qemu/target/arm/psci.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2014 - Linaro
   3 * Author: Rob Herring <rob.herring@linaro.org>
   4 *
   5 *  This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation; either version 2 of the License, or
   8 *  (at your option) any later version.
   9 *
  10 *  This program is distributed in the hope that it will be useful,
  11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 *  GNU General Public License for more details.
  14 *
  15 *  You should have received a copy of the GNU General Public License
  16 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "cpu.h"
  21#include "exec/helper-proto.h"
  22#include "kvm-consts.h"
  23#include "qemu/main-loop.h"
  24#include "sysemu/runstate.h"
  25#include "internals.h"
  26#include "arm-powerctl.h"
  27
  28bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
  29{
  30    /* Return true if the r0/x0 value indicates a PSCI call and
  31     * the exception type matches the configured PSCI conduit. This is
  32     * called before the SMC/HVC instruction is executed, to decide whether
  33     * we should treat it as a PSCI call or with the architecturally
  34     * defined behaviour for an SMC or HVC (which might be UNDEF or trap
  35     * to EL2 or to EL3).
  36     */
  37    CPUARMState *env = &cpu->env;
  38    uint64_t param = is_a64(env) ? env->xregs[0] : env->regs[0];
  39
  40    switch (excp_type) {
  41    case EXCP_HVC:
  42        if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) {
  43            return false;
  44        }
  45        break;
  46    case EXCP_SMC:
  47        if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
  48            return false;
  49        }
  50        break;
  51    default:
  52        return false;
  53    }
  54
  55    switch (param) {
  56    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
  57    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
  58    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
  59    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
  60    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
  61    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
  62    case QEMU_PSCI_0_1_FN_CPU_ON:
  63    case QEMU_PSCI_0_2_FN_CPU_ON:
  64    case QEMU_PSCI_0_2_FN64_CPU_ON:
  65    case QEMU_PSCI_0_1_FN_CPU_OFF:
  66    case QEMU_PSCI_0_2_FN_CPU_OFF:
  67    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
  68    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
  69    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
  70    case QEMU_PSCI_0_1_FN_MIGRATE:
  71    case QEMU_PSCI_0_2_FN_MIGRATE:
  72        return true;
  73    default:
  74        return false;
  75    }
  76}
  77
  78void arm_handle_psci_call(ARMCPU *cpu)
  79{
  80    /*
  81     * This function partially implements the logic for dispatching Power State
  82     * Coordination Interface (PSCI) calls (as described in ARM DEN 0022B.b),
  83     * to the extent required for bringing up and taking down secondary cores,
  84     * and for handling reset and poweroff requests.
  85     * Additional information about the calling convention used is available in
  86     * the document 'SMC Calling Convention' (ARM DEN 0028)
  87     */
  88    CPUARMState *env = &cpu->env;
  89    uint64_t param[4];
  90    uint64_t context_id, mpidr;
  91    target_ulong entry;
  92    int32_t ret = 0;
  93    int i;
  94
  95    for (i = 0; i < 4; i++) {
  96        /*
  97         * All PSCI functions take explicit 32-bit or native int sized
  98         * arguments so we can simply zero-extend all arguments regardless
  99         * of which exact function we are about to call.
 100         */
 101        param[i] = is_a64(env) ? env->xregs[i] : env->regs[i];
 102    }
 103
 104    if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) {
 105        ret = QEMU_PSCI_RET_INVALID_PARAMS;
 106        goto err;
 107    }
 108
 109    switch (param[0]) {
 110        CPUState *target_cpu_state;
 111        ARMCPU *target_cpu;
 112
 113    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
 114        ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
 115        break;
 116    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
 117        ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
 118        break;
 119    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
 120    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
 121        mpidr = param[1];
 122
 123        switch (param[2]) {
 124        case 0:
 125            target_cpu_state = arm_get_cpu_by_id(mpidr);
 126            if (!target_cpu_state) {
 127                ret = QEMU_PSCI_RET_INVALID_PARAMS;
 128                break;
 129            }
 130            target_cpu = ARM_CPU(target_cpu_state);
 131
 132            g_assert(qemu_mutex_iothread_locked());
 133            ret = target_cpu->power_state;
 134            break;
 135        default:
 136            /* Everything above affinity level 0 is always on. */
 137            ret = 0;
 138        }
 139        break;
 140    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
 141        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 142        /* QEMU reset and shutdown are async requests, but PSCI
 143         * mandates that we never return from the reset/shutdown
 144         * call, so power the CPU off now so it doesn't execute
 145         * anything further.
 146         */
 147        goto cpu_off;
 148    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
 149        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
 150        goto cpu_off;
 151    case QEMU_PSCI_0_1_FN_CPU_ON:
 152    case QEMU_PSCI_0_2_FN_CPU_ON:
 153    case QEMU_PSCI_0_2_FN64_CPU_ON:
 154    {
 155        /* The PSCI spec mandates that newly brought up CPUs start
 156         * in the highest exception level which exists and is enabled
 157         * on the calling CPU. Since the QEMU PSCI implementation is
 158         * acting as a "fake EL3" or "fake EL2" firmware, this for us
 159         * means that we want to start at the highest NS exception level
 160         * that we are providing to the guest.
 161         * The execution mode should be that which is currently in use
 162         * by the same exception level on the calling CPU.
 163         * The CPU should be started with the context_id value
 164         * in x0 (if AArch64) or r0 (if AArch32).
 165         */
 166        int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
 167        bool target_aarch64 = arm_el_is_aa64(env, target_el);
 168
 169        mpidr = param[1];
 170        entry = param[2];
 171        context_id = param[3];
 172        ret = arm_set_cpu_on(mpidr, entry, context_id,
 173                             target_el, target_aarch64);
 174        break;
 175    }
 176    case QEMU_PSCI_0_1_FN_CPU_OFF:
 177    case QEMU_PSCI_0_2_FN_CPU_OFF:
 178        goto cpu_off;
 179    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
 180    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
 181    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
 182        /* Affinity levels are not supported in QEMU */
 183        if (param[1] & 0xfffe0000) {
 184            ret = QEMU_PSCI_RET_INVALID_PARAMS;
 185            break;
 186        }
 187        /* Powerdown is not supported, we always go into WFI */
 188        if (is_a64(env)) {
 189            env->xregs[0] = 0;
 190        } else {
 191            env->regs[0] = 0;
 192        }
 193        helper_wfi(env, 4);
 194        break;
 195    case QEMU_PSCI_0_1_FN_MIGRATE:
 196    case QEMU_PSCI_0_2_FN_MIGRATE:
 197        ret = QEMU_PSCI_RET_NOT_SUPPORTED;
 198        break;
 199    default:
 200        g_assert_not_reached();
 201    }
 202
 203err:
 204    if (is_a64(env)) {
 205        env->xregs[0] = ret;
 206    } else {
 207        env->regs[0] = ret;
 208    }
 209    return;
 210
 211cpu_off:
 212    ret = arm_set_cpu_off(cpu->mp_affinity);
 213    /* notreached */
 214    /* sanity check in case something failed */
 215    assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
 216}
 217