qemu/fpu/softfloat-specialize.c.inc
<<
>>
Prefs
   1/*
   2 * QEMU float support
   3 *
   4 * The code in this source file is derived from release 2a of the SoftFloat
   5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
   6 * some later contributions) are provided under that license, as detailed below.
   7 * It has subsequently been modified by contributors to the QEMU Project,
   8 * so some portions are provided under:
   9 *  the SoftFloat-2a license
  10 *  the BSD license
  11 *  GPL-v2-or-later
  12 *
  13 * Any future contributions to this file after December 1st 2014 will be
  14 * taken to be licensed under the Softfloat-2a license unless specifically
  15 * indicated otherwise.
  16 */
  17
  18/*
  19===============================================================================
  20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
  21Arithmetic Package, Release 2a.
  22
  23Written by John R. Hauser.  This work was made possible in part by the
  24International Computer Science Institute, located at Suite 600, 1947 Center
  25Street, Berkeley, California 94704.  Funding was partially provided by the
  26National Science Foundation under grant MIP-9311980.  The original version
  27of this code was written as part of a project to build a fixed-point vector
  28processor in collaboration with the University of California at Berkeley,
  29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  31arithmetic/SoftFloat.html'.
  32
  33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  38
  39Derivative works are acceptable, even for commercial purposes, so long as
  40(1) they include prominent notice that the work is derivative, and (2) they
  41include prominent notice akin to these four paragraphs for those parts of
  42this code that are retained.
  43
  44===============================================================================
  45*/
  46
  47/* BSD licensing:
  48 * Copyright (c) 2006, Fabrice Bellard
  49 * All rights reserved.
  50 *
  51 * Redistribution and use in source and binary forms, with or without
  52 * modification, are permitted provided that the following conditions are met:
  53 *
  54 * 1. Redistributions of source code must retain the above copyright notice,
  55 * this list of conditions and the following disclaimer.
  56 *
  57 * 2. Redistributions in binary form must reproduce the above copyright notice,
  58 * this list of conditions and the following disclaimer in the documentation
  59 * and/or other materials provided with the distribution.
  60 *
  61 * 3. Neither the name of the copyright holder nor the names of its contributors
  62 * may be used to endorse or promote products derived from this software without
  63 * specific prior written permission.
  64 *
  65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
  69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  75 * THE POSSIBILITY OF SUCH DAMAGE.
  76 */
  77
  78/* Portions of this work are licensed under the terms of the GNU GPL,
  79 * version 2 or later. See the COPYING file in the top-level directory.
  80 */
  81
  82/*
  83 * Define whether architecture deviates from IEEE in not supporting
  84 * signaling NaNs (so all NaNs are treated as quiet).
  85 */
  86static inline bool no_signaling_nans(float_status *status)
  87{
  88#if defined(TARGET_XTENSA)
  89    return status->no_signaling_nans;
  90#else
  91    return false;
  92#endif
  93}
  94
  95/* Define how the architecture discriminates signaling NaNs.
  96 * This done with the most significant bit of the fraction.
  97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
  98 * the msb must be zero.  MIPS is (so far) unique in supporting both the
  99 * 2008 revision and backward compatibility with their original choice.
 100 * Thus for MIPS we must make the choice at runtime.
 101 */
 102static inline bool snan_bit_is_one(float_status *status)
 103{
 104#if defined(TARGET_MIPS)
 105    return status->snan_bit_is_one;
 106#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
 107    return 1;
 108#else
 109    return 0;
 110#endif
 111}
 112
 113/*----------------------------------------------------------------------------
 114| For the deconstructed floating-point with fraction FRAC, return true
 115| if the fraction represents a signalling NaN; otherwise false.
 116*----------------------------------------------------------------------------*/
 117
 118static bool parts_is_snan_frac(uint64_t frac, float_status *status)
 119{
 120    if (no_signaling_nans(status)) {
 121        return false;
 122    } else {
 123        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
 124        return msb == snan_bit_is_one(status);
 125    }
 126}
 127
 128/*----------------------------------------------------------------------------
 129| The pattern for a default generated deconstructed floating-point NaN.
 130*----------------------------------------------------------------------------*/
 131
 132static void parts64_default_nan(FloatParts64 *p, float_status *status)
 133{
 134    bool sign = 0;
 135    uint64_t frac;
 136
 137#if defined(TARGET_SPARC) || defined(TARGET_M68K)
 138    /* !snan_bit_is_one, set all bits */
 139    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
 140#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
 141    || defined(TARGET_MICROBLAZE)
 142    /* !snan_bit_is_one, set sign and msb */
 143    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 144    sign = 1;
 145#elif defined(TARGET_HPPA)
 146    /* snan_bit_is_one, set msb-1.  */
 147    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
 148#elif defined(TARGET_HEXAGON)
 149    sign = 1;
 150    frac = ~0ULL;
 151#else
 152    /*
 153     * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
 154     * S390, SH4, TriCore, and Xtensa.  Our other supported targets,
 155     * CRIS, Nios2, and Tile, do not have floating-point.
 156     */
 157    if (snan_bit_is_one(status)) {
 158        /* set all bits other than msb */
 159        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
 160    } else {
 161        /* set msb */
 162        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 163    }
 164#endif
 165
 166    *p = (FloatParts64) {
 167        .cls = float_class_qnan,
 168        .sign = sign,
 169        .exp = INT_MAX,
 170        .frac = frac
 171    };
 172}
 173
 174static void parts128_default_nan(FloatParts128 *p, float_status *status)
 175{
 176    /*
 177     * Extrapolate from the choices made by parts64_default_nan to fill
 178     * in the quad-floating format.  If the low bit is set, assume we
 179     * want to set all non-snan bits.
 180     */
 181    FloatParts64 p64;
 182    parts64_default_nan(&p64, status);
 183
 184    *p = (FloatParts128) {
 185        .cls = float_class_qnan,
 186        .sign = p64.sign,
 187        .exp = INT_MAX,
 188        .frac_hi = p64.frac,
 189        .frac_lo = -(p64.frac & 1)
 190    };
 191}
 192
 193/*----------------------------------------------------------------------------
 194| Returns a quiet NaN from a signalling NaN for the deconstructed
 195| floating-point parts.
 196*----------------------------------------------------------------------------*/
 197
 198static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
 199{
 200    g_assert(!no_signaling_nans(status));
 201    g_assert(!status->default_nan_mode);
 202
 203    /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
 204    if (snan_bit_is_one(status)) {
 205        frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
 206        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
 207    } else {
 208        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 209    }
 210    return frac;
 211}
 212
 213static void parts64_silence_nan(FloatParts64 *p, float_status *status)
 214{
 215    p->frac = parts_silence_nan_frac(p->frac, status);
 216    p->cls = float_class_qnan;
 217}
 218
 219static void parts128_silence_nan(FloatParts128 *p, float_status *status)
 220{
 221    p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
 222    p->cls = float_class_qnan;
 223}
 224
 225/*----------------------------------------------------------------------------
 226| The pattern for a default generated extended double-precision NaN.
 227*----------------------------------------------------------------------------*/
 228floatx80 floatx80_default_nan(float_status *status)
 229{
 230    floatx80 r;
 231
 232    /* None of the targets that have snan_bit_is_one use floatx80.  */
 233    assert(!snan_bit_is_one(status));
 234#if defined(TARGET_M68K)
 235    r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
 236    r.high = 0x7FFF;
 237#else
 238    /* X86 */
 239    r.low = UINT64_C(0xC000000000000000);
 240    r.high = 0xFFFF;
 241#endif
 242    return r;
 243}
 244
 245/*----------------------------------------------------------------------------
 246| The pattern for a default generated extended double-precision inf.
 247*----------------------------------------------------------------------------*/
 248
 249#define floatx80_infinity_high 0x7FFF
 250#if defined(TARGET_M68K)
 251#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
 252#else
 253#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
 254#endif
 255
 256const floatx80 floatx80_infinity
 257    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
 258
 259/*----------------------------------------------------------------------------
 260| Returns 1 if the half-precision floating-point value `a' is a quiet
 261| NaN; otherwise returns 0.
 262*----------------------------------------------------------------------------*/
 263
 264bool float16_is_quiet_nan(float16 a_, float_status *status)
 265{
 266    if (no_signaling_nans(status)) {
 267        return float16_is_any_nan(a_);
 268    } else {
 269        uint16_t a = float16_val(a_);
 270        if (snan_bit_is_one(status)) {
 271            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 272        } else {
 273
 274            return ((a >> 9) & 0x3F) == 0x3F;
 275        }
 276    }
 277}
 278
 279/*----------------------------------------------------------------------------
 280| Returns 1 if the bfloat16 value `a' is a quiet
 281| NaN; otherwise returns 0.
 282*----------------------------------------------------------------------------*/
 283
 284bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
 285{
 286    if (no_signaling_nans(status)) {
 287        return bfloat16_is_any_nan(a_);
 288    } else {
 289        uint16_t a = a_;
 290        if (snan_bit_is_one(status)) {
 291            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
 292        } else {
 293            return ((a >> 6) & 0x1FF) == 0x1FF;
 294        }
 295    }
 296}
 297
 298/*----------------------------------------------------------------------------
 299| Returns 1 if the half-precision floating-point value `a' is a signaling
 300| NaN; otherwise returns 0.
 301*----------------------------------------------------------------------------*/
 302
 303bool float16_is_signaling_nan(float16 a_, float_status *status)
 304{
 305    if (no_signaling_nans(status)) {
 306        return 0;
 307    } else {
 308        uint16_t a = float16_val(a_);
 309        if (snan_bit_is_one(status)) {
 310            return ((a >> 9) & 0x3F) == 0x3F;
 311        } else {
 312            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 313        }
 314    }
 315}
 316
 317/*----------------------------------------------------------------------------
 318| Returns 1 if the bfloat16 value `a' is a signaling
 319| NaN; otherwise returns 0.
 320*----------------------------------------------------------------------------*/
 321
 322bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
 323{
 324    if (no_signaling_nans(status)) {
 325        return 0;
 326    } else {
 327        uint16_t a = a_;
 328        if (snan_bit_is_one(status)) {
 329            return ((a >> 6) & 0x1FF) == 0x1FF;
 330        } else {
 331            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
 332        }
 333    }
 334}
 335
 336/*----------------------------------------------------------------------------
 337| Returns 1 if the single-precision floating-point value `a' is a quiet
 338| NaN; otherwise returns 0.
 339*----------------------------------------------------------------------------*/
 340
 341bool float32_is_quiet_nan(float32 a_, float_status *status)
 342{
 343    if (no_signaling_nans(status)) {
 344        return float32_is_any_nan(a_);
 345    } else {
 346        uint32_t a = float32_val(a_);
 347        if (snan_bit_is_one(status)) {
 348            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 349        } else {
 350            return ((uint32_t)(a << 1) >= 0xFF800000);
 351        }
 352    }
 353}
 354
 355/*----------------------------------------------------------------------------
 356| Returns 1 if the single-precision floating-point value `a' is a signaling
 357| NaN; otherwise returns 0.
 358*----------------------------------------------------------------------------*/
 359
 360bool float32_is_signaling_nan(float32 a_, float_status *status)
 361{
 362    if (no_signaling_nans(status)) {
 363        return 0;
 364    } else {
 365        uint32_t a = float32_val(a_);
 366        if (snan_bit_is_one(status)) {
 367            return ((uint32_t)(a << 1) >= 0xFF800000);
 368        } else {
 369            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 370        }
 371    }
 372}
 373
 374/*----------------------------------------------------------------------------
 375| Select which NaN to propagate for a two-input operation.
 376| IEEE754 doesn't specify all the details of this, so the
 377| algorithm is target-specific.
 378| The routine is passed various bits of information about the
 379| two NaNs and should return 0 to select NaN a and 1 for NaN b.
 380| Note that signalling NaNs are always squashed to quiet NaNs
 381| by the caller, by calling floatXX_silence_nan() before
 382| returning them.
 383|
 384| aIsLargerSignificand is only valid if both a and b are NaNs
 385| of some kind, and is true if a has the larger significand,
 386| or if both a and b have the same significand but a is
 387| positive but b is negative. It is only needed for the x87
 388| tie-break rule.
 389*----------------------------------------------------------------------------*/
 390
 391static int pickNaN(FloatClass a_cls, FloatClass b_cls,
 392                   bool aIsLargerSignificand, float_status *status)
 393{
 394#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
 395    /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
 396     * the first of:
 397     *  1. A if it is signaling
 398     *  2. B if it is signaling
 399     *  3. A (quiet)
 400     *  4. B (quiet)
 401     * A signaling NaN is always quietened before returning it.
 402     */
 403    /* According to MIPS specifications, if one of the two operands is
 404     * a sNaN, a new qNaN has to be generated. This is done in
 405     * floatXX_silence_nan(). For qNaN inputs the specifications
 406     * says: "When possible, this QNaN result is one of the operand QNaN
 407     * values." In practice it seems that most implementations choose
 408     * the first operand if both operands are qNaN. In short this gives
 409     * the following rules:
 410     *  1. A if it is signaling
 411     *  2. B if it is signaling
 412     *  3. A (quiet)
 413     *  4. B (quiet)
 414     * A signaling NaN is always silenced before returning it.
 415     */
 416    if (is_snan(a_cls)) {
 417        return 0;
 418    } else if (is_snan(b_cls)) {
 419        return 1;
 420    } else if (is_qnan(a_cls)) {
 421        return 0;
 422    } else {
 423        return 1;
 424    }
 425#elif defined(TARGET_PPC) || defined(TARGET_M68K)
 426    /* PowerPC propagation rules:
 427     *  1. A if it sNaN or qNaN
 428     *  2. B if it sNaN or qNaN
 429     * A signaling NaN is always silenced before returning it.
 430     */
 431    /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
 432     * 3.4 FLOATING-POINT INSTRUCTION DETAILS
 433     * If either operand, but not both operands, of an operation is a
 434     * nonsignaling NaN, then that NaN is returned as the result. If both
 435     * operands are nonsignaling NaNs, then the destination operand
 436     * nonsignaling NaN is returned as the result.
 437     * If either operand to an operation is a signaling NaN (SNaN), then the
 438     * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
 439     * is set in the FPCR ENABLE byte, then the exception is taken and the
 440     * destination is not modified. If the SNaN exception enable bit is not
 441     * set, setting the SNaN bit in the operand to a one converts the SNaN to
 442     * a nonsignaling NaN. The operation then continues as described in the
 443     * preceding paragraph for nonsignaling NaNs.
 444     */
 445    if (is_nan(a_cls)) {
 446        return 0;
 447    } else {
 448        return 1;
 449    }
 450#elif defined(TARGET_XTENSA)
 451    /*
 452     * Xtensa has two NaN propagation modes.
 453     * Which one is active is controlled by float_status::use_first_nan.
 454     */
 455    if (status->use_first_nan) {
 456        if (is_nan(a_cls)) {
 457            return 0;
 458        } else {
 459            return 1;
 460        }
 461    } else {
 462        if (is_nan(b_cls)) {
 463            return 1;
 464        } else {
 465            return 0;
 466        }
 467    }
 468#else
 469    /* This implements x87 NaN propagation rules:
 470     * SNaN + QNaN => return the QNaN
 471     * two SNaNs => return the one with the larger significand, silenced
 472     * two QNaNs => return the one with the larger significand
 473     * SNaN and a non-NaN => return the SNaN, silenced
 474     * QNaN and a non-NaN => return the QNaN
 475     *
 476     * If we get down to comparing significands and they are the same,
 477     * return the NaN with the positive sign bit (if any).
 478     */
 479    if (is_snan(a_cls)) {
 480        if (is_snan(b_cls)) {
 481            return aIsLargerSignificand ? 0 : 1;
 482        }
 483        return is_qnan(b_cls) ? 1 : 0;
 484    } else if (is_qnan(a_cls)) {
 485        if (is_snan(b_cls) || !is_qnan(b_cls)) {
 486            return 0;
 487        } else {
 488            return aIsLargerSignificand ? 0 : 1;
 489        }
 490    } else {
 491        return 1;
 492    }
 493#endif
 494}
 495
 496/*----------------------------------------------------------------------------
 497| Select which NaN to propagate for a three-input operation.
 498| For the moment we assume that no CPU needs the 'larger significand'
 499| information.
 500| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
 501*----------------------------------------------------------------------------*/
 502static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
 503                         bool infzero, float_status *status)
 504{
 505#if defined(TARGET_ARM)
 506    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
 507     * the default NaN
 508     */
 509    if (infzero && is_qnan(c_cls)) {
 510        float_raise(float_flag_invalid, status);
 511        return 3;
 512    }
 513
 514    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
 515     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
 516     */
 517    if (is_snan(c_cls)) {
 518        return 2;
 519    } else if (is_snan(a_cls)) {
 520        return 0;
 521    } else if (is_snan(b_cls)) {
 522        return 1;
 523    } else if (is_qnan(c_cls)) {
 524        return 2;
 525    } else if (is_qnan(a_cls)) {
 526        return 0;
 527    } else {
 528        return 1;
 529    }
 530#elif defined(TARGET_MIPS)
 531    if (snan_bit_is_one(status)) {
 532        /*
 533         * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
 534         * case sets InvalidOp and returns the default NaN
 535         */
 536        if (infzero) {
 537            float_raise(float_flag_invalid, status);
 538            return 3;
 539        }
 540        /* Prefer sNaN over qNaN, in the a, b, c order. */
 541        if (is_snan(a_cls)) {
 542            return 0;
 543        } else if (is_snan(b_cls)) {
 544            return 1;
 545        } else if (is_snan(c_cls)) {
 546            return 2;
 547        } else if (is_qnan(a_cls)) {
 548            return 0;
 549        } else if (is_qnan(b_cls)) {
 550            return 1;
 551        } else {
 552            return 2;
 553        }
 554    } else {
 555        /*
 556         * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
 557         * case sets InvalidOp and returns the input value 'c'
 558         */
 559        if (infzero) {
 560            float_raise(float_flag_invalid, status);
 561            return 2;
 562        }
 563        /* Prefer sNaN over qNaN, in the c, a, b order. */
 564        if (is_snan(c_cls)) {
 565            return 2;
 566        } else if (is_snan(a_cls)) {
 567            return 0;
 568        } else if (is_snan(b_cls)) {
 569            return 1;
 570        } else if (is_qnan(c_cls)) {
 571            return 2;
 572        } else if (is_qnan(a_cls)) {
 573            return 0;
 574        } else {
 575            return 1;
 576        }
 577    }
 578#elif defined(TARGET_PPC)
 579    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
 580     * to return an input NaN if we have one (ie c) rather than generating
 581     * a default NaN
 582     */
 583    if (infzero) {
 584        float_raise(float_flag_invalid, status);
 585        return 2;
 586    }
 587
 588    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
 589     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
 590     */
 591    if (is_nan(a_cls)) {
 592        return 0;
 593    } else if (is_nan(c_cls)) {
 594        return 2;
 595    } else {
 596        return 1;
 597    }
 598#elif defined(TARGET_RISCV)
 599    /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
 600    if (infzero) {
 601        float_raise(float_flag_invalid, status);
 602    }
 603    return 3; /* default NaN */
 604#elif defined(TARGET_XTENSA)
 605    /*
 606     * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
 607     * an input NaN if we have one (ie c).
 608     */
 609    if (infzero) {
 610        float_raise(float_flag_invalid, status);
 611        return 2;
 612    }
 613    if (status->use_first_nan) {
 614        if (is_nan(a_cls)) {
 615            return 0;
 616        } else if (is_nan(b_cls)) {
 617            return 1;
 618        } else {
 619            return 2;
 620        }
 621    } else {
 622        if (is_nan(c_cls)) {
 623            return 2;
 624        } else if (is_nan(b_cls)) {
 625            return 1;
 626        } else {
 627            return 0;
 628        }
 629    }
 630#else
 631    /* A default implementation: prefer a to b to c.
 632     * This is unlikely to actually match any real implementation.
 633     */
 634    if (is_nan(a_cls)) {
 635        return 0;
 636    } else if (is_nan(b_cls)) {
 637        return 1;
 638    } else {
 639        return 2;
 640    }
 641#endif
 642}
 643
 644/*----------------------------------------------------------------------------
 645| Returns 1 if the double-precision floating-point value `a' is a quiet
 646| NaN; otherwise returns 0.
 647*----------------------------------------------------------------------------*/
 648
 649bool float64_is_quiet_nan(float64 a_, float_status *status)
 650{
 651    if (no_signaling_nans(status)) {
 652        return float64_is_any_nan(a_);
 653    } else {
 654        uint64_t a = float64_val(a_);
 655        if (snan_bit_is_one(status)) {
 656            return (((a >> 51) & 0xFFF) == 0xFFE)
 657                && (a & 0x0007FFFFFFFFFFFFULL);
 658        } else {
 659            return ((a << 1) >= 0xFFF0000000000000ULL);
 660        }
 661    }
 662}
 663
 664/*----------------------------------------------------------------------------
 665| Returns 1 if the double-precision floating-point value `a' is a signaling
 666| NaN; otherwise returns 0.
 667*----------------------------------------------------------------------------*/
 668
 669bool float64_is_signaling_nan(float64 a_, float_status *status)
 670{
 671    if (no_signaling_nans(status)) {
 672        return 0;
 673    } else {
 674        uint64_t a = float64_val(a_);
 675        if (snan_bit_is_one(status)) {
 676            return ((a << 1) >= 0xFFF0000000000000ULL);
 677        } else {
 678            return (((a >> 51) & 0xFFF) == 0xFFE)
 679                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
 680        }
 681    }
 682}
 683
 684/*----------------------------------------------------------------------------
 685| Returns 1 if the extended double-precision floating-point value `a' is a
 686| quiet NaN; otherwise returns 0. This slightly differs from the same
 687| function for other types as floatx80 has an explicit bit.
 688*----------------------------------------------------------------------------*/
 689
 690int floatx80_is_quiet_nan(floatx80 a, float_status *status)
 691{
 692    if (no_signaling_nans(status)) {
 693        return floatx80_is_any_nan(a);
 694    } else {
 695        if (snan_bit_is_one(status)) {
 696            uint64_t aLow;
 697
 698            aLow = a.low & ~0x4000000000000000ULL;
 699            return ((a.high & 0x7FFF) == 0x7FFF)
 700                && (aLow << 1)
 701                && (a.low == aLow);
 702        } else {
 703            return ((a.high & 0x7FFF) == 0x7FFF)
 704                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
 705        }
 706    }
 707}
 708
 709/*----------------------------------------------------------------------------
 710| Returns 1 if the extended double-precision floating-point value `a' is a
 711| signaling NaN; otherwise returns 0. This slightly differs from the same
 712| function for other types as floatx80 has an explicit bit.
 713*----------------------------------------------------------------------------*/
 714
 715int floatx80_is_signaling_nan(floatx80 a, float_status *status)
 716{
 717    if (no_signaling_nans(status)) {
 718        return 0;
 719    } else {
 720        if (snan_bit_is_one(status)) {
 721            return ((a.high & 0x7FFF) == 0x7FFF)
 722                && ((a.low << 1) >= 0x8000000000000000ULL);
 723        } else {
 724            uint64_t aLow;
 725
 726            aLow = a.low & ~UINT64_C(0x4000000000000000);
 727            return ((a.high & 0x7FFF) == 0x7FFF)
 728                && (uint64_t)(aLow << 1)
 729                && (a.low == aLow);
 730        }
 731    }
 732}
 733
 734/*----------------------------------------------------------------------------
 735| Returns a quiet NaN from a signalling NaN for the extended double-precision
 736| floating point value `a'.
 737*----------------------------------------------------------------------------*/
 738
 739floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
 740{
 741    /* None of the targets that have snan_bit_is_one use floatx80.  */
 742    assert(!snan_bit_is_one(status));
 743    a.low |= UINT64_C(0xC000000000000000);
 744    return a;
 745}
 746
 747/*----------------------------------------------------------------------------
 748| Takes two extended double-precision floating-point values `a' and `b', one
 749| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
 750| `b' is a signaling NaN, the invalid exception is raised.
 751*----------------------------------------------------------------------------*/
 752
 753floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
 754{
 755    bool aIsLargerSignificand;
 756    FloatClass a_cls, b_cls;
 757
 758    /* This is not complete, but is good enough for pickNaN.  */
 759    a_cls = (!floatx80_is_any_nan(a)
 760             ? float_class_normal
 761             : floatx80_is_signaling_nan(a, status)
 762             ? float_class_snan
 763             : float_class_qnan);
 764    b_cls = (!floatx80_is_any_nan(b)
 765             ? float_class_normal
 766             : floatx80_is_signaling_nan(b, status)
 767             ? float_class_snan
 768             : float_class_qnan);
 769
 770    if (is_snan(a_cls) || is_snan(b_cls)) {
 771        float_raise(float_flag_invalid, status);
 772    }
 773
 774    if (status->default_nan_mode) {
 775        return floatx80_default_nan(status);
 776    }
 777
 778    if (a.low < b.low) {
 779        aIsLargerSignificand = 0;
 780    } else if (b.low < a.low) {
 781        aIsLargerSignificand = 1;
 782    } else {
 783        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
 784    }
 785
 786    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
 787        if (is_snan(b_cls)) {
 788            return floatx80_silence_nan(b, status);
 789        }
 790        return b;
 791    } else {
 792        if (is_snan(a_cls)) {
 793            return floatx80_silence_nan(a, status);
 794        }
 795        return a;
 796    }
 797}
 798
 799/*----------------------------------------------------------------------------
 800| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
 801| NaN; otherwise returns 0.
 802*----------------------------------------------------------------------------*/
 803
 804bool float128_is_quiet_nan(float128 a, float_status *status)
 805{
 806    if (no_signaling_nans(status)) {
 807        return float128_is_any_nan(a);
 808    } else {
 809        if (snan_bit_is_one(status)) {
 810            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
 811                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
 812        } else {
 813            return ((a.high << 1) >= 0xFFFF000000000000ULL)
 814                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
 815        }
 816    }
 817}
 818
 819/*----------------------------------------------------------------------------
 820| Returns 1 if the quadruple-precision floating-point value `a' is a
 821| signaling NaN; otherwise returns 0.
 822*----------------------------------------------------------------------------*/
 823
 824bool float128_is_signaling_nan(float128 a, float_status *status)
 825{
 826    if (no_signaling_nans(status)) {
 827        return 0;
 828    } else {
 829        if (snan_bit_is_one(status)) {
 830            return ((a.high << 1) >= 0xFFFF000000000000ULL)
 831                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
 832        } else {
 833            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
 834                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
 835        }
 836    }
 837}
 838