qemu/contrib/plugins/cache.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
   3 *
   4 * License: GNU GPL, version 2 or later.
   5 *   See the COPYING file in the top-level directory.
   6 */
   7
   8#include <inttypes.h>
   9#include <stdio.h>
  10#include <glib.h>
  11
  12#include <qemu-plugin.h>
  13
  14QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
  15
  16static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
  17
  18static GHashTable *miss_ht;
  19
  20static GMutex mtx;
  21static GRand *rng;
  22
  23static int limit;
  24static bool sys;
  25
  26static uint64_t dmem_accesses;
  27static uint64_t dmisses;
  28
  29static uint64_t imem_accesses;
  30static uint64_t imisses;
  31
  32enum EvictionPolicy {
  33    LRU,
  34    FIFO,
  35    RAND,
  36};
  37
  38enum EvictionPolicy policy;
  39
  40/*
  41 * A CacheSet is a set of cache blocks. A memory block that maps to a set can be
  42 * put in any of the blocks inside the set. The number of block per set is
  43 * called the associativity (assoc).
  44 *
  45 * Each block contains the the stored tag and a valid bit. Since this is not
  46 * a functional simulator, the data itself is not stored. We only identify
  47 * whether a block is in the cache or not by searching for its tag.
  48 *
  49 * In order to search for memory data in the cache, the set identifier and tag
  50 * are extracted from the address and the set is probed to see whether a tag
  51 * match occur.
  52 *
  53 * An address is logically divided into three portions: The block offset,
  54 * the set number, and the tag.
  55 *
  56 * The set number is used to identify the set in which the block may exist.
  57 * The tag is compared against all the tags of a set to search for a match. If a
  58 * match is found, then the access is a hit.
  59 *
  60 * The CacheSet also contains bookkeaping information about eviction details.
  61 */
  62
  63typedef struct {
  64    uint64_t tag;
  65    bool valid;
  66} CacheBlock;
  67
  68typedef struct {
  69    CacheBlock *blocks;
  70    uint64_t *lru_priorities;
  71    uint64_t lru_gen_counter;
  72    GQueue *fifo_queue;
  73} CacheSet;
  74
  75typedef struct {
  76    CacheSet *sets;
  77    int num_sets;
  78    int cachesize;
  79    int assoc;
  80    int blksize_shift;
  81    uint64_t set_mask;
  82    uint64_t tag_mask;
  83} Cache;
  84
  85typedef struct {
  86    char *disas_str;
  87    const char *symbol;
  88    uint64_t addr;
  89    uint64_t dmisses;
  90    uint64_t imisses;
  91} InsnData;
  92
  93void (*update_hit)(Cache *cache, int set, int blk);
  94void (*update_miss)(Cache *cache, int set, int blk);
  95
  96void (*metadata_init)(Cache *cache);
  97void (*metadata_destroy)(Cache *cache);
  98
  99Cache *dcache, *icache;
 100
 101static int pow_of_two(int num)
 102{
 103    g_assert((num & (num - 1)) == 0);
 104    int ret = 0;
 105    while (num /= 2) {
 106        ret++;
 107    }
 108    return ret;
 109}
 110
 111/*
 112 * LRU evection policy: For each set, a generation counter is maintained
 113 * alongside a priority array.
 114 *
 115 * On each set access, the generation counter is incremented.
 116 *
 117 * On a cache hit: The hit-block is assigned the current generation counter,
 118 * indicating that it is the most recently used block.
 119 *
 120 * On a cache miss: The block with the least priority is searched and replaced
 121 * with the newly-cached block, of which the priority is set to the current
 122 * generation number.
 123 */
 124
 125static void lru_priorities_init(Cache *cache)
 126{
 127    int i;
 128
 129    for (i = 0; i < cache->num_sets; i++) {
 130        cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc);
 131        cache->sets[i].lru_gen_counter = 0;
 132    }
 133}
 134
 135static void lru_update_blk(Cache *cache, int set_idx, int blk_idx)
 136{
 137    CacheSet *set = &cache->sets[set_idx];
 138    set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter;
 139    set->lru_gen_counter++;
 140}
 141
 142static int lru_get_lru_block(Cache *cache, int set_idx)
 143{
 144    int i, min_idx, min_priority;
 145
 146    min_priority = cache->sets[set_idx].lru_priorities[0];
 147    min_idx = 0;
 148
 149    for (i = 1; i < cache->assoc; i++) {
 150        if (cache->sets[set_idx].lru_priorities[i] < min_priority) {
 151            min_priority = cache->sets[set_idx].lru_priorities[i];
 152            min_idx = i;
 153        }
 154    }
 155    return min_idx;
 156}
 157
 158static void lru_priorities_destroy(Cache *cache)
 159{
 160    int i;
 161
 162    for (i = 0; i < cache->num_sets; i++) {
 163        g_free(cache->sets[i].lru_priorities);
 164    }
 165}
 166
 167/*
 168 * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that
 169 * stores accesses to the cache.
 170 *
 171 * On a compulsory miss: The block index is enqueued to the fifo_queue to
 172 * indicate that it's the latest cached block.
 173 *
 174 * On a conflict miss: The first-in block is removed from the cache and the new
 175 * block is put in its place and enqueued to the FIFO queue.
 176 */
 177
 178static void fifo_init(Cache *cache)
 179{
 180    int i;
 181
 182    for (i = 0; i < cache->num_sets; i++) {
 183        cache->sets[i].fifo_queue = g_queue_new();
 184    }
 185}
 186
 187static int fifo_get_first_block(Cache *cache, int set)
 188{
 189    GQueue *q = cache->sets[set].fifo_queue;
 190    return GPOINTER_TO_INT(g_queue_pop_tail(q));
 191}
 192
 193static void fifo_update_on_miss(Cache *cache, int set, int blk_idx)
 194{
 195    GQueue *q = cache->sets[set].fifo_queue;
 196    g_queue_push_head(q, GINT_TO_POINTER(blk_idx));
 197}
 198
 199static void fifo_destroy(Cache *cache)
 200{
 201    int i;
 202
 203    for (i = 0; i < cache->num_sets; i++) {
 204        g_queue_free(cache->sets[i].fifo_queue);
 205    }
 206}
 207
 208static inline uint64_t extract_tag(Cache *cache, uint64_t addr)
 209{
 210    return addr & cache->tag_mask;
 211}
 212
 213static inline uint64_t extract_set(Cache *cache, uint64_t addr)
 214{
 215    return (addr & cache->set_mask) >> cache->blksize_shift;
 216}
 217
 218static const char *cache_config_error(int blksize, int assoc, int cachesize)
 219{
 220    if (cachesize % blksize != 0) {
 221        return "cache size must be divisible by block size";
 222    } else if (cachesize % (blksize * assoc) != 0) {
 223        return "cache size must be divisible by set size (assoc * block size)";
 224    } else {
 225        return NULL;
 226    }
 227}
 228
 229static bool bad_cache_params(int blksize, int assoc, int cachesize)
 230{
 231    return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0);
 232}
 233
 234static Cache *cache_init(int blksize, int assoc, int cachesize)
 235{
 236    if (bad_cache_params(blksize, assoc, cachesize)) {
 237        return NULL;
 238    }
 239
 240    Cache *cache;
 241    int i;
 242    uint64_t blk_mask;
 243
 244    cache = g_new(Cache, 1);
 245    cache->assoc = assoc;
 246    cache->cachesize = cachesize;
 247    cache->num_sets = cachesize / (blksize * assoc);
 248    cache->sets = g_new(CacheSet, cache->num_sets);
 249    cache->blksize_shift = pow_of_two(blksize);
 250
 251    for (i = 0; i < cache->num_sets; i++) {
 252        cache->sets[i].blocks = g_new0(CacheBlock, assoc);
 253    }
 254
 255    blk_mask = blksize - 1;
 256    cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift);
 257    cache->tag_mask = ~(cache->set_mask | blk_mask);
 258
 259    if (metadata_init) {
 260        metadata_init(cache);
 261    }
 262
 263    return cache;
 264}
 265
 266static int get_invalid_block(Cache *cache, uint64_t set)
 267{
 268    int i;
 269
 270    for (i = 0; i < cache->assoc; i++) {
 271        if (!cache->sets[set].blocks[i].valid) {
 272            return i;
 273        }
 274    }
 275
 276    return -1;
 277}
 278
 279static int get_replaced_block(Cache *cache, int set)
 280{
 281    switch (policy) {
 282    case RAND:
 283        return g_rand_int_range(rng, 0, cache->assoc);
 284    case LRU:
 285        return lru_get_lru_block(cache, set);
 286    case FIFO:
 287        return fifo_get_first_block(cache, set);
 288    default:
 289        g_assert_not_reached();
 290    }
 291}
 292
 293static int in_cache(Cache *cache, uint64_t addr)
 294{
 295    int i;
 296    uint64_t tag, set;
 297
 298    tag = extract_tag(cache, addr);
 299    set = extract_set(cache, addr);
 300
 301    for (i = 0; i < cache->assoc; i++) {
 302        if (cache->sets[set].blocks[i].tag == tag &&
 303                cache->sets[set].blocks[i].valid) {
 304            return i;
 305        }
 306    }
 307
 308    return -1;
 309}
 310
 311/**
 312 * access_cache(): Simulate a cache access
 313 * @cache: The cache under simulation
 314 * @addr: The address of the requested memory location
 315 *
 316 * Returns true if the requsted data is hit in the cache and false when missed.
 317 * The cache is updated on miss for the next access.
 318 */
 319static bool access_cache(Cache *cache, uint64_t addr)
 320{
 321    int hit_blk, replaced_blk;
 322    uint64_t tag, set;
 323
 324    tag = extract_tag(cache, addr);
 325    set = extract_set(cache, addr);
 326
 327    hit_blk = in_cache(cache, addr);
 328    if (hit_blk != -1) {
 329        if (update_hit) {
 330            update_hit(cache, set, hit_blk);
 331        }
 332        return true;
 333    }
 334
 335    replaced_blk = get_invalid_block(cache, set);
 336
 337    if (replaced_blk == -1) {
 338        replaced_blk = get_replaced_block(cache, set);
 339    }
 340
 341    if (update_miss) {
 342        update_miss(cache, set, replaced_blk);
 343    }
 344
 345    cache->sets[set].blocks[replaced_blk].tag = tag;
 346    cache->sets[set].blocks[replaced_blk].valid = true;
 347
 348    return false;
 349}
 350
 351static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info,
 352                            uint64_t vaddr, void *userdata)
 353{
 354    uint64_t effective_addr;
 355    struct qemu_plugin_hwaddr *hwaddr;
 356    InsnData *insn;
 357
 358    hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
 359    if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
 360        return;
 361    }
 362
 363    effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr;
 364
 365    g_mutex_lock(&mtx);
 366    if (!access_cache(dcache, effective_addr)) {
 367        insn = (InsnData *) userdata;
 368        insn->dmisses++;
 369        dmisses++;
 370    }
 371    dmem_accesses++;
 372    g_mutex_unlock(&mtx);
 373}
 374
 375static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata)
 376{
 377    uint64_t insn_addr;
 378    InsnData *insn;
 379
 380    g_mutex_lock(&mtx);
 381    insn_addr = ((InsnData *) userdata)->addr;
 382
 383    if (!access_cache(icache, insn_addr)) {
 384        insn = (InsnData *) userdata;
 385        insn->imisses++;
 386        imisses++;
 387    }
 388    imem_accesses++;
 389    g_mutex_unlock(&mtx);
 390}
 391
 392static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
 393{
 394    size_t n_insns;
 395    size_t i;
 396    InsnData *data;
 397
 398    n_insns = qemu_plugin_tb_n_insns(tb);
 399    for (i = 0; i < n_insns; i++) {
 400        struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
 401        uint64_t effective_addr;
 402
 403        if (sys) {
 404            effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn);
 405        } else {
 406            effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn);
 407        }
 408
 409        /*
 410         * Instructions might get translated multiple times, we do not create
 411         * new entries for those instructions. Instead, we fetch the same
 412         * entry from the hash table and register it for the callback again.
 413         */
 414        g_mutex_lock(&mtx);
 415        data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr));
 416        if (data == NULL) {
 417            data = g_new0(InsnData, 1);
 418            data->disas_str = qemu_plugin_insn_disas(insn);
 419            data->symbol = qemu_plugin_insn_symbol(insn);
 420            data->addr = effective_addr;
 421            g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr),
 422                               (gpointer) data);
 423        }
 424        g_mutex_unlock(&mtx);
 425
 426        qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access,
 427                                         QEMU_PLUGIN_CB_NO_REGS,
 428                                         rw, data);
 429
 430        qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec,
 431                                               QEMU_PLUGIN_CB_NO_REGS, data);
 432    }
 433}
 434
 435static void insn_free(gpointer data)
 436{
 437    InsnData *insn = (InsnData *) data;
 438    g_free(insn->disas_str);
 439    g_free(insn);
 440}
 441
 442static void cache_free(Cache *cache)
 443{
 444    for (int i = 0; i < cache->num_sets; i++) {
 445        g_free(cache->sets[i].blocks);
 446    }
 447
 448    if (metadata_destroy) {
 449        metadata_destroy(cache);
 450    }
 451
 452    g_free(cache->sets);
 453    g_free(cache);
 454}
 455
 456static int dcmp(gconstpointer a, gconstpointer b)
 457{
 458    InsnData *insn_a = (InsnData *) a;
 459    InsnData *insn_b = (InsnData *) b;
 460
 461    return insn_a->dmisses < insn_b->dmisses ? 1 : -1;
 462}
 463
 464static int icmp(gconstpointer a, gconstpointer b)
 465{
 466    InsnData *insn_a = (InsnData *) a;
 467    InsnData *insn_b = (InsnData *) b;
 468
 469    return insn_a->imisses < insn_b->imisses ? 1 : -1;
 470}
 471
 472static void log_stats(void)
 473{
 474    g_autoptr(GString) rep = g_string_new("");
 475    g_string_append_printf(rep,
 476        "Data accesses: %lu, Misses: %lu\nMiss rate: %lf%%\n\n",
 477        dmem_accesses,
 478        dmisses,
 479        ((double) dmisses / (double) dmem_accesses) * 100.0);
 480
 481    g_string_append_printf(rep,
 482        "Instruction accesses: %lu, Misses: %lu\nMiss rate: %lf%%\n\n",
 483        imem_accesses,
 484        imisses,
 485        ((double) imisses / (double) imem_accesses) * 100.0);
 486
 487    qemu_plugin_outs(rep->str);
 488}
 489
 490static void log_top_insns(void)
 491{
 492    int i;
 493    GList *curr, *miss_insns;
 494    InsnData *insn;
 495
 496    miss_insns = g_hash_table_get_values(miss_ht);
 497    miss_insns = g_list_sort(miss_insns, dcmp);
 498    g_autoptr(GString) rep = g_string_new("");
 499    g_string_append_printf(rep, "%s", "address, data misses, instruction\n");
 500
 501    for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
 502        insn = (InsnData *) curr->data;
 503        g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
 504        if (insn->symbol) {
 505            g_string_append_printf(rep, " (%s)", insn->symbol);
 506        }
 507        g_string_append_printf(rep, ", %ld, %s\n", insn->dmisses,
 508                               insn->disas_str);
 509    }
 510
 511    miss_insns = g_list_sort(miss_insns, icmp);
 512    g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n");
 513
 514    for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
 515        insn = (InsnData *) curr->data;
 516        g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
 517        if (insn->symbol) {
 518            g_string_append_printf(rep, " (%s)", insn->symbol);
 519        }
 520        g_string_append_printf(rep, ", %ld, %s\n", insn->imisses,
 521                               insn->disas_str);
 522    }
 523
 524    qemu_plugin_outs(rep->str);
 525    g_list_free(miss_insns);
 526}
 527
 528static void plugin_exit(qemu_plugin_id_t id, void *p)
 529{
 530    log_stats();
 531    log_top_insns();
 532
 533    cache_free(dcache);
 534    cache_free(icache);
 535
 536    g_hash_table_destroy(miss_ht);
 537}
 538
 539static void policy_init(void)
 540{
 541    switch (policy) {
 542    case LRU:
 543        update_hit = lru_update_blk;
 544        update_miss = lru_update_blk;
 545        metadata_init = lru_priorities_init;
 546        metadata_destroy = lru_priorities_destroy;
 547        break;
 548    case FIFO:
 549        update_miss = fifo_update_on_miss;
 550        metadata_init = fifo_init;
 551        metadata_destroy = fifo_destroy;
 552        break;
 553    case RAND:
 554        rng = g_rand_new();
 555        break;
 556    default:
 557        g_assert_not_reached();
 558    }
 559}
 560
 561QEMU_PLUGIN_EXPORT
 562int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
 563                        int argc, char **argv)
 564{
 565    int i;
 566    int iassoc, iblksize, icachesize;
 567    int dassoc, dblksize, dcachesize;
 568
 569    limit = 32;
 570    sys = info->system_emulation;
 571
 572    dassoc = 8;
 573    dblksize = 64;
 574    dcachesize = dblksize * dassoc * 32;
 575
 576    iassoc = 8;
 577    iblksize = 64;
 578    icachesize = iblksize * iassoc * 32;
 579
 580    policy = LRU;
 581
 582    for (i = 0; i < argc; i++) {
 583        char *opt = argv[i];
 584        if (g_str_has_prefix(opt, "iblksize=")) {
 585            iblksize = g_ascii_strtoll(opt + 9, NULL, 10);
 586        } else if (g_str_has_prefix(opt, "iassoc=")) {
 587            iassoc = g_ascii_strtoll(opt + 7, NULL, 10);
 588        } else if (g_str_has_prefix(opt, "icachesize=")) {
 589            icachesize = g_ascii_strtoll(opt + 11, NULL, 10);
 590        } else if (g_str_has_prefix(opt, "dblksize=")) {
 591            dblksize = g_ascii_strtoll(opt + 9, NULL, 10);
 592        } else if (g_str_has_prefix(opt, "dassoc=")) {
 593            dassoc = g_ascii_strtoll(opt + 7, NULL, 10);
 594        } else if (g_str_has_prefix(opt, "dcachesize=")) {
 595            dcachesize = g_ascii_strtoll(opt + 11, NULL, 10);
 596        } else if (g_str_has_prefix(opt, "limit=")) {
 597            limit = g_ascii_strtoll(opt + 6, NULL, 10);
 598        } else if (g_str_has_prefix(opt, "evict=")) {
 599            gchar *p = opt + 6;
 600            if (g_strcmp0(p, "rand") == 0) {
 601                policy = RAND;
 602            } else if (g_strcmp0(p, "lru") == 0) {
 603                policy = LRU;
 604            } else if (g_strcmp0(p, "fifo") == 0) {
 605                policy = FIFO;
 606            } else {
 607                fprintf(stderr, "invalid eviction policy: %s\n", opt);
 608                return -1;
 609            }
 610        } else {
 611            fprintf(stderr, "option parsing failed: %s\n", opt);
 612            return -1;
 613        }
 614    }
 615
 616    policy_init();
 617
 618    dcache = cache_init(dblksize, dassoc, dcachesize);
 619    if (!dcache) {
 620        const char *err = cache_config_error(dblksize, dassoc, dcachesize);
 621        fprintf(stderr, "dcache cannot be constructed from given parameters\n");
 622        fprintf(stderr, "%s\n", err);
 623        return -1;
 624    }
 625
 626    icache = cache_init(iblksize, iassoc, icachesize);
 627    if (!icache) {
 628        const char *err = cache_config_error(iblksize, iassoc, icachesize);
 629        fprintf(stderr, "icache cannot be constructed from given parameters\n");
 630        fprintf(stderr, "%s\n", err);
 631        return -1;
 632    }
 633
 634    qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
 635    qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
 636
 637    miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free);
 638
 639    return 0;
 640}
 641