qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu-common.h"
  24#include "target/arm/idau.h"
  25#include "qemu/module.h"
  26#include "qapi/error.h"
  27#include "qapi/visitor.h"
  28#include "cpu.h"
  29#ifdef CONFIG_TCG
  30#include "hw/core/tcg-cpu-ops.h"
  31#endif /* CONFIG_TCG */
  32#include "internals.h"
  33#include "exec/exec-all.h"
  34#include "hw/qdev-properties.h"
  35#if !defined(CONFIG_USER_ONLY)
  36#include "hw/loader.h"
  37#include "hw/boards.h"
  38#endif
  39#include "sysemu/sysemu.h"
  40#include "sysemu/tcg.h"
  41#include "sysemu/hw_accel.h"
  42#include "kvm_arm.h"
  43#include "disas/capstone.h"
  44#include "fpu/softfloat.h"
  45
  46static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  47{
  48    ARMCPU *cpu = ARM_CPU(cs);
  49    CPUARMState *env = &cpu->env;
  50
  51    if (is_a64(env)) {
  52        env->pc = value;
  53        env->thumb = 0;
  54    } else {
  55        env->regs[15] = value & ~1;
  56        env->thumb = value & 1;
  57    }
  58}
  59
  60#ifdef CONFIG_TCG
  61void arm_cpu_synchronize_from_tb(CPUState *cs,
  62                                 const TranslationBlock *tb)
  63{
  64    ARMCPU *cpu = ARM_CPU(cs);
  65    CPUARMState *env = &cpu->env;
  66
  67    /*
  68     * It's OK to look at env for the current mode here, because it's
  69     * never possible for an AArch64 TB to chain to an AArch32 TB.
  70     */
  71    if (is_a64(env)) {
  72        env->pc = tb->pc;
  73    } else {
  74        env->regs[15] = tb->pc;
  75    }
  76}
  77#endif /* CONFIG_TCG */
  78
  79static bool arm_cpu_has_work(CPUState *cs)
  80{
  81    ARMCPU *cpu = ARM_CPU(cs);
  82
  83    return (cpu->power_state != PSCI_OFF)
  84        && cs->interrupt_request &
  85        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  86         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  87         | CPU_INTERRUPT_EXITTB);
  88}
  89
  90void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  91                                 void *opaque)
  92{
  93    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  94
  95    entry->hook = hook;
  96    entry->opaque = opaque;
  97
  98    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  99}
 100
 101void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 102                                 void *opaque)
 103{
 104    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 105
 106    entry->hook = hook;
 107    entry->opaque = opaque;
 108
 109    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 110}
 111
 112static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 113{
 114    /* Reset a single ARMCPRegInfo register */
 115    ARMCPRegInfo *ri = value;
 116    ARMCPU *cpu = opaque;
 117
 118    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 119        return;
 120    }
 121
 122    if (ri->resetfn) {
 123        ri->resetfn(&cpu->env, ri);
 124        return;
 125    }
 126
 127    /* A zero offset is never possible as it would be regs[0]
 128     * so we use it to indicate that reset is being handled elsewhere.
 129     * This is basically only used for fields in non-core coprocessors
 130     * (like the pxa2xx ones).
 131     */
 132    if (!ri->fieldoffset) {
 133        return;
 134    }
 135
 136    if (cpreg_field_is_64bit(ri)) {
 137        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 138    } else {
 139        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 140    }
 141}
 142
 143static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 144{
 145    /* Purely an assertion check: we've already done reset once,
 146     * so now check that running the reset for the cpreg doesn't
 147     * change its value. This traps bugs where two different cpregs
 148     * both try to reset the same state field but to different values.
 149     */
 150    ARMCPRegInfo *ri = value;
 151    ARMCPU *cpu = opaque;
 152    uint64_t oldvalue, newvalue;
 153
 154    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 155        return;
 156    }
 157
 158    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 159    cp_reg_reset(key, value, opaque);
 160    newvalue = read_raw_cp_reg(&cpu->env, ri);
 161    assert(oldvalue == newvalue);
 162}
 163
 164static void arm_cpu_reset(DeviceState *dev)
 165{
 166    CPUState *s = CPU(dev);
 167    ARMCPU *cpu = ARM_CPU(s);
 168    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 169    CPUARMState *env = &cpu->env;
 170
 171    acc->parent_reset(dev);
 172
 173    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 174
 175    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 176    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 177
 178    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 179    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 180    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 181    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 182
 183    cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
 184
 185    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 186        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 187    }
 188
 189    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 190        /* 64 bit CPUs always start in 64 bit mode */
 191        env->aarch64 = 1;
 192#if defined(CONFIG_USER_ONLY)
 193        env->pstate = PSTATE_MODE_EL0t;
 194        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 195        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 196        /* Enable all PAC keys.  */
 197        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 198                                  SCTLR_EnDA | SCTLR_EnDB);
 199        /* and to the FP/Neon instructions */
 200        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 201        /* and to the SVE instructions */
 202        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 203        /* with reasonable vector length */
 204        if (cpu_isar_feature(aa64_sve, cpu)) {
 205            env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
 206        }
 207        /*
 208         * Enable TBI0 but not TBI1.
 209         * Note that this must match useronly_clean_ptr.
 210         */
 211        env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
 212
 213        /* Enable MTE */
 214        if (cpu_isar_feature(aa64_mte, cpu)) {
 215            /* Enable tag access, but leave TCF0 as No Effect (0). */
 216            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 217            /*
 218             * Exclude all tags, so that tag 0 is always used.
 219             * This corresponds to Linux current->thread.gcr_incl = 0.
 220             *
 221             * Set RRND, so that helper_irg() will generate a seed later.
 222             * Here in cpu_reset(), the crypto subsystem has not yet been
 223             * initialized.
 224             */
 225            env->cp15.gcr_el1 = 0x1ffff;
 226        }
 227#else
 228        /* Reset into the highest available EL */
 229        if (arm_feature(env, ARM_FEATURE_EL3)) {
 230            env->pstate = PSTATE_MODE_EL3h;
 231        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 232            env->pstate = PSTATE_MODE_EL2h;
 233        } else {
 234            env->pstate = PSTATE_MODE_EL1h;
 235        }
 236        env->pc = cpu->rvbar;
 237#endif
 238    } else {
 239#if defined(CONFIG_USER_ONLY)
 240        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 241        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 242#endif
 243    }
 244
 245#if defined(CONFIG_USER_ONLY)
 246    env->uncached_cpsr = ARM_CPU_MODE_USR;
 247    /* For user mode we must enable access to coprocessors */
 248    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 249    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 250        env->cp15.c15_cpar = 3;
 251    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 252        env->cp15.c15_cpar = 1;
 253    }
 254#else
 255
 256    /*
 257     * If the highest available EL is EL2, AArch32 will start in Hyp
 258     * mode; otherwise it starts in SVC. Note that if we start in
 259     * AArch64 then these values in the uncached_cpsr will be ignored.
 260     */
 261    if (arm_feature(env, ARM_FEATURE_EL2) &&
 262        !arm_feature(env, ARM_FEATURE_EL3)) {
 263        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 264    } else {
 265        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 266    }
 267    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 268#endif
 269
 270    if (arm_feature(env, ARM_FEATURE_M)) {
 271#ifndef CONFIG_USER_ONLY
 272        uint32_t initial_msp; /* Loaded from 0x0 */
 273        uint32_t initial_pc; /* Loaded from 0x4 */
 274        uint8_t *rom;
 275        uint32_t vecbase;
 276#endif
 277
 278        if (cpu_isar_feature(aa32_lob, cpu)) {
 279            /*
 280             * LTPSIZE is constant 4 if MVE not implemented, and resets
 281             * to an UNKNOWN value if MVE is implemented. We choose to
 282             * always reset to 4.
 283             */
 284            env->v7m.ltpsize = 4;
 285            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 286            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 287            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 288        }
 289
 290        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 291            env->v7m.secure = true;
 292        } else {
 293            /* This bit resets to 0 if security is supported, but 1 if
 294             * it is not. The bit is not present in v7M, but we set it
 295             * here so we can avoid having to make checks on it conditional
 296             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 297             */
 298            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 299            /*
 300             * Set NSACR to indicate "NS access permitted to everything";
 301             * this avoids having to have all the tests of it being
 302             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 303             * v8.1M the guest-visible value of NSACR in a CPU without the
 304             * Security Extension is 0xcff.
 305             */
 306            env->v7m.nsacr = 0xcff;
 307        }
 308
 309        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 310         * that it resets to 1, so QEMU always does that rather than making
 311         * it dependent on CPU model. In v8M it is RES1.
 312         */
 313        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 314        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 315        if (arm_feature(env, ARM_FEATURE_V8)) {
 316            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 317            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 318            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 319        }
 320        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 321            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 322            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 323        }
 324
 325        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 326            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 327            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 328                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 329        }
 330
 331#ifndef CONFIG_USER_ONLY
 332        /* Unlike A/R profile, M profile defines the reset LR value */
 333        env->regs[14] = 0xffffffff;
 334
 335        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 336
 337        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 338        vecbase = env->v7m.vecbase[env->v7m.secure];
 339        rom = rom_ptr_for_as(s->as, vecbase, 8);
 340        if (rom) {
 341            /* Address zero is covered by ROM which hasn't yet been
 342             * copied into physical memory.
 343             */
 344            initial_msp = ldl_p(rom);
 345            initial_pc = ldl_p(rom + 4);
 346        } else {
 347            /* Address zero not covered by a ROM blob, or the ROM blob
 348             * is in non-modifiable memory and this is a second reset after
 349             * it got copied into memory. In the latter case, rom_ptr
 350             * will return a NULL pointer and we should use ldl_phys instead.
 351             */
 352            initial_msp = ldl_phys(s->as, vecbase);
 353            initial_pc = ldl_phys(s->as, vecbase + 4);
 354        }
 355
 356        env->regs[13] = initial_msp & 0xFFFFFFFC;
 357        env->regs[15] = initial_pc & ~1;
 358        env->thumb = initial_pc & 1;
 359#else
 360        /*
 361         * For user mode we run non-secure and with access to the FPU.
 362         * The FPU context is active (ie does not need further setup)
 363         * and is owned by non-secure.
 364         */
 365        env->v7m.secure = false;
 366        env->v7m.nsacr = 0xcff;
 367        env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
 368        env->v7m.fpccr[M_REG_S] &=
 369            ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
 370        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
 371#endif
 372    }
 373
 374#ifndef CONFIG_USER_ONLY
 375    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 376     * executing as AArch32 then check if highvecs are enabled and
 377     * adjust the PC accordingly.
 378     */
 379    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 380        env->regs[15] = 0xFFFF0000;
 381    }
 382
 383    /* M profile requires that reset clears the exclusive monitor;
 384     * A profile does not, but clearing it makes more sense than having it
 385     * set with an exclusive access on address zero.
 386     */
 387    arm_clear_exclusive(env);
 388
 389    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 390#endif
 391
 392    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 393        if (cpu->pmsav7_dregion > 0) {
 394            if (arm_feature(env, ARM_FEATURE_V8)) {
 395                memset(env->pmsav8.rbar[M_REG_NS], 0,
 396                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 397                       * cpu->pmsav7_dregion);
 398                memset(env->pmsav8.rlar[M_REG_NS], 0,
 399                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 400                       * cpu->pmsav7_dregion);
 401                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 402                    memset(env->pmsav8.rbar[M_REG_S], 0,
 403                           sizeof(*env->pmsav8.rbar[M_REG_S])
 404                           * cpu->pmsav7_dregion);
 405                    memset(env->pmsav8.rlar[M_REG_S], 0,
 406                           sizeof(*env->pmsav8.rlar[M_REG_S])
 407                           * cpu->pmsav7_dregion);
 408                }
 409            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 410                memset(env->pmsav7.drbar, 0,
 411                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 412                memset(env->pmsav7.drsr, 0,
 413                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 414                memset(env->pmsav7.dracr, 0,
 415                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 416            }
 417        }
 418        env->pmsav7.rnr[M_REG_NS] = 0;
 419        env->pmsav7.rnr[M_REG_S] = 0;
 420        env->pmsav8.mair0[M_REG_NS] = 0;
 421        env->pmsav8.mair0[M_REG_S] = 0;
 422        env->pmsav8.mair1[M_REG_NS] = 0;
 423        env->pmsav8.mair1[M_REG_S] = 0;
 424    }
 425
 426    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 427        if (cpu->sau_sregion > 0) {
 428            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 429            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 430        }
 431        env->sau.rnr = 0;
 432        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 433         * the Cortex-M33 does.
 434         */
 435        env->sau.ctrl = 0;
 436    }
 437
 438    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 439    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 440    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 441    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 442    set_float_detect_tininess(float_tininess_before_rounding,
 443                              &env->vfp.fp_status);
 444    set_float_detect_tininess(float_tininess_before_rounding,
 445                              &env->vfp.standard_fp_status);
 446    set_float_detect_tininess(float_tininess_before_rounding,
 447                              &env->vfp.fp_status_f16);
 448    set_float_detect_tininess(float_tininess_before_rounding,
 449                              &env->vfp.standard_fp_status_f16);
 450#ifndef CONFIG_USER_ONLY
 451    if (kvm_enabled()) {
 452        kvm_arm_reset_vcpu(cpu);
 453    }
 454#endif
 455
 456    hw_breakpoint_update_all(cpu);
 457    hw_watchpoint_update_all(cpu);
 458    arm_rebuild_hflags(env);
 459}
 460
 461static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 462                                     unsigned int target_el,
 463                                     unsigned int cur_el, bool secure,
 464                                     uint64_t hcr_el2)
 465{
 466    CPUARMState *env = cs->env_ptr;
 467    bool pstate_unmasked;
 468    bool unmasked = false;
 469
 470    /*
 471     * Don't take exceptions if they target a lower EL.
 472     * This check should catch any exceptions that would not be taken
 473     * but left pending.
 474     */
 475    if (cur_el > target_el) {
 476        return false;
 477    }
 478
 479    switch (excp_idx) {
 480    case EXCP_FIQ:
 481        pstate_unmasked = !(env->daif & PSTATE_F);
 482        break;
 483
 484    case EXCP_IRQ:
 485        pstate_unmasked = !(env->daif & PSTATE_I);
 486        break;
 487
 488    case EXCP_VFIQ:
 489        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 490            /* VFIQs are only taken when hypervized.  */
 491            return false;
 492        }
 493        return !(env->daif & PSTATE_F);
 494    case EXCP_VIRQ:
 495        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 496            /* VIRQs are only taken when hypervized.  */
 497            return false;
 498        }
 499        return !(env->daif & PSTATE_I);
 500    default:
 501        g_assert_not_reached();
 502    }
 503
 504    /*
 505     * Use the target EL, current execution state and SCR/HCR settings to
 506     * determine whether the corresponding CPSR bit is used to mask the
 507     * interrupt.
 508     */
 509    if ((target_el > cur_el) && (target_el != 1)) {
 510        /* Exceptions targeting a higher EL may not be maskable */
 511        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 512            /*
 513             * 64-bit masking rules are simple: exceptions to EL3
 514             * can't be masked, and exceptions to EL2 can only be
 515             * masked from Secure state. The HCR and SCR settings
 516             * don't affect the masking logic, only the interrupt routing.
 517             */
 518            if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
 519                unmasked = true;
 520            }
 521        } else {
 522            /*
 523             * The old 32-bit-only environment has a more complicated
 524             * masking setup. HCR and SCR bits not only affect interrupt
 525             * routing but also change the behaviour of masking.
 526             */
 527            bool hcr, scr;
 528
 529            switch (excp_idx) {
 530            case EXCP_FIQ:
 531                /*
 532                 * If FIQs are routed to EL3 or EL2 then there are cases where
 533                 * we override the CPSR.F in determining if the exception is
 534                 * masked or not. If neither of these are set then we fall back
 535                 * to the CPSR.F setting otherwise we further assess the state
 536                 * below.
 537                 */
 538                hcr = hcr_el2 & HCR_FMO;
 539                scr = (env->cp15.scr_el3 & SCR_FIQ);
 540
 541                /*
 542                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 543                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 544                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 545                 * when non-secure but only when FIQs are only routed to EL3.
 546                 */
 547                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 548                break;
 549            case EXCP_IRQ:
 550                /*
 551                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 552                 * we may override the CPSR.I masking when in non-secure state.
 553                 * The SCR.IRQ setting has already been taken into consideration
 554                 * when setting the target EL, so it does not have a further
 555                 * affect here.
 556                 */
 557                hcr = hcr_el2 & HCR_IMO;
 558                scr = false;
 559                break;
 560            default:
 561                g_assert_not_reached();
 562            }
 563
 564            if ((scr || hcr) && !secure) {
 565                unmasked = true;
 566            }
 567        }
 568    }
 569
 570    /*
 571     * The PSTATE bits only mask the interrupt if we have not overriden the
 572     * ability above.
 573     */
 574    return unmasked || pstate_unmasked;
 575}
 576
 577bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 578{
 579    CPUClass *cc = CPU_GET_CLASS(cs);
 580    CPUARMState *env = cs->env_ptr;
 581    uint32_t cur_el = arm_current_el(env);
 582    bool secure = arm_is_secure(env);
 583    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 584    uint32_t target_el;
 585    uint32_t excp_idx;
 586
 587    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 588
 589    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 590        excp_idx = EXCP_FIQ;
 591        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 592        if (arm_excp_unmasked(cs, excp_idx, target_el,
 593                              cur_el, secure, hcr_el2)) {
 594            goto found;
 595        }
 596    }
 597    if (interrupt_request & CPU_INTERRUPT_HARD) {
 598        excp_idx = EXCP_IRQ;
 599        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 600        if (arm_excp_unmasked(cs, excp_idx, target_el,
 601                              cur_el, secure, hcr_el2)) {
 602            goto found;
 603        }
 604    }
 605    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 606        excp_idx = EXCP_VIRQ;
 607        target_el = 1;
 608        if (arm_excp_unmasked(cs, excp_idx, target_el,
 609                              cur_el, secure, hcr_el2)) {
 610            goto found;
 611        }
 612    }
 613    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 614        excp_idx = EXCP_VFIQ;
 615        target_el = 1;
 616        if (arm_excp_unmasked(cs, excp_idx, target_el,
 617                              cur_el, secure, hcr_el2)) {
 618            goto found;
 619        }
 620    }
 621    return false;
 622
 623 found:
 624    cs->exception_index = excp_idx;
 625    env->exception.target_el = target_el;
 626    cc->tcg_ops->do_interrupt(cs);
 627    return true;
 628}
 629
 630void arm_cpu_update_virq(ARMCPU *cpu)
 631{
 632    /*
 633     * Update the interrupt level for VIRQ, which is the logical OR of
 634     * the HCR_EL2.VI bit and the input line level from the GIC.
 635     */
 636    CPUARMState *env = &cpu->env;
 637    CPUState *cs = CPU(cpu);
 638
 639    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 640        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 641
 642    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 643        if (new_state) {
 644            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 645        } else {
 646            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 647        }
 648    }
 649}
 650
 651void arm_cpu_update_vfiq(ARMCPU *cpu)
 652{
 653    /*
 654     * Update the interrupt level for VFIQ, which is the logical OR of
 655     * the HCR_EL2.VF bit and the input line level from the GIC.
 656     */
 657    CPUARMState *env = &cpu->env;
 658    CPUState *cs = CPU(cpu);
 659
 660    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 661        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 662
 663    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 664        if (new_state) {
 665            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 666        } else {
 667            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 668        }
 669    }
 670}
 671
 672#ifndef CONFIG_USER_ONLY
 673static void arm_cpu_set_irq(void *opaque, int irq, int level)
 674{
 675    ARMCPU *cpu = opaque;
 676    CPUARMState *env = &cpu->env;
 677    CPUState *cs = CPU(cpu);
 678    static const int mask[] = {
 679        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 680        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 681        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 682        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 683    };
 684
 685    if (level) {
 686        env->irq_line_state |= mask[irq];
 687    } else {
 688        env->irq_line_state &= ~mask[irq];
 689    }
 690
 691    switch (irq) {
 692    case ARM_CPU_VIRQ:
 693        assert(arm_feature(env, ARM_FEATURE_EL2));
 694        arm_cpu_update_virq(cpu);
 695        break;
 696    case ARM_CPU_VFIQ:
 697        assert(arm_feature(env, ARM_FEATURE_EL2));
 698        arm_cpu_update_vfiq(cpu);
 699        break;
 700    case ARM_CPU_IRQ:
 701    case ARM_CPU_FIQ:
 702        if (level) {
 703            cpu_interrupt(cs, mask[irq]);
 704        } else {
 705            cpu_reset_interrupt(cs, mask[irq]);
 706        }
 707        break;
 708    default:
 709        g_assert_not_reached();
 710    }
 711}
 712
 713static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 714{
 715#ifdef CONFIG_KVM
 716    ARMCPU *cpu = opaque;
 717    CPUARMState *env = &cpu->env;
 718    CPUState *cs = CPU(cpu);
 719    uint32_t linestate_bit;
 720    int irq_id;
 721
 722    switch (irq) {
 723    case ARM_CPU_IRQ:
 724        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 725        linestate_bit = CPU_INTERRUPT_HARD;
 726        break;
 727    case ARM_CPU_FIQ:
 728        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 729        linestate_bit = CPU_INTERRUPT_FIQ;
 730        break;
 731    default:
 732        g_assert_not_reached();
 733    }
 734
 735    if (level) {
 736        env->irq_line_state |= linestate_bit;
 737    } else {
 738        env->irq_line_state &= ~linestate_bit;
 739    }
 740    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 741#endif
 742}
 743
 744static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 745{
 746    ARMCPU *cpu = ARM_CPU(cs);
 747    CPUARMState *env = &cpu->env;
 748
 749    cpu_synchronize_state(cs);
 750    return arm_cpu_data_is_big_endian(env);
 751}
 752
 753#endif
 754
 755static int
 756print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 757{
 758  return print_insn_arm(pc | 1, info);
 759}
 760
 761static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 762{
 763    ARMCPU *ac = ARM_CPU(cpu);
 764    CPUARMState *env = &ac->env;
 765    bool sctlr_b;
 766
 767    if (is_a64(env)) {
 768        /* We might not be compiled with the A64 disassembler
 769         * because it needs a C++ compiler. Leave print_insn
 770         * unset in this case to use the caller default behaviour.
 771         */
 772#if defined(CONFIG_ARM_A64_DIS)
 773        info->print_insn = print_insn_arm_a64;
 774#endif
 775        info->cap_arch = CS_ARCH_ARM64;
 776        info->cap_insn_unit = 4;
 777        info->cap_insn_split = 4;
 778    } else {
 779        int cap_mode;
 780        if (env->thumb) {
 781            info->print_insn = print_insn_thumb1;
 782            info->cap_insn_unit = 2;
 783            info->cap_insn_split = 4;
 784            cap_mode = CS_MODE_THUMB;
 785        } else {
 786            info->print_insn = print_insn_arm;
 787            info->cap_insn_unit = 4;
 788            info->cap_insn_split = 4;
 789            cap_mode = CS_MODE_ARM;
 790        }
 791        if (arm_feature(env, ARM_FEATURE_V8)) {
 792            cap_mode |= CS_MODE_V8;
 793        }
 794        if (arm_feature(env, ARM_FEATURE_M)) {
 795            cap_mode |= CS_MODE_MCLASS;
 796        }
 797        info->cap_arch = CS_ARCH_ARM;
 798        info->cap_mode = cap_mode;
 799    }
 800
 801    sctlr_b = arm_sctlr_b(env);
 802    if (bswap_code(sctlr_b)) {
 803#ifdef TARGET_WORDS_BIGENDIAN
 804        info->endian = BFD_ENDIAN_LITTLE;
 805#else
 806        info->endian = BFD_ENDIAN_BIG;
 807#endif
 808    }
 809    info->flags &= ~INSN_ARM_BE32;
 810#ifndef CONFIG_USER_ONLY
 811    if (sctlr_b) {
 812        info->flags |= INSN_ARM_BE32;
 813    }
 814#endif
 815}
 816
 817#ifdef TARGET_AARCH64
 818
 819static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 820{
 821    ARMCPU *cpu = ARM_CPU(cs);
 822    CPUARMState *env = &cpu->env;
 823    uint32_t psr = pstate_read(env);
 824    int i;
 825    int el = arm_current_el(env);
 826    const char *ns_status;
 827
 828    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 829    for (i = 0; i < 32; i++) {
 830        if (i == 31) {
 831            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 832        } else {
 833            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 834                         (i + 2) % 3 ? " " : "\n");
 835        }
 836    }
 837
 838    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 839        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 840    } else {
 841        ns_status = "";
 842    }
 843    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 844                 psr,
 845                 psr & PSTATE_N ? 'N' : '-',
 846                 psr & PSTATE_Z ? 'Z' : '-',
 847                 psr & PSTATE_C ? 'C' : '-',
 848                 psr & PSTATE_V ? 'V' : '-',
 849                 ns_status,
 850                 el,
 851                 psr & PSTATE_SP ? 'h' : 't');
 852
 853    if (cpu_isar_feature(aa64_bti, cpu)) {
 854        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 855    }
 856    if (!(flags & CPU_DUMP_FPU)) {
 857        qemu_fprintf(f, "\n");
 858        return;
 859    }
 860    if (fp_exception_el(env, el) != 0) {
 861        qemu_fprintf(f, "    FPU disabled\n");
 862        return;
 863    }
 864    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 865                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 866
 867    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
 868        int j, zcr_len = sve_zcr_len_for_el(env, el);
 869
 870        for (i = 0; i <= FFR_PRED_NUM; i++) {
 871            bool eol;
 872            if (i == FFR_PRED_NUM) {
 873                qemu_fprintf(f, "FFR=");
 874                /* It's last, so end the line.  */
 875                eol = true;
 876            } else {
 877                qemu_fprintf(f, "P%02d=", i);
 878                switch (zcr_len) {
 879                case 0:
 880                    eol = i % 8 == 7;
 881                    break;
 882                case 1:
 883                    eol = i % 6 == 5;
 884                    break;
 885                case 2:
 886                case 3:
 887                    eol = i % 3 == 2;
 888                    break;
 889                default:
 890                    /* More than one quadword per predicate.  */
 891                    eol = true;
 892                    break;
 893                }
 894            }
 895            for (j = zcr_len / 4; j >= 0; j--) {
 896                int digits;
 897                if (j * 4 + 4 <= zcr_len + 1) {
 898                    digits = 16;
 899                } else {
 900                    digits = (zcr_len % 4 + 1) * 4;
 901                }
 902                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 903                             env->vfp.pregs[i].p[j],
 904                             j ? ":" : eol ? "\n" : " ");
 905            }
 906        }
 907
 908        for (i = 0; i < 32; i++) {
 909            if (zcr_len == 0) {
 910                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 911                             i, env->vfp.zregs[i].d[1],
 912                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 913            } else if (zcr_len == 1) {
 914                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 915                             ":%016" PRIx64 ":%016" PRIx64 "\n",
 916                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 917                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 918            } else {
 919                for (j = zcr_len; j >= 0; j--) {
 920                    bool odd = (zcr_len - j) % 2 != 0;
 921                    if (j == zcr_len) {
 922                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
 923                    } else if (!odd) {
 924                        if (j > 0) {
 925                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
 926                        } else {
 927                            qemu_fprintf(f, "     [%x]=", j);
 928                        }
 929                    }
 930                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
 931                                 env->vfp.zregs[i].d[j * 2 + 1],
 932                                 env->vfp.zregs[i].d[j * 2],
 933                                 odd || j == 0 ? "\n" : ":");
 934                }
 935            }
 936        }
 937    } else {
 938        for (i = 0; i < 32; i++) {
 939            uint64_t *q = aa64_vfp_qreg(env, i);
 940            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 941                         i, q[1], q[0], (i & 1 ? "\n" : " "));
 942        }
 943    }
 944}
 945
 946#else
 947
 948static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 949{
 950    g_assert_not_reached();
 951}
 952
 953#endif
 954
 955static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 956{
 957    ARMCPU *cpu = ARM_CPU(cs);
 958    CPUARMState *env = &cpu->env;
 959    int i;
 960
 961    if (is_a64(env)) {
 962        aarch64_cpu_dump_state(cs, f, flags);
 963        return;
 964    }
 965
 966    for (i = 0; i < 16; i++) {
 967        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
 968        if ((i % 4) == 3) {
 969            qemu_fprintf(f, "\n");
 970        } else {
 971            qemu_fprintf(f, " ");
 972        }
 973    }
 974
 975    if (arm_feature(env, ARM_FEATURE_M)) {
 976        uint32_t xpsr = xpsr_read(env);
 977        const char *mode;
 978        const char *ns_status = "";
 979
 980        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 981            ns_status = env->v7m.secure ? "S " : "NS ";
 982        }
 983
 984        if (xpsr & XPSR_EXCP) {
 985            mode = "handler";
 986        } else {
 987            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
 988                mode = "unpriv-thread";
 989            } else {
 990                mode = "priv-thread";
 991            }
 992        }
 993
 994        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
 995                     xpsr,
 996                     xpsr & XPSR_N ? 'N' : '-',
 997                     xpsr & XPSR_Z ? 'Z' : '-',
 998                     xpsr & XPSR_C ? 'C' : '-',
 999                     xpsr & XPSR_V ? 'V' : '-',
1000                     xpsr & XPSR_T ? 'T' : 'A',
1001                     ns_status,
1002                     mode);
1003    } else {
1004        uint32_t psr = cpsr_read(env);
1005        const char *ns_status = "";
1006
1007        if (arm_feature(env, ARM_FEATURE_EL3) &&
1008            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1009            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1010        }
1011
1012        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1013                     psr,
1014                     psr & CPSR_N ? 'N' : '-',
1015                     psr & CPSR_Z ? 'Z' : '-',
1016                     psr & CPSR_C ? 'C' : '-',
1017                     psr & CPSR_V ? 'V' : '-',
1018                     psr & CPSR_T ? 'T' : 'A',
1019                     ns_status,
1020                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1021    }
1022
1023    if (flags & CPU_DUMP_FPU) {
1024        int numvfpregs = 0;
1025        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1026            numvfpregs = 32;
1027        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1028            numvfpregs = 16;
1029        }
1030        for (i = 0; i < numvfpregs; i++) {
1031            uint64_t v = *aa32_vfp_dreg(env, i);
1032            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1033                         i * 2, (uint32_t)v,
1034                         i * 2 + 1, (uint32_t)(v >> 32),
1035                         i, v);
1036        }
1037        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1038    }
1039}
1040
1041uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1042{
1043    uint32_t Aff1 = idx / clustersz;
1044    uint32_t Aff0 = idx % clustersz;
1045    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1046}
1047
1048static void cpreg_hashtable_data_destroy(gpointer data)
1049{
1050    /*
1051     * Destroy function for cpu->cp_regs hashtable data entries.
1052     * We must free the name string because it was g_strdup()ed in
1053     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1054     * from r->name because we know we definitely allocated it.
1055     */
1056    ARMCPRegInfo *r = data;
1057
1058    g_free((void *)r->name);
1059    g_free(r);
1060}
1061
1062static void arm_cpu_initfn(Object *obj)
1063{
1064    ARMCPU *cpu = ARM_CPU(obj);
1065
1066    cpu_set_cpustate_pointers(cpu);
1067    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1068                                         g_free, cpreg_hashtable_data_destroy);
1069
1070    QLIST_INIT(&cpu->pre_el_change_hooks);
1071    QLIST_INIT(&cpu->el_change_hooks);
1072
1073#ifndef CONFIG_USER_ONLY
1074    /* Our inbound IRQ and FIQ lines */
1075    if (kvm_enabled()) {
1076        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1077         * the same interface as non-KVM CPUs.
1078         */
1079        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1080    } else {
1081        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1082    }
1083
1084    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1085                       ARRAY_SIZE(cpu->gt_timer_outputs));
1086
1087    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1088                             "gicv3-maintenance-interrupt", 1);
1089    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1090                             "pmu-interrupt", 1);
1091#endif
1092
1093    /* DTB consumers generally don't in fact care what the 'compatible'
1094     * string is, so always provide some string and trust that a hypothetical
1095     * picky DTB consumer will also provide a helpful error message.
1096     */
1097    cpu->dtb_compatible = "qemu,unknown";
1098    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1099    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1100
1101    if (tcg_enabled()) {
1102        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1103    }
1104}
1105
1106static Property arm_cpu_gt_cntfrq_property =
1107            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1108                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1109
1110static Property arm_cpu_reset_cbar_property =
1111            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1112
1113static Property arm_cpu_reset_hivecs_property =
1114            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1115
1116static Property arm_cpu_rvbar_property =
1117            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1118
1119#ifndef CONFIG_USER_ONLY
1120static Property arm_cpu_has_el2_property =
1121            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1122
1123static Property arm_cpu_has_el3_property =
1124            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1125#endif
1126
1127static Property arm_cpu_cfgend_property =
1128            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1129
1130static Property arm_cpu_has_vfp_property =
1131            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1132
1133static Property arm_cpu_has_neon_property =
1134            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1135
1136static Property arm_cpu_has_dsp_property =
1137            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1138
1139static Property arm_cpu_has_mpu_property =
1140            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1141
1142/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1143 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1144 * the right value for that particular CPU type, and we don't want
1145 * to override that with an incorrect constant value.
1146 */
1147static Property arm_cpu_pmsav7_dregion_property =
1148            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1149                                           pmsav7_dregion,
1150                                           qdev_prop_uint32, uint32_t);
1151
1152static bool arm_get_pmu(Object *obj, Error **errp)
1153{
1154    ARMCPU *cpu = ARM_CPU(obj);
1155
1156    return cpu->has_pmu;
1157}
1158
1159static void arm_set_pmu(Object *obj, bool value, Error **errp)
1160{
1161    ARMCPU *cpu = ARM_CPU(obj);
1162
1163    if (value) {
1164        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1165            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1166            return;
1167        }
1168        set_feature(&cpu->env, ARM_FEATURE_PMU);
1169    } else {
1170        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1171    }
1172    cpu->has_pmu = value;
1173}
1174
1175unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1176{
1177    /*
1178     * The exact approach to calculating guest ticks is:
1179     *
1180     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1181     *              NANOSECONDS_PER_SECOND);
1182     *
1183     * We don't do that. Rather we intentionally use integer division
1184     * truncation below and in the caller for the conversion of host monotonic
1185     * time to guest ticks to provide the exact inverse for the semantics of
1186     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1187     * it loses precision when representing frequencies where
1188     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1189     * provide an exact inverse leads to scheduling timers with negative
1190     * periods, which in turn leads to sticky behaviour in the guest.
1191     *
1192     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1193     * cannot become zero.
1194     */
1195    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1196      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1197}
1198
1199void arm_cpu_post_init(Object *obj)
1200{
1201    ARMCPU *cpu = ARM_CPU(obj);
1202
1203    /* M profile implies PMSA. We have to do this here rather than
1204     * in realize with the other feature-implication checks because
1205     * we look at the PMSA bit to see if we should add some properties.
1206     */
1207    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1208        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1209    }
1210
1211    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1212        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1213        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1214    }
1215
1216    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1217        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1218    }
1219
1220    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1221        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1222    }
1223
1224#ifndef CONFIG_USER_ONLY
1225    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1226        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1227         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1228         */
1229        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1230
1231        object_property_add_link(obj, "secure-memory",
1232                                 TYPE_MEMORY_REGION,
1233                                 (Object **)&cpu->secure_memory,
1234                                 qdev_prop_allow_set_link_before_realize,
1235                                 OBJ_PROP_LINK_STRONG);
1236    }
1237
1238    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1239        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1240    }
1241#endif
1242
1243    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1244        cpu->has_pmu = true;
1245        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1246    }
1247
1248    /*
1249     * Allow user to turn off VFP and Neon support, but only for TCG --
1250     * KVM does not currently allow us to lie to the guest about its
1251     * ID/feature registers, so the guest always sees what the host has.
1252     */
1253    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1254        ? cpu_isar_feature(aa64_fp_simd, cpu)
1255        : cpu_isar_feature(aa32_vfp, cpu)) {
1256        cpu->has_vfp = true;
1257        if (!kvm_enabled()) {
1258            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1259        }
1260    }
1261
1262    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1263        cpu->has_neon = true;
1264        if (!kvm_enabled()) {
1265            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1266        }
1267    }
1268
1269    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1270        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1271        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1272    }
1273
1274    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1275        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1276        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1277            qdev_property_add_static(DEVICE(obj),
1278                                     &arm_cpu_pmsav7_dregion_property);
1279        }
1280    }
1281
1282    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1283        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1284                                 qdev_prop_allow_set_link_before_realize,
1285                                 OBJ_PROP_LINK_STRONG);
1286        /*
1287         * M profile: initial value of the Secure VTOR. We can't just use
1288         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1289         * the property to be set after realize.
1290         */
1291        object_property_add_uint32_ptr(obj, "init-svtor",
1292                                       &cpu->init_svtor,
1293                                       OBJ_PROP_FLAG_READWRITE);
1294    }
1295
1296    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1297
1298    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1299        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1300    }
1301
1302    if (kvm_enabled()) {
1303        kvm_arm_add_vcpu_properties(obj);
1304    }
1305
1306#ifndef CONFIG_USER_ONLY
1307    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1308        cpu_isar_feature(aa64_mte, cpu)) {
1309        object_property_add_link(obj, "tag-memory",
1310                                 TYPE_MEMORY_REGION,
1311                                 (Object **)&cpu->tag_memory,
1312                                 qdev_prop_allow_set_link_before_realize,
1313                                 OBJ_PROP_LINK_STRONG);
1314
1315        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1316            object_property_add_link(obj, "secure-tag-memory",
1317                                     TYPE_MEMORY_REGION,
1318                                     (Object **)&cpu->secure_tag_memory,
1319                                     qdev_prop_allow_set_link_before_realize,
1320                                     OBJ_PROP_LINK_STRONG);
1321        }
1322    }
1323#endif
1324}
1325
1326static void arm_cpu_finalizefn(Object *obj)
1327{
1328    ARMCPU *cpu = ARM_CPU(obj);
1329    ARMELChangeHook *hook, *next;
1330
1331    g_hash_table_destroy(cpu->cp_regs);
1332
1333    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1334        QLIST_REMOVE(hook, node);
1335        g_free(hook);
1336    }
1337    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1338        QLIST_REMOVE(hook, node);
1339        g_free(hook);
1340    }
1341#ifndef CONFIG_USER_ONLY
1342    if (cpu->pmu_timer) {
1343        timer_free(cpu->pmu_timer);
1344    }
1345#endif
1346}
1347
1348void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1349{
1350    Error *local_err = NULL;
1351
1352    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1353        arm_cpu_sve_finalize(cpu, &local_err);
1354        if (local_err != NULL) {
1355            error_propagate(errp, local_err);
1356            return;
1357        }
1358
1359        /*
1360         * KVM does not support modifications to this feature.
1361         * We have not registered the cpu properties when KVM
1362         * is in use, so the user will not be able to set them.
1363         */
1364        if (!kvm_enabled()) {
1365            arm_cpu_pauth_finalize(cpu, &local_err);
1366            if (local_err != NULL) {
1367                error_propagate(errp, local_err);
1368                return;
1369            }
1370        }
1371    }
1372
1373    if (kvm_enabled()) {
1374        kvm_arm_steal_time_finalize(cpu, &local_err);
1375        if (local_err != NULL) {
1376            error_propagate(errp, local_err);
1377            return;
1378        }
1379    }
1380}
1381
1382static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1383{
1384    CPUState *cs = CPU(dev);
1385    ARMCPU *cpu = ARM_CPU(dev);
1386    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1387    CPUARMState *env = &cpu->env;
1388    int pagebits;
1389    Error *local_err = NULL;
1390    bool no_aa32 = false;
1391
1392    /* If we needed to query the host kernel for the CPU features
1393     * then it's possible that might have failed in the initfn, but
1394     * this is the first point where we can report it.
1395     */
1396    if (cpu->host_cpu_probe_failed) {
1397        if (!kvm_enabled()) {
1398            error_setg(errp, "The 'host' CPU type can only be used with KVM");
1399        } else {
1400            error_setg(errp, "Failed to retrieve host CPU features");
1401        }
1402        return;
1403    }
1404
1405#ifndef CONFIG_USER_ONLY
1406    /* The NVIC and M-profile CPU are two halves of a single piece of
1407     * hardware; trying to use one without the other is a command line
1408     * error and will result in segfaults if not caught here.
1409     */
1410    if (arm_feature(env, ARM_FEATURE_M)) {
1411        if (!env->nvic) {
1412            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1413            return;
1414        }
1415    } else {
1416        if (env->nvic) {
1417            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1418            return;
1419        }
1420    }
1421
1422    {
1423        uint64_t scale;
1424
1425        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1426            if (!cpu->gt_cntfrq_hz) {
1427                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1428                           cpu->gt_cntfrq_hz);
1429                return;
1430            }
1431            scale = gt_cntfrq_period_ns(cpu);
1432        } else {
1433            scale = GTIMER_SCALE;
1434        }
1435
1436        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1437                                               arm_gt_ptimer_cb, cpu);
1438        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1439                                               arm_gt_vtimer_cb, cpu);
1440        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1441                                              arm_gt_htimer_cb, cpu);
1442        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1443                                              arm_gt_stimer_cb, cpu);
1444        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1445                                                  arm_gt_hvtimer_cb, cpu);
1446    }
1447#endif
1448
1449    cpu_exec_realizefn(cs, &local_err);
1450    if (local_err != NULL) {
1451        error_propagate(errp, local_err);
1452        return;
1453    }
1454
1455    arm_cpu_finalize_features(cpu, &local_err);
1456    if (local_err != NULL) {
1457        error_propagate(errp, local_err);
1458        return;
1459    }
1460
1461    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1462        cpu->has_vfp != cpu->has_neon) {
1463        /*
1464         * This is an architectural requirement for AArch64; AArch32 is
1465         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1466         */
1467        error_setg(errp,
1468                   "AArch64 CPUs must have both VFP and Neon or neither");
1469        return;
1470    }
1471
1472    if (!cpu->has_vfp) {
1473        uint64_t t;
1474        uint32_t u;
1475
1476        t = cpu->isar.id_aa64isar1;
1477        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1478        cpu->isar.id_aa64isar1 = t;
1479
1480        t = cpu->isar.id_aa64pfr0;
1481        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1482        cpu->isar.id_aa64pfr0 = t;
1483
1484        u = cpu->isar.id_isar6;
1485        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1486        cpu->isar.id_isar6 = u;
1487
1488        u = cpu->isar.mvfr0;
1489        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1490        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1491        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1492        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1493        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1494        if (!arm_feature(env, ARM_FEATURE_M)) {
1495            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1496            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1497        }
1498        cpu->isar.mvfr0 = u;
1499
1500        u = cpu->isar.mvfr1;
1501        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1502        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1503        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1504        if (arm_feature(env, ARM_FEATURE_M)) {
1505            u = FIELD_DP32(u, MVFR1, FP16, 0);
1506        }
1507        cpu->isar.mvfr1 = u;
1508
1509        u = cpu->isar.mvfr2;
1510        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1511        cpu->isar.mvfr2 = u;
1512    }
1513
1514    if (!cpu->has_neon) {
1515        uint64_t t;
1516        uint32_t u;
1517
1518        unset_feature(env, ARM_FEATURE_NEON);
1519
1520        t = cpu->isar.id_aa64isar0;
1521        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1522        cpu->isar.id_aa64isar0 = t;
1523
1524        t = cpu->isar.id_aa64isar1;
1525        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1526        cpu->isar.id_aa64isar1 = t;
1527
1528        t = cpu->isar.id_aa64pfr0;
1529        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1530        cpu->isar.id_aa64pfr0 = t;
1531
1532        u = cpu->isar.id_isar5;
1533        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1534        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1535        cpu->isar.id_isar5 = u;
1536
1537        u = cpu->isar.id_isar6;
1538        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1539        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1540        cpu->isar.id_isar6 = u;
1541
1542        if (!arm_feature(env, ARM_FEATURE_M)) {
1543            u = cpu->isar.mvfr1;
1544            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1545            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1546            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1547            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1548            cpu->isar.mvfr1 = u;
1549
1550            u = cpu->isar.mvfr2;
1551            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1552            cpu->isar.mvfr2 = u;
1553        }
1554    }
1555
1556    if (!cpu->has_neon && !cpu->has_vfp) {
1557        uint64_t t;
1558        uint32_t u;
1559
1560        t = cpu->isar.id_aa64isar0;
1561        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1562        cpu->isar.id_aa64isar0 = t;
1563
1564        t = cpu->isar.id_aa64isar1;
1565        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1566        cpu->isar.id_aa64isar1 = t;
1567
1568        u = cpu->isar.mvfr0;
1569        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1570        cpu->isar.mvfr0 = u;
1571
1572        /* Despite the name, this field covers both VFP and Neon */
1573        u = cpu->isar.mvfr1;
1574        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1575        cpu->isar.mvfr1 = u;
1576    }
1577
1578    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1579        uint32_t u;
1580
1581        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1582
1583        u = cpu->isar.id_isar1;
1584        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1585        cpu->isar.id_isar1 = u;
1586
1587        u = cpu->isar.id_isar2;
1588        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1589        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1590        cpu->isar.id_isar2 = u;
1591
1592        u = cpu->isar.id_isar3;
1593        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1594        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1595        cpu->isar.id_isar3 = u;
1596    }
1597
1598    /* Some features automatically imply others: */
1599    if (arm_feature(env, ARM_FEATURE_V8)) {
1600        if (arm_feature(env, ARM_FEATURE_M)) {
1601            set_feature(env, ARM_FEATURE_V7);
1602        } else {
1603            set_feature(env, ARM_FEATURE_V7VE);
1604        }
1605    }
1606
1607    /*
1608     * There exist AArch64 cpus without AArch32 support.  When KVM
1609     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1610     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1611     * As a general principle, we also do not make ID register
1612     * consistency checks anywhere unless using TCG, because only
1613     * for TCG would a consistency-check failure be a QEMU bug.
1614     */
1615    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1616        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1617    }
1618
1619    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1620        /* v7 Virtualization Extensions. In real hardware this implies
1621         * EL2 and also the presence of the Security Extensions.
1622         * For QEMU, for backwards-compatibility we implement some
1623         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1624         * include the various other features that V7VE implies.
1625         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1626         * Security Extensions is ARM_FEATURE_EL3.
1627         */
1628        assert(!tcg_enabled() || no_aa32 ||
1629               cpu_isar_feature(aa32_arm_div, cpu));
1630        set_feature(env, ARM_FEATURE_LPAE);
1631        set_feature(env, ARM_FEATURE_V7);
1632    }
1633    if (arm_feature(env, ARM_FEATURE_V7)) {
1634        set_feature(env, ARM_FEATURE_VAPA);
1635        set_feature(env, ARM_FEATURE_THUMB2);
1636        set_feature(env, ARM_FEATURE_MPIDR);
1637        if (!arm_feature(env, ARM_FEATURE_M)) {
1638            set_feature(env, ARM_FEATURE_V6K);
1639        } else {
1640            set_feature(env, ARM_FEATURE_V6);
1641        }
1642
1643        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1644         * non-EL3 configs. This is needed by some legacy boards.
1645         */
1646        set_feature(env, ARM_FEATURE_VBAR);
1647    }
1648    if (arm_feature(env, ARM_FEATURE_V6K)) {
1649        set_feature(env, ARM_FEATURE_V6);
1650        set_feature(env, ARM_FEATURE_MVFR);
1651    }
1652    if (arm_feature(env, ARM_FEATURE_V6)) {
1653        set_feature(env, ARM_FEATURE_V5);
1654        if (!arm_feature(env, ARM_FEATURE_M)) {
1655            assert(!tcg_enabled() || no_aa32 ||
1656                   cpu_isar_feature(aa32_jazelle, cpu));
1657            set_feature(env, ARM_FEATURE_AUXCR);
1658        }
1659    }
1660    if (arm_feature(env, ARM_FEATURE_V5)) {
1661        set_feature(env, ARM_FEATURE_V4T);
1662    }
1663    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1664        set_feature(env, ARM_FEATURE_V7MP);
1665    }
1666    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1667        set_feature(env, ARM_FEATURE_CBAR);
1668    }
1669    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1670        !arm_feature(env, ARM_FEATURE_M)) {
1671        set_feature(env, ARM_FEATURE_THUMB_DSP);
1672    }
1673
1674    /*
1675     * We rely on no XScale CPU having VFP so we can use the same bits in the
1676     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1677     */
1678    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1679           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1680           !arm_feature(env, ARM_FEATURE_XSCALE));
1681
1682    if (arm_feature(env, ARM_FEATURE_V7) &&
1683        !arm_feature(env, ARM_FEATURE_M) &&
1684        !arm_feature(env, ARM_FEATURE_PMSA)) {
1685        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1686         * can use 4K pages.
1687         */
1688        pagebits = 12;
1689    } else {
1690        /* For CPUs which might have tiny 1K pages, or which have an
1691         * MPU and might have small region sizes, stick with 1K pages.
1692         */
1693        pagebits = 10;
1694    }
1695    if (!set_preferred_target_page_bits(pagebits)) {
1696        /* This can only ever happen for hotplugging a CPU, or if
1697         * the board code incorrectly creates a CPU which it has
1698         * promised via minimum_page_size that it will not.
1699         */
1700        error_setg(errp, "This CPU requires a smaller page size than the "
1701                   "system is using");
1702        return;
1703    }
1704
1705    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1706     * We don't support setting cluster ID ([16..23]) (known as Aff2
1707     * in later ARM ARM versions), or any of the higher affinity level fields,
1708     * so these bits always RAZ.
1709     */
1710    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1711        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1712                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1713    }
1714
1715    if (cpu->reset_hivecs) {
1716            cpu->reset_sctlr |= (1 << 13);
1717    }
1718
1719    if (cpu->cfgend) {
1720        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1721            cpu->reset_sctlr |= SCTLR_EE;
1722        } else {
1723            cpu->reset_sctlr |= SCTLR_B;
1724        }
1725    }
1726
1727    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1728        /* If the has_el3 CPU property is disabled then we need to disable the
1729         * feature.
1730         */
1731        unset_feature(env, ARM_FEATURE_EL3);
1732
1733        /* Disable the security extension feature bits in the processor feature
1734         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1735         */
1736        cpu->isar.id_pfr1 &= ~0xf0;
1737        cpu->isar.id_aa64pfr0 &= ~0xf000;
1738    }
1739
1740    if (!cpu->has_el2) {
1741        unset_feature(env, ARM_FEATURE_EL2);
1742    }
1743
1744    if (!cpu->has_pmu) {
1745        unset_feature(env, ARM_FEATURE_PMU);
1746    }
1747    if (arm_feature(env, ARM_FEATURE_PMU)) {
1748        pmu_init(cpu);
1749
1750        if (!kvm_enabled()) {
1751            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1752            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1753        }
1754
1755#ifndef CONFIG_USER_ONLY
1756        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1757                cpu);
1758#endif
1759    } else {
1760        cpu->isar.id_aa64dfr0 =
1761            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1762        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1763        cpu->pmceid0 = 0;
1764        cpu->pmceid1 = 0;
1765    }
1766
1767    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1768        /* Disable the hypervisor feature bits in the processor feature
1769         * registers if we don't have EL2. These are id_pfr1[15:12] and
1770         * id_aa64pfr0_el1[11:8].
1771         */
1772        cpu->isar.id_aa64pfr0 &= ~0xf00;
1773        cpu->isar.id_pfr1 &= ~0xf000;
1774    }
1775
1776#ifndef CONFIG_USER_ONLY
1777    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1778        /*
1779         * Disable the MTE feature bits if we do not have tag-memory
1780         * provided by the machine.
1781         */
1782        cpu->isar.id_aa64pfr1 =
1783            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1784    }
1785#endif
1786
1787    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1788     * to false or by setting pmsav7-dregion to 0.
1789     */
1790    if (!cpu->has_mpu) {
1791        cpu->pmsav7_dregion = 0;
1792    }
1793    if (cpu->pmsav7_dregion == 0) {
1794        cpu->has_mpu = false;
1795    }
1796
1797    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1798        arm_feature(env, ARM_FEATURE_V7)) {
1799        uint32_t nr = cpu->pmsav7_dregion;
1800
1801        if (nr > 0xff) {
1802            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1803            return;
1804        }
1805
1806        if (nr) {
1807            if (arm_feature(env, ARM_FEATURE_V8)) {
1808                /* PMSAv8 */
1809                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1810                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1811                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1812                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1813                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1814                }
1815            } else {
1816                env->pmsav7.drbar = g_new0(uint32_t, nr);
1817                env->pmsav7.drsr = g_new0(uint32_t, nr);
1818                env->pmsav7.dracr = g_new0(uint32_t, nr);
1819            }
1820        }
1821    }
1822
1823    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1824        uint32_t nr = cpu->sau_sregion;
1825
1826        if (nr > 0xff) {
1827            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1828            return;
1829        }
1830
1831        if (nr) {
1832            env->sau.rbar = g_new0(uint32_t, nr);
1833            env->sau.rlar = g_new0(uint32_t, nr);
1834        }
1835    }
1836
1837    if (arm_feature(env, ARM_FEATURE_EL3)) {
1838        set_feature(env, ARM_FEATURE_VBAR);
1839    }
1840
1841    register_cp_regs_for_features(cpu);
1842    arm_cpu_register_gdb_regs_for_features(cpu);
1843
1844    init_cpreg_list(cpu);
1845
1846#ifndef CONFIG_USER_ONLY
1847    MachineState *ms = MACHINE(qdev_get_machine());
1848    unsigned int smp_cpus = ms->smp.cpus;
1849    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1850
1851    /*
1852     * We must set cs->num_ases to the final value before
1853     * the first call to cpu_address_space_init.
1854     */
1855    if (cpu->tag_memory != NULL) {
1856        cs->num_ases = 3 + has_secure;
1857    } else {
1858        cs->num_ases = 1 + has_secure;
1859    }
1860
1861    if (has_secure) {
1862        if (!cpu->secure_memory) {
1863            cpu->secure_memory = cs->memory;
1864        }
1865        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1866                               cpu->secure_memory);
1867    }
1868
1869    if (cpu->tag_memory != NULL) {
1870        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1871                               cpu->tag_memory);
1872        if (has_secure) {
1873            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1874                                   cpu->secure_tag_memory);
1875        }
1876    }
1877
1878    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1879
1880    /* No core_count specified, default to smp_cpus. */
1881    if (cpu->core_count == -1) {
1882        cpu->core_count = smp_cpus;
1883    }
1884#endif
1885
1886    if (tcg_enabled()) {
1887        int dcz_blocklen = 4 << cpu->dcz_blocksize;
1888
1889        /*
1890         * We only support DCZ blocklen that fits on one page.
1891         *
1892         * Architectually this is always true.  However TARGET_PAGE_SIZE
1893         * is variable and, for compatibility with -machine virt-2.7,
1894         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1895         * But even then, while the largest architectural DCZ blocklen
1896         * is 2KiB, no cpu actually uses such a large blocklen.
1897         */
1898        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1899
1900        /*
1901         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1902         * both nibbles of each byte storing tag data may be written at once.
1903         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1904         */
1905        if (cpu_isar_feature(aa64_mte, cpu)) {
1906            assert(dcz_blocklen >= 2 * TAG_GRANULE);
1907        }
1908    }
1909
1910    qemu_init_vcpu(cs);
1911    cpu_reset(cs);
1912
1913    acc->parent_realize(dev, errp);
1914}
1915
1916static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1917{
1918    ObjectClass *oc;
1919    char *typename;
1920    char **cpuname;
1921    const char *cpunamestr;
1922
1923    cpuname = g_strsplit(cpu_model, ",", 1);
1924    cpunamestr = cpuname[0];
1925#ifdef CONFIG_USER_ONLY
1926    /* For backwards compatibility usermode emulation allows "-cpu any",
1927     * which has the same semantics as "-cpu max".
1928     */
1929    if (!strcmp(cpunamestr, "any")) {
1930        cpunamestr = "max";
1931    }
1932#endif
1933    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1934    oc = object_class_by_name(typename);
1935    g_strfreev(cpuname);
1936    g_free(typename);
1937    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1938        object_class_is_abstract(oc)) {
1939        return NULL;
1940    }
1941    return oc;
1942}
1943
1944static Property arm_cpu_properties[] = {
1945    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1946    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1947    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1948                        mp_affinity, ARM64_AFFINITY_INVALID),
1949    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1950    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1951    DEFINE_PROP_END_OF_LIST()
1952};
1953
1954static gchar *arm_gdb_arch_name(CPUState *cs)
1955{
1956    ARMCPU *cpu = ARM_CPU(cs);
1957    CPUARMState *env = &cpu->env;
1958
1959    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1960        return g_strdup("iwmmxt");
1961    }
1962    return g_strdup("arm");
1963}
1964
1965#ifdef CONFIG_TCG
1966static struct TCGCPUOps arm_tcg_ops = {
1967    .initialize = arm_translate_init,
1968    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1969    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1970    .tlb_fill = arm_cpu_tlb_fill,
1971    .debug_excp_handler = arm_debug_excp_handler,
1972
1973#if !defined(CONFIG_USER_ONLY)
1974    .do_interrupt = arm_cpu_do_interrupt,
1975    .do_transaction_failed = arm_cpu_do_transaction_failed,
1976    .do_unaligned_access = arm_cpu_do_unaligned_access,
1977    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1978    .debug_check_watchpoint = arm_debug_check_watchpoint,
1979#endif /* !CONFIG_USER_ONLY */
1980};
1981#endif /* CONFIG_TCG */
1982
1983static void arm_cpu_class_init(ObjectClass *oc, void *data)
1984{
1985    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1986    CPUClass *cc = CPU_CLASS(acc);
1987    DeviceClass *dc = DEVICE_CLASS(oc);
1988
1989    device_class_set_parent_realize(dc, arm_cpu_realizefn,
1990                                    &acc->parent_realize);
1991
1992    device_class_set_props(dc, arm_cpu_properties);
1993    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
1994
1995    cc->class_by_name = arm_cpu_class_by_name;
1996    cc->has_work = arm_cpu_has_work;
1997    cc->dump_state = arm_cpu_dump_state;
1998    cc->set_pc = arm_cpu_set_pc;
1999    cc->gdb_read_register = arm_cpu_gdb_read_register;
2000    cc->gdb_write_register = arm_cpu_gdb_write_register;
2001#ifndef CONFIG_USER_ONLY
2002    cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2003    cc->asidx_from_attrs = arm_asidx_from_attrs;
2004    cc->vmsd = &vmstate_arm_cpu;
2005    cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2006    cc->write_elf64_note = arm_cpu_write_elf64_note;
2007    cc->write_elf32_note = arm_cpu_write_elf32_note;
2008#endif
2009    cc->gdb_num_core_regs = 26;
2010    cc->gdb_core_xml_file = "arm-core.xml";
2011    cc->gdb_arch_name = arm_gdb_arch_name;
2012    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2013    cc->gdb_stop_before_watchpoint = true;
2014    cc->disas_set_info = arm_disas_set_info;
2015
2016#ifdef CONFIG_TCG
2017    cc->tcg_ops = &arm_tcg_ops;
2018#endif /* CONFIG_TCG */
2019}
2020
2021#ifdef CONFIG_KVM
2022static void arm_host_initfn(Object *obj)
2023{
2024    ARMCPU *cpu = ARM_CPU(obj);
2025
2026    kvm_arm_set_cpu_features_from_host(cpu);
2027    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2028        aarch64_add_sve_properties(obj);
2029    }
2030    arm_cpu_post_init(obj);
2031}
2032
2033static const TypeInfo host_arm_cpu_type_info = {
2034    .name = TYPE_ARM_HOST_CPU,
2035    .parent = TYPE_AARCH64_CPU,
2036    .instance_init = arm_host_initfn,
2037};
2038
2039#endif
2040
2041static void arm_cpu_instance_init(Object *obj)
2042{
2043    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2044
2045    acc->info->initfn(obj);
2046    arm_cpu_post_init(obj);
2047}
2048
2049static void cpu_register_class_init(ObjectClass *oc, void *data)
2050{
2051    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2052
2053    acc->info = data;
2054}
2055
2056void arm_cpu_register(const ARMCPUInfo *info)
2057{
2058    TypeInfo type_info = {
2059        .parent = TYPE_ARM_CPU,
2060        .instance_size = sizeof(ARMCPU),
2061        .instance_align = __alignof__(ARMCPU),
2062        .instance_init = arm_cpu_instance_init,
2063        .class_size = sizeof(ARMCPUClass),
2064        .class_init = info->class_init ?: cpu_register_class_init,
2065        .class_data = (void *)info,
2066    };
2067
2068    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2069    type_register(&type_info);
2070    g_free((void *)type_info.name);
2071}
2072
2073static const TypeInfo arm_cpu_type_info = {
2074    .name = TYPE_ARM_CPU,
2075    .parent = TYPE_CPU,
2076    .instance_size = sizeof(ARMCPU),
2077    .instance_align = __alignof__(ARMCPU),
2078    .instance_init = arm_cpu_initfn,
2079    .instance_finalize = arm_cpu_finalizefn,
2080    .abstract = true,
2081    .class_size = sizeof(ARMCPUClass),
2082    .class_init = arm_cpu_class_init,
2083};
2084
2085static void arm_cpu_register_types(void)
2086{
2087    type_register_static(&arm_cpu_type_info);
2088
2089#ifdef CONFIG_KVM
2090    type_register_static(&host_arm_cpu_type_info);
2091#endif
2092}
2093
2094type_init(arm_cpu_register_types)
2095