 'uint16',
 644    'hierarchy': 'HmatLBMemoryHierarchy',
 645    'data-type': 'HmatLBDataType',
 646    '*latency': 'uint64',
 647    '*bandwidth': 'size' }}
 648
 649##
 650# @HmatCacheAssociativity:
 651#
 652# Cache associativity in the Memory Side Cache Information Structure
 653# of HMAT
 654#
 655# For more information of @HmatCacheAssociativity, see chapter
 656# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
 657#
 658# @none: None (no memory side cache in this proximity domain,
 659#              or cache associativity unknown)
 660#
 661# @direct: Direct Mapped
 662#
 663# @complex: Complex Cache Indexing (implementation specific)
 664#
 665# Since: 5.0
 666##
 667{ 'enum': 'HmatCacheAssociativity',
 668  'data': [ 'none', 'direct', 'complex' ] }
 669
 670##
 671# @HmatCacheWritePolicy:
 672#
 673# Cache write policy in the Memory Side Cache Information Structure
 674# of HMAT
 675#
 676# For more information of @HmatCacheWritePolicy, see chapter
 677# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
 678#
 679# @none: None (no memory side cache in this proximity domain,
 680#        or cache write policy unknown)
 681#
 682# @write-back: Write Back (WB)
 683#
 684# @write-through: Write Through (WT)
 685#
 686# Since: 5.0
 687##
 688{ 'enum': 'HmatCacheWritePolicy',
 689  'data': [ 'none', 'write-back', 'write-through' ] }
 690
 691##
 692# @NumaHmatCacheOptions:
 693#
 694# Set the memory side cache information for a given memory domain.
 695#
 696# For more information of @NumaHmatCacheOptions, see chapter
 697# 5.2.27.5: Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
 698#
 699# @node-id: the memory proximity domain to which the memory belongs.
 700#
 701# @size: the size of memory side cache in bytes.
 702#
 703# @level: the cache level described in this structure.
 704#
 705# @associativity: the cache associativity,
 706#                 none/direct-mapped/complex(complex cache indexing).
 707#
 708# @policy: the write policy, none/write-back/write-through.
 709#
 710# @line: the cache Line size in bytes.
 711#
 712# Since: 5.0
 713##
 714{ 'struct': 'NumaHmatCacheOptions',
 715  'data': {
 716   'node-id': 'uint32',
 717   'size': 'size',
 718   'level': 'uint8',
 719   'associativity': 'HmatCacheAssociativity',
 720   'policy': 'HmatCacheWritePolicy',
 721   'line': 'uint16' }}
 722
 723##
 724# @memsave:
 725#
 726# Save a portion of guest memory to a file.
 727#
 728# @val: the virtual address of the guest to start from
 729#
 730# @size: the size of memory region to save
 731#
 732# @filename: the file to save the memory to as binary data
 733#
 734# @cpu-index: the index of the virtual CPU to use for translating the
 735#             virtual address (defaults to CPU 0)
 736#
 737# Returns: Nothing on success
 738#
 739# Since: 0.14
 740#
 741# Notes: Errors were not reliably returned until 1.1
 742#
 743# Example:
 744#
 745# -> { "execute": "memsave",
 746#      "arguments": { "val": 10,
 747#                     "size": 100,
 748#                     "filename": "/tmp/virtual-mem-dump" } }
 749# <- { "return": {} }
 750#
 751##
 752{ 'command': 'memsave',
 753  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
 754
 755##
 756# @pmemsave:
 757#
 758# Save a portion of guest physical memory to a file.
 759#
 760# @val: the physical address of the guest to start from
 761#
 762# @size: the size of memory region to save
 763#
 764# @filename: the file to save the memory to as binary data
 765#
 766# Returns: Nothing on success
 767#
 768# Since: 0.14
 769#
 770# Notes: Errors were not reliably returned until 1.1
 771#
 772# Example:
 773#
 774# -> { "execute": "pmemsave",
 775#      "arguments": { "val": 10,
 776#                     "size": 100,
 777#                     "filename": "/tmp/physical-mem-dump" } }
 778# <- { "return": {} }
 779#
 780##
 781{ 'command': 'pmemsave',
 782  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
 783
 784##
 785# @Memdev:
 786#
 787# Information about memory backend
 788#
 789# @id: backend's ID if backend has 'id' property (since 2.9)
 790#
 791# @size: memory backend size
 792#
 793# @merge: enables or disables memory merge support
 794#
 795# @dump: includes memory backend's memory in a core dump or not
 796#
 797# @prealloc: enables or disables memory preallocation
 798#
 799# @host-nodes: host nodes for its memory policy
 800#
 801# @policy: memory policy of memory backend
 802#
 803# Since: 2.1
 804##
 805{ 'struct': 'Memdev',
 806  'data': {
 807    '*id':        'str',
 808    'size':       'size',
 809    'merge':      'bool',
 810    'dump':       'bool',
 811    'prealloc':   'bool',
 812    'host-nodes': ['uint16'],
 813    'policy':     'HostMemPolicy' }}
 814
 815##
 816# @query-memdev:
 817#
 818# Returns information for all memory backends.
 819#
 820# Returns: a list of @Memdev.
 821#
 822# Since: 2.1
 823#
 824# Example:
 825#
 826# -> { "execute": "query-memdev" }
 827# <- { "return": [
 828#        {
 829#          "id": "mem1",
 830#          "size": 536870912,
 831#          "merge": false,
 832#          "dump": true,
 833#          "prealloc": false,
 834#          "host-nodes": [0, 1],
 835#          "policy": "bind"
 836#        },
 837#        {
 838#          "size": 536870912,
 839#          "merge": false,
 840#          "dump": true,
 841#          "prealloc": true,
 842#          "host-nodes": [2, 3],
 843#          "policy": "preferred"
 844#        }
 845#      ]
 846#    }
 847#
 848##
 849{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
 850
 851##
 852# @CpuInstanceProperties:
 853#
 854# List of properties to be used for hotplugging a CPU instance,
 855# it should be passed by management with device_add command when
 856# a CPU is being hotplugged.
 857#
 858# @node-id: NUMA node ID the CPU belongs to
 859# @socket-id: socket number within node/board the CPU belongs to
 860# @die-id: die number within node/board the CPU belongs to (Since 4.1)
 861# @core-id: core number within die the CPU belongs to
 862# @thread-id: thread number within core the CPU belongs to
 863#
 864# Note: currently there are 5 properties that could be present
 865#       but management should be prepared to pass through other
 866#       properties with device_add command to allow for future
 867#       interface extension. This also requires the filed names to be kept in
 868#       sync with the properties passed to -device/device_add.
 869#
 870# Since: 2.7
 871##
 872{ 'struct': 'CpuInstanceProperties',
 873  'data': { '*node-id': 'int',
 874            '*socket-id': 'int',
 875            '*die-id': 'int',
 876            '*core-id': 'int',
 877            '*thread-id': 'int'
 878  }
 879}
 880
 881##
 882# @HotpluggableCPU:
 883#
 884# @type: CPU object type for usage with device_add command
 885# @props: list of properties to be used for hotplugging CPU
 886# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
 887# @qom-path: link to existing CPU object if CPU is present or
 888#            omitted if CPU is not present.
 889#
 890# Since: 2.7
 891##
 892{ 'struct': 'HotpluggableCPU',
 893  'data': { 'type': 'str',
 894            'vcpus-count': 'int',
 895            'props': 'CpuInstanceProperties',
 896            '*qom-path': 'str'
 897          }
 898}
 899
 900##
 901# @query-hotpluggable-cpus:
 902#
 903# TODO: Better documentation; currently there is none.
 904#
 905# Returns: a list of HotpluggableCPU objects.
 906#
 907# Since: 2.7
 908#
 909# Example:
 910#
 911# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
 912#
 913# -> { "execute": "query-hotpluggable-cpus" }
 914# <- {"return": [
 915#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
 916#        "vcpus-count": 1 },
 917#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
 918#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
 919#    ]}'
 920#
 921# For pc machine type started with -smp 1,maxcpus=2:
 922#
 923# -> { "execute": "query-hotpluggable-cpus" }
 924# <- {"return": [
 925#      {
 926#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
 927#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
 928#      },
 929#      {
 930#         "qom-path": "/machine/unattached/device[0]",
 931#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
 932#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
 933#      }
 934#    ]}
 935#
 936# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
 937# (Since: 2.11):
 938#
 939# -> { "execute": "query-hotpluggable-cpus" }
 940# <- {"return": [
 941#      {
 942#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
 943#         "props": { "core-id": 1 }
 944#      },
 945#      {
 946#         "qom-path": "/machine/unattached/device[0]",
 947#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
 948#         "props": { "core-id": 0 }
 949#      }
 950#    ]}
 951#
 952##
 953{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
 954             'allow-preconfig': true }
 955
 956##
 957# @set-numa-node:
 958#
 959# Runtime equivalent of '-numa' CLI option, available at
 960# preconfigure stage to configure numa mapping before initializing
 961# machine.
 962#
 963# Since 3.0
 964##
 965{ 'command': 'set-numa-node', 'boxed': true,
 966  'data': 'NumaOptions',
 967  'allow-preconfig': true
 968}
 969
 970##
 971# @balloon:
 972#
 973# Request the balloon driver to change its balloon size.
 974#
 975# @value: the target logical size of the VM in bytes.
 976#         We can deduce the size of the balloon using this formula:
 977#
 978#            logical_vm_size = vm_ram_size - balloon_size
 979#
 980#         From it we have: balloon_size = vm_ram_size - @value
 981#
 982# Returns: - Nothing on success
 983#          - If the balloon driver is enabled but not functional because the KVM
 984#            kernel module cannot support it, KvmMissingCap
 985#          - If no balloon device is present, DeviceNotActive
 986#
 987# Notes: This command just issues a request to the guest.  When it returns,
 988#        the balloon size may not have changed.  A guest can change the balloon
 989#        size independent of this command.
 990#
 991# Since: 0.14
 992#
 993# Example:
 994#
 995# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
 996# <- { "return": {} }
 997#
 998# With a 2.5GiB guest this command inflated the ballon to 3GiB.
 999#
1000##
1001{ 'command': 'balloon', 'data': {'value': 'int'} }
1002
1003##
1004# @BalloonInfo:
1005#
1006# Information about the guest balloon device.
1007#
1008# @actual: the logical size of the VM in bytes
1009#          Formula used: logical_vm_size = vm_ram_size - balloon_size
1010#
1011# Since: 0.14
1012#
1013##
1014{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1015
1016##
1017# @query-balloon:
1018#
1019# Return information about the balloon device.
1020#
1021# Returns: - @BalloonInfo on success
1022#          - If the balloon driver is enabled but not functional because the KVM
1023#            kernel module cannot support it, KvmMissingCap
1024#          - If no balloon device is present, DeviceNotActive
1025#
1026# Since: 0.14
1027#
1028# Example:
1029#
1030# -> { "execute": "query-balloon" }
1031# <- { "return": {
1032#          "actual": 1073741824,
1033#       }
1034#    }
1035#
1036##
1037{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1038
1039##
1040# @BALLOON_CHANGE:
1041#
1042# Emitted when the guest changes the actual BALLOON level. This value is
1043# equivalent to the @actual field return by the 'query-balloon' command
1044#
1045# @actual: the logical size of the VM in bytes
1046#          Formula used: logical_vm_size = vm_ram_size - balloon_size
1047#
1048# Note: this event is rate-limited.
1049#
1050# Since: 1.2
1051#
1052# Example:
1053#
1054# <- { "event": "BALLOON_CHANGE",
1055#      "data": { "actual": 944766976 },
1056#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1057#
1058##
1059{ 'event': 'BALLOON_CHANGE',
1060  'data': { 'actual': 'int' } }
1061
1062##
1063# @MemoryInfo:
1064#
1065# Actual memory information in bytes.
1066#
1067# @base-memory: size of "base" memory specified with command line
1068#               option -m.
1069#
1070# @plugged-memory: size of memory that can be hot-unplugged. This field
1071#                  is omitted if target doesn't support memory hotplug
1072#                  (i.e. CONFIG_MEM_DEVICE not defined at build time).
1073#
1074# Since: 2.11
1075##
1076{ 'struct': 'MemoryInfo',
1077  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1078
1079##
1080# @query-memory-size-summary:
1081#
1082# Return the amount of initially allocated and present hotpluggable (if
1083# enabled) memory in bytes.
1084#
1085# Example:
1086#
1087# -> { "execute": "query-memory-size-summary" }
1088# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1089#
1090# Since: 2.11
1091##
1092{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1093
1094##
1095# @PCDIMMDeviceInfo:
1096#
1097# PCDIMMDevice state information
1098#
1099# @id: device's ID
1100#
1101# @addr: physical address, where device is mapped
1102#
1103# @size: size of memory that the device provides
1104#
1105# @slot: slot number at which device is plugged in
1106#
1107# @node: NUMA node number where device is plugged in
1108#
1109# @memdev: memory backend linked with device
1110#
1111# @hotplugged: true if device was hotplugged
1112#
1113# @hotpluggable: true if device if could be added/removed while machine is running
1114#
1115# Since: 2.1
1116##
1117{ 'struct': 'PCDIMMDeviceInfo',
1118  'data': { '*id': 'str',
1119            'addr': 'int',
1120            'size': 'int',
1121            'slot': 'int',
1122            'node': 'int',
1123            'memdev': 'str',
1124            'hotplugged': 'bool',
1125            'hotpluggable': 'bool'
1126          }
1127}
1128
1129##
1130# @VirtioPMEMDeviceInfo:
1131#
1132# VirtioPMEM state information
1133#
1134# @id: device's ID
1135#
1136# @memaddr: physical address in memory, where device is mapped
1137#
1138# @size: size of memory that the device provides
1139#
1140# @memdev: memory backend linked with device
1141#
1142# Since: 4.1
1143##
1144{ 'struct': 'VirtioPMEMDeviceInfo',
1145  'data': { '*id': 'str',
1146            'memaddr': 'size',
1147            'size': 'size',
1148            'memdev': 'str'
1149          }
1150}
1151
1152##
1153# @VirtioMEMDeviceInfo:
1154#
1155# VirtioMEMDevice state information
1156#
1157# @id: device's ID
1158#
1159# @memaddr: physical address in memory, where device is mapped
1160#
1161# @requested-size: the user requested size of the device
1162#
1163# @size: the (current) size of memory that the device provides
1164#
1165# @max-size: the maximum size of memory that the device can provide
1166#
1167# @block-size: the block size of memory that the device provides
1168#
1169# @node: NUMA node number where device is assigned to
1170#
1171# @memdev: memory backend linked with the region
1172#
1173# Since: 5.1
1174##
1175{ 'struct': 'VirtioMEMDeviceInfo',
1176  'data': { '*id': 'str',
1177            'memaddr': 'size',
1178            'requested-size': 'size',
1179            'size': 'size',
1180            'max-size': 'size',
1181            'block-size': 'size',
1182            'node': 'int',
1183            'memdev': 'str'
1184          }
1185}
1186
1187##
1188# @MemoryDeviceInfo:
1189#
1190# Union containing information about a memory device
1191#
1192# nvdimm is included since 2.12. virtio-pmem is included since 4.1.
1193# virtio-mem is included since 5.1.
1194#
1195# Since: 2.1
1196##
1197{ 'union': 'MemoryDeviceInfo',
1198  'data': { 'dimm': 'PCDIMMDeviceInfo',
1199            'nvdimm': 'PCDIMMDeviceInfo',
1200            'virtio-pmem': 'VirtioPMEMDeviceInfo',
1201            'virtio-mem': 'VirtioMEMDeviceInfo'
1202          }
1203}
1204
1205##
1206# @query-memory-devices:
1207#
1208# Lists available memory devices and their state
1209#
1210# Since: 2.1
1211#
1212# Example:
1213#
1214# -> { "execute": "query-memory-devices" }
1215# <- { "return": [ { "data":
1216#                       { "addr": 5368709120,
1217#                         "hotpluggable": true,
1218#                         "hotplugged": true,
1219#                         "id": "d1",
1220#                         "memdev": "/objects/memX",
1221#                         "node": 0,
1222#                         "size": 1073741824,
1223#                         "slot": 0},
1224#                    "type": "dimm"
1225#                  } ] }
1226#
1227##
1228{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1229
1230##
1231# @MEMORY_DEVICE_SIZE_CHANGE:
1232#
1233# Emitted when the size of a memory device changes. Only emitted for memory
1234# devices that can actually change the size (e.g., virtio-mem due to guest
1235# action).
1236#
1237# @id: device's ID
1238# @size: the new size of memory that the device provides
1239#
1240# Note: this event is rate-limited.
1241#
1242# Since: 5.1
1243#
1244# Example:
1245#
1246# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1247#      "data": { "id": "vm0", "size": 1073741824},
1248#      "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1249#
1250##
1251{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1252  'data': { '*id': 'str', 'size': 'size' } }
1253
1254
1255##
1256# @MEM_UNPLUG_ERROR:
1257#
1258# Emitted when memory hot unplug error occurs.
1259#
1260# @device: device name
1261#
1262# @msg: Informative message
1263#
1264# Since: 2.4
1265#
1266# Example:
1267#
1268# <- { "event": "MEM_UNPLUG_ERROR"
1269#      "data": { "device": "dimm1",
1270#                "msg": "acpi: device unplug for unsupported device"
1271#      },
1272#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1273#
1274##
1275{ 'event': 'MEM_UNPLUG_ERROR',
1276  'data': { 'device': 'str', 'msg': 'str' } }
1277