qemu/docs/devel/qom.rst
<<
>>
Prefs
   1===========================
   2The QEMU Object Model (QOM)
   3===========================
   4
   5.. highlight:: c
   6
   7The QEMU Object Model provides a framework for registering user creatable
   8types and instantiating objects from those types.  QOM provides the following
   9features:
  10
  11- System for dynamically registering types
  12- Support for single-inheritance of types
  13- Multiple inheritance of stateless interfaces
  14
  15.. code-block:: c
  16   :caption: Creating a minimal type
  17
  18   #include "qdev.h"
  19
  20   #define TYPE_MY_DEVICE "my-device"
  21
  22   // No new virtual functions: we can reuse the typedef for the
  23   // superclass.
  24   typedef DeviceClass MyDeviceClass;
  25   typedef struct MyDevice
  26   {
  27       DeviceState parent;
  28
  29       int reg0, reg1, reg2;
  30   } MyDevice;
  31
  32   static const TypeInfo my_device_info = {
  33       .name = TYPE_MY_DEVICE,
  34       .parent = TYPE_DEVICE,
  35       .instance_size = sizeof(MyDevice),
  36   };
  37
  38   static void my_device_register_types(void)
  39   {
  40       type_register_static(&my_device_info);
  41   }
  42
  43   type_init(my_device_register_types)
  44
  45In the above example, we create a simple type that is described by #TypeInfo.
  46#TypeInfo describes information about the type including what it inherits
  47from, the instance and class size, and constructor/destructor hooks.
  48
  49Alternatively several static types could be registered using helper macro
  50DEFINE_TYPES()
  51
  52.. code-block:: c
  53
  54   static const TypeInfo device_types_info[] = {
  55       {
  56           .name = TYPE_MY_DEVICE_A,
  57           .parent = TYPE_DEVICE,
  58           .instance_size = sizeof(MyDeviceA),
  59       },
  60       {
  61           .name = TYPE_MY_DEVICE_B,
  62           .parent = TYPE_DEVICE,
  63           .instance_size = sizeof(MyDeviceB),
  64       },
  65   };
  66
  67   DEFINE_TYPES(device_types_info)
  68
  69Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
  70are instantiated dynamically but there is only ever one instance for any
  71given type.  The #ObjectClass typically holds a table of function pointers
  72for the virtual methods implemented by this type.
  73
  74Using object_new(), a new #Object derivative will be instantiated.  You can
  75cast an #Object to a subclass (or base-class) type using
  76object_dynamic_cast().  You typically want to define macro wrappers around
  77OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
  78specific type:
  79
  80.. code-block:: c
  81   :caption: Typecasting macros
  82
  83   #define MY_DEVICE_GET_CLASS(obj) \
  84      OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
  85   #define MY_DEVICE_CLASS(klass) \
  86      OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
  87   #define MY_DEVICE(obj) \
  88      OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
  89
  90In case the ObjectClass implementation can be built as module a
  91module_obj() line must be added to make sure qemu loads the module
  92when the object is needed.
  93
  94.. code-block:: c
  95
  96   module_obj(TYPE_MY_DEVICE);
  97
  98Class Initialization
  99====================
 100
 101Before an object is initialized, the class for the object must be
 102initialized.  There is only one class object for all instance objects
 103that is created lazily.
 104
 105Classes are initialized by first initializing any parent classes (if
 106necessary).  After the parent class object has initialized, it will be
 107copied into the current class object and any additional storage in the
 108class object is zero filled.
 109
 110The effect of this is that classes automatically inherit any virtual
 111function pointers that the parent class has already initialized.  All
 112other fields will be zero filled.
 113
 114Once all of the parent classes have been initialized, #TypeInfo::class_init
 115is called to let the class being instantiated provide default initialize for
 116its virtual functions.  Here is how the above example might be modified
 117to introduce an overridden virtual function:
 118
 119.. code-block:: c
 120   :caption: Overriding a virtual function
 121
 122   #include "qdev.h"
 123
 124   void my_device_class_init(ObjectClass *klass, void *class_data)
 125   {
 126       DeviceClass *dc = DEVICE_CLASS(klass);
 127       dc->reset = my_device_reset;
 128   }
 129
 130   static const TypeInfo my_device_info = {
 131       .name = TYPE_MY_DEVICE,
 132       .parent = TYPE_DEVICE,
 133       .instance_size = sizeof(MyDevice),
 134       .class_init = my_device_class_init,
 135   };
 136
 137Introducing new virtual methods requires a class to define its own
 138struct and to add a .class_size member to the #TypeInfo.  Each method
 139will also have a wrapper function to call it easily:
 140
 141.. code-block:: c
 142   :caption: Defining an abstract class
 143
 144   #include "qdev.h"
 145
 146   typedef struct MyDeviceClass
 147   {
 148       DeviceClass parent;
 149
 150       void (*frobnicate) (MyDevice *obj);
 151   } MyDeviceClass;
 152
 153   static const TypeInfo my_device_info = {
 154       .name = TYPE_MY_DEVICE,
 155       .parent = TYPE_DEVICE,
 156       .instance_size = sizeof(MyDevice),
 157       .abstract = true, // or set a default in my_device_class_init
 158       .class_size = sizeof(MyDeviceClass),
 159   };
 160
 161   void my_device_frobnicate(MyDevice *obj)
 162   {
 163       MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
 164
 165       klass->frobnicate(obj);
 166   }
 167
 168Interfaces
 169==========
 170
 171Interfaces allow a limited form of multiple inheritance.  Instances are
 172similar to normal types except for the fact that are only defined by
 173their classes and never carry any state.  As a consequence, a pointer to
 174an interface instance should always be of incomplete type in order to be
 175sure it cannot be dereferenced.  That is, you should define the
 176'typedef struct SomethingIf SomethingIf' so that you can pass around
 177``SomethingIf *si`` arguments, but not define a ``struct SomethingIf { ... }``.
 178The only things you can validly do with a ``SomethingIf *`` are to pass it as
 179an argument to a method on its corresponding SomethingIfClass, or to
 180dynamically cast it to an object that implements the interface.
 181
 182Methods
 183=======
 184
 185A *method* is a function within the namespace scope of
 186a class. It usually operates on the object instance by passing it as a
 187strongly-typed first argument.
 188If it does not operate on an object instance, it is dubbed
 189*class method*.
 190
 191Methods cannot be overloaded. That is, the #ObjectClass and method name
 192uniquely identity the function to be called; the signature does not vary
 193except for trailing varargs.
 194
 195Methods are always *virtual*. Overriding a method in
 196#TypeInfo.class_init of a subclass leads to any user of the class obtained
 197via OBJECT_GET_CLASS() accessing the overridden function.
 198The original function is not automatically invoked. It is the responsibility
 199of the overriding class to determine whether and when to invoke the method
 200being overridden.
 201
 202To invoke the method being overridden, the preferred solution is to store
 203the original value in the overriding class before overriding the method.
 204This corresponds to ``{super,base}.method(...)`` in Java and C#
 205respectively; this frees the overriding class from hardcoding its parent
 206class, which someone might choose to change at some point.
 207
 208.. code-block:: c
 209   :caption: Overriding a virtual method
 210
 211   typedef struct MyState MyState;
 212
 213   typedef void (*MyDoSomething)(MyState *obj);
 214
 215   typedef struct MyClass {
 216       ObjectClass parent_class;
 217
 218       MyDoSomething do_something;
 219   } MyClass;
 220
 221   static void my_do_something(MyState *obj)
 222   {
 223       // do something
 224   }
 225
 226   static void my_class_init(ObjectClass *oc, void *data)
 227   {
 228       MyClass *mc = MY_CLASS(oc);
 229
 230       mc->do_something = my_do_something;
 231   }
 232
 233   static const TypeInfo my_type_info = {
 234       .name = TYPE_MY,
 235       .parent = TYPE_OBJECT,
 236       .instance_size = sizeof(MyState),
 237       .class_size = sizeof(MyClass),
 238       .class_init = my_class_init,
 239   };
 240
 241   typedef struct DerivedClass {
 242       MyClass parent_class;
 243
 244       MyDoSomething parent_do_something;
 245   } DerivedClass;
 246
 247   static void derived_do_something(MyState *obj)
 248   {
 249       DerivedClass *dc = DERIVED_GET_CLASS(obj);
 250
 251       // do something here
 252       dc->parent_do_something(obj);
 253       // do something else here
 254   }
 255
 256   static void derived_class_init(ObjectClass *oc, void *data)
 257   {
 258       MyClass *mc = MY_CLASS(oc);
 259       DerivedClass *dc = DERIVED_CLASS(oc);
 260
 261       dc->parent_do_something = mc->do_something;
 262       mc->do_something = derived_do_something;
 263   }
 264
 265   static const TypeInfo derived_type_info = {
 266       .name = TYPE_DERIVED,
 267       .parent = TYPE_MY,
 268       .class_size = sizeof(DerivedClass),
 269       .class_init = derived_class_init,
 270   };
 271
 272Alternatively, object_class_by_name() can be used to obtain the class and
 273its non-overridden methods for a specific type. This would correspond to
 274``MyClass::method(...)`` in C++.
 275
 276The first example of such a QOM method was #CPUClass.reset,
 277another example is #DeviceClass.realize.
 278
 279Standard type declaration and definition macros
 280===============================================
 281
 282A lot of the code outlined above follows a standard pattern and naming
 283convention. To reduce the amount of boilerplate code that needs to be
 284written for a new type there are two sets of macros to generate the
 285common parts in a standard format.
 286
 287A type is declared using the OBJECT_DECLARE macro family. In types
 288which do not require any virtual functions in the class, the
 289OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed
 290in the header file:
 291
 292.. code-block:: c
 293   :caption: Declaring a simple type
 294
 295   OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, my_device,
 296                              MY_DEVICE, DEVICE)
 297
 298This is equivalent to the following:
 299
 300.. code-block:: c
 301   :caption: Expansion from declaring a simple type
 302
 303   typedef struct MyDevice MyDevice;
 304   typedef struct MyDeviceClass MyDeviceClass;
 305
 306   G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref)
 307
 308   #define MY_DEVICE_GET_CLASS(void *obj) \
 309           OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
 310   #define MY_DEVICE_CLASS(void *klass) \
 311           OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
 312   #define MY_DEVICE(void *obj)
 313           OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
 314
 315   struct MyDeviceClass {
 316       DeviceClass parent_class;
 317   };
 318
 319The 'struct MyDevice' needs to be declared separately.
 320If the type requires virtual functions to be declared in the class
 321struct, then the alternative OBJECT_DECLARE_TYPE() macro can be
 322used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without
 323the 'struct MyDeviceClass' definition.
 324
 325To implement the type, the OBJECT_DEFINE macro family is available.
 326In the simple case the OBJECT_DEFINE_TYPE macro is suitable:
 327
 328.. code-block:: c
 329   :caption: Defining a simple type
 330
 331   OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
 332
 333This is equivalent to the following:
 334
 335.. code-block:: c
 336   :caption: Expansion from defining a simple type
 337
 338   static void my_device_finalize(Object *obj);
 339   static void my_device_class_init(ObjectClass *oc, void *data);
 340   static void my_device_init(Object *obj);
 341
 342   static const TypeInfo my_device_info = {
 343       .parent = TYPE_DEVICE,
 344       .name = TYPE_MY_DEVICE,
 345       .instance_size = sizeof(MyDevice),
 346       .instance_init = my_device_init,
 347       .instance_finalize = my_device_finalize,
 348       .class_size = sizeof(MyDeviceClass),
 349       .class_init = my_device_class_init,
 350   };
 351
 352   static void
 353   my_device_register_types(void)
 354   {
 355       type_register_static(&my_device_info);
 356   }
 357   type_init(my_device_register_types);
 358
 359This is sufficient to get the type registered with the type
 360system, and the three standard methods now need to be implemented
 361along with any other logic required for the type.
 362
 363If the type needs to implement one or more interfaces, then the
 364OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead.
 365This accepts an array of interface type names.
 366
 367.. code-block:: c
 368   :caption: Defining a simple type implementing interfaces
 369
 370   OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device,
 371                                      MY_DEVICE, DEVICE,
 372                                      { TYPE_USER_CREATABLE },
 373                                      { NULL })
 374
 375If the type is not intended to be instantiated, then then
 376the OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead:
 377
 378.. code-block:: c
 379   :caption: Defining a simple abstract type
 380
 381   OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device,
 382                               MY_DEVICE, DEVICE)
 383
 384
 385
 386API Reference
 387-------------
 388
 389.. kernel-doc:: include/qom/object.h
 390