qemu/target/s390x/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU S390x KVM implementation
   3 *
   4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
   5 * Copyright IBM Corp. 2012
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include <sys/ioctl.h>
  23
  24#include <linux/kvm.h>
  25#include <asm/ptrace.h>
  26
  27#include "qemu-common.h"
  28#include "cpu.h"
  29#include "internal.h"
  30#include "kvm_s390x.h"
  31#include "sysemu/kvm_int.h"
  32#include "qemu/cutils.h"
  33#include "qapi/error.h"
  34#include "qemu/error-report.h"
  35#include "qemu/timer.h"
  36#include "qemu/units.h"
  37#include "qemu/main-loop.h"
  38#include "qemu/mmap-alloc.h"
  39#include "qemu/log.h"
  40#include "sysemu/sysemu.h"
  41#include "sysemu/hw_accel.h"
  42#include "sysemu/runstate.h"
  43#include "sysemu/device_tree.h"
  44#include "exec/gdbstub.h"
  45#include "exec/ram_addr.h"
  46#include "trace.h"
  47#include "hw/s390x/s390-pci-inst.h"
  48#include "hw/s390x/s390-pci-bus.h"
  49#include "hw/s390x/ipl.h"
  50#include "hw/s390x/ebcdic.h"
  51#include "exec/memattrs.h"
  52#include "hw/s390x/s390-virtio-ccw.h"
  53#include "hw/s390x/s390-virtio-hcall.h"
  54#include "hw/s390x/pv.h"
  55
  56#ifndef DEBUG_KVM
  57#define DEBUG_KVM  0
  58#endif
  59
  60#define DPRINTF(fmt, ...) do {                \
  61    if (DEBUG_KVM) {                          \
  62        fprintf(stderr, fmt, ## __VA_ARGS__); \
  63    }                                         \
  64} while (0)
  65
  66#define kvm_vm_check_mem_attr(s, attr) \
  67    kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
  68
  69#define IPA0_DIAG                       0x8300
  70#define IPA0_SIGP                       0xae00
  71#define IPA0_B2                         0xb200
  72#define IPA0_B9                         0xb900
  73#define IPA0_EB                         0xeb00
  74#define IPA0_E3                         0xe300
  75
  76#define PRIV_B2_SCLP_CALL               0x20
  77#define PRIV_B2_CSCH                    0x30
  78#define PRIV_B2_HSCH                    0x31
  79#define PRIV_B2_MSCH                    0x32
  80#define PRIV_B2_SSCH                    0x33
  81#define PRIV_B2_STSCH                   0x34
  82#define PRIV_B2_TSCH                    0x35
  83#define PRIV_B2_TPI                     0x36
  84#define PRIV_B2_SAL                     0x37
  85#define PRIV_B2_RSCH                    0x38
  86#define PRIV_B2_STCRW                   0x39
  87#define PRIV_B2_STCPS                   0x3a
  88#define PRIV_B2_RCHP                    0x3b
  89#define PRIV_B2_SCHM                    0x3c
  90#define PRIV_B2_CHSC                    0x5f
  91#define PRIV_B2_SIGA                    0x74
  92#define PRIV_B2_XSCH                    0x76
  93
  94#define PRIV_EB_SQBS                    0x8a
  95#define PRIV_EB_PCISTB                  0xd0
  96#define PRIV_EB_SIC                     0xd1
  97
  98#define PRIV_B9_EQBS                    0x9c
  99#define PRIV_B9_CLP                     0xa0
 100#define PRIV_B9_PCISTG                  0xd0
 101#define PRIV_B9_PCILG                   0xd2
 102#define PRIV_B9_RPCIT                   0xd3
 103
 104#define PRIV_E3_MPCIFC                  0xd0
 105#define PRIV_E3_STPCIFC                 0xd4
 106
 107#define DIAG_TIMEREVENT                 0x288
 108#define DIAG_IPL                        0x308
 109#define DIAG_SET_CONTROL_PROGRAM_CODES  0x318
 110#define DIAG_KVM_HYPERCALL              0x500
 111#define DIAG_KVM_BREAKPOINT             0x501
 112
 113#define ICPT_INSTRUCTION                0x04
 114#define ICPT_PROGRAM                    0x08
 115#define ICPT_EXT_INT                    0x14
 116#define ICPT_WAITPSW                    0x1c
 117#define ICPT_SOFT_INTERCEPT             0x24
 118#define ICPT_CPU_STOP                   0x28
 119#define ICPT_OPEREXC                    0x2c
 120#define ICPT_IO                         0x40
 121#define ICPT_PV_INSTR                   0x68
 122#define ICPT_PV_INSTR_NOTIFICATION      0x6c
 123
 124#define NR_LOCAL_IRQS 32
 125/*
 126 * Needs to be big enough to contain max_cpus emergency signals
 127 * and in addition NR_LOCAL_IRQS interrupts
 128 */
 129#define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
 130                                     (max_cpus + NR_LOCAL_IRQS))
 131/*
 132 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
 133 * as the dirty bitmap must be managed by bitops that take an int as
 134 * position indicator. This would end at an unaligned  address
 135 * (0x7fffff00000). As future variants might provide larger pages
 136 * and to make all addresses properly aligned, let us split at 4TB.
 137 */
 138#define KVM_SLOT_MAX_BYTES (4UL * TiB)
 139
 140static CPUWatchpoint hw_watchpoint;
 141/*
 142 * We don't use a list because this structure is also used to transmit the
 143 * hardware breakpoints to the kernel.
 144 */
 145static struct kvm_hw_breakpoint *hw_breakpoints;
 146static int nb_hw_breakpoints;
 147
 148const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 149    KVM_CAP_LAST_INFO
 150};
 151
 152static int cap_sync_regs;
 153static int cap_async_pf;
 154static int cap_mem_op;
 155static int cap_s390_irq;
 156static int cap_ri;
 157static int cap_gs;
 158static int cap_hpage_1m;
 159static int cap_vcpu_resets;
 160static int cap_protected;
 161
 162static int active_cmma;
 163
 164static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
 165{
 166    struct kvm_device_attr attr = {
 167        .group = KVM_S390_VM_MEM_CTRL,
 168        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 169        .addr = (uint64_t) memory_limit,
 170    };
 171
 172    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 173}
 174
 175int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
 176{
 177    int rc;
 178
 179    struct kvm_device_attr attr = {
 180        .group = KVM_S390_VM_MEM_CTRL,
 181        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 182        .addr = (uint64_t) &new_limit,
 183    };
 184
 185    if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
 186        return 0;
 187    }
 188
 189    rc = kvm_s390_query_mem_limit(hw_limit);
 190    if (rc) {
 191        return rc;
 192    } else if (*hw_limit < new_limit) {
 193        return -E2BIG;
 194    }
 195
 196    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 197}
 198
 199int kvm_s390_cmma_active(void)
 200{
 201    return active_cmma;
 202}
 203
 204static bool kvm_s390_cmma_available(void)
 205{
 206    static bool initialized, value;
 207
 208    if (!initialized) {
 209        initialized = true;
 210        value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
 211                kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
 212    }
 213    return value;
 214}
 215
 216void kvm_s390_cmma_reset(void)
 217{
 218    int rc;
 219    struct kvm_device_attr attr = {
 220        .group = KVM_S390_VM_MEM_CTRL,
 221        .attr = KVM_S390_VM_MEM_CLR_CMMA,
 222    };
 223
 224    if (!kvm_s390_cmma_active()) {
 225        return;
 226    }
 227
 228    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 229    trace_kvm_clear_cmma(rc);
 230}
 231
 232static void kvm_s390_enable_cmma(void)
 233{
 234    int rc;
 235    struct kvm_device_attr attr = {
 236        .group = KVM_S390_VM_MEM_CTRL,
 237        .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
 238    };
 239
 240    if (cap_hpage_1m) {
 241        warn_report("CMM will not be enabled because it is not "
 242                    "compatible with huge memory backings.");
 243        return;
 244    }
 245    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 246    active_cmma = !rc;
 247    trace_kvm_enable_cmma(rc);
 248}
 249
 250static void kvm_s390_set_attr(uint64_t attr)
 251{
 252    struct kvm_device_attr attribute = {
 253        .group = KVM_S390_VM_CRYPTO,
 254        .attr  = attr,
 255    };
 256
 257    int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
 258
 259    if (ret) {
 260        error_report("Failed to set crypto device attribute %lu: %s",
 261                     attr, strerror(-ret));
 262    }
 263}
 264
 265static void kvm_s390_init_aes_kw(void)
 266{
 267    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
 268
 269    if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
 270                                 NULL)) {
 271            attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
 272    }
 273
 274    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 275            kvm_s390_set_attr(attr);
 276    }
 277}
 278
 279static void kvm_s390_init_dea_kw(void)
 280{
 281    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
 282
 283    if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
 284                                 NULL)) {
 285            attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
 286    }
 287
 288    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 289            kvm_s390_set_attr(attr);
 290    }
 291}
 292
 293void kvm_s390_crypto_reset(void)
 294{
 295    if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
 296        kvm_s390_init_aes_kw();
 297        kvm_s390_init_dea_kw();
 298    }
 299}
 300
 301void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
 302{
 303    if (pagesize == 4 * KiB) {
 304        return;
 305    }
 306
 307    if (!hpage_1m_allowed()) {
 308        error_setg(errp, "This QEMU machine does not support huge page "
 309                   "mappings");
 310        return;
 311    }
 312
 313    if (pagesize != 1 * MiB) {
 314        error_setg(errp, "Memory backing with 2G pages was specified, "
 315                   "but KVM does not support this memory backing");
 316        return;
 317    }
 318
 319    if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
 320        error_setg(errp, "Memory backing with 1M pages was specified, "
 321                   "but KVM does not support this memory backing");
 322        return;
 323    }
 324
 325    cap_hpage_1m = 1;
 326}
 327
 328int kvm_s390_get_hpage_1m(void)
 329{
 330    return cap_hpage_1m;
 331}
 332
 333static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
 334{
 335    MachineClass *mc = MACHINE_CLASS(oc);
 336
 337    mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
 338}
 339
 340int kvm_arch_init(MachineState *ms, KVMState *s)
 341{
 342    object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
 343                         false, NULL);
 344
 345    if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
 346        error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
 347                     "please use kernel 3.15 or newer");
 348        return -1;
 349    }
 350    if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
 351        error_report("KVM is missing capability KVM_CAP_S390_COW - "
 352                     "unsupported environment");
 353        return -1;
 354    }
 355
 356    cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
 357    cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
 358    cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
 359    cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
 360    cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
 361    cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
 362
 363    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
 364    kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
 365    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
 366    if (ri_allowed()) {
 367        if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
 368            cap_ri = 1;
 369        }
 370    }
 371    if (cpu_model_allowed()) {
 372        if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
 373            cap_gs = 1;
 374        }
 375    }
 376
 377    /*
 378     * The migration interface for ais was introduced with kernel 4.13
 379     * but the capability itself had been active since 4.12. As migration
 380     * support is considered necessary, we only try to enable this for
 381     * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
 382     */
 383    if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
 384        kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
 385        kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
 386    }
 387
 388    kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
 389    return 0;
 390}
 391
 392int kvm_arch_irqchip_create(KVMState *s)
 393{
 394    return 0;
 395}
 396
 397unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 398{
 399    return cpu->cpu_index;
 400}
 401
 402int kvm_arch_init_vcpu(CPUState *cs)
 403{
 404    unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
 405    S390CPU *cpu = S390_CPU(cs);
 406    kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
 407    cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
 408    return 0;
 409}
 410
 411int kvm_arch_destroy_vcpu(CPUState *cs)
 412{
 413    S390CPU *cpu = S390_CPU(cs);
 414
 415    g_free(cpu->irqstate);
 416    cpu->irqstate = NULL;
 417
 418    return 0;
 419}
 420
 421static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
 422{
 423    CPUState *cs = CPU(cpu);
 424
 425    /*
 426     * The reset call is needed here to reset in-kernel vcpu data that
 427     * we can't access directly from QEMU (i.e. with older kernels
 428     * which don't support sync_regs/ONE_REG).  Before this ioctl
 429     * cpu_synchronize_state() is called in common kvm code
 430     * (kvm-all).
 431     */
 432    if (kvm_vcpu_ioctl(cs, type)) {
 433        error_report("CPU reset failed on CPU %i type %lx",
 434                     cs->cpu_index, type);
 435    }
 436}
 437
 438void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
 439{
 440    kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
 441}
 442
 443void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
 444{
 445    if (cap_vcpu_resets) {
 446        kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
 447    } else {
 448        kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
 449    }
 450}
 451
 452void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
 453{
 454    if (cap_vcpu_resets) {
 455        kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
 456    }
 457}
 458
 459static int can_sync_regs(CPUState *cs, int regs)
 460{
 461    return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
 462}
 463
 464int kvm_arch_put_registers(CPUState *cs, int level)
 465{
 466    S390CPU *cpu = S390_CPU(cs);
 467    CPUS390XState *env = &cpu->env;
 468    struct kvm_sregs sregs;
 469    struct kvm_regs regs;
 470    struct kvm_fpu fpu = {};
 471    int r;
 472    int i;
 473
 474    /* always save the PSW  and the GPRS*/
 475    cs->kvm_run->psw_addr = env->psw.addr;
 476    cs->kvm_run->psw_mask = env->psw.mask;
 477
 478    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 479        for (i = 0; i < 16; i++) {
 480            cs->kvm_run->s.regs.gprs[i] = env->regs[i];
 481            cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
 482        }
 483    } else {
 484        for (i = 0; i < 16; i++) {
 485            regs.gprs[i] = env->regs[i];
 486        }
 487        r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 488        if (r < 0) {
 489            return r;
 490        }
 491    }
 492
 493    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 494        for (i = 0; i < 32; i++) {
 495            cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
 496            cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
 497        }
 498        cs->kvm_run->s.regs.fpc = env->fpc;
 499        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
 500    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 501        for (i = 0; i < 16; i++) {
 502            cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
 503        }
 504        cs->kvm_run->s.regs.fpc = env->fpc;
 505        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
 506    } else {
 507        /* Floating point */
 508        for (i = 0; i < 16; i++) {
 509            fpu.fprs[i] = *get_freg(env, i);
 510        }
 511        fpu.fpc = env->fpc;
 512
 513        r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
 514        if (r < 0) {
 515            return r;
 516        }
 517    }
 518
 519    /* Do we need to save more than that? */
 520    if (level == KVM_PUT_RUNTIME_STATE) {
 521        return 0;
 522    }
 523
 524    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 525        cs->kvm_run->s.regs.cputm = env->cputm;
 526        cs->kvm_run->s.regs.ckc = env->ckc;
 527        cs->kvm_run->s.regs.todpr = env->todpr;
 528        cs->kvm_run->s.regs.gbea = env->gbea;
 529        cs->kvm_run->s.regs.pp = env->pp;
 530        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
 531    } else {
 532        /*
 533         * These ONE_REGS are not protected by a capability. As they are only
 534         * necessary for migration we just trace a possible error, but don't
 535         * return with an error return code.
 536         */
 537        kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 538        kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 539        kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 540        kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 541        kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 542    }
 543
 544    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 545        memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
 546        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
 547    }
 548
 549    /* pfault parameters */
 550    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 551        cs->kvm_run->s.regs.pft = env->pfault_token;
 552        cs->kvm_run->s.regs.pfs = env->pfault_select;
 553        cs->kvm_run->s.regs.pfc = env->pfault_compare;
 554        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
 555    } else if (cap_async_pf) {
 556        r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 557        if (r < 0) {
 558            return r;
 559        }
 560        r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 561        if (r < 0) {
 562            return r;
 563        }
 564        r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 565        if (r < 0) {
 566            return r;
 567        }
 568    }
 569
 570    /* access registers and control registers*/
 571    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 572        for (i = 0; i < 16; i++) {
 573            cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
 574            cs->kvm_run->s.regs.crs[i] = env->cregs[i];
 575        }
 576        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
 577        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
 578    } else {
 579        for (i = 0; i < 16; i++) {
 580            sregs.acrs[i] = env->aregs[i];
 581            sregs.crs[i] = env->cregs[i];
 582        }
 583        r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 584        if (r < 0) {
 585            return r;
 586        }
 587    }
 588
 589    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 590        memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
 591        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
 592    }
 593
 594    if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
 595        cs->kvm_run->s.regs.bpbc = env->bpbc;
 596        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
 597    }
 598
 599    if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
 600        cs->kvm_run->s.regs.etoken = env->etoken;
 601        cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
 602        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
 603    }
 604
 605    if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
 606        cs->kvm_run->s.regs.diag318 = env->diag318_info;
 607        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
 608    }
 609
 610    /* Finally the prefix */
 611    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 612        cs->kvm_run->s.regs.prefix = env->psa;
 613        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
 614    } else {
 615        /* prefix is only supported via sync regs */
 616    }
 617    return 0;
 618}
 619
 620int kvm_arch_get_registers(CPUState *cs)
 621{
 622    S390CPU *cpu = S390_CPU(cs);
 623    CPUS390XState *env = &cpu->env;
 624    struct kvm_sregs sregs;
 625    struct kvm_regs regs;
 626    struct kvm_fpu fpu;
 627    int i, r;
 628
 629    /* get the PSW */
 630    env->psw.addr = cs->kvm_run->psw_addr;
 631    env->psw.mask = cs->kvm_run->psw_mask;
 632
 633    /* the GPRS */
 634    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 635        for (i = 0; i < 16; i++) {
 636            env->regs[i] = cs->kvm_run->s.regs.gprs[i];
 637        }
 638    } else {
 639        r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 640        if (r < 0) {
 641            return r;
 642        }
 643         for (i = 0; i < 16; i++) {
 644            env->regs[i] = regs.gprs[i];
 645        }
 646    }
 647
 648    /* The ACRS and CRS */
 649    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 650        for (i = 0; i < 16; i++) {
 651            env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
 652            env->cregs[i] = cs->kvm_run->s.regs.crs[i];
 653        }
 654    } else {
 655        r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 656        if (r < 0) {
 657            return r;
 658        }
 659         for (i = 0; i < 16; i++) {
 660            env->aregs[i] = sregs.acrs[i];
 661            env->cregs[i] = sregs.crs[i];
 662        }
 663    }
 664
 665    /* Floating point and vector registers */
 666    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 667        for (i = 0; i < 32; i++) {
 668            env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
 669            env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
 670        }
 671        env->fpc = cs->kvm_run->s.regs.fpc;
 672    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 673        for (i = 0; i < 16; i++) {
 674            *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
 675        }
 676        env->fpc = cs->kvm_run->s.regs.fpc;
 677    } else {
 678        r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
 679        if (r < 0) {
 680            return r;
 681        }
 682        for (i = 0; i < 16; i++) {
 683            *get_freg(env, i) = fpu.fprs[i];
 684        }
 685        env->fpc = fpu.fpc;
 686    }
 687
 688    /* The prefix */
 689    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 690        env->psa = cs->kvm_run->s.regs.prefix;
 691    }
 692
 693    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 694        env->cputm = cs->kvm_run->s.regs.cputm;
 695        env->ckc = cs->kvm_run->s.regs.ckc;
 696        env->todpr = cs->kvm_run->s.regs.todpr;
 697        env->gbea = cs->kvm_run->s.regs.gbea;
 698        env->pp = cs->kvm_run->s.regs.pp;
 699    } else {
 700        /*
 701         * These ONE_REGS are not protected by a capability. As they are only
 702         * necessary for migration we just trace a possible error, but don't
 703         * return with an error return code.
 704         */
 705        kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 706        kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 707        kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 708        kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 709        kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 710    }
 711
 712    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 713        memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
 714    }
 715
 716    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 717        memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
 718    }
 719
 720    if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
 721        env->bpbc = cs->kvm_run->s.regs.bpbc;
 722    }
 723
 724    if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
 725        env->etoken = cs->kvm_run->s.regs.etoken;
 726        env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
 727    }
 728
 729    /* pfault parameters */
 730    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 731        env->pfault_token = cs->kvm_run->s.regs.pft;
 732        env->pfault_select = cs->kvm_run->s.regs.pfs;
 733        env->pfault_compare = cs->kvm_run->s.regs.pfc;
 734    } else if (cap_async_pf) {
 735        r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 736        if (r < 0) {
 737            return r;
 738        }
 739        r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 740        if (r < 0) {
 741            return r;
 742        }
 743        r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 744        if (r < 0) {
 745            return r;
 746        }
 747    }
 748
 749    if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
 750        env->diag318_info = cs->kvm_run->s.regs.diag318;
 751    }
 752
 753    return 0;
 754}
 755
 756int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
 757{
 758    int r;
 759    struct kvm_device_attr attr = {
 760        .group = KVM_S390_VM_TOD,
 761        .attr = KVM_S390_VM_TOD_LOW,
 762        .addr = (uint64_t)tod_low,
 763    };
 764
 765    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 766    if (r) {
 767        return r;
 768    }
 769
 770    attr.attr = KVM_S390_VM_TOD_HIGH;
 771    attr.addr = (uint64_t)tod_high;
 772    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 773}
 774
 775int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
 776{
 777    int r;
 778    struct kvm_s390_vm_tod_clock gtod;
 779    struct kvm_device_attr attr = {
 780        .group = KVM_S390_VM_TOD,
 781        .attr = KVM_S390_VM_TOD_EXT,
 782        .addr = (uint64_t)&gtod,
 783    };
 784
 785    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 786    *tod_high = gtod.epoch_idx;
 787    *tod_low  = gtod.tod;
 788
 789    return r;
 790}
 791
 792int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
 793{
 794    int r;
 795    struct kvm_device_attr attr = {
 796        .group = KVM_S390_VM_TOD,
 797        .attr = KVM_S390_VM_TOD_LOW,
 798        .addr = (uint64_t)&tod_low,
 799    };
 800
 801    r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 802    if (r) {
 803        return r;
 804    }
 805
 806    attr.attr = KVM_S390_VM_TOD_HIGH;
 807    attr.addr = (uint64_t)&tod_high;
 808    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 809}
 810
 811int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
 812{
 813    struct kvm_s390_vm_tod_clock gtod = {
 814        .epoch_idx = tod_high,
 815        .tod  = tod_low,
 816    };
 817    struct kvm_device_attr attr = {
 818        .group = KVM_S390_VM_TOD,
 819        .attr = KVM_S390_VM_TOD_EXT,
 820        .addr = (uint64_t)&gtod,
 821    };
 822
 823    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 824}
 825
 826/**
 827 * kvm_s390_mem_op:
 828 * @addr:      the logical start address in guest memory
 829 * @ar:        the access register number
 830 * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
 831 * @len:       length that should be transferred
 832 * @is_write:  true = write, false = read
 833 * Returns:    0 on success, non-zero if an exception or error occurred
 834 *
 835 * Use KVM ioctl to read/write from/to guest memory. An access exception
 836 * is injected into the vCPU in case of translation errors.
 837 */
 838int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
 839                    int len, bool is_write)
 840{
 841    struct kvm_s390_mem_op mem_op = {
 842        .gaddr = addr,
 843        .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
 844        .size = len,
 845        .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
 846                       : KVM_S390_MEMOP_LOGICAL_READ,
 847        .buf = (uint64_t)hostbuf,
 848        .ar = ar,
 849    };
 850    int ret;
 851
 852    if (!cap_mem_op) {
 853        return -ENOSYS;
 854    }
 855    if (!hostbuf) {
 856        mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
 857    }
 858
 859    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
 860    if (ret < 0) {
 861        warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
 862    }
 863    return ret;
 864}
 865
 866int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
 867                       int len, bool is_write)
 868{
 869    struct kvm_s390_mem_op mem_op = {
 870        .sida_offset = offset,
 871        .size = len,
 872        .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
 873                       : KVM_S390_MEMOP_SIDA_READ,
 874        .buf = (uint64_t)hostbuf,
 875    };
 876    int ret;
 877
 878    if (!cap_mem_op || !cap_protected) {
 879        return -ENOSYS;
 880    }
 881
 882    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
 883    if (ret < 0) {
 884        error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
 885        abort();
 886    }
 887    return ret;
 888}
 889
 890static uint8_t const *sw_bp_inst;
 891static uint8_t sw_bp_ilen;
 892
 893static void determine_sw_breakpoint_instr(void)
 894{
 895        /* DIAG 501 is used for sw breakpoints with old kernels */
 896        static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
 897        /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
 898        static const uint8_t instr_0x0000[] = {0x00, 0x00};
 899
 900        if (sw_bp_inst) {
 901            return;
 902        }
 903        if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
 904            sw_bp_inst = diag_501;
 905            sw_bp_ilen = sizeof(diag_501);
 906            DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
 907        } else {
 908            sw_bp_inst = instr_0x0000;
 909            sw_bp_ilen = sizeof(instr_0x0000);
 910            DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
 911        }
 912}
 913
 914int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 915{
 916    determine_sw_breakpoint_instr();
 917
 918    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 919                            sw_bp_ilen, 0) ||
 920        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
 921        return -EINVAL;
 922    }
 923    return 0;
 924}
 925
 926int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 927{
 928    uint8_t t[MAX_ILEN];
 929
 930    if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
 931        return -EINVAL;
 932    } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
 933        return -EINVAL;
 934    } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 935                                   sw_bp_ilen, 1)) {
 936        return -EINVAL;
 937    }
 938
 939    return 0;
 940}
 941
 942static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
 943                                                    int len, int type)
 944{
 945    int n;
 946
 947    for (n = 0; n < nb_hw_breakpoints; n++) {
 948        if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
 949            (hw_breakpoints[n].len == len || len == -1)) {
 950            return &hw_breakpoints[n];
 951        }
 952    }
 953
 954    return NULL;
 955}
 956
 957static int insert_hw_breakpoint(target_ulong addr, int len, int type)
 958{
 959    int size;
 960
 961    if (find_hw_breakpoint(addr, len, type)) {
 962        return -EEXIST;
 963    }
 964
 965    size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
 966
 967    if (!hw_breakpoints) {
 968        nb_hw_breakpoints = 0;
 969        hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
 970    } else {
 971        hw_breakpoints =
 972            (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
 973    }
 974
 975    if (!hw_breakpoints) {
 976        nb_hw_breakpoints = 0;
 977        return -ENOMEM;
 978    }
 979
 980    hw_breakpoints[nb_hw_breakpoints].addr = addr;
 981    hw_breakpoints[nb_hw_breakpoints].len = len;
 982    hw_breakpoints[nb_hw_breakpoints].type = type;
 983
 984    nb_hw_breakpoints++;
 985
 986    return 0;
 987}
 988
 989int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 990                                  target_ulong len, int type)
 991{
 992    switch (type) {
 993    case GDB_BREAKPOINT_HW:
 994        type = KVM_HW_BP;
 995        break;
 996    case GDB_WATCHPOINT_WRITE:
 997        if (len < 1) {
 998            return -EINVAL;
 999        }
1000        type = KVM_HW_WP_WRITE;
1001        break;
1002    default:
1003        return -ENOSYS;
1004    }
1005    return insert_hw_breakpoint(addr, len, type);
1006}
1007
1008int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1009                                  target_ulong len, int type)
1010{
1011    int size;
1012    struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1013
1014    if (bp == NULL) {
1015        return -ENOENT;
1016    }
1017
1018    nb_hw_breakpoints--;
1019    if (nb_hw_breakpoints > 0) {
1020        /*
1021         * In order to trim the array, move the last element to the position to
1022         * be removed - if necessary.
1023         */
1024        if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1025            *bp = hw_breakpoints[nb_hw_breakpoints];
1026        }
1027        size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1028        hw_breakpoints =
1029             (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
1030    } else {
1031        g_free(hw_breakpoints);
1032        hw_breakpoints = NULL;
1033    }
1034
1035    return 0;
1036}
1037
1038void kvm_arch_remove_all_hw_breakpoints(void)
1039{
1040    nb_hw_breakpoints = 0;
1041    g_free(hw_breakpoints);
1042    hw_breakpoints = NULL;
1043}
1044
1045void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1046{
1047    int i;
1048
1049    if (nb_hw_breakpoints > 0) {
1050        dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1051        dbg->arch.hw_bp = hw_breakpoints;
1052
1053        for (i = 0; i < nb_hw_breakpoints; ++i) {
1054            hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1055                                                       hw_breakpoints[i].addr);
1056        }
1057        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1058    } else {
1059        dbg->arch.nr_hw_bp = 0;
1060        dbg->arch.hw_bp = NULL;
1061    }
1062}
1063
1064void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1065{
1066}
1067
1068MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1069{
1070    return MEMTXATTRS_UNSPECIFIED;
1071}
1072
1073int kvm_arch_process_async_events(CPUState *cs)
1074{
1075    return cs->halted;
1076}
1077
1078static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1079                                     struct kvm_s390_interrupt *interrupt)
1080{
1081    int r = 0;
1082
1083    interrupt->type = irq->type;
1084    switch (irq->type) {
1085    case KVM_S390_INT_VIRTIO:
1086        interrupt->parm = irq->u.ext.ext_params;
1087        /* fall through */
1088    case KVM_S390_INT_PFAULT_INIT:
1089    case KVM_S390_INT_PFAULT_DONE:
1090        interrupt->parm64 = irq->u.ext.ext_params2;
1091        break;
1092    case KVM_S390_PROGRAM_INT:
1093        interrupt->parm = irq->u.pgm.code;
1094        break;
1095    case KVM_S390_SIGP_SET_PREFIX:
1096        interrupt->parm = irq->u.prefix.address;
1097        break;
1098    case KVM_S390_INT_SERVICE:
1099        interrupt->parm = irq->u.ext.ext_params;
1100        break;
1101    case KVM_S390_MCHK:
1102        interrupt->parm = irq->u.mchk.cr14;
1103        interrupt->parm64 = irq->u.mchk.mcic;
1104        break;
1105    case KVM_S390_INT_EXTERNAL_CALL:
1106        interrupt->parm = irq->u.extcall.code;
1107        break;
1108    case KVM_S390_INT_EMERGENCY:
1109        interrupt->parm = irq->u.emerg.code;
1110        break;
1111    case KVM_S390_SIGP_STOP:
1112    case KVM_S390_RESTART:
1113        break; /* These types have no parameters */
1114    case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1115        interrupt->parm = irq->u.io.subchannel_id << 16;
1116        interrupt->parm |= irq->u.io.subchannel_nr;
1117        interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1118        interrupt->parm64 |= irq->u.io.io_int_word;
1119        break;
1120    default:
1121        r = -EINVAL;
1122        break;
1123    }
1124    return r;
1125}
1126
1127static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1128{
1129    struct kvm_s390_interrupt kvmint = {};
1130    int r;
1131
1132    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1133    if (r < 0) {
1134        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1135        exit(1);
1136    }
1137
1138    r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1139    if (r < 0) {
1140        fprintf(stderr, "KVM failed to inject interrupt\n");
1141        exit(1);
1142    }
1143}
1144
1145void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1146{
1147    CPUState *cs = CPU(cpu);
1148    int r;
1149
1150    if (cap_s390_irq) {
1151        r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1152        if (!r) {
1153            return;
1154        }
1155        error_report("KVM failed to inject interrupt %llx", irq->type);
1156        exit(1);
1157    }
1158
1159    inject_vcpu_irq_legacy(cs, irq);
1160}
1161
1162void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1163{
1164    struct kvm_s390_interrupt kvmint = {};
1165    int r;
1166
1167    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1168    if (r < 0) {
1169        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1170        exit(1);
1171    }
1172
1173    r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1174    if (r < 0) {
1175        fprintf(stderr, "KVM failed to inject interrupt\n");
1176        exit(1);
1177    }
1178}
1179
1180void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1181{
1182    struct kvm_s390_irq irq = {
1183        .type = KVM_S390_PROGRAM_INT,
1184        .u.pgm.code = code,
1185    };
1186    qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1187                  cpu->env.psw.addr);
1188    kvm_s390_vcpu_interrupt(cpu, &irq);
1189}
1190
1191void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1192{
1193    struct kvm_s390_irq irq = {
1194        .type = KVM_S390_PROGRAM_INT,
1195        .u.pgm.code = code,
1196        .u.pgm.trans_exc_code = te_code,
1197        .u.pgm.exc_access_id = te_code & 3,
1198    };
1199
1200    kvm_s390_vcpu_interrupt(cpu, &irq);
1201}
1202
1203static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1204                                 uint16_t ipbh0)
1205{
1206    CPUS390XState *env = &cpu->env;
1207    uint64_t sccb;
1208    uint32_t code;
1209    int r;
1210
1211    sccb = env->regs[ipbh0 & 0xf];
1212    code = env->regs[(ipbh0 & 0xf0) >> 4];
1213
1214    switch (run->s390_sieic.icptcode) {
1215    case ICPT_PV_INSTR_NOTIFICATION:
1216        g_assert(s390_is_pv());
1217        /* The notification intercepts are currently handled by KVM */
1218        error_report("unexpected SCLP PV notification");
1219        exit(1);
1220        break;
1221    case ICPT_PV_INSTR:
1222        g_assert(s390_is_pv());
1223        sclp_service_call_protected(env, sccb, code);
1224        /* Setting the CC is done by the Ultravisor. */
1225        break;
1226    case ICPT_INSTRUCTION:
1227        g_assert(!s390_is_pv());
1228        r = sclp_service_call(env, sccb, code);
1229        if (r < 0) {
1230            kvm_s390_program_interrupt(cpu, -r);
1231            return;
1232        }
1233        setcc(cpu, r);
1234    }
1235}
1236
1237static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1238{
1239    CPUS390XState *env = &cpu->env;
1240    int rc = 0;
1241    uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1242
1243    switch (ipa1) {
1244    case PRIV_B2_XSCH:
1245        ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1246        break;
1247    case PRIV_B2_CSCH:
1248        ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1249        break;
1250    case PRIV_B2_HSCH:
1251        ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1252        break;
1253    case PRIV_B2_MSCH:
1254        ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1255        break;
1256    case PRIV_B2_SSCH:
1257        ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1258        break;
1259    case PRIV_B2_STCRW:
1260        ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1261        break;
1262    case PRIV_B2_STSCH:
1263        ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1264        break;
1265    case PRIV_B2_TSCH:
1266        /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1267        fprintf(stderr, "Spurious tsch intercept\n");
1268        break;
1269    case PRIV_B2_CHSC:
1270        ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1271        break;
1272    case PRIV_B2_TPI:
1273        /* This should have been handled by kvm already. */
1274        fprintf(stderr, "Spurious tpi intercept\n");
1275        break;
1276    case PRIV_B2_SCHM:
1277        ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1278                           run->s390_sieic.ipb, RA_IGNORED);
1279        break;
1280    case PRIV_B2_RSCH:
1281        ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1282        break;
1283    case PRIV_B2_RCHP:
1284        ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1285        break;
1286    case PRIV_B2_STCPS:
1287        /* We do not provide this instruction, it is suppressed. */
1288        break;
1289    case PRIV_B2_SAL:
1290        ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1291        break;
1292    case PRIV_B2_SIGA:
1293        /* Not provided, set CC = 3 for subchannel not operational */
1294        setcc(cpu, 3);
1295        break;
1296    case PRIV_B2_SCLP_CALL:
1297        kvm_sclp_service_call(cpu, run, ipbh0);
1298        break;
1299    default:
1300        rc = -1;
1301        DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1302        break;
1303    }
1304
1305    return rc;
1306}
1307
1308static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1309                                  uint8_t *ar)
1310{
1311    CPUS390XState *env = &cpu->env;
1312    uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1313    uint32_t base2 = run->s390_sieic.ipb >> 28;
1314    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1315                     ((run->s390_sieic.ipb & 0xff00) << 4);
1316
1317    if (disp2 & 0x80000) {
1318        disp2 += 0xfff00000;
1319    }
1320    if (ar) {
1321        *ar = base2;
1322    }
1323
1324    return (base2 ? env->regs[base2] : 0) +
1325           (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1326}
1327
1328static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1329                                  uint8_t *ar)
1330{
1331    CPUS390XState *env = &cpu->env;
1332    uint32_t base2 = run->s390_sieic.ipb >> 28;
1333    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1334                     ((run->s390_sieic.ipb & 0xff00) << 4);
1335
1336    if (disp2 & 0x80000) {
1337        disp2 += 0xfff00000;
1338    }
1339    if (ar) {
1340        *ar = base2;
1341    }
1342
1343    return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1344}
1345
1346static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1347{
1348    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1349
1350    if (s390_has_feat(S390_FEAT_ZPCI)) {
1351        return clp_service_call(cpu, r2, RA_IGNORED);
1352    } else {
1353        return -1;
1354    }
1355}
1356
1357static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1358{
1359    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1360    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1361
1362    if (s390_has_feat(S390_FEAT_ZPCI)) {
1363        return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1364    } else {
1365        return -1;
1366    }
1367}
1368
1369static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1370{
1371    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1372    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1373
1374    if (s390_has_feat(S390_FEAT_ZPCI)) {
1375        return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1376    } else {
1377        return -1;
1378    }
1379}
1380
1381static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1382{
1383    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1384    uint64_t fiba;
1385    uint8_t ar;
1386
1387    if (s390_has_feat(S390_FEAT_ZPCI)) {
1388        fiba = get_base_disp_rxy(cpu, run, &ar);
1389
1390        return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1391    } else {
1392        return -1;
1393    }
1394}
1395
1396static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1397{
1398    CPUS390XState *env = &cpu->env;
1399    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1400    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1401    uint8_t isc;
1402    uint16_t mode;
1403    int r;
1404
1405    mode = env->regs[r1] & 0xffff;
1406    isc = (env->regs[r3] >> 27) & 0x7;
1407    r = css_do_sic(env, isc, mode);
1408    if (r) {
1409        kvm_s390_program_interrupt(cpu, -r);
1410    }
1411
1412    return 0;
1413}
1414
1415static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1416{
1417    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1418    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1419
1420    if (s390_has_feat(S390_FEAT_ZPCI)) {
1421        return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1422    } else {
1423        return -1;
1424    }
1425}
1426
1427static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1428{
1429    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1430    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1431    uint64_t gaddr;
1432    uint8_t ar;
1433
1434    if (s390_has_feat(S390_FEAT_ZPCI)) {
1435        gaddr = get_base_disp_rsy(cpu, run, &ar);
1436
1437        return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1438    } else {
1439        return -1;
1440    }
1441}
1442
1443static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1444{
1445    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1446    uint64_t fiba;
1447    uint8_t ar;
1448
1449    if (s390_has_feat(S390_FEAT_ZPCI)) {
1450        fiba = get_base_disp_rxy(cpu, run, &ar);
1451
1452        return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1453    } else {
1454        return -1;
1455    }
1456}
1457
1458static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1459{
1460    int r = 0;
1461
1462    switch (ipa1) {
1463    case PRIV_B9_CLP:
1464        r = kvm_clp_service_call(cpu, run);
1465        break;
1466    case PRIV_B9_PCISTG:
1467        r = kvm_pcistg_service_call(cpu, run);
1468        break;
1469    case PRIV_B9_PCILG:
1470        r = kvm_pcilg_service_call(cpu, run);
1471        break;
1472    case PRIV_B9_RPCIT:
1473        r = kvm_rpcit_service_call(cpu, run);
1474        break;
1475    case PRIV_B9_EQBS:
1476        /* just inject exception */
1477        r = -1;
1478        break;
1479    default:
1480        r = -1;
1481        DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1482        break;
1483    }
1484
1485    return r;
1486}
1487
1488static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1489{
1490    int r = 0;
1491
1492    switch (ipbl) {
1493    case PRIV_EB_PCISTB:
1494        r = kvm_pcistb_service_call(cpu, run);
1495        break;
1496    case PRIV_EB_SIC:
1497        r = kvm_sic_service_call(cpu, run);
1498        break;
1499    case PRIV_EB_SQBS:
1500        /* just inject exception */
1501        r = -1;
1502        break;
1503    default:
1504        r = -1;
1505        DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1506        break;
1507    }
1508
1509    return r;
1510}
1511
1512static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1513{
1514    int r = 0;
1515
1516    switch (ipbl) {
1517    case PRIV_E3_MPCIFC:
1518        r = kvm_mpcifc_service_call(cpu, run);
1519        break;
1520    case PRIV_E3_STPCIFC:
1521        r = kvm_stpcifc_service_call(cpu, run);
1522        break;
1523    default:
1524        r = -1;
1525        DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1526        break;
1527    }
1528
1529    return r;
1530}
1531
1532static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1533{
1534    CPUS390XState *env = &cpu->env;
1535    int ret;
1536
1537    ret = s390_virtio_hypercall(env);
1538    if (ret == -EINVAL) {
1539        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1540        return 0;
1541    }
1542
1543    return ret;
1544}
1545
1546static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1547{
1548    uint64_t r1, r3;
1549    int rc;
1550
1551    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1552    r3 = run->s390_sieic.ipa & 0x000f;
1553    rc = handle_diag_288(&cpu->env, r1, r3);
1554    if (rc) {
1555        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1556    }
1557}
1558
1559static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1560{
1561    uint64_t r1, r3;
1562
1563    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1564    r3 = run->s390_sieic.ipa & 0x000f;
1565    handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1566}
1567
1568static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1569{
1570    CPUS390XState *env = &cpu->env;
1571    unsigned long pc;
1572
1573    pc = env->psw.addr - sw_bp_ilen;
1574    if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1575        env->psw.addr = pc;
1576        return EXCP_DEBUG;
1577    }
1578
1579    return -ENOENT;
1580}
1581
1582void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1583{
1584    CPUS390XState *env = &S390_CPU(cs)->env;
1585
1586    /* Feat bit is set only if KVM supports sync for diag318 */
1587    if (s390_has_feat(S390_FEAT_DIAG_318)) {
1588        env->diag318_info = diag318_info;
1589        cs->kvm_run->s.regs.diag318 = diag318_info;
1590        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1591    }
1592}
1593
1594static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1595{
1596    uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1597    uint64_t diag318_info = run->s.regs.gprs[reg];
1598    CPUState *t;
1599
1600    /*
1601     * DIAG 318 can only be enabled with KVM support. As such, let's
1602     * ensure a guest cannot execute this instruction erroneously.
1603     */
1604    if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1605        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1606        return;
1607    }
1608
1609    CPU_FOREACH(t) {
1610        run_on_cpu(t, s390_do_cpu_set_diag318,
1611                   RUN_ON_CPU_HOST_ULONG(diag318_info));
1612    }
1613}
1614
1615#define DIAG_KVM_CODE_MASK 0x000000000000ffff
1616
1617static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1618{
1619    int r = 0;
1620    uint16_t func_code;
1621
1622    /*
1623     * For any diagnose call we support, bits 48-63 of the resulting
1624     * address specify the function code; the remainder is ignored.
1625     */
1626    func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1627    switch (func_code) {
1628    case DIAG_TIMEREVENT:
1629        kvm_handle_diag_288(cpu, run);
1630        break;
1631    case DIAG_IPL:
1632        kvm_handle_diag_308(cpu, run);
1633        break;
1634    case DIAG_SET_CONTROL_PROGRAM_CODES:
1635        handle_diag_318(cpu, run);
1636        break;
1637    case DIAG_KVM_HYPERCALL:
1638        r = handle_hypercall(cpu, run);
1639        break;
1640    case DIAG_KVM_BREAKPOINT:
1641        r = handle_sw_breakpoint(cpu, run);
1642        break;
1643    default:
1644        DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1645        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1646        break;
1647    }
1648
1649    return r;
1650}
1651
1652static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1653{
1654    CPUS390XState *env = &cpu->env;
1655    const uint8_t r1 = ipa1 >> 4;
1656    const uint8_t r3 = ipa1 & 0x0f;
1657    int ret;
1658    uint8_t order;
1659
1660    /* get order code */
1661    order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1662
1663    ret = handle_sigp(env, order, r1, r3);
1664    setcc(cpu, ret);
1665    return 0;
1666}
1667
1668static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1669{
1670    unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1671    uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1672    int r = -1;
1673
1674    DPRINTF("handle_instruction 0x%x 0x%x\n",
1675            run->s390_sieic.ipa, run->s390_sieic.ipb);
1676    switch (ipa0) {
1677    case IPA0_B2:
1678        r = handle_b2(cpu, run, ipa1);
1679        break;
1680    case IPA0_B9:
1681        r = handle_b9(cpu, run, ipa1);
1682        break;
1683    case IPA0_EB:
1684        r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1685        break;
1686    case IPA0_E3:
1687        r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1688        break;
1689    case IPA0_DIAG:
1690        r = handle_diag(cpu, run, run->s390_sieic.ipb);
1691        break;
1692    case IPA0_SIGP:
1693        r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1694        break;
1695    }
1696
1697    if (r < 0) {
1698        r = 0;
1699        kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1700    }
1701
1702    return r;
1703}
1704
1705static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1706                                   int pswoffset)
1707{
1708    CPUState *cs = CPU(cpu);
1709
1710    s390_cpu_halt(cpu);
1711    cpu->env.crash_reason = reason;
1712    qemu_system_guest_panicked(cpu_get_crash_info(cs));
1713}
1714
1715/* try to detect pgm check loops */
1716static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1717{
1718    CPUState *cs = CPU(cpu);
1719    PSW oldpsw, newpsw;
1720
1721    newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1722                           offsetof(LowCore, program_new_psw));
1723    newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1724                           offsetof(LowCore, program_new_psw) + 8);
1725    oldpsw.mask  = run->psw_mask;
1726    oldpsw.addr  = run->psw_addr;
1727    /*
1728     * Avoid endless loops of operation exceptions, if the pgm new
1729     * PSW will cause a new operation exception.
1730     * The heuristic checks if the pgm new psw is within 6 bytes before
1731     * the faulting psw address (with same DAT, AS settings) and the
1732     * new psw is not a wait psw and the fault was not triggered by
1733     * problem state. In that case go into crashed state.
1734     */
1735
1736    if (oldpsw.addr - newpsw.addr <= 6 &&
1737        !(newpsw.mask & PSW_MASK_WAIT) &&
1738        !(oldpsw.mask & PSW_MASK_PSTATE) &&
1739        (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1740        (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1741        unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1742                               offsetof(LowCore, program_new_psw));
1743        return EXCP_HALTED;
1744    }
1745    return 0;
1746}
1747
1748static int handle_intercept(S390CPU *cpu)
1749{
1750    CPUState *cs = CPU(cpu);
1751    struct kvm_run *run = cs->kvm_run;
1752    int icpt_code = run->s390_sieic.icptcode;
1753    int r = 0;
1754
1755    DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)run->psw_addr);
1756    switch (icpt_code) {
1757        case ICPT_INSTRUCTION:
1758        case ICPT_PV_INSTR:
1759        case ICPT_PV_INSTR_NOTIFICATION:
1760            r = handle_instruction(cpu, run);
1761            break;
1762        case ICPT_PROGRAM:
1763            unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1764                                   offsetof(LowCore, program_new_psw));
1765            r = EXCP_HALTED;
1766            break;
1767        case ICPT_EXT_INT:
1768            unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1769                                   offsetof(LowCore, external_new_psw));
1770            r = EXCP_HALTED;
1771            break;
1772        case ICPT_WAITPSW:
1773            /* disabled wait, since enabled wait is handled in kernel */
1774            s390_handle_wait(cpu);
1775            r = EXCP_HALTED;
1776            break;
1777        case ICPT_CPU_STOP:
1778            do_stop_interrupt(&cpu->env);
1779            r = EXCP_HALTED;
1780            break;
1781        case ICPT_OPEREXC:
1782            /* check for break points */
1783            r = handle_sw_breakpoint(cpu, run);
1784            if (r == -ENOENT) {
1785                /* Then check for potential pgm check loops */
1786                r = handle_oper_loop(cpu, run);
1787                if (r == 0) {
1788                    kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1789                }
1790            }
1791            break;
1792        case ICPT_SOFT_INTERCEPT:
1793            fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1794            exit(1);
1795            break;
1796        case ICPT_IO:
1797            fprintf(stderr, "KVM unimplemented icpt IO\n");
1798            exit(1);
1799            break;
1800        default:
1801            fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1802            exit(1);
1803            break;
1804    }
1805
1806    return r;
1807}
1808
1809static int handle_tsch(S390CPU *cpu)
1810{
1811    CPUState *cs = CPU(cpu);
1812    struct kvm_run *run = cs->kvm_run;
1813    int ret;
1814
1815    ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1816                             RA_IGNORED);
1817    if (ret < 0) {
1818        /*
1819         * Failure.
1820         * If an I/O interrupt had been dequeued, we have to reinject it.
1821         */
1822        if (run->s390_tsch.dequeued) {
1823            s390_io_interrupt(run->s390_tsch.subchannel_id,
1824                              run->s390_tsch.subchannel_nr,
1825                              run->s390_tsch.io_int_parm,
1826                              run->s390_tsch.io_int_word);
1827        }
1828        ret = 0;
1829    }
1830    return ret;
1831}
1832
1833static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1834{
1835    const MachineState *ms = MACHINE(qdev_get_machine());
1836    uint16_t conf_cpus = 0, reserved_cpus = 0;
1837    SysIB_322 sysib;
1838    int del, i;
1839
1840    if (s390_is_pv()) {
1841        s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1842    } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1843        return;
1844    }
1845    /* Shift the stack of Extended Names to prepare for our own data */
1846    memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1847            sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1848    /* First virt level, that doesn't provide Ext Names delimits stack. It is
1849     * assumed it's not capable of managing Extended Names for lower levels.
1850     */
1851    for (del = 1; del < sysib.count; del++) {
1852        if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1853            break;
1854        }
1855    }
1856    if (del < sysib.count) {
1857        memset(sysib.ext_names[del], 0,
1858               sizeof(sysib.ext_names[0]) * (sysib.count - del));
1859    }
1860
1861    /* count the cpus and split them into configured and reserved ones */
1862    for (i = 0; i < ms->possible_cpus->len; i++) {
1863        if (ms->possible_cpus->cpus[i].cpu) {
1864            conf_cpus++;
1865        } else {
1866            reserved_cpus++;
1867        }
1868    }
1869    sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1870    sysib.vm[0].conf_cpus = conf_cpus;
1871    sysib.vm[0].reserved_cpus = reserved_cpus;
1872
1873    /* Insert short machine name in EBCDIC, padded with blanks */
1874    if (qemu_name) {
1875        memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1876        ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1877                                                    strlen(qemu_name)));
1878    }
1879    sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1880    /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1881     * considered by s390 as not capable of providing any Extended Name.
1882     * Therefore if no name was specified on qemu invocation, we go with the
1883     * same "KVMguest" default, which KVM has filled into short name field.
1884     */
1885    strpadcpy((char *)sysib.ext_names[0],
1886              sizeof(sysib.ext_names[0]),
1887              qemu_name ?: "KVMguest", '\0');
1888
1889    /* Insert UUID */
1890    memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1891
1892    if (s390_is_pv()) {
1893        s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1894    } else {
1895        s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1896    }
1897}
1898
1899static int handle_stsi(S390CPU *cpu)
1900{
1901    CPUState *cs = CPU(cpu);
1902    struct kvm_run *run = cs->kvm_run;
1903
1904    switch (run->s390_stsi.fc) {
1905    case 3:
1906        if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1907            return 0;
1908        }
1909        /* Only sysib 3.2.2 needs post-handling for now. */
1910        insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1911        return 0;
1912    default:
1913        return 0;
1914    }
1915}
1916
1917static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1918{
1919    CPUState *cs = CPU(cpu);
1920    struct kvm_run *run = cs->kvm_run;
1921
1922    int ret = 0;
1923    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1924
1925    switch (arch_info->type) {
1926    case KVM_HW_WP_WRITE:
1927        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1928            cs->watchpoint_hit = &hw_watchpoint;
1929            hw_watchpoint.vaddr = arch_info->addr;
1930            hw_watchpoint.flags = BP_MEM_WRITE;
1931            ret = EXCP_DEBUG;
1932        }
1933        break;
1934    case KVM_HW_BP:
1935        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1936            ret = EXCP_DEBUG;
1937        }
1938        break;
1939    case KVM_SINGLESTEP:
1940        if (cs->singlestep_enabled) {
1941            ret = EXCP_DEBUG;
1942        }
1943        break;
1944    default:
1945        ret = -ENOSYS;
1946    }
1947
1948    return ret;
1949}
1950
1951int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1952{
1953    S390CPU *cpu = S390_CPU(cs);
1954    int ret = 0;
1955
1956    qemu_mutex_lock_iothread();
1957
1958    kvm_cpu_synchronize_state(cs);
1959
1960    switch (run->exit_reason) {
1961        case KVM_EXIT_S390_SIEIC:
1962            ret = handle_intercept(cpu);
1963            break;
1964        case KVM_EXIT_S390_RESET:
1965            s390_ipl_reset_request(cs, S390_RESET_REIPL);
1966            break;
1967        case KVM_EXIT_S390_TSCH:
1968            ret = handle_tsch(cpu);
1969            break;
1970        case KVM_EXIT_S390_STSI:
1971            ret = handle_stsi(cpu);
1972            break;
1973        case KVM_EXIT_DEBUG:
1974            ret = kvm_arch_handle_debug_exit(cpu);
1975            break;
1976        default:
1977            fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1978            break;
1979    }
1980    qemu_mutex_unlock_iothread();
1981
1982    if (ret == 0) {
1983        ret = EXCP_INTERRUPT;
1984    }
1985    return ret;
1986}
1987
1988bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1989{
1990    return true;
1991}
1992
1993void kvm_s390_enable_css_support(S390CPU *cpu)
1994{
1995    int r;
1996
1997    /* Activate host kernel channel subsystem support. */
1998    r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1999    assert(r == 0);
2000}
2001
2002void kvm_arch_init_irq_routing(KVMState *s)
2003{
2004    /*
2005     * Note that while irqchip capabilities generally imply that cpustates
2006     * are handled in-kernel, it is not true for s390 (yet); therefore, we
2007     * have to override the common code kvm_halt_in_kernel_allowed setting.
2008     */
2009    if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2010        kvm_gsi_routing_allowed = true;
2011        kvm_halt_in_kernel_allowed = false;
2012    }
2013}
2014
2015int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2016                                    int vq, bool assign)
2017{
2018    struct kvm_ioeventfd kick = {
2019        .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2020        KVM_IOEVENTFD_FLAG_DATAMATCH,
2021        .fd = event_notifier_get_fd(notifier),
2022        .datamatch = vq,
2023        .addr = sch,
2024        .len = 8,
2025    };
2026    trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
2027                                     kick.datamatch);
2028    if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2029        return -ENOSYS;
2030    }
2031    if (!assign) {
2032        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2033    }
2034    return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2035}
2036
2037int kvm_s390_get_ri(void)
2038{
2039    return cap_ri;
2040}
2041
2042int kvm_s390_get_gs(void)
2043{
2044    return cap_gs;
2045}
2046
2047int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2048{
2049    struct kvm_mp_state mp_state = {};
2050    int ret;
2051
2052    /* the kvm part might not have been initialized yet */
2053    if (CPU(cpu)->kvm_state == NULL) {
2054        return 0;
2055    }
2056
2057    switch (cpu_state) {
2058    case S390_CPU_STATE_STOPPED:
2059        mp_state.mp_state = KVM_MP_STATE_STOPPED;
2060        break;
2061    case S390_CPU_STATE_CHECK_STOP:
2062        mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2063        break;
2064    case S390_CPU_STATE_OPERATING:
2065        mp_state.mp_state = KVM_MP_STATE_OPERATING;
2066        break;
2067    case S390_CPU_STATE_LOAD:
2068        mp_state.mp_state = KVM_MP_STATE_LOAD;
2069        break;
2070    default:
2071        error_report("Requested CPU state is not a valid S390 CPU state: %u",
2072                     cpu_state);
2073        exit(1);
2074    }
2075
2076    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2077    if (ret) {
2078        trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2079                                       strerror(-ret));
2080    }
2081
2082    return ret;
2083}
2084
2085void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2086{
2087    unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2088    struct kvm_s390_irq_state irq_state = {
2089        .buf = (uint64_t) cpu->irqstate,
2090        .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2091    };
2092    CPUState *cs = CPU(cpu);
2093    int32_t bytes;
2094
2095    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2096        return;
2097    }
2098
2099    bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2100    if (bytes < 0) {
2101        cpu->irqstate_saved_size = 0;
2102        error_report("Migration of interrupt state failed");
2103        return;
2104    }
2105
2106    cpu->irqstate_saved_size = bytes;
2107}
2108
2109int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2110{
2111    CPUState *cs = CPU(cpu);
2112    struct kvm_s390_irq_state irq_state = {
2113        .buf = (uint64_t) cpu->irqstate,
2114        .len = cpu->irqstate_saved_size,
2115    };
2116    int r;
2117
2118    if (cpu->irqstate_saved_size == 0) {
2119        return 0;
2120    }
2121
2122    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2123        return -ENOSYS;
2124    }
2125
2126    r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2127    if (r) {
2128        error_report("Setting interrupt state failed %d", r);
2129    }
2130    return r;
2131}
2132
2133int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2134                             uint64_t address, uint32_t data, PCIDevice *dev)
2135{
2136    S390PCIBusDevice *pbdev;
2137    uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2138
2139    if (!dev) {
2140        DPRINTF("add_msi_route no pci device\n");
2141        return -ENODEV;
2142    }
2143
2144    pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2145    if (!pbdev) {
2146        DPRINTF("add_msi_route no zpci device\n");
2147        return -ENODEV;
2148    }
2149
2150    route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2151    route->flags = 0;
2152    route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2153    route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2154    route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2155    route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2156    route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2157    return 0;
2158}
2159
2160int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2161                                int vector, PCIDevice *dev)
2162{
2163    return 0;
2164}
2165
2166int kvm_arch_release_virq_post(int virq)
2167{
2168    return 0;
2169}
2170
2171int kvm_arch_msi_data_to_gsi(uint32_t data)
2172{
2173    abort();
2174}
2175
2176static int query_cpu_subfunc(S390FeatBitmap features)
2177{
2178    struct kvm_s390_vm_cpu_subfunc prop = {};
2179    struct kvm_device_attr attr = {
2180        .group = KVM_S390_VM_CPU_MODEL,
2181        .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2182        .addr = (uint64_t) &prop,
2183    };
2184    int rc;
2185
2186    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2187    if (rc) {
2188        return  rc;
2189    }
2190
2191    /*
2192     * We're going to add all subfunctions now, if the corresponding feature
2193     * is available that unlocks the query functions.
2194     */
2195    s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2196    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2197        s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2198    }
2199    if (test_bit(S390_FEAT_MSA, features)) {
2200        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2201        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2202        s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2203        s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2204        s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2205    }
2206    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2207        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2208    }
2209    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2210        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2211        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2212        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2213        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2214    }
2215    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2216        s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2217    }
2218    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2219        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2220    }
2221    if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2222        s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2223    }
2224    if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2225        s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2226    }
2227    if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2228        s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2229    }
2230    return 0;
2231}
2232
2233static int configure_cpu_subfunc(const S390FeatBitmap features)
2234{
2235    struct kvm_s390_vm_cpu_subfunc prop = {};
2236    struct kvm_device_attr attr = {
2237        .group = KVM_S390_VM_CPU_MODEL,
2238        .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2239        .addr = (uint64_t) &prop,
2240    };
2241
2242    if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2243                           KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2244        /* hardware support might be missing, IBC will handle most of this */
2245        return 0;
2246    }
2247
2248    s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2249    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2250        s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2251    }
2252    if (test_bit(S390_FEAT_MSA, features)) {
2253        s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2254        s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2255        s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2256        s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2257        s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2258    }
2259    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2260        s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2261    }
2262    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2263        s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2264        s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2265        s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2266        s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2267    }
2268    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2269        s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2270    }
2271    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2272        s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2273    }
2274    if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2275        s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2276    }
2277    if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2278        s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2279    }
2280    if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2281        s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2282    }
2283    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2284}
2285
2286static int kvm_to_feat[][2] = {
2287    { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2288    { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2289    { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2290    { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2291    { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2292    { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2293    { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2294    { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2295    { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2296    { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2297    { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2298    { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2299    { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2300    { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2301};
2302
2303static int query_cpu_feat(S390FeatBitmap features)
2304{
2305    struct kvm_s390_vm_cpu_feat prop = {};
2306    struct kvm_device_attr attr = {
2307        .group = KVM_S390_VM_CPU_MODEL,
2308        .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2309        .addr = (uint64_t) &prop,
2310    };
2311    int rc;
2312    int i;
2313
2314    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2315    if (rc) {
2316        return  rc;
2317    }
2318
2319    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2320        if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2321            set_bit(kvm_to_feat[i][1], features);
2322        }
2323    }
2324    return 0;
2325}
2326
2327static int configure_cpu_feat(const S390FeatBitmap features)
2328{
2329    struct kvm_s390_vm_cpu_feat prop = {};
2330    struct kvm_device_attr attr = {
2331        .group = KVM_S390_VM_CPU_MODEL,
2332        .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2333        .addr = (uint64_t) &prop,
2334    };
2335    int i;
2336
2337    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2338        if (test_bit(kvm_to_feat[i][1], features)) {
2339            set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2340        }
2341    }
2342    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2343}
2344
2345bool kvm_s390_cpu_models_supported(void)
2346{
2347    if (!cpu_model_allowed()) {
2348        /* compatibility machines interfere with the cpu model */
2349        return false;
2350    }
2351    return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2352                             KVM_S390_VM_CPU_MACHINE) &&
2353           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2354                             KVM_S390_VM_CPU_PROCESSOR) &&
2355           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2356                             KVM_S390_VM_CPU_MACHINE_FEAT) &&
2357           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2358                             KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2359           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2360                             KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2361}
2362
2363void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2364{
2365    struct kvm_s390_vm_cpu_machine prop = {};
2366    struct kvm_device_attr attr = {
2367        .group = KVM_S390_VM_CPU_MODEL,
2368        .attr = KVM_S390_VM_CPU_MACHINE,
2369        .addr = (uint64_t) &prop,
2370    };
2371    uint16_t unblocked_ibc = 0, cpu_type = 0;
2372    int rc;
2373
2374    memset(model, 0, sizeof(*model));
2375
2376    if (!kvm_s390_cpu_models_supported()) {
2377        error_setg(errp, "KVM doesn't support CPU models");
2378        return;
2379    }
2380
2381    /* query the basic cpu model properties */
2382    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2383    if (rc) {
2384        error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2385        return;
2386    }
2387
2388    cpu_type = cpuid_type(prop.cpuid);
2389    if (has_ibc(prop.ibc)) {
2390        model->lowest_ibc = lowest_ibc(prop.ibc);
2391        unblocked_ibc = unblocked_ibc(prop.ibc);
2392    }
2393    model->cpu_id = cpuid_id(prop.cpuid);
2394    model->cpu_id_format = cpuid_format(prop.cpuid);
2395    model->cpu_ver = 0xff;
2396
2397    /* get supported cpu features indicated via STFL(E) */
2398    s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2399                             (uint8_t *) prop.fac_mask);
2400    /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2401    if (test_bit(S390_FEAT_STFLE, model->features)) {
2402        set_bit(S390_FEAT_DAT_ENH_2, model->features);
2403    }
2404    /* get supported cpu features indicated e.g. via SCLP */
2405    rc = query_cpu_feat(model->features);
2406    if (rc) {
2407        error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2408        return;
2409    }
2410    /* get supported cpu subfunctions indicated via query / test bit */
2411    rc = query_cpu_subfunc(model->features);
2412    if (rc) {
2413        error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2414        return;
2415    }
2416
2417    /* PTFF subfunctions might be indicated although kernel support missing */
2418    if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2419        clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2420        clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2421        clear_bit(S390_FEAT_PTFF_STOE, model->features);
2422        clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2423    }
2424
2425    /* with cpu model support, CMM is only indicated if really available */
2426    if (kvm_s390_cmma_available()) {
2427        set_bit(S390_FEAT_CMM, model->features);
2428    } else {
2429        /* no cmm -> no cmm nt */
2430        clear_bit(S390_FEAT_CMM_NT, model->features);
2431    }
2432
2433    /* bpb needs kernel support for migration, VSIE and reset */
2434    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2435        clear_bit(S390_FEAT_BPB, model->features);
2436    }
2437
2438    /*
2439     * If we have support for protected virtualization, indicate
2440     * the protected virtualization IPL unpack facility.
2441     */
2442    if (cap_protected) {
2443        set_bit(S390_FEAT_UNPACK, model->features);
2444    }
2445
2446    /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2447    set_bit(S390_FEAT_ZPCI, model->features);
2448    set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2449
2450    if (s390_known_cpu_type(cpu_type)) {
2451        /* we want the exact model, even if some features are missing */
2452        model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2453                                       ibc_ec_ga(unblocked_ibc), NULL);
2454    } else {
2455        /* model unknown, e.g. too new - search using features */
2456        model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2457                                       ibc_ec_ga(unblocked_ibc),
2458                                       model->features);
2459    }
2460    if (!model->def) {
2461        error_setg(errp, "KVM: host CPU model could not be identified");
2462        return;
2463    }
2464    /* for now, we can only provide the AP feature with HW support */
2465    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2466        KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2467        set_bit(S390_FEAT_AP, model->features);
2468    }
2469
2470    /*
2471     * Extended-Length SCCB is handled entirely within QEMU.
2472     * For PV guests this is completely fenced by the Ultravisor, as Service
2473     * Call error checking and STFLE interpretation are handled via SIE.
2474     */
2475    set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2476
2477    if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2478        set_bit(S390_FEAT_DIAG_318, model->features);
2479    }
2480
2481    /* strip of features that are not part of the maximum model */
2482    bitmap_and(model->features, model->features, model->def->full_feat,
2483               S390_FEAT_MAX);
2484}
2485
2486static void kvm_s390_configure_apie(bool interpret)
2487{
2488    uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2489                                KVM_S390_VM_CRYPTO_DISABLE_APIE;
2490
2491    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2492        kvm_s390_set_attr(attr);
2493    }
2494}
2495
2496void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2497{
2498    struct kvm_s390_vm_cpu_processor prop  = {
2499        .fac_list = { 0 },
2500    };
2501    struct kvm_device_attr attr = {
2502        .group = KVM_S390_VM_CPU_MODEL,
2503        .attr = KVM_S390_VM_CPU_PROCESSOR,
2504        .addr = (uint64_t) &prop,
2505    };
2506    int rc;
2507
2508    if (!model) {
2509        /* compatibility handling if cpu models are disabled */
2510        if (kvm_s390_cmma_available()) {
2511            kvm_s390_enable_cmma();
2512        }
2513        return;
2514    }
2515    if (!kvm_s390_cpu_models_supported()) {
2516        error_setg(errp, "KVM doesn't support CPU models");
2517        return;
2518    }
2519    prop.cpuid = s390_cpuid_from_cpu_model(model);
2520    prop.ibc = s390_ibc_from_cpu_model(model);
2521    /* configure cpu features indicated via STFL(e) */
2522    s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2523                         (uint8_t *) prop.fac_list);
2524    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2525    if (rc) {
2526        error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2527        return;
2528    }
2529    /* configure cpu features indicated e.g. via SCLP */
2530    rc = configure_cpu_feat(model->features);
2531    if (rc) {
2532        error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2533        return;
2534    }
2535    /* configure cpu subfunctions indicated via query / test bit */
2536    rc = configure_cpu_subfunc(model->features);
2537    if (rc) {
2538        error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2539        return;
2540    }
2541    /* enable CMM via CMMA */
2542    if (test_bit(S390_FEAT_CMM, model->features)) {
2543        kvm_s390_enable_cmma();
2544    }
2545
2546    if (test_bit(S390_FEAT_AP, model->features)) {
2547        kvm_s390_configure_apie(true);
2548    }
2549}
2550
2551void kvm_s390_restart_interrupt(S390CPU *cpu)
2552{
2553    struct kvm_s390_irq irq = {
2554        .type = KVM_S390_RESTART,
2555    };
2556
2557    kvm_s390_vcpu_interrupt(cpu, &irq);
2558}
2559
2560void kvm_s390_stop_interrupt(S390CPU *cpu)
2561{
2562    struct kvm_s390_irq irq = {
2563        .type = KVM_S390_SIGP_STOP,
2564    };
2565
2566    kvm_s390_vcpu_interrupt(cpu, &irq);
2567}
2568
2569bool kvm_arch_cpu_check_are_resettable(void)
2570{
2571    return true;
2572}
2573