qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qcow2.h"
  30#include "qemu/bswap.h"
  31#include "trace.h"
  32
  33int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
  34{
  35    BDRVQcow2State *s = bs->opaque;
  36    int new_l1_size, i, ret;
  37
  38    if (exact_size >= s->l1_size) {
  39        return 0;
  40    }
  41
  42    new_l1_size = exact_size;
  43
  44#ifdef DEBUG_ALLOC2
  45    fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
  46#endif
  47
  48    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
  49    ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
  50                                       new_l1_size * L1E_SIZE,
  51                             (s->l1_size - new_l1_size) * L1E_SIZE, 0);
  52    if (ret < 0) {
  53        goto fail;
  54    }
  55
  56    ret = bdrv_flush(bs->file->bs);
  57    if (ret < 0) {
  58        goto fail;
  59    }
  60
  61    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
  62    for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
  63        if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
  64            continue;
  65        }
  66        qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
  67                            s->cluster_size, QCOW2_DISCARD_ALWAYS);
  68        s->l1_table[i] = 0;
  69    }
  70    return 0;
  71
  72fail:
  73    /*
  74     * If the write in the l1_table failed the image may contain a partially
  75     * overwritten l1_table. In this case it would be better to clear the
  76     * l1_table in memory to avoid possible image corruption.
  77     */
  78    memset(s->l1_table + new_l1_size, 0,
  79           (s->l1_size - new_l1_size) * L1E_SIZE);
  80    return ret;
  81}
  82
  83int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  84                        bool exact_size)
  85{
  86    BDRVQcow2State *s = bs->opaque;
  87    int new_l1_size2, ret, i;
  88    uint64_t *new_l1_table;
  89    int64_t old_l1_table_offset, old_l1_size;
  90    int64_t new_l1_table_offset, new_l1_size;
  91    uint8_t data[12];
  92
  93    if (min_size <= s->l1_size)
  94        return 0;
  95
  96    /* Do a sanity check on min_size before trying to calculate new_l1_size
  97     * (this prevents overflows during the while loop for the calculation of
  98     * new_l1_size) */
  99    if (min_size > INT_MAX / L1E_SIZE) {
 100        return -EFBIG;
 101    }
 102
 103    if (exact_size) {
 104        new_l1_size = min_size;
 105    } else {
 106        /* Bump size up to reduce the number of times we have to grow */
 107        new_l1_size = s->l1_size;
 108        if (new_l1_size == 0) {
 109            new_l1_size = 1;
 110        }
 111        while (min_size > new_l1_size) {
 112            new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
 113        }
 114    }
 115
 116    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
 117    if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
 118        return -EFBIG;
 119    }
 120
 121#ifdef DEBUG_ALLOC2
 122    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
 123            s->l1_size, new_l1_size);
 124#endif
 125
 126    new_l1_size2 = L1E_SIZE * new_l1_size;
 127    new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
 128    if (new_l1_table == NULL) {
 129        return -ENOMEM;
 130    }
 131    memset(new_l1_table, 0, new_l1_size2);
 132
 133    if (s->l1_size) {
 134        memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
 135    }
 136
 137    /* write new table (align to cluster) */
 138    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
 139    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
 140    if (new_l1_table_offset < 0) {
 141        qemu_vfree(new_l1_table);
 142        return new_l1_table_offset;
 143    }
 144
 145    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 146    if (ret < 0) {
 147        goto fail;
 148    }
 149
 150    /* the L1 position has not yet been updated, so these clusters must
 151     * indeed be completely free */
 152    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 153                                        new_l1_size2, false);
 154    if (ret < 0) {
 155        goto fail;
 156    }
 157
 158    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 159    for(i = 0; i < s->l1_size; i++)
 160        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 161    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 162                           new_l1_table, new_l1_size2);
 163    if (ret < 0)
 164        goto fail;
 165    for(i = 0; i < s->l1_size; i++)
 166        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 167
 168    /* set new table */
 169    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 170    stl_be_p(data, new_l1_size);
 171    stq_be_p(data + 4, new_l1_table_offset);
 172    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 173                           data, sizeof(data));
 174    if (ret < 0) {
 175        goto fail;
 176    }
 177    qemu_vfree(s->l1_table);
 178    old_l1_table_offset = s->l1_table_offset;
 179    s->l1_table_offset = new_l1_table_offset;
 180    s->l1_table = new_l1_table;
 181    old_l1_size = s->l1_size;
 182    s->l1_size = new_l1_size;
 183    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
 184                        QCOW2_DISCARD_OTHER);
 185    return 0;
 186 fail:
 187    qemu_vfree(new_l1_table);
 188    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 189                        QCOW2_DISCARD_OTHER);
 190    return ret;
 191}
 192
 193/*
 194 * l2_load
 195 *
 196 * @bs: The BlockDriverState
 197 * @offset: A guest offset, used to calculate what slice of the L2
 198 *          table to load.
 199 * @l2_offset: Offset to the L2 table in the image file.
 200 * @l2_slice: Location to store the pointer to the L2 slice.
 201 *
 202 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
 203 * that are loaded by the qcow2 cache). If the slice is in the cache,
 204 * the cache is used; otherwise the L2 slice is loaded from the image
 205 * file.
 206 */
 207static int l2_load(BlockDriverState *bs, uint64_t offset,
 208                   uint64_t l2_offset, uint64_t **l2_slice)
 209{
 210    BDRVQcow2State *s = bs->opaque;
 211    int start_of_slice = l2_entry_size(s) *
 212        (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
 213
 214    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
 215                           (void **)l2_slice);
 216}
 217
 218/*
 219 * Writes an L1 entry to disk (note that depending on the alignment
 220 * requirements this function may write more that just one entry in
 221 * order to prevent bdrv_pwrite from performing a read-modify-write)
 222 */
 223int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 224{
 225    BDRVQcow2State *s = bs->opaque;
 226    int l1_start_index;
 227    int i, ret;
 228    int bufsize = MAX(L1E_SIZE,
 229                      MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
 230    int nentries = bufsize / L1E_SIZE;
 231    g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
 232
 233    if (buf == NULL) {
 234        return -ENOMEM;
 235    }
 236
 237    l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
 238    for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
 239        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 240    }
 241
 242    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 243            s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
 244    if (ret < 0) {
 245        return ret;
 246    }
 247
 248    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 249    ret = bdrv_pwrite_sync(bs->file,
 250                           s->l1_table_offset + L1E_SIZE * l1_start_index,
 251                           buf, bufsize);
 252    if (ret < 0) {
 253        return ret;
 254    }
 255
 256    return 0;
 257}
 258
 259/*
 260 * l2_allocate
 261 *
 262 * Allocate a new l2 entry in the file. If l1_index points to an already
 263 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 264 * table) copy the contents of the old L2 table into the newly allocated one.
 265 * Otherwise the new table is initialized with zeros.
 266 *
 267 */
 268
 269static int l2_allocate(BlockDriverState *bs, int l1_index)
 270{
 271    BDRVQcow2State *s = bs->opaque;
 272    uint64_t old_l2_offset;
 273    uint64_t *l2_slice = NULL;
 274    unsigned slice, slice_size2, n_slices;
 275    int64_t l2_offset;
 276    int ret;
 277
 278    old_l2_offset = s->l1_table[l1_index];
 279
 280    trace_qcow2_l2_allocate(bs, l1_index);
 281
 282    /* allocate a new l2 entry */
 283
 284    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
 285    if (l2_offset < 0) {
 286        ret = l2_offset;
 287        goto fail;
 288    }
 289
 290    /* The offset must fit in the offset field of the L1 table entry */
 291    assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
 292
 293    /* If we're allocating the table at offset 0 then something is wrong */
 294    if (l2_offset == 0) {
 295        qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
 296                                "allocation of L2 table at offset 0");
 297        ret = -EIO;
 298        goto fail;
 299    }
 300
 301    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 302    if (ret < 0) {
 303        goto fail;
 304    }
 305
 306    /* allocate a new entry in the l2 cache */
 307
 308    slice_size2 = s->l2_slice_size * l2_entry_size(s);
 309    n_slices = s->cluster_size / slice_size2;
 310
 311    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 312    for (slice = 0; slice < n_slices; slice++) {
 313        ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
 314                                    l2_offset + slice * slice_size2,
 315                                    (void **) &l2_slice);
 316        if (ret < 0) {
 317            goto fail;
 318        }
 319
 320        if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 321            /* if there was no old l2 table, clear the new slice */
 322            memset(l2_slice, 0, slice_size2);
 323        } else {
 324            uint64_t *old_slice;
 325            uint64_t old_l2_slice_offset =
 326                (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
 327
 328            /* if there was an old l2 table, read a slice from the disk */
 329            BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 330            ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
 331                                  (void **) &old_slice);
 332            if (ret < 0) {
 333                goto fail;
 334            }
 335
 336            memcpy(l2_slice, old_slice, slice_size2);
 337
 338            qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
 339        }
 340
 341        /* write the l2 slice to the file */
 342        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 343
 344        trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 345        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 346        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 347    }
 348
 349    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 350    if (ret < 0) {
 351        goto fail;
 352    }
 353
 354    /* update the L1 entry */
 355    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 356    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 357    ret = qcow2_write_l1_entry(bs, l1_index);
 358    if (ret < 0) {
 359        goto fail;
 360    }
 361
 362    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 363    return 0;
 364
 365fail:
 366    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 367    if (l2_slice != NULL) {
 368        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 369    }
 370    s->l1_table[l1_index] = old_l2_offset;
 371    if (l2_offset > 0) {
 372        qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
 373                            QCOW2_DISCARD_ALWAYS);
 374    }
 375    return ret;
 376}
 377
 378/*
 379 * For a given L2 entry, count the number of contiguous subclusters of
 380 * the same type starting from @sc_from. Compressed clusters are
 381 * treated as if they were divided into subclusters of size
 382 * s->subcluster_size.
 383 *
 384 * Return the number of contiguous subclusters and set @type to the
 385 * subcluster type.
 386 *
 387 * If the L2 entry is invalid return -errno and set @type to
 388 * QCOW2_SUBCLUSTER_INVALID.
 389 */
 390static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
 391                                           uint64_t l2_entry,
 392                                           uint64_t l2_bitmap,
 393                                           unsigned sc_from,
 394                                           QCow2SubclusterType *type)
 395{
 396    BDRVQcow2State *s = bs->opaque;
 397    uint32_t val;
 398
 399    *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
 400
 401    if (*type == QCOW2_SUBCLUSTER_INVALID) {
 402        return -EINVAL;
 403    } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
 404        return s->subclusters_per_cluster - sc_from;
 405    }
 406
 407    switch (*type) {
 408    case QCOW2_SUBCLUSTER_NORMAL:
 409        val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
 410        return cto32(val) - sc_from;
 411
 412    case QCOW2_SUBCLUSTER_ZERO_PLAIN:
 413    case QCOW2_SUBCLUSTER_ZERO_ALLOC:
 414        val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
 415        return cto32(val) - sc_from;
 416
 417    case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
 418    case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
 419        val = ((l2_bitmap >> 32) | l2_bitmap)
 420            & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
 421        return ctz32(val) - sc_from;
 422
 423    default:
 424        g_assert_not_reached();
 425    }
 426}
 427
 428/*
 429 * Return the number of contiguous subclusters of the exact same type
 430 * in a given L2 slice, starting from cluster @l2_index, subcluster
 431 * @sc_index. Allocated subclusters are required to be contiguous in
 432 * the image file.
 433 * At most @nb_clusters are checked (note that this means clusters,
 434 * not subclusters).
 435 * Compressed clusters are always processed one by one but for the
 436 * purpose of this count they are treated as if they were divided into
 437 * subclusters of size s->subcluster_size.
 438 * On failure return -errno and update @l2_index to point to the
 439 * invalid entry.
 440 */
 441static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
 442                                        unsigned sc_index, uint64_t *l2_slice,
 443                                        unsigned *l2_index)
 444{
 445    BDRVQcow2State *s = bs->opaque;
 446    int i, count = 0;
 447    bool check_offset = false;
 448    uint64_t expected_offset = 0;
 449    QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
 450
 451    assert(*l2_index + nb_clusters <= s->l2_slice_size);
 452
 453    for (i = 0; i < nb_clusters; i++) {
 454        unsigned first_sc = (i == 0) ? sc_index : 0;
 455        uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
 456        uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
 457        int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
 458                                                  first_sc, &type);
 459        if (ret < 0) {
 460            *l2_index += i; /* Point to the invalid entry */
 461            return -EIO;
 462        }
 463        if (i == 0) {
 464            if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
 465                /* Compressed clusters are always processed one by one */
 466                return ret;
 467            }
 468            expected_type = type;
 469            expected_offset = l2_entry & L2E_OFFSET_MASK;
 470            check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
 471                            type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
 472                            type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
 473        } else if (type != expected_type) {
 474            break;
 475        } else if (check_offset) {
 476            expected_offset += s->cluster_size;
 477            if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
 478                break;
 479            }
 480        }
 481        count += ret;
 482        /* Stop if there are type changes before the end of the cluster */
 483        if (first_sc + ret < s->subclusters_per_cluster) {
 484            break;
 485        }
 486    }
 487
 488    return count;
 489}
 490
 491static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
 492                                            uint64_t src_cluster_offset,
 493                                            unsigned offset_in_cluster,
 494                                            QEMUIOVector *qiov)
 495{
 496    int ret;
 497
 498    if (qiov->size == 0) {
 499        return 0;
 500    }
 501
 502    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 503
 504    if (!bs->drv) {
 505        return -ENOMEDIUM;
 506    }
 507
 508    /* Call .bdrv_co_readv() directly instead of using the public block-layer
 509     * interface.  This avoids double I/O throttling and request tracking,
 510     * which can lead to deadlock when block layer copy-on-read is enabled.
 511     */
 512    ret = bs->drv->bdrv_co_preadv_part(bs,
 513                                       src_cluster_offset + offset_in_cluster,
 514                                       qiov->size, qiov, 0, 0);
 515    if (ret < 0) {
 516        return ret;
 517    }
 518
 519    return 0;
 520}
 521
 522static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
 523                                             uint64_t cluster_offset,
 524                                             unsigned offset_in_cluster,
 525                                             QEMUIOVector *qiov)
 526{
 527    BDRVQcow2State *s = bs->opaque;
 528    int ret;
 529
 530    if (qiov->size == 0) {
 531        return 0;
 532    }
 533
 534    ret = qcow2_pre_write_overlap_check(bs, 0,
 535            cluster_offset + offset_in_cluster, qiov->size, true);
 536    if (ret < 0) {
 537        return ret;
 538    }
 539
 540    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 541    ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
 542                          qiov->size, qiov, 0);
 543    if (ret < 0) {
 544        return ret;
 545    }
 546
 547    return 0;
 548}
 549
 550
 551/*
 552 * get_host_offset
 553 *
 554 * For a given offset of the virtual disk find the equivalent host
 555 * offset in the qcow2 file and store it in *host_offset. Neither
 556 * offset needs to be aligned to a cluster boundary.
 557 *
 558 * If the cluster is unallocated then *host_offset will be 0.
 559 * If the cluster is compressed then *host_offset will contain the
 560 * complete compressed cluster descriptor.
 561 *
 562 * On entry, *bytes is the maximum number of contiguous bytes starting at
 563 * offset that we are interested in.
 564 *
 565 * On exit, *bytes is the number of bytes starting at offset that have the same
 566 * subcluster type and (if applicable) are stored contiguously in the image
 567 * file. The subcluster type is stored in *subcluster_type.
 568 * Compressed clusters are always processed one by one.
 569 *
 570 * Returns 0 on success, -errno in error cases.
 571 */
 572int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
 573                          unsigned int *bytes, uint64_t *host_offset,
 574                          QCow2SubclusterType *subcluster_type)
 575{
 576    BDRVQcow2State *s = bs->opaque;
 577    unsigned int l2_index, sc_index;
 578    uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
 579    int sc;
 580    unsigned int offset_in_cluster;
 581    uint64_t bytes_available, bytes_needed, nb_clusters;
 582    QCow2SubclusterType type;
 583    int ret;
 584
 585    offset_in_cluster = offset_into_cluster(s, offset);
 586    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 587
 588    /* compute how many bytes there are between the start of the cluster
 589     * containing offset and the end of the l2 slice that contains
 590     * the entry pointing to it */
 591    bytes_available =
 592        ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
 593        << s->cluster_bits;
 594
 595    if (bytes_needed > bytes_available) {
 596        bytes_needed = bytes_available;
 597    }
 598
 599    *host_offset = 0;
 600
 601    /* seek to the l2 offset in the l1 table */
 602
 603    l1_index = offset_to_l1_index(s, offset);
 604    if (l1_index >= s->l1_size) {
 605        type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
 606        goto out;
 607    }
 608
 609    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 610    if (!l2_offset) {
 611        type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
 612        goto out;
 613    }
 614
 615    if (offset_into_cluster(s, l2_offset)) {
 616        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 617                                " unaligned (L1 index: %#" PRIx64 ")",
 618                                l2_offset, l1_index);
 619        return -EIO;
 620    }
 621
 622    /* load the l2 slice in memory */
 623
 624    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 625    if (ret < 0) {
 626        return ret;
 627    }
 628
 629    /* find the cluster offset for the given disk offset */
 630
 631    l2_index = offset_to_l2_slice_index(s, offset);
 632    sc_index = offset_to_sc_index(s, offset);
 633    l2_entry = get_l2_entry(s, l2_slice, l2_index);
 634    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
 635
 636    nb_clusters = size_to_clusters(s, bytes_needed);
 637    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 638     * integers; the minimum cluster size is 512, so this assertion is always
 639     * true */
 640    assert(nb_clusters <= INT_MAX);
 641
 642    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
 643    if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
 644                                type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
 645        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 646                                " in pre-v3 image (L2 offset: %#" PRIx64
 647                                ", L2 index: %#x)", l2_offset, l2_index);
 648        ret = -EIO;
 649        goto fail;
 650    }
 651    switch (type) {
 652    case QCOW2_SUBCLUSTER_INVALID:
 653        break; /* This is handled by count_contiguous_subclusters() below */
 654    case QCOW2_SUBCLUSTER_COMPRESSED:
 655        if (has_data_file(bs)) {
 656            qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
 657                                    "entry found in image with external data "
 658                                    "file (L2 offset: %#" PRIx64 ", L2 index: "
 659                                    "%#x)", l2_offset, l2_index);
 660            ret = -EIO;
 661            goto fail;
 662        }
 663        *host_offset = l2_entry & L2E_COMPRESSED_OFFSET_SIZE_MASK;
 664        break;
 665    case QCOW2_SUBCLUSTER_ZERO_PLAIN:
 666    case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
 667        break;
 668    case QCOW2_SUBCLUSTER_ZERO_ALLOC:
 669    case QCOW2_SUBCLUSTER_NORMAL:
 670    case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
 671        uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
 672        *host_offset = host_cluster_offset + offset_in_cluster;
 673        if (offset_into_cluster(s, host_cluster_offset)) {
 674            qcow2_signal_corruption(bs, true, -1, -1,
 675                                    "Cluster allocation offset %#"
 676                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 677                                    ", L2 index: %#x)", host_cluster_offset,
 678                                    l2_offset, l2_index);
 679            ret = -EIO;
 680            goto fail;
 681        }
 682        if (has_data_file(bs) && *host_offset != offset) {
 683            qcow2_signal_corruption(bs, true, -1, -1,
 684                                    "External data file host cluster offset %#"
 685                                    PRIx64 " does not match guest cluster "
 686                                    "offset: %#" PRIx64
 687                                    ", L2 index: %#x)", host_cluster_offset,
 688                                    offset - offset_in_cluster, l2_index);
 689            ret = -EIO;
 690            goto fail;
 691        }
 692        break;
 693    }
 694    default:
 695        abort();
 696    }
 697
 698    sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
 699                                      l2_slice, &l2_index);
 700    if (sc < 0) {
 701        qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
 702                                " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
 703                                l2_offset, l2_index);
 704        ret = -EIO;
 705        goto fail;
 706    }
 707    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 708
 709    bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
 710
 711out:
 712    if (bytes_available > bytes_needed) {
 713        bytes_available = bytes_needed;
 714    }
 715
 716    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 717     * subtracting offset_in_cluster will therefore definitely yield something
 718     * not exceeding UINT_MAX */
 719    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 720    *bytes = bytes_available - offset_in_cluster;
 721
 722    *subcluster_type = type;
 723
 724    return 0;
 725
 726fail:
 727    qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
 728    return ret;
 729}
 730
 731/*
 732 * get_cluster_table
 733 *
 734 * for a given disk offset, load (and allocate if needed)
 735 * the appropriate slice of its l2 table.
 736 *
 737 * the cluster index in the l2 slice is given to the caller.
 738 *
 739 * Returns 0 on success, -errno in failure case
 740 */
 741static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 742                             uint64_t **new_l2_slice,
 743                             int *new_l2_index)
 744{
 745    BDRVQcow2State *s = bs->opaque;
 746    unsigned int l2_index;
 747    uint64_t l1_index, l2_offset;
 748    uint64_t *l2_slice = NULL;
 749    int ret;
 750
 751    /* seek to the l2 offset in the l1 table */
 752
 753    l1_index = offset_to_l1_index(s, offset);
 754    if (l1_index >= s->l1_size) {
 755        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 756        if (ret < 0) {
 757            return ret;
 758        }
 759    }
 760
 761    assert(l1_index < s->l1_size);
 762    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 763    if (offset_into_cluster(s, l2_offset)) {
 764        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 765                                " unaligned (L1 index: %#" PRIx64 ")",
 766                                l2_offset, l1_index);
 767        return -EIO;
 768    }
 769
 770    if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
 771        /* First allocate a new L2 table (and do COW if needed) */
 772        ret = l2_allocate(bs, l1_index);
 773        if (ret < 0) {
 774            return ret;
 775        }
 776
 777        /* Then decrease the refcount of the old table */
 778        if (l2_offset) {
 779            qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
 780                                QCOW2_DISCARD_OTHER);
 781        }
 782
 783        /* Get the offset of the newly-allocated l2 table */
 784        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 785        assert(offset_into_cluster(s, l2_offset) == 0);
 786    }
 787
 788    /* load the l2 slice in memory */
 789    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 790    if (ret < 0) {
 791        return ret;
 792    }
 793
 794    /* find the cluster offset for the given disk offset */
 795
 796    l2_index = offset_to_l2_slice_index(s, offset);
 797
 798    *new_l2_slice = l2_slice;
 799    *new_l2_index = l2_index;
 800
 801    return 0;
 802}
 803
 804/*
 805 * alloc_compressed_cluster_offset
 806 *
 807 * For a given offset on the virtual disk, allocate a new compressed cluster
 808 * and put the host offset of the cluster into *host_offset. If a cluster is
 809 * already allocated at the offset, return an error.
 810 *
 811 * Return 0 on success and -errno in error cases
 812 */
 813int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 814                                          uint64_t offset,
 815                                          int compressed_size,
 816                                          uint64_t *host_offset)
 817{
 818    BDRVQcow2State *s = bs->opaque;
 819    int l2_index, ret;
 820    uint64_t *l2_slice;
 821    int64_t cluster_offset;
 822    int nb_csectors;
 823
 824    if (has_data_file(bs)) {
 825        return 0;
 826    }
 827
 828    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
 829    if (ret < 0) {
 830        return ret;
 831    }
 832
 833    /* Compression can't overwrite anything. Fail if the cluster was already
 834     * allocated. */
 835    cluster_offset = get_l2_entry(s, l2_slice, l2_index);
 836    if (cluster_offset & L2E_OFFSET_MASK) {
 837        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 838        return -EIO;
 839    }
 840
 841    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 842    if (cluster_offset < 0) {
 843        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 844        return cluster_offset;
 845    }
 846
 847    nb_csectors =
 848        (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
 849        (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
 850
 851    /* The offset and size must fit in their fields of the L2 table entry */
 852    assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
 853    assert((nb_csectors & s->csize_mask) == nb_csectors);
 854
 855    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 856                      ((uint64_t)nb_csectors << s->csize_shift);
 857
 858    /* update L2 table */
 859
 860    /* compressed clusters never have the copied flag */
 861
 862    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 863    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 864    set_l2_entry(s, l2_slice, l2_index, cluster_offset);
 865    if (has_subclusters(s)) {
 866        set_l2_bitmap(s, l2_slice, l2_index, 0);
 867    }
 868    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 869
 870    *host_offset = cluster_offset & s->cluster_offset_mask;
 871    return 0;
 872}
 873
 874static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 875{
 876    BDRVQcow2State *s = bs->opaque;
 877    Qcow2COWRegion *start = &m->cow_start;
 878    Qcow2COWRegion *end = &m->cow_end;
 879    unsigned buffer_size;
 880    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 881    bool merge_reads;
 882    uint8_t *start_buffer, *end_buffer;
 883    QEMUIOVector qiov;
 884    int ret;
 885
 886    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 887    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 888    assert(start->offset + start->nb_bytes <= end->offset);
 889
 890    if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
 891        return 0;
 892    }
 893
 894    /* If we have to read both the start and end COW regions and the
 895     * middle region is not too large then perform just one read
 896     * operation */
 897    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 898    if (merge_reads) {
 899        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 900    } else {
 901        /* If we have to do two reads, add some padding in the middle
 902         * if necessary to make sure that the end region is optimally
 903         * aligned. */
 904        size_t align = bdrv_opt_mem_align(bs);
 905        assert(align > 0 && align <= UINT_MAX);
 906        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 907               UINT_MAX - end->nb_bytes);
 908        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 909    }
 910
 911    /* Reserve a buffer large enough to store all the data that we're
 912     * going to read */
 913    start_buffer = qemu_try_blockalign(bs, buffer_size);
 914    if (start_buffer == NULL) {
 915        return -ENOMEM;
 916    }
 917    /* The part of the buffer where the end region is located */
 918    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 919
 920    qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
 921                                qemu_iovec_subvec_niov(m->data_qiov,
 922                                                       m->data_qiov_offset,
 923                                                       data_bytes)
 924                                : 0));
 925
 926    qemu_co_mutex_unlock(&s->lock);
 927    /* First we read the existing data from both COW regions. We
 928     * either read the whole region in one go, or the start and end
 929     * regions separately. */
 930    if (merge_reads) {
 931        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 932        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 933    } else {
 934        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 935        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 936        if (ret < 0) {
 937            goto fail;
 938        }
 939
 940        qemu_iovec_reset(&qiov);
 941        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 942        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 943    }
 944    if (ret < 0) {
 945        goto fail;
 946    }
 947
 948    /* Encrypt the data if necessary before writing it */
 949    if (bs->encrypted) {
 950        ret = qcow2_co_encrypt(bs,
 951                               m->alloc_offset + start->offset,
 952                               m->offset + start->offset,
 953                               start_buffer, start->nb_bytes);
 954        if (ret < 0) {
 955            goto fail;
 956        }
 957
 958        ret = qcow2_co_encrypt(bs,
 959                               m->alloc_offset + end->offset,
 960                               m->offset + end->offset,
 961                               end_buffer, end->nb_bytes);
 962        if (ret < 0) {
 963            goto fail;
 964        }
 965    }
 966
 967    /* And now we can write everything. If we have the guest data we
 968     * can write everything in one single operation */
 969    if (m->data_qiov) {
 970        qemu_iovec_reset(&qiov);
 971        if (start->nb_bytes) {
 972            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 973        }
 974        qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
 975        if (end->nb_bytes) {
 976            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 977        }
 978        /* NOTE: we have a write_aio blkdebug event here followed by
 979         * a cow_write one in do_perform_cow_write(), but there's only
 980         * one single I/O operation */
 981        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 982        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 983    } else {
 984        /* If there's no guest data then write both COW regions separately */
 985        qemu_iovec_reset(&qiov);
 986        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 987        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 988        if (ret < 0) {
 989            goto fail;
 990        }
 991
 992        qemu_iovec_reset(&qiov);
 993        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 994        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
 995    }
 996
 997fail:
 998    qemu_co_mutex_lock(&s->lock);
 999
1000    /*
1001     * Before we update the L2 table to actually point to the new cluster, we
1002     * need to be sure that the refcounts have been increased and COW was
1003     * handled.
1004     */
1005    if (ret == 0) {
1006        qcow2_cache_depends_on_flush(s->l2_table_cache);
1007    }
1008
1009    qemu_vfree(start_buffer);
1010    qemu_iovec_destroy(&qiov);
1011    return ret;
1012}
1013
1014int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
1015{
1016    BDRVQcow2State *s = bs->opaque;
1017    int i, j = 0, l2_index, ret;
1018    uint64_t *old_cluster, *l2_slice;
1019    uint64_t cluster_offset = m->alloc_offset;
1020
1021    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1022    assert(m->nb_clusters > 0);
1023
1024    old_cluster = g_try_new(uint64_t, m->nb_clusters);
1025    if (old_cluster == NULL) {
1026        ret = -ENOMEM;
1027        goto err;
1028    }
1029
1030    /* copy content of unmodified sectors */
1031    ret = perform_cow(bs, m);
1032    if (ret < 0) {
1033        goto err;
1034    }
1035
1036    /* Update L2 table. */
1037    if (s->use_lazy_refcounts) {
1038        qcow2_mark_dirty(bs);
1039    }
1040    if (qcow2_need_accurate_refcounts(s)) {
1041        qcow2_cache_set_dependency(bs, s->l2_table_cache,
1042                                   s->refcount_block_cache);
1043    }
1044
1045    ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1046    if (ret < 0) {
1047        goto err;
1048    }
1049    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1050
1051    assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1052    assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1053           m->nb_clusters << s->cluster_bits);
1054    for (i = 0; i < m->nb_clusters; i++) {
1055        uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1056        /* if two concurrent writes happen to the same unallocated cluster
1057         * each write allocates separate cluster and writes data concurrently.
1058         * The first one to complete updates l2 table with pointer to its
1059         * cluster the second one has to do RMW (which is done above by
1060         * perform_cow()), update l2 table with its cluster pointer and free
1061         * old cluster. This is what this loop does */
1062        if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1063            old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1064        }
1065
1066        /* The offset must fit in the offset field of the L2 table entry */
1067        assert((offset & L2E_OFFSET_MASK) == offset);
1068
1069        set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1070
1071        /* Update bitmap with the subclusters that were just written */
1072        if (has_subclusters(s) && !m->prealloc) {
1073            uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1074            unsigned written_from = m->cow_start.offset;
1075            unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1076            int first_sc, last_sc;
1077            /* Narrow written_from and written_to down to the current cluster */
1078            written_from = MAX(written_from, i << s->cluster_bits);
1079            written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1080            assert(written_from < written_to);
1081            first_sc = offset_to_sc_index(s, written_from);
1082            last_sc  = offset_to_sc_index(s, written_to - 1);
1083            l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1084            l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1085            set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1086        }
1087     }
1088
1089
1090    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1091
1092    /*
1093     * If this was a COW, we need to decrease the refcount of the old cluster.
1094     *
1095     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1096     * clusters), the next write will reuse them anyway.
1097     */
1098    if (!m->keep_old_clusters && j != 0) {
1099        for (i = 0; i < j; i++) {
1100            qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1101        }
1102    }
1103
1104    ret = 0;
1105err:
1106    g_free(old_cluster);
1107    return ret;
1108 }
1109
1110/**
1111 * Frees the allocated clusters because the request failed and they won't
1112 * actually be linked.
1113 */
1114void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1115{
1116    BDRVQcow2State *s = bs->opaque;
1117    if (!has_data_file(bs) && !m->keep_old_clusters) {
1118        qcow2_free_clusters(bs, m->alloc_offset,
1119                            m->nb_clusters << s->cluster_bits,
1120                            QCOW2_DISCARD_NEVER);
1121    }
1122}
1123
1124/*
1125 * For a given write request, create a new QCowL2Meta structure, add
1126 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1127 * request does not need copy-on-write or changes to the L2 metadata
1128 * then this function does nothing.
1129 *
1130 * @host_cluster_offset points to the beginning of the first cluster.
1131 *
1132 * @guest_offset and @bytes indicate the offset and length of the
1133 * request.
1134 *
1135 * @l2_slice contains the L2 entries of all clusters involved in this
1136 * write request.
1137 *
1138 * If @keep_old is true it means that the clusters were already
1139 * allocated and will be overwritten. If false then the clusters are
1140 * new and we have to decrease the reference count of the old ones.
1141 *
1142 * Returns 0 on success, -errno on failure.
1143 */
1144static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1145                             uint64_t guest_offset, unsigned bytes,
1146                             uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1147{
1148    BDRVQcow2State *s = bs->opaque;
1149    int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1150    uint64_t l2_entry, l2_bitmap;
1151    unsigned cow_start_from, cow_end_to;
1152    unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1153    unsigned cow_end_from = cow_start_to + bytes;
1154    unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1155    QCowL2Meta *old_m = *m;
1156    QCow2SubclusterType type;
1157    int i;
1158    bool skip_cow = keep_old;
1159
1160    assert(nb_clusters <= s->l2_slice_size - l2_index);
1161
1162    /* Check the type of all affected subclusters */
1163    for (i = 0; i < nb_clusters; i++) {
1164        l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1165        l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1166        if (skip_cow) {
1167            unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1168            unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1169            int first_sc = offset_to_sc_index(s, write_from);
1170            int last_sc = offset_to_sc_index(s, write_to - 1);
1171            int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1172                                                      first_sc, &type);
1173            /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1174            if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1175                skip_cow = false;
1176            }
1177        } else {
1178            /* If we can't skip the cow we can still look for invalid entries */
1179            type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1180        }
1181        if (type == QCOW2_SUBCLUSTER_INVALID) {
1182            int l1_index = offset_to_l1_index(s, guest_offset);
1183            uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1184            qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1185                                    "entry found (L2 offset: %#" PRIx64
1186                                    ", L2 index: %#x)",
1187                                    l2_offset, l2_index + i);
1188            return -EIO;
1189        }
1190    }
1191
1192    if (skip_cow) {
1193        return 0;
1194    }
1195
1196    /* Get the L2 entry of the first cluster */
1197    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1198    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1199    sc_index = offset_to_sc_index(s, guest_offset);
1200    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1201
1202    if (!keep_old) {
1203        switch (type) {
1204        case QCOW2_SUBCLUSTER_COMPRESSED:
1205            cow_start_from = 0;
1206            break;
1207        case QCOW2_SUBCLUSTER_NORMAL:
1208        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1209        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1210            if (has_subclusters(s)) {
1211                /* Skip all leading zero and unallocated subclusters */
1212                uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1213                cow_start_from =
1214                    MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1215            } else {
1216                cow_start_from = 0;
1217            }
1218            break;
1219        case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1220        case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1221            cow_start_from = sc_index << s->subcluster_bits;
1222            break;
1223        default:
1224            g_assert_not_reached();
1225        }
1226    } else {
1227        switch (type) {
1228        case QCOW2_SUBCLUSTER_NORMAL:
1229            cow_start_from = cow_start_to;
1230            break;
1231        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1232        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1233            cow_start_from = sc_index << s->subcluster_bits;
1234            break;
1235        default:
1236            g_assert_not_reached();
1237        }
1238    }
1239
1240    /* Get the L2 entry of the last cluster */
1241    l2_index += nb_clusters - 1;
1242    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1243    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1244    sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1245    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1246
1247    if (!keep_old) {
1248        switch (type) {
1249        case QCOW2_SUBCLUSTER_COMPRESSED:
1250            cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1251            break;
1252        case QCOW2_SUBCLUSTER_NORMAL:
1253        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1254        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1255            cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1256            if (has_subclusters(s)) {
1257                /* Skip all trailing zero and unallocated subclusters */
1258                uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1259                cow_end_to -=
1260                    MIN(s->subclusters_per_cluster - sc_index - 1,
1261                        clz32(alloc_bitmap)) << s->subcluster_bits;
1262            }
1263            break;
1264        case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1265        case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1266            cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1267            break;
1268        default:
1269            g_assert_not_reached();
1270        }
1271    } else {
1272        switch (type) {
1273        case QCOW2_SUBCLUSTER_NORMAL:
1274            cow_end_to = cow_end_from;
1275            break;
1276        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1277        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1278            cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1279            break;
1280        default:
1281            g_assert_not_reached();
1282        }
1283    }
1284
1285    *m = g_malloc0(sizeof(**m));
1286    **m = (QCowL2Meta) {
1287        .next           = old_m,
1288
1289        .alloc_offset   = host_cluster_offset,
1290        .offset         = start_of_cluster(s, guest_offset),
1291        .nb_clusters    = nb_clusters,
1292
1293        .keep_old_clusters = keep_old,
1294
1295        .cow_start = {
1296            .offset     = cow_start_from,
1297            .nb_bytes   = cow_start_to - cow_start_from,
1298        },
1299        .cow_end = {
1300            .offset     = cow_end_from,
1301            .nb_bytes   = cow_end_to - cow_end_from,
1302        },
1303    };
1304
1305    qemu_co_queue_init(&(*m)->dependent_requests);
1306    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1307
1308    return 0;
1309}
1310
1311/*
1312 * Returns true if writing to the cluster pointed to by @l2_entry
1313 * requires a new allocation (that is, if the cluster is unallocated
1314 * or has refcount > 1 and therefore cannot be written in-place).
1315 */
1316static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1317{
1318    switch (qcow2_get_cluster_type(bs, l2_entry)) {
1319    case QCOW2_CLUSTER_NORMAL:
1320    case QCOW2_CLUSTER_ZERO_ALLOC:
1321        if (l2_entry & QCOW_OFLAG_COPIED) {
1322            return false;
1323        }
1324        /* fallthrough */
1325    case QCOW2_CLUSTER_UNALLOCATED:
1326    case QCOW2_CLUSTER_COMPRESSED:
1327    case QCOW2_CLUSTER_ZERO_PLAIN:
1328        return true;
1329    default:
1330        abort();
1331    }
1332}
1333
1334/*
1335 * Returns the number of contiguous clusters that can be written to
1336 * using one single write request, starting from @l2_index.
1337 * At most @nb_clusters are checked.
1338 *
1339 * If @new_alloc is true this counts clusters that are either
1340 * unallocated, or allocated but with refcount > 1 (so they need to be
1341 * newly allocated and COWed).
1342 *
1343 * If @new_alloc is false this counts clusters that are already
1344 * allocated and can be overwritten in-place (this includes clusters
1345 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1346 */
1347static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1348                                       uint64_t *l2_slice, int l2_index,
1349                                       bool new_alloc)
1350{
1351    BDRVQcow2State *s = bs->opaque;
1352    uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1353    uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1354    int i;
1355
1356    for (i = 0; i < nb_clusters; i++) {
1357        l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1358        if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1359            break;
1360        }
1361        if (!new_alloc) {
1362            if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1363                break;
1364            }
1365            expected_offset += s->cluster_size;
1366        }
1367    }
1368
1369    assert(i <= nb_clusters);
1370    return i;
1371}
1372
1373/*
1374 * Check if there already is an AIO write request in flight which allocates
1375 * the same cluster. In this case we need to wait until the previous
1376 * request has completed and updated the L2 table accordingly.
1377 *
1378 * Returns:
1379 *   0       if there was no dependency. *cur_bytes indicates the number of
1380 *           bytes from guest_offset that can be read before the next
1381 *           dependency must be processed (or the request is complete)
1382 *
1383 *   -EAGAIN if we had to wait for another request, previously gathered
1384 *           information on cluster allocation may be invalid now. The caller
1385 *           must start over anyway, so consider *cur_bytes undefined.
1386 */
1387static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1388    uint64_t *cur_bytes, QCowL2Meta **m)
1389{
1390    BDRVQcow2State *s = bs->opaque;
1391    QCowL2Meta *old_alloc;
1392    uint64_t bytes = *cur_bytes;
1393
1394    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1395
1396        uint64_t start = guest_offset;
1397        uint64_t end = start + bytes;
1398        uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1399        uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1400
1401        if (end <= old_start || start >= old_end) {
1402            /* No intersection */
1403        } else {
1404            if (start < old_start) {
1405                /* Stop at the start of a running allocation */
1406                bytes = old_start - start;
1407            } else {
1408                bytes = 0;
1409            }
1410
1411            /* Stop if already an l2meta exists. After yielding, it wouldn't
1412             * be valid any more, so we'd have to clean up the old L2Metas
1413             * and deal with requests depending on them before starting to
1414             * gather new ones. Not worth the trouble. */
1415            if (bytes == 0 && *m) {
1416                *cur_bytes = 0;
1417                return 0;
1418            }
1419
1420            if (bytes == 0) {
1421                /* Wait for the dependency to complete. We need to recheck
1422                 * the free/allocated clusters when we continue. */
1423                qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1424                return -EAGAIN;
1425            }
1426        }
1427    }
1428
1429    /* Make sure that existing clusters and new allocations are only used up to
1430     * the next dependency if we shortened the request above */
1431    *cur_bytes = bytes;
1432
1433    return 0;
1434}
1435
1436/*
1437 * Checks how many already allocated clusters that don't require a new
1438 * allocation there are at the given guest_offset (up to *bytes).
1439 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1440 * beginning at this host offset are counted.
1441 *
1442 * Note that guest_offset may not be cluster aligned. In this case, the
1443 * returned *host_offset points to exact byte referenced by guest_offset and
1444 * therefore isn't cluster aligned as well.
1445 *
1446 * Returns:
1447 *   0:     if no allocated clusters are available at the given offset.
1448 *          *bytes is normally unchanged. It is set to 0 if the cluster
1449 *          is allocated and can be overwritten in-place but doesn't have
1450 *          the right physical offset.
1451 *
1452 *   1:     if allocated clusters that can be overwritten in place are
1453 *          available at the requested offset. *bytes may have decreased
1454 *          and describes the length of the area that can be written to.
1455 *
1456 *  -errno: in error cases
1457 */
1458static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1459    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1460{
1461    BDRVQcow2State *s = bs->opaque;
1462    int l2_index;
1463    uint64_t l2_entry, cluster_offset;
1464    uint64_t *l2_slice;
1465    uint64_t nb_clusters;
1466    unsigned int keep_clusters;
1467    int ret;
1468
1469    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1470                              *bytes);
1471
1472    assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1473                                      == offset_into_cluster(s, *host_offset));
1474
1475    /*
1476     * Calculate the number of clusters to look for. We stop at L2 slice
1477     * boundaries to keep things simple.
1478     */
1479    nb_clusters =
1480        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1481
1482    l2_index = offset_to_l2_slice_index(s, guest_offset);
1483    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1484    /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1485    nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1486
1487    /* Find L2 entry for the first involved cluster */
1488    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1489    if (ret < 0) {
1490        return ret;
1491    }
1492
1493    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1494    cluster_offset = l2_entry & L2E_OFFSET_MASK;
1495
1496    if (!cluster_needs_new_alloc(bs, l2_entry)) {
1497        if (offset_into_cluster(s, cluster_offset)) {
1498            qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1499                                    "%#" PRIx64 " unaligned (guest offset: %#"
1500                                    PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1501                                    "Preallocated zero" : "Data",
1502                                    cluster_offset, guest_offset);
1503            ret = -EIO;
1504            goto out;
1505        }
1506
1507        /* If a specific host_offset is required, check it */
1508        if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1509            *bytes = 0;
1510            ret = 0;
1511            goto out;
1512        }
1513
1514        /* We keep all QCOW_OFLAG_COPIED clusters */
1515        keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1516                                                    l2_index, false);
1517        assert(keep_clusters <= nb_clusters);
1518
1519        *bytes = MIN(*bytes,
1520                 keep_clusters * s->cluster_size
1521                 - offset_into_cluster(s, guest_offset));
1522        assert(*bytes != 0);
1523
1524        ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1525                                *bytes, l2_slice, m, true);
1526        if (ret < 0) {
1527            goto out;
1528        }
1529
1530        ret = 1;
1531    } else {
1532        ret = 0;
1533    }
1534
1535    /* Cleanup */
1536out:
1537    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1538
1539    /* Only return a host offset if we actually made progress. Otherwise we
1540     * would make requirements for handle_alloc() that it can't fulfill */
1541    if (ret > 0) {
1542        *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1543    }
1544
1545    return ret;
1546}
1547
1548/*
1549 * Allocates new clusters for the given guest_offset.
1550 *
1551 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1552 * contain the number of clusters that have been allocated and are contiguous
1553 * in the image file.
1554 *
1555 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1556 * at which the new clusters must start. *nb_clusters can be 0 on return in
1557 * this case if the cluster at host_offset is already in use. If *host_offset
1558 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1559 *
1560 * *host_offset is updated to contain the offset into the image file at which
1561 * the first allocated cluster starts.
1562 *
1563 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1564 * function has been waiting for another request and the allocation must be
1565 * restarted, but the whole request should not be failed.
1566 */
1567static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1568                                   uint64_t *host_offset, uint64_t *nb_clusters)
1569{
1570    BDRVQcow2State *s = bs->opaque;
1571
1572    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1573                                         *host_offset, *nb_clusters);
1574
1575    if (has_data_file(bs)) {
1576        assert(*host_offset == INV_OFFSET ||
1577               *host_offset == start_of_cluster(s, guest_offset));
1578        *host_offset = start_of_cluster(s, guest_offset);
1579        return 0;
1580    }
1581
1582    /* Allocate new clusters */
1583    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1584    if (*host_offset == INV_OFFSET) {
1585        int64_t cluster_offset =
1586            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1587        if (cluster_offset < 0) {
1588            return cluster_offset;
1589        }
1590        *host_offset = cluster_offset;
1591        return 0;
1592    } else {
1593        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1594        if (ret < 0) {
1595            return ret;
1596        }
1597        *nb_clusters = ret;
1598        return 0;
1599    }
1600}
1601
1602/*
1603 * Allocates new clusters for an area that is either still unallocated or
1604 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1605 * clusters are only allocated if the new allocation can match the specified
1606 * host offset.
1607 *
1608 * Note that guest_offset may not be cluster aligned. In this case, the
1609 * returned *host_offset points to exact byte referenced by guest_offset and
1610 * therefore isn't cluster aligned as well.
1611 *
1612 * Returns:
1613 *   0:     if no clusters could be allocated. *bytes is set to 0,
1614 *          *host_offset is left unchanged.
1615 *
1616 *   1:     if new clusters were allocated. *bytes may be decreased if the
1617 *          new allocation doesn't cover all of the requested area.
1618 *          *host_offset is updated to contain the host offset of the first
1619 *          newly allocated cluster.
1620 *
1621 *  -errno: in error cases
1622 */
1623static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1624    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1625{
1626    BDRVQcow2State *s = bs->opaque;
1627    int l2_index;
1628    uint64_t *l2_slice;
1629    uint64_t nb_clusters;
1630    int ret;
1631
1632    uint64_t alloc_cluster_offset;
1633
1634    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1635                             *bytes);
1636    assert(*bytes > 0);
1637
1638    /*
1639     * Calculate the number of clusters to look for. We stop at L2 slice
1640     * boundaries to keep things simple.
1641     */
1642    nb_clusters =
1643        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1644
1645    l2_index = offset_to_l2_slice_index(s, guest_offset);
1646    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1647    /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1648    nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1649
1650    /* Find L2 entry for the first involved cluster */
1651    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1652    if (ret < 0) {
1653        return ret;
1654    }
1655
1656    nb_clusters = count_single_write_clusters(bs, nb_clusters,
1657                                              l2_slice, l2_index, true);
1658
1659    /* This function is only called when there were no non-COW clusters, so if
1660     * we can't find any unallocated or COW clusters either, something is
1661     * wrong with our code. */
1662    assert(nb_clusters > 0);
1663
1664    /* Allocate at a given offset in the image file */
1665    alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1666        start_of_cluster(s, *host_offset);
1667    ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1668                                  &nb_clusters);
1669    if (ret < 0) {
1670        goto out;
1671    }
1672
1673    /* Can't extend contiguous allocation */
1674    if (nb_clusters == 0) {
1675        *bytes = 0;
1676        ret = 0;
1677        goto out;
1678    }
1679
1680    assert(alloc_cluster_offset != INV_OFFSET);
1681
1682    /*
1683     * Save info needed for meta data update.
1684     *
1685     * requested_bytes: Number of bytes from the start of the first
1686     * newly allocated cluster to the end of the (possibly shortened
1687     * before) write request.
1688     *
1689     * avail_bytes: Number of bytes from the start of the first
1690     * newly allocated to the end of the last newly allocated cluster.
1691     *
1692     * nb_bytes: The number of bytes from the start of the first
1693     * newly allocated cluster to the end of the area that the write
1694     * request actually writes to (excluding COW at the end)
1695     */
1696    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1697    int avail_bytes = nb_clusters << s->cluster_bits;
1698    int nb_bytes = MIN(requested_bytes, avail_bytes);
1699
1700    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1701    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1702    assert(*bytes != 0);
1703
1704    ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1705                            l2_slice, m, false);
1706    if (ret < 0) {
1707        goto out;
1708    }
1709
1710    ret = 1;
1711
1712out:
1713    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1714    return ret;
1715}
1716
1717/*
1718 * For a given area on the virtual disk defined by @offset and @bytes,
1719 * find the corresponding area on the qcow2 image, allocating new
1720 * clusters (or subclusters) if necessary. The result can span a
1721 * combination of allocated and previously unallocated clusters.
1722 *
1723 * Note that offset may not be cluster aligned. In this case, the returned
1724 * *host_offset points to exact byte referenced by offset and therefore
1725 * isn't cluster aligned as well.
1726 *
1727 * On return, @host_offset is set to the beginning of the requested
1728 * area. This area is guaranteed to be contiguous on the qcow2 file
1729 * but it can be smaller than initially requested. In this case @bytes
1730 * is updated with the actual size.
1731 *
1732 * If any clusters or subclusters were allocated then @m contains a
1733 * list with the information of all the affected regions. Note that
1734 * this can happen regardless of whether this function succeeds or
1735 * not. The caller is responsible for updating the L2 metadata of the
1736 * allocated clusters (on success) or freeing them (on failure), and
1737 * for clearing the contents of @m afterwards in both cases.
1738 *
1739 * If the request conflicts with another write request in flight, the coroutine
1740 * is queued and will be reentered when the dependency has completed.
1741 *
1742 * Return 0 on success and -errno in error cases
1743 */
1744int qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1745                            unsigned int *bytes, uint64_t *host_offset,
1746                            QCowL2Meta **m)
1747{
1748    BDRVQcow2State *s = bs->opaque;
1749    uint64_t start, remaining;
1750    uint64_t cluster_offset;
1751    uint64_t cur_bytes;
1752    int ret;
1753
1754    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1755
1756again:
1757    start = offset;
1758    remaining = *bytes;
1759    cluster_offset = INV_OFFSET;
1760    *host_offset = INV_OFFSET;
1761    cur_bytes = 0;
1762    *m = NULL;
1763
1764    while (true) {
1765
1766        if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1767            *host_offset = cluster_offset;
1768        }
1769
1770        assert(remaining >= cur_bytes);
1771
1772        start           += cur_bytes;
1773        remaining       -= cur_bytes;
1774
1775        if (cluster_offset != INV_OFFSET) {
1776            cluster_offset += cur_bytes;
1777        }
1778
1779        if (remaining == 0) {
1780            break;
1781        }
1782
1783        cur_bytes = remaining;
1784
1785        /*
1786         * Now start gathering as many contiguous clusters as possible:
1787         *
1788         * 1. Check for overlaps with in-flight allocations
1789         *
1790         *      a) Overlap not in the first cluster -> shorten this request and
1791         *         let the caller handle the rest in its next loop iteration.
1792         *
1793         *      b) Real overlaps of two requests. Yield and restart the search
1794         *         for contiguous clusters (the situation could have changed
1795         *         while we were sleeping)
1796         *
1797         *      c) TODO: Request starts in the same cluster as the in-flight
1798         *         allocation ends. Shorten the COW of the in-fight allocation,
1799         *         set cluster_offset to write to the same cluster and set up
1800         *         the right synchronisation between the in-flight request and
1801         *         the new one.
1802         */
1803        ret = handle_dependencies(bs, start, &cur_bytes, m);
1804        if (ret == -EAGAIN) {
1805            /* Currently handle_dependencies() doesn't yield if we already had
1806             * an allocation. If it did, we would have to clean up the L2Meta
1807             * structs before starting over. */
1808            assert(*m == NULL);
1809            goto again;
1810        } else if (ret < 0) {
1811            return ret;
1812        } else if (cur_bytes == 0) {
1813            break;
1814        } else {
1815            /* handle_dependencies() may have decreased cur_bytes (shortened
1816             * the allocations below) so that the next dependency is processed
1817             * correctly during the next loop iteration. */
1818        }
1819
1820        /*
1821         * 2. Count contiguous COPIED clusters.
1822         */
1823        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1824        if (ret < 0) {
1825            return ret;
1826        } else if (ret) {
1827            continue;
1828        } else if (cur_bytes == 0) {
1829            break;
1830        }
1831
1832        /*
1833         * 3. If the request still hasn't completed, allocate new clusters,
1834         *    considering any cluster_offset of steps 1c or 2.
1835         */
1836        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1837        if (ret < 0) {
1838            return ret;
1839        } else if (ret) {
1840            continue;
1841        } else {
1842            assert(cur_bytes == 0);
1843            break;
1844        }
1845    }
1846
1847    *bytes -= remaining;
1848    assert(*bytes > 0);
1849    assert(*host_offset != INV_OFFSET);
1850    assert(offset_into_cluster(s, *host_offset) ==
1851           offset_into_cluster(s, offset));
1852
1853    return 0;
1854}
1855
1856/*
1857 * This discards as many clusters of nb_clusters as possible at once (i.e.
1858 * all clusters in the same L2 slice) and returns the number of discarded
1859 * clusters.
1860 */
1861static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1862                               uint64_t nb_clusters,
1863                               enum qcow2_discard_type type, bool full_discard)
1864{
1865    BDRVQcow2State *s = bs->opaque;
1866    uint64_t *l2_slice;
1867    int l2_index;
1868    int ret;
1869    int i;
1870
1871    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1872    if (ret < 0) {
1873        return ret;
1874    }
1875
1876    /* Limit nb_clusters to one L2 slice */
1877    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1878    assert(nb_clusters <= INT_MAX);
1879
1880    for (i = 0; i < nb_clusters; i++) {
1881        uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1882        uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1883        uint64_t new_l2_entry = old_l2_entry;
1884        uint64_t new_l2_bitmap = old_l2_bitmap;
1885        QCow2ClusterType cluster_type =
1886            qcow2_get_cluster_type(bs, old_l2_entry);
1887
1888        /*
1889         * If full_discard is true, the cluster should not read back as zeroes,
1890         * but rather fall through to the backing file.
1891         *
1892         * If full_discard is false, make sure that a discarded area reads back
1893         * as zeroes for v3 images (we cannot do it for v2 without actually
1894         * writing a zero-filled buffer). We can skip the operation if the
1895         * cluster is already marked as zero, or if it's unallocated and we
1896         * don't have a backing file.
1897         *
1898         * TODO We might want to use bdrv_block_status(bs) here, but we're
1899         * holding s->lock, so that doesn't work today.
1900         */
1901        if (full_discard) {
1902            new_l2_entry = new_l2_bitmap = 0;
1903        } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1904            if (has_subclusters(s)) {
1905                new_l2_entry = 0;
1906                new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1907            } else {
1908                new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1909            }
1910        }
1911
1912        if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1913            continue;
1914        }
1915
1916        /* First remove L2 entries */
1917        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1918        set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1919        if (has_subclusters(s)) {
1920            set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1921        }
1922        /* Then decrease the refcount */
1923        qcow2_free_any_cluster(bs, old_l2_entry, type);
1924    }
1925
1926    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1927
1928    return nb_clusters;
1929}
1930
1931int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1932                          uint64_t bytes, enum qcow2_discard_type type,
1933                          bool full_discard)
1934{
1935    BDRVQcow2State *s = bs->opaque;
1936    uint64_t end_offset = offset + bytes;
1937    uint64_t nb_clusters;
1938    int64_t cleared;
1939    int ret;
1940
1941    /* Caller must pass aligned values, except at image end */
1942    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1943    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1944           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1945
1946    nb_clusters = size_to_clusters(s, bytes);
1947
1948    s->cache_discards = true;
1949
1950    /* Each L2 slice is handled by its own loop iteration */
1951    while (nb_clusters > 0) {
1952        cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1953                                      full_discard);
1954        if (cleared < 0) {
1955            ret = cleared;
1956            goto fail;
1957        }
1958
1959        nb_clusters -= cleared;
1960        offset += (cleared * s->cluster_size);
1961    }
1962
1963    ret = 0;
1964fail:
1965    s->cache_discards = false;
1966    qcow2_process_discards(bs, ret);
1967
1968    return ret;
1969}
1970
1971/*
1972 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1973 * all clusters in the same L2 slice) and returns the number of zeroed
1974 * clusters.
1975 */
1976static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1977                            uint64_t nb_clusters, int flags)
1978{
1979    BDRVQcow2State *s = bs->opaque;
1980    uint64_t *l2_slice;
1981    int l2_index;
1982    int ret;
1983    int i;
1984
1985    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1986    if (ret < 0) {
1987        return ret;
1988    }
1989
1990    /* Limit nb_clusters to one L2 slice */
1991    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1992    assert(nb_clusters <= INT_MAX);
1993
1994    for (i = 0; i < nb_clusters; i++) {
1995        uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1996        uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1997        QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
1998        bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
1999            ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2000        uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2001        uint64_t new_l2_bitmap = old_l2_bitmap;
2002
2003        if (has_subclusters(s)) {
2004            new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2005        } else {
2006            new_l2_entry |= QCOW_OFLAG_ZERO;
2007        }
2008
2009        if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2010            continue;
2011        }
2012
2013        /* First update L2 entries */
2014        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2015        set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2016        if (has_subclusters(s)) {
2017            set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2018        }
2019
2020        /* Then decrease the refcount */
2021        if (unmap) {
2022            qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2023        }
2024    }
2025
2026    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2027
2028    return nb_clusters;
2029}
2030
2031static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2032                               unsigned nb_subclusters)
2033{
2034    BDRVQcow2State *s = bs->opaque;
2035    uint64_t *l2_slice;
2036    uint64_t old_l2_bitmap, l2_bitmap;
2037    int l2_index, ret, sc = offset_to_sc_index(s, offset);
2038
2039    /* For full clusters use zero_in_l2_slice() instead */
2040    assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2041    assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2042    assert(offset_into_subcluster(s, offset) == 0);
2043
2044    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2045    if (ret < 0) {
2046        return ret;
2047    }
2048
2049    switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2050    case QCOW2_CLUSTER_COMPRESSED:
2051        ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2052        goto out;
2053    case QCOW2_CLUSTER_NORMAL:
2054    case QCOW2_CLUSTER_UNALLOCATED:
2055        break;
2056    default:
2057        g_assert_not_reached();
2058    }
2059
2060    old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2061
2062    l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2063    l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2064
2065    if (old_l2_bitmap != l2_bitmap) {
2066        set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2067        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2068    }
2069
2070    ret = 0;
2071out:
2072    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2073
2074    return ret;
2075}
2076
2077int qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2078                             uint64_t bytes, int flags)
2079{
2080    BDRVQcow2State *s = bs->opaque;
2081    uint64_t end_offset = offset + bytes;
2082    uint64_t nb_clusters;
2083    unsigned head, tail;
2084    int64_t cleared;
2085    int ret;
2086
2087    /* If we have to stay in sync with an external data file, zero out
2088     * s->data_file first. */
2089    if (data_file_is_raw(bs)) {
2090        assert(has_data_file(bs));
2091        ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2092        if (ret < 0) {
2093            return ret;
2094        }
2095    }
2096
2097    /* Caller must pass aligned values, except at image end */
2098    assert(offset_into_subcluster(s, offset) == 0);
2099    assert(offset_into_subcluster(s, end_offset) == 0 ||
2100           end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2101
2102    /*
2103     * The zero flag is only supported by version 3 and newer. However, if we
2104     * have no backing file, we can resort to discard in version 2.
2105     */
2106    if (s->qcow_version < 3) {
2107        if (!bs->backing) {
2108            return qcow2_cluster_discard(bs, offset, bytes,
2109                                         QCOW2_DISCARD_REQUEST, false);
2110        }
2111        return -ENOTSUP;
2112    }
2113
2114    head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2115    offset += head;
2116
2117    tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2118        end_offset - MAX(offset, start_of_cluster(s, end_offset));
2119    end_offset -= tail;
2120
2121    s->cache_discards = true;
2122
2123    if (head) {
2124        ret = zero_l2_subclusters(bs, offset - head,
2125                                  size_to_subclusters(s, head));
2126        if (ret < 0) {
2127            goto fail;
2128        }
2129    }
2130
2131    /* Each L2 slice is handled by its own loop iteration */
2132    nb_clusters = size_to_clusters(s, end_offset - offset);
2133
2134    while (nb_clusters > 0) {
2135        cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2136        if (cleared < 0) {
2137            ret = cleared;
2138            goto fail;
2139        }
2140
2141        nb_clusters -= cleared;
2142        offset += (cleared * s->cluster_size);
2143    }
2144
2145    if (tail) {
2146        ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2147        if (ret < 0) {
2148            goto fail;
2149        }
2150    }
2151
2152    ret = 0;
2153fail:
2154    s->cache_discards = false;
2155    qcow2_process_discards(bs, ret);
2156
2157    return ret;
2158}
2159
2160/*
2161 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2162 * non-backed non-pre-allocated zero clusters).
2163 *
2164 * l1_entries and *visited_l1_entries are used to keep track of progress for
2165 * status_cb(). l1_entries contains the total number of L1 entries and
2166 * *visited_l1_entries counts all visited L1 entries.
2167 */
2168static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2169                                      int l1_size, int64_t *visited_l1_entries,
2170                                      int64_t l1_entries,
2171                                      BlockDriverAmendStatusCB *status_cb,
2172                                      void *cb_opaque)
2173{
2174    BDRVQcow2State *s = bs->opaque;
2175    bool is_active_l1 = (l1_table == s->l1_table);
2176    uint64_t *l2_slice = NULL;
2177    unsigned slice, slice_size2, n_slices;
2178    int ret;
2179    int i, j;
2180
2181    /* qcow2_downgrade() is not allowed in images with subclusters */
2182    assert(!has_subclusters(s));
2183
2184    slice_size2 = s->l2_slice_size * l2_entry_size(s);
2185    n_slices = s->cluster_size / slice_size2;
2186
2187    if (!is_active_l1) {
2188        /* inactive L2 tables require a buffer to be stored in when loading
2189         * them from disk */
2190        l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2191        if (l2_slice == NULL) {
2192            return -ENOMEM;
2193        }
2194    }
2195
2196    for (i = 0; i < l1_size; i++) {
2197        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2198        uint64_t l2_refcount;
2199
2200        if (!l2_offset) {
2201            /* unallocated */
2202            (*visited_l1_entries)++;
2203            if (status_cb) {
2204                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2205            }
2206            continue;
2207        }
2208
2209        if (offset_into_cluster(s, l2_offset)) {
2210            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2211                                    PRIx64 " unaligned (L1 index: %#x)",
2212                                    l2_offset, i);
2213            ret = -EIO;
2214            goto fail;
2215        }
2216
2217        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2218                                 &l2_refcount);
2219        if (ret < 0) {
2220            goto fail;
2221        }
2222
2223        for (slice = 0; slice < n_slices; slice++) {
2224            uint64_t slice_offset = l2_offset + slice * slice_size2;
2225            bool l2_dirty = false;
2226            if (is_active_l1) {
2227                /* get active L2 tables from cache */
2228                ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2229                                      (void **)&l2_slice);
2230            } else {
2231                /* load inactive L2 tables from disk */
2232                ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
2233            }
2234            if (ret < 0) {
2235                goto fail;
2236            }
2237
2238            for (j = 0; j < s->l2_slice_size; j++) {
2239                uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2240                int64_t offset = l2_entry & L2E_OFFSET_MASK;
2241                QCow2ClusterType cluster_type =
2242                    qcow2_get_cluster_type(bs, l2_entry);
2243
2244                if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2245                    cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2246                    continue;
2247                }
2248
2249                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2250                    if (!bs->backing) {
2251                        /*
2252                         * not backed; therefore we can simply deallocate the
2253                         * cluster. No need to call set_l2_bitmap(), this
2254                         * function doesn't support images with subclusters.
2255                         */
2256                        set_l2_entry(s, l2_slice, j, 0);
2257                        l2_dirty = true;
2258                        continue;
2259                    }
2260
2261                    offset = qcow2_alloc_clusters(bs, s->cluster_size);
2262                    if (offset < 0) {
2263                        ret = offset;
2264                        goto fail;
2265                    }
2266
2267                    /* The offset must fit in the offset field */
2268                    assert((offset & L2E_OFFSET_MASK) == offset);
2269
2270                    if (l2_refcount > 1) {
2271                        /* For shared L2 tables, set the refcount accordingly
2272                         * (it is already 1 and needs to be l2_refcount) */
2273                        ret = qcow2_update_cluster_refcount(
2274                            bs, offset >> s->cluster_bits,
2275                            refcount_diff(1, l2_refcount), false,
2276                            QCOW2_DISCARD_OTHER);
2277                        if (ret < 0) {
2278                            qcow2_free_clusters(bs, offset, s->cluster_size,
2279                                                QCOW2_DISCARD_OTHER);
2280                            goto fail;
2281                        }
2282                    }
2283                }
2284
2285                if (offset_into_cluster(s, offset)) {
2286                    int l2_index = slice * s->l2_slice_size + j;
2287                    qcow2_signal_corruption(
2288                        bs, true, -1, -1,
2289                        "Cluster allocation offset "
2290                        "%#" PRIx64 " unaligned (L2 offset: %#"
2291                        PRIx64 ", L2 index: %#x)", offset,
2292                        l2_offset, l2_index);
2293                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2294                        qcow2_free_clusters(bs, offset, s->cluster_size,
2295                                            QCOW2_DISCARD_ALWAYS);
2296                    }
2297                    ret = -EIO;
2298                    goto fail;
2299                }
2300
2301                ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2302                                                    s->cluster_size, true);
2303                if (ret < 0) {
2304                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2305                        qcow2_free_clusters(bs, offset, s->cluster_size,
2306                                            QCOW2_DISCARD_ALWAYS);
2307                    }
2308                    goto fail;
2309                }
2310
2311                ret = bdrv_pwrite_zeroes(s->data_file, offset,
2312                                         s->cluster_size, 0);
2313                if (ret < 0) {
2314                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2315                        qcow2_free_clusters(bs, offset, s->cluster_size,
2316                                            QCOW2_DISCARD_ALWAYS);
2317                    }
2318                    goto fail;
2319                }
2320
2321                if (l2_refcount == 1) {
2322                    set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2323                } else {
2324                    set_l2_entry(s, l2_slice, j, offset);
2325                }
2326                /*
2327                 * No need to call set_l2_bitmap() after set_l2_entry() because
2328                 * this function doesn't support images with subclusters.
2329                 */
2330                l2_dirty = true;
2331            }
2332
2333            if (is_active_l1) {
2334                if (l2_dirty) {
2335                    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2336                    qcow2_cache_depends_on_flush(s->l2_table_cache);
2337                }
2338                qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2339            } else {
2340                if (l2_dirty) {
2341                    ret = qcow2_pre_write_overlap_check(
2342                        bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2343                        slice_offset, slice_size2, false);
2344                    if (ret < 0) {
2345                        goto fail;
2346                    }
2347
2348                    ret = bdrv_pwrite(bs->file, slice_offset,
2349                                      l2_slice, slice_size2);
2350                    if (ret < 0) {
2351                        goto fail;
2352                    }
2353                }
2354            }
2355        }
2356
2357        (*visited_l1_entries)++;
2358        if (status_cb) {
2359            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2360        }
2361    }
2362
2363    ret = 0;
2364
2365fail:
2366    if (l2_slice) {
2367        if (!is_active_l1) {
2368            qemu_vfree(l2_slice);
2369        } else {
2370            qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2371        }
2372    }
2373    return ret;
2374}
2375
2376/*
2377 * For backed images, expands all zero clusters on the image. For non-backed
2378 * images, deallocates all non-pre-allocated zero clusters (and claims the
2379 * allocation for pre-allocated ones). This is important for downgrading to a
2380 * qcow2 version which doesn't yet support metadata zero clusters.
2381 */
2382int qcow2_expand_zero_clusters(BlockDriverState *bs,
2383                               BlockDriverAmendStatusCB *status_cb,
2384                               void *cb_opaque)
2385{
2386    BDRVQcow2State *s = bs->opaque;
2387    uint64_t *l1_table = NULL;
2388    int64_t l1_entries = 0, visited_l1_entries = 0;
2389    int ret;
2390    int i, j;
2391
2392    if (status_cb) {
2393        l1_entries = s->l1_size;
2394        for (i = 0; i < s->nb_snapshots; i++) {
2395            l1_entries += s->snapshots[i].l1_size;
2396        }
2397    }
2398
2399    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2400                                     &visited_l1_entries, l1_entries,
2401                                     status_cb, cb_opaque);
2402    if (ret < 0) {
2403        goto fail;
2404    }
2405
2406    /* Inactive L1 tables may point to active L2 tables - therefore it is
2407     * necessary to flush the L2 table cache before trying to access the L2
2408     * tables pointed to by inactive L1 entries (else we might try to expand
2409     * zero clusters that have already been expanded); furthermore, it is also
2410     * necessary to empty the L2 table cache, since it may contain tables which
2411     * are now going to be modified directly on disk, bypassing the cache.
2412     * qcow2_cache_empty() does both for us. */
2413    ret = qcow2_cache_empty(bs, s->l2_table_cache);
2414    if (ret < 0) {
2415        goto fail;
2416    }
2417
2418    for (i = 0; i < s->nb_snapshots; i++) {
2419        int l1_size2;
2420        uint64_t *new_l1_table;
2421        Error *local_err = NULL;
2422
2423        ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2424                                   s->snapshots[i].l1_size, L1E_SIZE,
2425                                   QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2426                                   &local_err);
2427        if (ret < 0) {
2428            error_report_err(local_err);
2429            goto fail;
2430        }
2431
2432        l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2433        new_l1_table = g_try_realloc(l1_table, l1_size2);
2434
2435        if (!new_l1_table) {
2436            ret = -ENOMEM;
2437            goto fail;
2438        }
2439
2440        l1_table = new_l1_table;
2441
2442        ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2443                         l1_table, l1_size2);
2444        if (ret < 0) {
2445            goto fail;
2446        }
2447
2448        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2449            be64_to_cpus(&l1_table[j]);
2450        }
2451
2452        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2453                                         &visited_l1_entries, l1_entries,
2454                                         status_cb, cb_opaque);
2455        if (ret < 0) {
2456            goto fail;
2457        }
2458    }
2459
2460    ret = 0;
2461
2462fail:
2463    g_free(l1_table);
2464    return ret;
2465}
2466