qemu/hw/arm/armsse.c
<<
>>
Prefs
   1/*
   2 * Arm SSE (Subsystems for Embedded): IoTKit
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 or
   9 * (at your option) any later version.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/log.h"
  14#include "qemu/module.h"
  15#include "qemu/bitops.h"
  16#include "qemu/units.h"
  17#include "qapi/error.h"
  18#include "trace.h"
  19#include "hw/sysbus.h"
  20#include "migration/vmstate.h"
  21#include "hw/registerfields.h"
  22#include "hw/arm/armsse.h"
  23#include "hw/arm/armsse-version.h"
  24#include "hw/arm/boot.h"
  25#include "hw/irq.h"
  26#include "hw/qdev-clock.h"
  27
  28/*
  29 * The SSE-300 puts some devices in different places to the
  30 * SSE-200 (and original IoTKit). We use an array of these structs
  31 * to define how each variant lays out these devices. (Parts of the
  32 * SoC that are the same for all variants aren't handled via these
  33 * data structures.)
  34 */
  35
  36#define NO_IRQ -1
  37#define NO_PPC -1
  38/*
  39 * Special values for ARMSSEDeviceInfo::irq to indicate that this
  40 * device uses one of the inputs to the OR gate that feeds into the
  41 * CPU NMI input.
  42 */
  43#define NMI_0 10000
  44#define NMI_1 10001
  45
  46typedef struct ARMSSEDeviceInfo {
  47    const char *name; /* name to use for the QOM object; NULL terminates list */
  48    const char *type; /* QOM type name */
  49    unsigned int index; /* Which of the N devices of this type is this ? */
  50    hwaddr addr;
  51    hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
  52    int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
  53    int ppc_port; /* Port number of this device on the PPC */
  54    int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
  55    bool slowclk; /* true if device uses the slow 32KHz clock */
  56} ARMSSEDeviceInfo;
  57
  58struct ARMSSEInfo {
  59    const char *name;
  60    const char *cpu_type;
  61    uint32_t sse_version;
  62    int sram_banks;
  63    uint32_t sram_bank_base;
  64    int num_cpus;
  65    uint32_t sys_version;
  66    uint32_t iidr;
  67    uint32_t cpuwait_rst;
  68    bool has_mhus;
  69    bool has_cachectrl;
  70    bool has_cpusecctrl;
  71    bool has_cpuid;
  72    bool has_cpu_pwrctrl;
  73    bool has_sse_counter;
  74    bool has_tcms;
  75    Property *props;
  76    const ARMSSEDeviceInfo *devinfo;
  77    const bool *irq_is_common;
  78};
  79
  80static Property iotkit_properties[] = {
  81    DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
  82                     MemoryRegion *),
  83    DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
  84    DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
  85    DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
  86    DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
  87    DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
  88    DEFINE_PROP_END_OF_LIST()
  89};
  90
  91static Property sse200_properties[] = {
  92    DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
  93                     MemoryRegion *),
  94    DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
  95    DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
  96    DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
  97    DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
  98    DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
  99    DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
 100    DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
 101    DEFINE_PROP_END_OF_LIST()
 102};
 103
 104static Property sse300_properties[] = {
 105    DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
 106                     MemoryRegion *),
 107    DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
 108    DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18),
 109    DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
 110    DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
 111    DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
 112    DEFINE_PROP_END_OF_LIST()
 113};
 114
 115static const ARMSSEDeviceInfo iotkit_devices[] = {
 116    {
 117        .name = "timer0",
 118        .type = TYPE_CMSDK_APB_TIMER,
 119        .index = 0,
 120        .addr = 0x40000000,
 121        .ppc = 0,
 122        .ppc_port = 0,
 123        .irq = 3,
 124    },
 125    {
 126        .name = "timer1",
 127        .type = TYPE_CMSDK_APB_TIMER,
 128        .index = 1,
 129        .addr = 0x40001000,
 130        .ppc = 0,
 131        .ppc_port = 1,
 132        .irq = 4,
 133    },
 134    {
 135        .name = "s32ktimer",
 136        .type = TYPE_CMSDK_APB_TIMER,
 137        .index = 2,
 138        .addr = 0x4002f000,
 139        .ppc = 1,
 140        .ppc_port = 0,
 141        .irq = 2,
 142        .slowclk = true,
 143    },
 144    {
 145        .name = "dualtimer",
 146        .type = TYPE_CMSDK_APB_DUALTIMER,
 147        .index = 0,
 148        .addr = 0x40002000,
 149        .ppc = 0,
 150        .ppc_port = 2,
 151        .irq = 5,
 152    },
 153    {
 154        .name = "s32kwatchdog",
 155        .type = TYPE_CMSDK_APB_WATCHDOG,
 156        .index = 0,
 157        .addr = 0x5002e000,
 158        .ppc = NO_PPC,
 159        .irq = NMI_0,
 160        .slowclk = true,
 161    },
 162    {
 163        .name = "nswatchdog",
 164        .type = TYPE_CMSDK_APB_WATCHDOG,
 165        .index = 1,
 166        .addr = 0x40081000,
 167        .ppc = NO_PPC,
 168        .irq = 1,
 169    },
 170    {
 171        .name = "swatchdog",
 172        .type = TYPE_CMSDK_APB_WATCHDOG,
 173        .index = 2,
 174        .addr = 0x50081000,
 175        .ppc = NO_PPC,
 176        .irq = NMI_1,
 177    },
 178    {
 179        .name = "armsse-sysinfo",
 180        .type = TYPE_IOTKIT_SYSINFO,
 181        .index = 0,
 182        .addr = 0x40020000,
 183        .ppc = NO_PPC,
 184        .irq = NO_IRQ,
 185    },
 186    {
 187        .name = "armsse-sysctl",
 188        .type = TYPE_IOTKIT_SYSCTL,
 189        .index = 0,
 190        .addr = 0x50021000,
 191        .ppc = NO_PPC,
 192        .irq = NO_IRQ,
 193    },
 194    {
 195        .name = NULL,
 196    }
 197};
 198
 199static const ARMSSEDeviceInfo sse200_devices[] = {
 200    {
 201        .name = "timer0",
 202        .type = TYPE_CMSDK_APB_TIMER,
 203        .index = 0,
 204        .addr = 0x40000000,
 205        .ppc = 0,
 206        .ppc_port = 0,
 207        .irq = 3,
 208    },
 209    {
 210        .name = "timer1",
 211        .type = TYPE_CMSDK_APB_TIMER,
 212        .index = 1,
 213        .addr = 0x40001000,
 214        .ppc = 0,
 215        .ppc_port = 1,
 216        .irq = 4,
 217    },
 218    {
 219        .name = "s32ktimer",
 220        .type = TYPE_CMSDK_APB_TIMER,
 221        .index = 2,
 222        .addr = 0x4002f000,
 223        .ppc = 1,
 224        .ppc_port = 0,
 225        .irq = 2,
 226        .slowclk = true,
 227    },
 228    {
 229        .name = "dualtimer",
 230        .type = TYPE_CMSDK_APB_DUALTIMER,
 231        .index = 0,
 232        .addr = 0x40002000,
 233        .ppc = 0,
 234        .ppc_port = 2,
 235        .irq = 5,
 236    },
 237    {
 238        .name = "s32kwatchdog",
 239        .type = TYPE_CMSDK_APB_WATCHDOG,
 240        .index = 0,
 241        .addr = 0x5002e000,
 242        .ppc = NO_PPC,
 243        .irq = NMI_0,
 244        .slowclk = true,
 245    },
 246    {
 247        .name = "nswatchdog",
 248        .type = TYPE_CMSDK_APB_WATCHDOG,
 249        .index = 1,
 250        .addr = 0x40081000,
 251        .ppc = NO_PPC,
 252        .irq = 1,
 253    },
 254    {
 255        .name = "swatchdog",
 256        .type = TYPE_CMSDK_APB_WATCHDOG,
 257        .index = 2,
 258        .addr = 0x50081000,
 259        .ppc = NO_PPC,
 260        .irq = NMI_1,
 261    },
 262    {
 263        .name = "armsse-sysinfo",
 264        .type = TYPE_IOTKIT_SYSINFO,
 265        .index = 0,
 266        .addr = 0x40020000,
 267        .ppc = NO_PPC,
 268        .irq = NO_IRQ,
 269    },
 270    {
 271        .name = "armsse-sysctl",
 272        .type = TYPE_IOTKIT_SYSCTL,
 273        .index = 0,
 274        .addr = 0x50021000,
 275        .ppc = NO_PPC,
 276        .irq = NO_IRQ,
 277    },
 278    {
 279        .name = "CPU0CORE_PPU",
 280        .type = TYPE_UNIMPLEMENTED_DEVICE,
 281        .index = 0,
 282        .addr = 0x50023000,
 283        .size = 0x1000,
 284        .ppc = NO_PPC,
 285        .irq = NO_IRQ,
 286    },
 287    {
 288        .name = "CPU1CORE_PPU",
 289        .type = TYPE_UNIMPLEMENTED_DEVICE,
 290        .index = 1,
 291        .addr = 0x50025000,
 292        .size = 0x1000,
 293        .ppc = NO_PPC,
 294        .irq = NO_IRQ,
 295    },
 296    {
 297        .name = "DBG_PPU",
 298        .type = TYPE_UNIMPLEMENTED_DEVICE,
 299        .index = 2,
 300        .addr = 0x50029000,
 301        .size = 0x1000,
 302        .ppc = NO_PPC,
 303        .irq = NO_IRQ,
 304    },
 305    {
 306        .name = "RAM0_PPU",
 307        .type = TYPE_UNIMPLEMENTED_DEVICE,
 308        .index = 3,
 309        .addr = 0x5002a000,
 310        .size = 0x1000,
 311        .ppc = NO_PPC,
 312        .irq = NO_IRQ,
 313    },
 314    {
 315        .name = "RAM1_PPU",
 316        .type = TYPE_UNIMPLEMENTED_DEVICE,
 317        .index = 4,
 318        .addr = 0x5002b000,
 319        .size = 0x1000,
 320        .ppc = NO_PPC,
 321        .irq = NO_IRQ,
 322    },
 323    {
 324        .name = "RAM2_PPU",
 325        .type = TYPE_UNIMPLEMENTED_DEVICE,
 326        .index = 5,
 327        .addr = 0x5002c000,
 328        .size = 0x1000,
 329        .ppc = NO_PPC,
 330        .irq = NO_IRQ,
 331    },
 332    {
 333        .name = "RAM3_PPU",
 334        .type = TYPE_UNIMPLEMENTED_DEVICE,
 335        .index = 6,
 336        .addr = 0x5002d000,
 337        .size = 0x1000,
 338        .ppc = NO_PPC,
 339        .irq = NO_IRQ,
 340    },
 341    {
 342        .name = "SYS_PPU",
 343        .type = TYPE_UNIMPLEMENTED_DEVICE,
 344        .index = 7,
 345        .addr = 0x50022000,
 346        .size = 0x1000,
 347        .ppc = NO_PPC,
 348        .irq = NO_IRQ,
 349    },
 350    {
 351        .name = NULL,
 352    }
 353};
 354
 355static const ARMSSEDeviceInfo sse300_devices[] = {
 356    {
 357        .name = "timer0",
 358        .type = TYPE_SSE_TIMER,
 359        .index = 0,
 360        .addr = 0x48000000,
 361        .ppc = 0,
 362        .ppc_port = 0,
 363        .irq = 3,
 364    },
 365    {
 366        .name = "timer1",
 367        .type = TYPE_SSE_TIMER,
 368        .index = 1,
 369        .addr = 0x48001000,
 370        .ppc = 0,
 371        .ppc_port = 1,
 372        .irq = 4,
 373    },
 374    {
 375        .name = "timer2",
 376        .type = TYPE_SSE_TIMER,
 377        .index = 2,
 378        .addr = 0x48002000,
 379        .ppc = 0,
 380        .ppc_port = 2,
 381        .irq = 5,
 382    },
 383    {
 384        .name = "timer3",
 385        .type = TYPE_SSE_TIMER,
 386        .index = 3,
 387        .addr = 0x48003000,
 388        .ppc = 0,
 389        .ppc_port = 5,
 390        .irq = 27,
 391    },
 392    {
 393        .name = "s32ktimer",
 394        .type = TYPE_CMSDK_APB_TIMER,
 395        .index = 0,
 396        .addr = 0x4802f000,
 397        .ppc = 1,
 398        .ppc_port = 0,
 399        .irq = 2,
 400        .slowclk = true,
 401    },
 402    {
 403        .name = "s32kwatchdog",
 404        .type = TYPE_CMSDK_APB_WATCHDOG,
 405        .index = 0,
 406        .addr = 0x4802e000,
 407        .ppc = NO_PPC,
 408        .irq = NMI_0,
 409        .slowclk = true,
 410    },
 411    {
 412        .name = "watchdog",
 413        .type = TYPE_UNIMPLEMENTED_DEVICE,
 414        .index = 0,
 415        .addr = 0x48040000,
 416        .size = 0x2000,
 417        .ppc = NO_PPC,
 418        .irq = NO_IRQ,
 419    },
 420    {
 421        .name = "armsse-sysinfo",
 422        .type = TYPE_IOTKIT_SYSINFO,
 423        .index = 0,
 424        .addr = 0x48020000,
 425        .ppc = NO_PPC,
 426        .irq = NO_IRQ,
 427    },
 428    {
 429        .name = "armsse-sysctl",
 430        .type = TYPE_IOTKIT_SYSCTL,
 431        .index = 0,
 432        .addr = 0x58021000,
 433        .ppc = NO_PPC,
 434        .irq = NO_IRQ,
 435    },
 436    {
 437        .name = "SYS_PPU",
 438        .type = TYPE_UNIMPLEMENTED_DEVICE,
 439        .index = 1,
 440        .addr = 0x58022000,
 441        .size = 0x1000,
 442        .ppc = NO_PPC,
 443        .irq = NO_IRQ,
 444    },
 445    {
 446        .name = "CPU0CORE_PPU",
 447        .type = TYPE_UNIMPLEMENTED_DEVICE,
 448        .index = 2,
 449        .addr = 0x50023000,
 450        .size = 0x1000,
 451        .ppc = NO_PPC,
 452        .irq = NO_IRQ,
 453    },
 454    {
 455        .name = "MGMT_PPU",
 456        .type = TYPE_UNIMPLEMENTED_DEVICE,
 457        .index = 3,
 458        .addr = 0x50028000,
 459        .size = 0x1000,
 460        .ppc = NO_PPC,
 461        .irq = NO_IRQ,
 462    },
 463    {
 464        .name = "DEBUG_PPU",
 465        .type = TYPE_UNIMPLEMENTED_DEVICE,
 466        .index = 4,
 467        .addr = 0x50029000,
 468        .size = 0x1000,
 469        .ppc = NO_PPC,
 470        .irq = NO_IRQ,
 471    },
 472    {
 473        .name = NULL,
 474    }
 475};
 476
 477/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
 478static const bool sse200_irq_is_common[32] = {
 479    [0 ... 5] = true,
 480    /* 6, 7: per-CPU MHU interrupts */
 481    [8 ... 12] = true,
 482    /* 13: per-CPU icache interrupt */
 483    /* 14: reserved */
 484    [15 ... 20] = true,
 485    /* 21: reserved */
 486    [22 ... 26] = true,
 487    /* 27: reserved */
 488    /* 28, 29: per-CPU CTI interrupts */
 489    /* 30, 31: reserved */
 490};
 491
 492static const bool sse300_irq_is_common[32] = {
 493    [0 ... 5] = true,
 494    /* 6, 7: per-CPU MHU interrupts */
 495    [8 ... 12] = true,
 496    /* 13: reserved */
 497    [14 ... 16] = true,
 498    /* 17-25: reserved */
 499    [26 ... 27] = true,
 500    /* 28, 29: per-CPU CTI interrupts */
 501    /* 30, 31: reserved */
 502};
 503
 504static const ARMSSEInfo armsse_variants[] = {
 505    {
 506        .name = TYPE_IOTKIT,
 507        .sse_version = ARMSSE_IOTKIT,
 508        .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
 509        .sram_banks = 1,
 510        .sram_bank_base = 0x20000000,
 511        .num_cpus = 1,
 512        .sys_version = 0x41743,
 513        .iidr = 0,
 514        .cpuwait_rst = 0,
 515        .has_mhus = false,
 516        .has_cachectrl = false,
 517        .has_cpusecctrl = false,
 518        .has_cpuid = false,
 519        .has_cpu_pwrctrl = false,
 520        .has_sse_counter = false,
 521        .has_tcms = false,
 522        .props = iotkit_properties,
 523        .devinfo = iotkit_devices,
 524        .irq_is_common = sse200_irq_is_common,
 525    },
 526    {
 527        .name = TYPE_SSE200,
 528        .sse_version = ARMSSE_SSE200,
 529        .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
 530        .sram_banks = 4,
 531        .sram_bank_base = 0x20000000,
 532        .num_cpus = 2,
 533        .sys_version = 0x22041743,
 534        .iidr = 0,
 535        .cpuwait_rst = 2,
 536        .has_mhus = true,
 537        .has_cachectrl = true,
 538        .has_cpusecctrl = true,
 539        .has_cpuid = true,
 540        .has_cpu_pwrctrl = false,
 541        .has_sse_counter = false,
 542        .has_tcms = false,
 543        .props = sse200_properties,
 544        .devinfo = sse200_devices,
 545        .irq_is_common = sse200_irq_is_common,
 546    },
 547    {
 548        .name = TYPE_SSE300,
 549        .sse_version = ARMSSE_SSE300,
 550        .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"),
 551        .sram_banks = 2,
 552        .sram_bank_base = 0x21000000,
 553        .num_cpus = 1,
 554        .sys_version = 0x7e00043b,
 555        .iidr = 0x74a0043b,
 556        .cpuwait_rst = 0,
 557        .has_mhus = false,
 558        .has_cachectrl = false,
 559        .has_cpusecctrl = true,
 560        .has_cpuid = true,
 561        .has_cpu_pwrctrl = true,
 562        .has_sse_counter = true,
 563        .has_tcms = true,
 564        .props = sse300_properties,
 565        .devinfo = sse300_devices,
 566        .irq_is_common = sse300_irq_is_common,
 567    },
 568};
 569
 570static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
 571{
 572    /* Return the SYS_CONFIG value for this SSE */
 573    uint32_t sys_config;
 574
 575    switch (info->sse_version) {
 576    case ARMSSE_IOTKIT:
 577        sys_config = 0;
 578        sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
 579        sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
 580        break;
 581    case ARMSSE_SSE200:
 582        sys_config = 0;
 583        sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
 584        sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
 585        sys_config = deposit32(sys_config, 24, 4, 2);
 586        if (info->num_cpus > 1) {
 587            sys_config = deposit32(sys_config, 10, 1, 1);
 588            sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
 589            sys_config = deposit32(sys_config, 28, 4, 2);
 590        }
 591        break;
 592    case ARMSSE_SSE300:
 593        sys_config = 0;
 594        sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
 595        sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
 596        sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
 597        break;
 598    default:
 599        g_assert_not_reached();
 600    }
 601    return sys_config;
 602}
 603
 604/* Clock frequency in HZ of the 32KHz "slow clock" */
 605#define S32KCLK (32 * 1000)
 606
 607/*
 608 * Create an alias region in @container of @size bytes starting at @base
 609 * which mirrors the memory starting at @orig.
 610 */
 611static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
 612                       const char *name, hwaddr base, hwaddr size, hwaddr orig)
 613{
 614    memory_region_init_alias(mr, NULL, name, container, orig, size);
 615    /* The alias is even lower priority than unimplemented_device regions */
 616    memory_region_add_subregion_overlap(container, base, mr, -1500);
 617}
 618
 619static void irq_status_forwarder(void *opaque, int n, int level)
 620{
 621    qemu_irq destirq = opaque;
 622
 623    qemu_set_irq(destirq, level);
 624}
 625
 626static void nsccfg_handler(void *opaque, int n, int level)
 627{
 628    ARMSSE *s = ARM_SSE(opaque);
 629
 630    s->nsccfg = level;
 631}
 632
 633static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
 634{
 635    /* Each of the 4 AHB and 4 APB PPCs that might be present in a
 636     * system using the ARMSSE has a collection of control lines which
 637     * are provided by the security controller and which we want to
 638     * expose as control lines on the ARMSSE device itself, so the
 639     * code using the ARMSSE can wire them up to the PPCs.
 640     */
 641    SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
 642    DeviceState *armssedev = DEVICE(s);
 643    DeviceState *dev_secctl = DEVICE(&s->secctl);
 644    DeviceState *dev_splitter = DEVICE(splitter);
 645    char *name;
 646
 647    name = g_strdup_printf("%s_nonsec", ppcname);
 648    qdev_pass_gpios(dev_secctl, armssedev, name);
 649    g_free(name);
 650    name = g_strdup_printf("%s_ap", ppcname);
 651    qdev_pass_gpios(dev_secctl, armssedev, name);
 652    g_free(name);
 653    name = g_strdup_printf("%s_irq_enable", ppcname);
 654    qdev_pass_gpios(dev_secctl, armssedev, name);
 655    g_free(name);
 656    name = g_strdup_printf("%s_irq_clear", ppcname);
 657    qdev_pass_gpios(dev_secctl, armssedev, name);
 658    g_free(name);
 659
 660    /* irq_status is a little more tricky, because we need to
 661     * split it so we can send it both to the security controller
 662     * and to our OR gate for the NVIC interrupt line.
 663     * Connect up the splitter's outputs, and create a GPIO input
 664     * which will pass the line state to the input splitter.
 665     */
 666    name = g_strdup_printf("%s_irq_status", ppcname);
 667    qdev_connect_gpio_out(dev_splitter, 0,
 668                          qdev_get_gpio_in_named(dev_secctl,
 669                                                 name, 0));
 670    qdev_connect_gpio_out(dev_splitter, 1,
 671                          qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
 672    s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
 673    qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
 674                                        s->irq_status_in[ppcnum], name, 1);
 675    g_free(name);
 676}
 677
 678static void armsse_forward_sec_resp_cfg(ARMSSE *s)
 679{
 680    /* Forward the 3rd output from the splitter device as a
 681     * named GPIO output of the armsse object.
 682     */
 683    DeviceState *dev = DEVICE(s);
 684    DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
 685
 686    qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
 687    s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
 688                                           s->sec_resp_cfg, 1);
 689    qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
 690}
 691
 692static void armsse_mainclk_update(void *opaque, ClockEvent event)
 693{
 694    ARMSSE *s = ARM_SSE(opaque);
 695
 696    /*
 697     * Set system_clock_scale from our Clock input; this is what
 698     * controls the tick rate of the CPU SysTick timer.
 699     */
 700    system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
 701}
 702
 703static void armsse_init(Object *obj)
 704{
 705    ARMSSE *s = ARM_SSE(obj);
 706    ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
 707    const ARMSSEInfo *info = asc->info;
 708    const ARMSSEDeviceInfo *devinfo;
 709    int i;
 710
 711    assert(info->sram_banks <= MAX_SRAM_BANKS);
 712    assert(info->num_cpus <= SSE_MAX_CPUS);
 713
 714    s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
 715                                    armsse_mainclk_update, s, ClockUpdate);
 716    s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
 717
 718    memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
 719
 720    for (i = 0; i < info->num_cpus; i++) {
 721        /*
 722         * We put each CPU in its own cluster as they are logically
 723         * distinct and may be configured differently.
 724         */
 725        char *name;
 726
 727        name = g_strdup_printf("cluster%d", i);
 728        object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
 729        qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
 730        g_free(name);
 731
 732        name = g_strdup_printf("armv7m%d", i);
 733        object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
 734                                TYPE_ARMV7M);
 735        qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type);
 736        g_free(name);
 737        name = g_strdup_printf("arm-sse-cpu-container%d", i);
 738        memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
 739        g_free(name);
 740        if (i > 0) {
 741            name = g_strdup_printf("arm-sse-container-alias%d", i);
 742            memory_region_init_alias(&s->container_alias[i - 1], obj,
 743                                     name, &s->container, 0, UINT64_MAX);
 744            g_free(name);
 745        }
 746    }
 747
 748    for (devinfo = info->devinfo; devinfo->name; devinfo++) {
 749        assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
 750        if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
 751            assert(devinfo->index < ARRAY_SIZE(s->timer));
 752            object_initialize_child(obj, devinfo->name,
 753                                    &s->timer[devinfo->index],
 754                                    TYPE_CMSDK_APB_TIMER);
 755        } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
 756            assert(devinfo->index == 0);
 757            object_initialize_child(obj, devinfo->name, &s->dualtimer,
 758                                    TYPE_CMSDK_APB_DUALTIMER);
 759        } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
 760            assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
 761            object_initialize_child(obj, devinfo->name,
 762                                    &s->sse_timer[devinfo->index],
 763                                    TYPE_SSE_TIMER);
 764        } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
 765            assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
 766            object_initialize_child(obj, devinfo->name,
 767                                    &s->cmsdk_watchdog[devinfo->index],
 768                                    TYPE_CMSDK_APB_WATCHDOG);
 769        } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
 770            assert(devinfo->index == 0);
 771            object_initialize_child(obj, devinfo->name, &s->sysinfo,
 772                                    TYPE_IOTKIT_SYSINFO);
 773        } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
 774            assert(devinfo->index == 0);
 775            object_initialize_child(obj, devinfo->name, &s->sysctl,
 776                                    TYPE_IOTKIT_SYSCTL);
 777        } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
 778            assert(devinfo->index < ARRAY_SIZE(s->unimp));
 779            object_initialize_child(obj, devinfo->name,
 780                                    &s->unimp[devinfo->index],
 781                                    TYPE_UNIMPLEMENTED_DEVICE);
 782        } else {
 783            g_assert_not_reached();
 784        }
 785    }
 786
 787    object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
 788
 789    for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
 790        g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
 791        object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
 792    }
 793
 794    for (i = 0; i < info->sram_banks; i++) {
 795        char *name = g_strdup_printf("mpc%d", i);
 796        object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
 797        g_free(name);
 798    }
 799    object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
 800                            TYPE_OR_IRQ);
 801
 802    for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
 803        char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
 804        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
 805
 806        object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
 807        g_free(name);
 808    }
 809
 810    if (info->has_mhus) {
 811        object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
 812        object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
 813    }
 814    if (info->has_cachectrl) {
 815        for (i = 0; i < info->num_cpus; i++) {
 816            char *name = g_strdup_printf("cachectrl%d", i);
 817
 818            object_initialize_child(obj, name, &s->cachectrl[i],
 819                                    TYPE_UNIMPLEMENTED_DEVICE);
 820            g_free(name);
 821        }
 822    }
 823    if (info->has_cpusecctrl) {
 824        for (i = 0; i < info->num_cpus; i++) {
 825            char *name = g_strdup_printf("cpusecctrl%d", i);
 826
 827            object_initialize_child(obj, name, &s->cpusecctrl[i],
 828                                    TYPE_UNIMPLEMENTED_DEVICE);
 829            g_free(name);
 830        }
 831    }
 832    if (info->has_cpuid) {
 833        for (i = 0; i < info->num_cpus; i++) {
 834            char *name = g_strdup_printf("cpuid%d", i);
 835
 836            object_initialize_child(obj, name, &s->cpuid[i],
 837                                    TYPE_ARMSSE_CPUID);
 838            g_free(name);
 839        }
 840    }
 841    if (info->has_cpu_pwrctrl) {
 842        for (i = 0; i < info->num_cpus; i++) {
 843            char *name = g_strdup_printf("cpu_pwrctrl%d", i);
 844
 845            object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
 846                                    TYPE_ARMSSE_CPU_PWRCTRL);
 847            g_free(name);
 848        }
 849    }
 850    if (info->has_sse_counter) {
 851        object_initialize_child(obj, "sse-counter", &s->sse_counter,
 852                                TYPE_SSE_COUNTER);
 853    }
 854
 855    object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
 856    object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
 857                            TYPE_OR_IRQ);
 858    object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
 859                            TYPE_SPLIT_IRQ);
 860    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
 861        char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
 862        SplitIRQ *splitter = &s->ppc_irq_splitter[i];
 863
 864        object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
 865        g_free(name);
 866    }
 867    if (info->num_cpus > 1) {
 868        for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
 869            if (info->irq_is_common[i]) {
 870                char *name = g_strdup_printf("cpu-irq-splitter%d", i);
 871                SplitIRQ *splitter = &s->cpu_irq_splitter[i];
 872
 873                object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
 874                g_free(name);
 875            }
 876        }
 877    }
 878}
 879
 880static void armsse_exp_irq(void *opaque, int n, int level)
 881{
 882    qemu_irq *irqarray = opaque;
 883
 884    qemu_set_irq(irqarray[n], level);
 885}
 886
 887static void armsse_mpcexp_status(void *opaque, int n, int level)
 888{
 889    ARMSSE *s = ARM_SSE(opaque);
 890    qemu_set_irq(s->mpcexp_status_in[n], level);
 891}
 892
 893static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
 894{
 895    /*
 896     * Return a qemu_irq which can be used to signal IRQ n to
 897     * all CPUs in the SSE.
 898     */
 899    ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
 900    const ARMSSEInfo *info = asc->info;
 901
 902    assert(info->irq_is_common[irqno]);
 903
 904    if (info->num_cpus == 1) {
 905        /* Only one CPU -- just connect directly to it */
 906        return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
 907    } else {
 908        /* Connect to the splitter which feeds all CPUs */
 909        return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
 910    }
 911}
 912
 913static void armsse_realize(DeviceState *dev, Error **errp)
 914{
 915    ARMSSE *s = ARM_SSE(dev);
 916    ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
 917    const ARMSSEInfo *info = asc->info;
 918    const ARMSSEDeviceInfo *devinfo;
 919    int i;
 920    MemoryRegion *mr;
 921    SysBusDevice *sbd_apb_ppc0;
 922    SysBusDevice *sbd_secctl;
 923    DeviceState *dev_apb_ppc0;
 924    DeviceState *dev_apb_ppc1;
 925    DeviceState *dev_secctl;
 926    DeviceState *dev_splitter;
 927    uint32_t addr_width_max;
 928
 929    ERRP_GUARD();
 930
 931    if (!s->board_memory) {
 932        error_setg(errp, "memory property was not set");
 933        return;
 934    }
 935
 936    if (!clock_has_source(s->mainclk)) {
 937        error_setg(errp, "MAINCLK clock was not connected");
 938    }
 939    if (!clock_has_source(s->s32kclk)) {
 940        error_setg(errp, "S32KCLK clock was not connected");
 941    }
 942
 943    assert(info->num_cpus <= SSE_MAX_CPUS);
 944
 945    /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
 946    assert(is_power_of_2(info->sram_banks));
 947    addr_width_max = 24 - ctz32(info->sram_banks);
 948    if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
 949        error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
 950                   addr_width_max);
 951        return;
 952    }
 953
 954    /* Handling of which devices should be available only to secure
 955     * code is usually done differently for M profile than for A profile.
 956     * Instead of putting some devices only into the secure address space,
 957     * devices exist in both address spaces but with hard-wired security
 958     * permissions that will cause the CPU to fault for non-secure accesses.
 959     *
 960     * The ARMSSE has an IDAU (Implementation Defined Access Unit),
 961     * which specifies hard-wired security permissions for different
 962     * areas of the physical address space. For the ARMSSE IDAU, the
 963     * top 4 bits of the physical address are the IDAU region ID, and
 964     * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
 965     * region, otherwise it is an S region.
 966     *
 967     * The various devices and RAMs are generally all mapped twice,
 968     * once into a region that the IDAU defines as secure and once
 969     * into a non-secure region. They sit behind either a Memory
 970     * Protection Controller (for RAM) or a Peripheral Protection
 971     * Controller (for devices), which allow a more fine grained
 972     * configuration of whether non-secure accesses are permitted.
 973     *
 974     * (The other place that guest software can configure security
 975     * permissions is in the architected SAU (Security Attribution
 976     * Unit), which is entirely inside the CPU. The IDAU can upgrade
 977     * the security attributes for a region to more restrictive than
 978     * the SAU specifies, but cannot downgrade them.)
 979     *
 980     * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
 981     * 0x20000000..0x2007ffff  32KB FPGA block RAM
 982     * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
 983     * 0x40000000..0x4000ffff  base peripheral region 1
 984     * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
 985     * 0x40020000..0x4002ffff  system control element peripherals
 986     * 0x40080000..0x400fffff  base peripheral region 2
 987     * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
 988     */
 989
 990    memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
 991
 992    for (i = 0; i < info->num_cpus; i++) {
 993        DeviceState *cpudev = DEVICE(&s->armv7m[i]);
 994        Object *cpuobj = OBJECT(&s->armv7m[i]);
 995        int j;
 996        char *gpioname;
 997
 998        qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
 999        /*
1000         * In real hardware the initial Secure VTOR is set from the INITSVTOR*
1001         * registers in the IoT Kit System Control Register block. In QEMU
1002         * we set the initial value here, and also the reset value of the
1003         * sysctl register, from this object's QOM init-svtor property.
1004         * If the guest changes the INITSVTOR* registers at runtime then the
1005         * code in iotkit-sysctl.c will update the CPU init-svtor property
1006         * (which will then take effect on the next CPU warm-reset).
1007         *
1008         * Note that typically a board using the SSE-200 will have a system
1009         * control processor whose boot firmware initializes the INITSVTOR*
1010         * registers before powering up the CPUs. QEMU doesn't emulate
1011         * the control processor, so instead we behave in the way that the
1012         * firmware does: the initial value should be set by the board code
1013         * (using the init-svtor property on the ARMSSE object) to match
1014         * whatever its firmware does.
1015         */
1016        qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
1017        /*
1018         * CPUs start powered down if the corresponding bit in the CPUWAIT
1019         * register is 1. In real hardware the CPUWAIT register reset value is
1020         * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1021         * CPUWAIT1_RST parameters), but since all the boards we care about
1022         * start CPU0 and leave CPU1 powered off, we hard-code that in
1023         * info->cpuwait_rst for now. We can add QOM properties for this
1024         * later if necessary.
1025         */
1026        if (extract32(info->cpuwait_rst, i, 1)) {
1027            if (!object_property_set_bool(cpuobj, "start-powered-off", true,
1028                                          errp)) {
1029                return;
1030            }
1031        }
1032        if (!s->cpu_fpu[i]) {
1033            if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
1034                return;
1035            }
1036        }
1037        if (!s->cpu_dsp[i]) {
1038            if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
1039                return;
1040            }
1041        }
1042
1043        if (i > 0) {
1044            memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1045                                                &s->container_alias[i - 1], -1);
1046        } else {
1047            memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1048                                                &s->container, -1);
1049        }
1050        object_property_set_link(cpuobj, "memory",
1051                                 OBJECT(&s->cpu_container[i]), &error_abort);
1052        object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
1053        if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
1054            return;
1055        }
1056        /*
1057         * The cluster must be realized after the armv7m container, as
1058         * the container's CPU object is only created on realize, and the
1059         * CPU must exist and have been parented into the cluster before
1060         * the cluster is realized.
1061         */
1062        if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
1063            return;
1064        }
1065
1066        /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1067        s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
1068        for (j = 0; j < s->exp_numirq; j++) {
1069            s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
1070        }
1071        if (i == 0) {
1072            gpioname = g_strdup("EXP_IRQ");
1073        } else {
1074            gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
1075        }
1076        qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
1077                                            s->exp_irqs[i],
1078                                            gpioname, s->exp_numirq);
1079        g_free(gpioname);
1080    }
1081
1082    /* Wire up the splitters that connect common IRQs to all CPUs */
1083    if (info->num_cpus > 1) {
1084        for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
1085            if (info->irq_is_common[i]) {
1086                Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
1087                DeviceState *devs = DEVICE(splitter);
1088                int cpunum;
1089
1090                if (!object_property_set_int(splitter, "num-lines",
1091                                             info->num_cpus, errp)) {
1092                    return;
1093                }
1094                if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1095                    return;
1096                }
1097                for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1098                    DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1099
1100                    qdev_connect_gpio_out(devs, cpunum,
1101                                          qdev_get_gpio_in(cpudev, i));
1102                }
1103            }
1104        }
1105    }
1106
1107    /* Set up the big aliases first */
1108    make_alias(s, &s->alias1, &s->container, "alias 1",
1109               0x10000000, 0x10000000, 0x00000000);
1110    make_alias(s, &s->alias2, &s->container,
1111               "alias 2", 0x30000000, 0x10000000, 0x20000000);
1112    /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1113     * a few extra devices that only appear there (generally the
1114     * control interfaces for the protection controllers).
1115     * We implement this by mapping those devices over the top of this
1116     * alias MR at a higher priority. Some of the devices in this range
1117     * are per-CPU, so we must put this alias in the per-cpu containers.
1118     */
1119    for (i = 0; i < info->num_cpus; i++) {
1120        make_alias(s, &s->alias3[i], &s->cpu_container[i],
1121                   "alias 3", 0x50000000, 0x10000000, 0x40000000);
1122    }
1123
1124    /* Security controller */
1125    object_property_set_int(OBJECT(&s->secctl), "sse-version",
1126                            info->sse_version, &error_abort);
1127    if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
1128        return;
1129    }
1130    sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
1131    dev_secctl = DEVICE(&s->secctl);
1132    sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
1133    sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
1134
1135    s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
1136    qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
1137
1138    /* The sec_resp_cfg output from the security controller must be split into
1139     * multiple lines, one for each of the PPCs within the ARMSSE and one
1140     * that will be an output from the ARMSSE to the system.
1141     */
1142    if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
1143                                 "num-lines", 3, errp)) {
1144        return;
1145    }
1146    if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
1147        return;
1148    }
1149    dev_splitter = DEVICE(&s->sec_resp_splitter);
1150    qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
1151                                qdev_get_gpio_in(dev_splitter, 0));
1152
1153    /* Each SRAM bank lives behind its own Memory Protection Controller */
1154    for (i = 0; i < info->sram_banks; i++) {
1155        char *ramname = g_strdup_printf("armsse.sram%d", i);
1156        SysBusDevice *sbd_mpc;
1157        uint32_t sram_bank_size = 1 << s->sram_addr_width;
1158
1159        memory_region_init_ram(&s->sram[i], NULL, ramname,
1160                               sram_bank_size, errp);
1161        g_free(ramname);
1162        if (*errp) {
1163            return;
1164        }
1165        object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
1166                                 OBJECT(&s->sram[i]), &error_abort);
1167        if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
1168            return;
1169        }
1170        /* Map the upstream end of the MPC into the right place... */
1171        sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
1172        memory_region_add_subregion(&s->container,
1173                                    info->sram_bank_base + i * sram_bank_size,
1174                                    sysbus_mmio_get_region(sbd_mpc, 1));
1175        /* ...and its register interface */
1176        memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
1177                                    sysbus_mmio_get_region(sbd_mpc, 0));
1178    }
1179
1180    /* We must OR together lines from the MPC splitters to go to the NVIC */
1181    if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
1182                                 IOTS_NUM_EXP_MPC + info->sram_banks,
1183                                 errp)) {
1184        return;
1185    }
1186    if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
1187        return;
1188    }
1189    qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
1190                          armsse_get_common_irq_in(s, 9));
1191
1192    /* This OR gate wires together outputs from the secure watchdogs to NMI */
1193    if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1194                                 errp)) {
1195        return;
1196    }
1197    if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1198        return;
1199    }
1200    qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1201                          qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1202
1203    /* The SSE-300 has a System Counter / System Timestamp Generator */
1204    if (info->has_sse_counter) {
1205        SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
1206
1207        qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
1208        if (!sysbus_realize(sbd, errp)) {
1209            return;
1210        }
1211        /*
1212         * The control frame is only in the Secure region;
1213         * the status frame is in the NS region (and visible in the
1214         * S region via the alias mapping).
1215         */
1216        memory_region_add_subregion(&s->container, 0x58100000,
1217                                    sysbus_mmio_get_region(sbd, 0));
1218        memory_region_add_subregion(&s->container, 0x48101000,
1219                                    sysbus_mmio_get_region(sbd, 1));
1220    }
1221
1222    if (info->has_tcms) {
1223        /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */
1224        memory_region_init_ram(&s->itcm, NULL, "sse300-itcm", 512 * KiB, errp);
1225        if (*errp) {
1226            return;
1227        }
1228        memory_region_init_ram(&s->dtcm, NULL, "sse300-dtcm", 512 * KiB, errp);
1229        if (*errp) {
1230            return;
1231        }
1232        memory_region_add_subregion(&s->container, 0x00000000, &s->itcm);
1233        memory_region_add_subregion(&s->container, 0x20000000, &s->dtcm);
1234    }
1235
1236    /* Devices behind APB PPC0:
1237     *   0x40000000: timer0
1238     *   0x40001000: timer1
1239     *   0x40002000: dual timer
1240     *   0x40003000: MHU0 (SSE-200 only)
1241     *   0x40004000: MHU1 (SSE-200 only)
1242     * We must configure and realize each downstream device and connect
1243     * it to the appropriate PPC port; then we can realize the PPC and
1244     * map its upstream ends to the right place in the container.
1245     */
1246    for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1247        SysBusDevice *sbd;
1248        qemu_irq irq;
1249
1250        if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1251            sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1252
1253            qdev_connect_clock_in(DEVICE(sbd), "pclk",
1254                                  devinfo->slowclk ? s->s32kclk : s->mainclk);
1255            if (!sysbus_realize(sbd, errp)) {
1256                return;
1257            }
1258            mr = sysbus_mmio_get_region(sbd, 0);
1259        } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1260            sbd = SYS_BUS_DEVICE(&s->dualtimer);
1261
1262            qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1263            if (!sysbus_realize(sbd, errp)) {
1264                return;
1265            }
1266            mr = sysbus_mmio_get_region(sbd, 0);
1267        } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
1268            sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
1269
1270            assert(info->has_sse_counter);
1271            object_property_set_link(OBJECT(sbd), "counter",
1272                                     OBJECT(&s->sse_counter), &error_abort);
1273            if (!sysbus_realize(sbd, errp)) {
1274                return;
1275            }
1276            mr = sysbus_mmio_get_region(sbd, 0);
1277        } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1278            sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1279
1280            qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1281                                  devinfo->slowclk ? s->s32kclk : s->mainclk);
1282            if (!sysbus_realize(sbd, errp)) {
1283                return;
1284            }
1285            mr = sysbus_mmio_get_region(sbd, 0);
1286        } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1287            sbd = SYS_BUS_DEVICE(&s->sysinfo);
1288
1289            object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1290                                    info->sys_version, &error_abort);
1291            object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1292                                    armsse_sys_config_value(s, info),
1293                                    &error_abort);
1294            object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1295                                    info->sse_version, &error_abort);
1296            object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1297                                    info->iidr, &error_abort);
1298            if (!sysbus_realize(sbd, errp)) {
1299                return;
1300            }
1301            mr = sysbus_mmio_get_region(sbd, 0);
1302        } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1303            /* System control registers */
1304            sbd = SYS_BUS_DEVICE(&s->sysctl);
1305
1306            object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1307                                    info->sse_version, &error_abort);
1308            object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1309                                    info->cpuwait_rst, &error_abort);
1310            object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1311                                    s->init_svtor, &error_abort);
1312            object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1313                                    s->init_svtor, &error_abort);
1314            if (!sysbus_realize(sbd, errp)) {
1315                return;
1316            }
1317            mr = sysbus_mmio_get_region(sbd, 0);
1318        } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1319            sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1320
1321            qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1322            qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1323            if (!sysbus_realize(sbd, errp)) {
1324                return;
1325            }
1326            mr = sysbus_mmio_get_region(sbd, 0);
1327        } else {
1328            g_assert_not_reached();
1329        }
1330
1331        switch (devinfo->irq) {
1332        case NO_IRQ:
1333            irq = NULL;
1334            break;
1335        case 0 ... NUM_SSE_IRQS - 1:
1336            irq = armsse_get_common_irq_in(s, devinfo->irq);
1337            break;
1338        case NMI_0:
1339        case NMI_1:
1340            irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1341                                   devinfo->irq - NMI_0);
1342            break;
1343        default:
1344            g_assert_not_reached();
1345        }
1346
1347        if (irq) {
1348            sysbus_connect_irq(sbd, 0, irq);
1349        }
1350
1351        /*
1352         * Devices connected to a PPC are connected to the port here;
1353         * we will map the upstream end of that port to the right address
1354         * in the container later after the PPC has been realized.
1355         * Devices not connected to a PPC can be mapped immediately.
1356         */
1357        if (devinfo->ppc != NO_PPC) {
1358            TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1359            g_autofree char *portname = g_strdup_printf("port[%d]",
1360                                                        devinfo->ppc_port);
1361            object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1362                                     &error_abort);
1363        } else {
1364            memory_region_add_subregion(&s->container, devinfo->addr, mr);
1365        }
1366    }
1367
1368    if (info->has_mhus) {
1369        /*
1370         * An SSE-200 with only one CPU should have only one MHU created,
1371         * with the region where the second MHU usually is being RAZ/WI.
1372         * We don't implement that SSE-200 config; if we want to support
1373         * it then this code needs to be enhanced to handle creating the
1374         * RAZ/WI region instead of the second MHU.
1375         */
1376        assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1377
1378        for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1379            char *port;
1380            int cpunum;
1381            SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1382
1383            if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1384                return;
1385            }
1386            port = g_strdup_printf("port[%d]", i + 3);
1387            mr = sysbus_mmio_get_region(mhu_sbd, 0);
1388            object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1389                                     &error_abort);
1390            g_free(port);
1391
1392            /*
1393             * Each MHU has an irq line for each CPU:
1394             *  MHU 0 irq line 0 -> CPU 0 IRQ 6
1395             *  MHU 0 irq line 1 -> CPU 1 IRQ 6
1396             *  MHU 1 irq line 0 -> CPU 0 IRQ 7
1397             *  MHU 1 irq line 1 -> CPU 1 IRQ 7
1398             */
1399            for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1400                DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1401
1402                sysbus_connect_irq(mhu_sbd, cpunum,
1403                                   qdev_get_gpio_in(cpudev, 6 + i));
1404            }
1405        }
1406    }
1407
1408    if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1409        return;
1410    }
1411
1412    sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1413    dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1414
1415    if (info->has_mhus) {
1416        mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1417        memory_region_add_subregion(&s->container, 0x40003000, mr);
1418        mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1419        memory_region_add_subregion(&s->container, 0x40004000, mr);
1420    }
1421    for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1422        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1423                                    qdev_get_gpio_in_named(dev_apb_ppc0,
1424                                                           "cfg_nonsec", i));
1425        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1426                                    qdev_get_gpio_in_named(dev_apb_ppc0,
1427                                                           "cfg_ap", i));
1428    }
1429    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1430                                qdev_get_gpio_in_named(dev_apb_ppc0,
1431                                                       "irq_enable", 0));
1432    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1433                                qdev_get_gpio_in_named(dev_apb_ppc0,
1434                                                       "irq_clear", 0));
1435    qdev_connect_gpio_out(dev_splitter, 0,
1436                          qdev_get_gpio_in_named(dev_apb_ppc0,
1437                                                 "cfg_sec_resp", 0));
1438
1439    /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1440     * ones) are sent individually to the security controller, and also
1441     * ORed together to give a single combined PPC interrupt to the NVIC.
1442     */
1443    if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1444                                 "num-lines", NUM_PPCS, errp)) {
1445        return;
1446    }
1447    if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1448        return;
1449    }
1450    qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1451                          armsse_get_common_irq_in(s, 10));
1452
1453    /*
1454     * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1455     * private per-CPU region (all these devices are SSE-200 only):
1456     *  0x50010000: L1 icache control registers
1457     *  0x50011000: CPUSECCTRL (CPU local security control registers)
1458     *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1459     * The SSE-300 has an extra:
1460     *  0x40012000 and 0x50012000: CPU_PWRCTRL register block
1461     */
1462    if (info->has_cachectrl) {
1463        for (i = 0; i < info->num_cpus; i++) {
1464            char *name = g_strdup_printf("cachectrl%d", i);
1465            MemoryRegion *mr;
1466
1467            qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1468            g_free(name);
1469            qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1470            if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1471                return;
1472            }
1473
1474            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1475            memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1476        }
1477    }
1478    if (info->has_cpusecctrl) {
1479        for (i = 0; i < info->num_cpus; i++) {
1480            char *name = g_strdup_printf("CPUSECCTRL%d", i);
1481            MemoryRegion *mr;
1482
1483            qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1484            g_free(name);
1485            qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1486            if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1487                return;
1488            }
1489
1490            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1491            memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1492        }
1493    }
1494    if (info->has_cpuid) {
1495        for (i = 0; i < info->num_cpus; i++) {
1496            MemoryRegion *mr;
1497
1498            qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1499            if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1500                return;
1501            }
1502
1503            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1504            memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1505        }
1506    }
1507    if (info->has_cpu_pwrctrl) {
1508        for (i = 0; i < info->num_cpus; i++) {
1509            MemoryRegion *mr;
1510
1511            if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
1512                return;
1513            }
1514
1515            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
1516            memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
1517        }
1518    }
1519
1520    if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1521        return;
1522    }
1523
1524    dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1525    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1526                                qdev_get_gpio_in_named(dev_apb_ppc1,
1527                                                       "cfg_nonsec", 0));
1528    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1529                                qdev_get_gpio_in_named(dev_apb_ppc1,
1530                                                       "cfg_ap", 0));
1531    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1532                                qdev_get_gpio_in_named(dev_apb_ppc1,
1533                                                       "irq_enable", 0));
1534    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1535                                qdev_get_gpio_in_named(dev_apb_ppc1,
1536                                                       "irq_clear", 0));
1537    qdev_connect_gpio_out(dev_splitter, 1,
1538                          qdev_get_gpio_in_named(dev_apb_ppc1,
1539                                                 "cfg_sec_resp", 0));
1540
1541    /*
1542     * Now both PPCs are realized we can map the upstream ends of
1543     * ports which correspond to entries in the devinfo array.
1544     * The ports which are connected to non-devinfo devices have
1545     * already been mapped.
1546     */
1547    for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1548        SysBusDevice *ppc_sbd;
1549
1550        if (devinfo->ppc == NO_PPC) {
1551            continue;
1552        }
1553        ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1554        mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1555        memory_region_add_subregion(&s->container, devinfo->addr, mr);
1556    }
1557
1558    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1559        Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1560
1561        if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1562            return;
1563        }
1564        if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1565            return;
1566        }
1567    }
1568
1569    for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1570        char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1571
1572        armsse_forward_ppc(s, ppcname, i);
1573        g_free(ppcname);
1574    }
1575
1576    for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1577        char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1578
1579        armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1580        g_free(ppcname);
1581    }
1582
1583    for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1584        /* Wire up IRQ splitter for internal PPCs */
1585        DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1586        char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1587                                         i - NUM_EXTERNAL_PPCS);
1588        TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1589
1590        qdev_connect_gpio_out(devs, 0,
1591                              qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1592        qdev_connect_gpio_out(devs, 1,
1593                              qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1594        qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1595                                    qdev_get_gpio_in(devs, 0));
1596        g_free(gpioname);
1597    }
1598
1599    /* Wire up the splitters for the MPC IRQs */
1600    for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1601        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1602        DeviceState *dev_splitter = DEVICE(splitter);
1603
1604        if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1605                                     errp)) {
1606            return;
1607        }
1608        if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1609            return;
1610        }
1611
1612        if (i < IOTS_NUM_EXP_MPC) {
1613            /* Splitter input is from GPIO input line */
1614            s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1615            qdev_connect_gpio_out(dev_splitter, 0,
1616                                  qdev_get_gpio_in_named(dev_secctl,
1617                                                         "mpcexp_status", i));
1618        } else {
1619            /* Splitter input is from our own MPC */
1620            qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1621                                        "irq", 0,
1622                                        qdev_get_gpio_in(dev_splitter, 0));
1623            qdev_connect_gpio_out(dev_splitter, 0,
1624                                  qdev_get_gpio_in_named(dev_secctl,
1625                                                         "mpc_status",
1626                                                         i - IOTS_NUM_EXP_MPC));
1627        }
1628
1629        qdev_connect_gpio_out(dev_splitter, 1,
1630                              qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1631    }
1632    /* Create GPIO inputs which will pass the line state for our
1633     * mpcexp_irq inputs to the correct splitter devices.
1634     */
1635    qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1636                            IOTS_NUM_EXP_MPC);
1637
1638    armsse_forward_sec_resp_cfg(s);
1639
1640    /* Forward the MSC related signals */
1641    qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1642    qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1643    qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1644    qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1645                                armsse_get_common_irq_in(s, 11));
1646
1647    /*
1648     * Expose our container region to the board model; this corresponds
1649     * to the AHB Slave Expansion ports which allow bus master devices
1650     * (eg DMA controllers) in the board model to make transactions into
1651     * devices in the ARMSSE.
1652     */
1653    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1654
1655    /* Set initial system_clock_scale from MAINCLK */
1656    armsse_mainclk_update(s, ClockUpdate);
1657}
1658
1659static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1660                              int *iregion, bool *exempt, bool *ns, bool *nsc)
1661{
1662    /*
1663     * For ARMSSE systems the IDAU responses are simple logical functions
1664     * of the address bits. The NSC attribute is guest-adjustable via the
1665     * NSCCFG register in the security controller.
1666     */
1667    ARMSSE *s = ARM_SSE(ii);
1668    int region = extract32(address, 28, 4);
1669
1670    *ns = !(region & 1);
1671    *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1672    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1673    *exempt = (address & 0xeff00000) == 0xe0000000;
1674    *iregion = region;
1675}
1676
1677static const VMStateDescription armsse_vmstate = {
1678    .name = "iotkit",
1679    .version_id = 2,
1680    .minimum_version_id = 2,
1681    .fields = (VMStateField[]) {
1682        VMSTATE_CLOCK(mainclk, ARMSSE),
1683        VMSTATE_CLOCK(s32kclk, ARMSSE),
1684        VMSTATE_UINT32(nsccfg, ARMSSE),
1685        VMSTATE_END_OF_LIST()
1686    }
1687};
1688
1689static void armsse_reset(DeviceState *dev)
1690{
1691    ARMSSE *s = ARM_SSE(dev);
1692
1693    s->nsccfg = 0;
1694}
1695
1696static void armsse_class_init(ObjectClass *klass, void *data)
1697{
1698    DeviceClass *dc = DEVICE_CLASS(klass);
1699    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1700    ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1701    const ARMSSEInfo *info = data;
1702
1703    dc->realize = armsse_realize;
1704    dc->vmsd = &armsse_vmstate;
1705    device_class_set_props(dc, info->props);
1706    dc->reset = armsse_reset;
1707    iic->check = armsse_idau_check;
1708    asc->info = info;
1709}
1710
1711static const TypeInfo armsse_info = {
1712    .name = TYPE_ARM_SSE,
1713    .parent = TYPE_SYS_BUS_DEVICE,
1714    .instance_size = sizeof(ARMSSE),
1715    .class_size = sizeof(ARMSSEClass),
1716    .instance_init = armsse_init,
1717    .abstract = true,
1718    .interfaces = (InterfaceInfo[]) {
1719        { TYPE_IDAU_INTERFACE },
1720        { }
1721    }
1722};
1723
1724static void armsse_register_types(void)
1725{
1726    int i;
1727
1728    type_register_static(&armsse_info);
1729
1730    for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1731        TypeInfo ti = {
1732            .name = armsse_variants[i].name,
1733            .parent = TYPE_ARM_SSE,
1734            .class_init = armsse_class_init,
1735            .class_data = (void *)&armsse_variants[i],
1736        };
1737        type_register(&ti);
1738    }
1739}
1740
1741type_init(armsse_register_types);
1742