qemu/hw/arm/mps2-tz.c
<<
>>
Prefs
   1/*
   2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
   3 *
   4 * Copyright (c) 2017 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 or
   9 *  (at your option) any later version.
  10 */
  11
  12/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
  13 * FPGA but is otherwise the same as the 2). Since the CPU itself
  14 * and most of the devices are in the FPGA, the details of the board
  15 * as seen by the guest depend significantly on the FPGA image.
  16 * This source file covers the following FPGA images, for TrustZone cores:
  17 *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
  18 *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
  19 *  "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
  20 *  "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
  21 *
  22 * Links to the TRM for the board itself and to the various Application
  23 * Notes which document the FPGA images can be found here:
  24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
  25 *
  26 * Board TRM:
  27 * https://developer.arm.com/documentation/100112/latest/
  28 * Application Note AN505:
  29 * https://developer.arm.com/documentation/dai0505/latest/
  30 * Application Note AN521:
  31 * https://developer.arm.com/documentation/dai0521/latest/
  32 * Application Note AN524:
  33 * https://developer.arm.com/documentation/dai0524/latest/
  34 * Application Note AN547:
  35 * https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/DAI0547B_SSE300_PLUS_U55_FPGA_for_mps3.pdf
  36 *
  37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
  38 * (ARM ECM0601256) for the details of some of the device layout:
  39 *  https://developer.arm.com/documentation/ecm0601256/latest
  40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
  41 * most of the device layout:
  42 *  https://developer.arm.com/documentation/101104/latest/
  43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
  44 *  https://developer.arm.com/documentation/101773/latest/
  45 */
  46
  47#include "qemu/osdep.h"
  48#include "qemu/units.h"
  49#include "qemu/cutils.h"
  50#include "qapi/error.h"
  51#include "qemu/error-report.h"
  52#include "hw/arm/boot.h"
  53#include "hw/arm/armv7m.h"
  54#include "hw/or-irq.h"
  55#include "hw/boards.h"
  56#include "exec/address-spaces.h"
  57#include "sysemu/sysemu.h"
  58#include "sysemu/reset.h"
  59#include "hw/misc/unimp.h"
  60#include "hw/char/cmsdk-apb-uart.h"
  61#include "hw/timer/cmsdk-apb-timer.h"
  62#include "hw/misc/mps2-scc.h"
  63#include "hw/misc/mps2-fpgaio.h"
  64#include "hw/misc/tz-mpc.h"
  65#include "hw/misc/tz-msc.h"
  66#include "hw/arm/armsse.h"
  67#include "hw/dma/pl080.h"
  68#include "hw/rtc/pl031.h"
  69#include "hw/ssi/pl022.h"
  70#include "hw/i2c/arm_sbcon_i2c.h"
  71#include "hw/net/lan9118.h"
  72#include "net/net.h"
  73#include "hw/core/split-irq.h"
  74#include "hw/qdev-clock.h"
  75#include "qom/object.h"
  76#include "hw/irq.h"
  77
  78#define MPS2TZ_NUMIRQ_MAX 96
  79#define MPS2TZ_RAM_MAX 5
  80
  81typedef enum MPS2TZFPGAType {
  82    FPGA_AN505,
  83    FPGA_AN521,
  84    FPGA_AN524,
  85    FPGA_AN547,
  86} MPS2TZFPGAType;
  87
  88/*
  89 * Define the layout of RAM in a board, including which parts are
  90 * behind which MPCs.
  91 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
  92 * -1 means "use the system RAM".
  93 */
  94typedef struct RAMInfo {
  95    const char *name;
  96    uint32_t base;
  97    uint32_t size;
  98    int mpc; /* MPC number, -1 for "not behind an MPC" */
  99    int mrindex;
 100    int flags;
 101} RAMInfo;
 102
 103/*
 104 * Flag values:
 105 *  IS_ALIAS: this RAM area is an alias to the upstream end of the
 106 *    MPC specified by its .mpc value
 107 *  IS_ROM: this RAM area is read-only
 108 */
 109#define IS_ALIAS 1
 110#define IS_ROM 2
 111
 112struct MPS2TZMachineClass {
 113    MachineClass parent;
 114    MPS2TZFPGAType fpga_type;
 115    uint32_t scc_id;
 116    uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
 117    uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
 118    uint32_t len_oscclk;
 119    const uint32_t *oscclk;
 120    uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
 121    bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
 122    bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
 123    int numirq; /* Number of external interrupts */
 124    int uart_overflow_irq; /* number of the combined UART overflow IRQ */
 125    uint32_t init_svtor; /* init-svtor setting for SSE */
 126    uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
 127    const RAMInfo *raminfo;
 128    const char *armsse_type;
 129    uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
 130};
 131
 132struct MPS2TZMachineState {
 133    MachineState parent;
 134
 135    ARMSSE iotkit;
 136    MemoryRegion ram[MPS2TZ_RAM_MAX];
 137    MemoryRegion eth_usb_container;
 138
 139    MPS2SCC scc;
 140    MPS2FPGAIO fpgaio;
 141    TZPPC ppc[5];
 142    TZMPC mpc[3];
 143    PL022State spi[5];
 144    ArmSbconI2CState i2c[5];
 145    UnimplementedDeviceState i2s_audio;
 146    UnimplementedDeviceState gpio[4];
 147    UnimplementedDeviceState gfx;
 148    UnimplementedDeviceState cldc;
 149    UnimplementedDeviceState usb;
 150    PL031State rtc;
 151    PL080State dma[4];
 152    TZMSC msc[4];
 153    CMSDKAPBUART uart[6];
 154    SplitIRQ sec_resp_splitter;
 155    qemu_or_irq uart_irq_orgate;
 156    DeviceState *lan9118;
 157    SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
 158    Clock *sysclk;
 159    Clock *s32kclk;
 160
 161    bool remap;
 162    qemu_irq remap_irq;
 163};
 164
 165#define TYPE_MPS2TZ_MACHINE "mps2tz"
 166#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
 167#define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
 168#define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
 169#define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
 170
 171OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
 172
 173/* Slow 32Khz S32KCLK frequency in Hz */
 174#define S32KCLK_FRQ (32 * 1000)
 175
 176/*
 177 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
 178 * emulation of that much guest RAM, so artificially make it smaller.
 179 */
 180#if HOST_LONG_BITS == 32
 181#define MPS3_DDR_SIZE (1 * GiB)
 182#else
 183#define MPS3_DDR_SIZE (2 * GiB)
 184#endif
 185
 186static const uint32_t an505_oscclk[] = {
 187    40000000,
 188    24580000,
 189    25000000,
 190};
 191
 192static const uint32_t an524_oscclk[] = {
 193    24000000,
 194    32000000,
 195    50000000,
 196    50000000,
 197    24576000,
 198    23750000,
 199};
 200
 201static const RAMInfo an505_raminfo[] = { {
 202        .name = "ssram-0",
 203        .base = 0x00000000,
 204        .size = 0x00400000,
 205        .mpc = 0,
 206        .mrindex = 0,
 207    }, {
 208        .name = "ssram-1",
 209        .base = 0x28000000,
 210        .size = 0x00200000,
 211        .mpc = 1,
 212        .mrindex = 1,
 213    }, {
 214        .name = "ssram-2",
 215        .base = 0x28200000,
 216        .size = 0x00200000,
 217        .mpc = 2,
 218        .mrindex = 2,
 219    }, {
 220        .name = "ssram-0-alias",
 221        .base = 0x00400000,
 222        .size = 0x00400000,
 223        .mpc = 0,
 224        .mrindex = 3,
 225        .flags = IS_ALIAS,
 226    }, {
 227        /* Use the largest bit of contiguous RAM as our "system memory" */
 228        .name = "mps.ram",
 229        .base = 0x80000000,
 230        .size = 16 * MiB,
 231        .mpc = -1,
 232        .mrindex = -1,
 233    }, {
 234        .name = NULL,
 235    },
 236};
 237
 238/*
 239 * Note that the addresses and MPC numbering here should match up
 240 * with those used in remap_memory(), which can swap the BRAM and QSPI.
 241 */
 242static const RAMInfo an524_raminfo[] = { {
 243        .name = "bram",
 244        .base = 0x00000000,
 245        .size = 512 * KiB,
 246        .mpc = 0,
 247        .mrindex = 0,
 248    }, {
 249        /* We don't model QSPI flash yet; for now expose it as simple ROM */
 250        .name = "QSPI",
 251        .base = 0x28000000,
 252        .size = 8 * MiB,
 253        .mpc = 1,
 254        .mrindex = 1,
 255        .flags = IS_ROM,
 256    }, {
 257        .name = "DDR",
 258        .base = 0x60000000,
 259        .size = MPS3_DDR_SIZE,
 260        .mpc = 2,
 261        .mrindex = -1,
 262    }, {
 263        .name = NULL,
 264    },
 265};
 266
 267static const RAMInfo an547_raminfo[] = { {
 268        .name = "sram",
 269        .base = 0x01000000,
 270        .size = 2 * MiB,
 271        .mpc = 0,
 272        .mrindex = 1,
 273    }, {
 274        .name = "sram 2",
 275        .base = 0x21000000,
 276        .size = 4 * MiB,
 277        .mpc = -1,
 278        .mrindex = 3,
 279    }, {
 280        /* We don't model QSPI flash yet; for now expose it as simple ROM */
 281        .name = "QSPI",
 282        .base = 0x28000000,
 283        .size = 8 * MiB,
 284        .mpc = 1,
 285        .mrindex = 4,
 286        .flags = IS_ROM,
 287    }, {
 288        .name = "DDR",
 289        .base = 0x60000000,
 290        .size = MPS3_DDR_SIZE,
 291        .mpc = 2,
 292        .mrindex = -1,
 293    }, {
 294        .name = NULL,
 295    },
 296};
 297
 298static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
 299{
 300    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 301    const RAMInfo *p;
 302    const RAMInfo *found = NULL;
 303
 304    for (p = mmc->raminfo; p->name; p++) {
 305        if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
 306            /* There should only be one entry in the array for this MPC */
 307            g_assert(!found);
 308            found = p;
 309        }
 310    }
 311    /* if raminfo array doesn't have an entry for each MPC this is a bug */
 312    assert(found);
 313    return found;
 314}
 315
 316static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
 317                                    const RAMInfo *raminfo)
 318{
 319    /* Return an initialized MemoryRegion for the RAMInfo. */
 320    MemoryRegion *ram;
 321
 322    if (raminfo->mrindex < 0) {
 323        /* Means this RAMInfo is for QEMU's "system memory" */
 324        MachineState *machine = MACHINE(mms);
 325        assert(!(raminfo->flags & IS_ROM));
 326        return machine->ram;
 327    }
 328
 329    assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
 330    ram = &mms->ram[raminfo->mrindex];
 331
 332    memory_region_init_ram(ram, NULL, raminfo->name,
 333                           raminfo->size, &error_fatal);
 334    if (raminfo->flags & IS_ROM) {
 335        memory_region_set_readonly(ram, true);
 336    }
 337    return ram;
 338}
 339
 340/* Create an alias of an entire original MemoryRegion @orig
 341 * located at @base in the memory map.
 342 */
 343static void make_ram_alias(MemoryRegion *mr, const char *name,
 344                           MemoryRegion *orig, hwaddr base)
 345{
 346    memory_region_init_alias(mr, NULL, name, orig, 0,
 347                             memory_region_size(orig));
 348    memory_region_add_subregion(get_system_memory(), base, mr);
 349}
 350
 351static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
 352{
 353    /*
 354     * Return a qemu_irq which will signal IRQ n to all CPUs in the
 355     * SSE.  The irqno should be as the CPU sees it, so the first
 356     * external-to-the-SSE interrupt is 32.
 357     */
 358    MachineClass *mc = MACHINE_GET_CLASS(mms);
 359    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 360
 361    assert(irqno >= 32 && irqno < (mmc->numirq + 32));
 362
 363    /*
 364     * Convert from "CPU irq number" (as listed in the FPGA image
 365     * documentation) to the SSE external-interrupt number.
 366     */
 367    irqno -= 32;
 368
 369    if (mc->max_cpus > 1) {
 370        return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
 371    } else {
 372        return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
 373    }
 374}
 375
 376/* Most of the devices in the AN505 FPGA image sit behind
 377 * Peripheral Protection Controllers. These data structures
 378 * define the layout of which devices sit behind which PPCs.
 379 * The devfn for each port is a function which creates, configures
 380 * and initializes the device, returning the MemoryRegion which
 381 * needs to be plugged into the downstream end of the PPC port.
 382 */
 383typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
 384                                const char *name, hwaddr size,
 385                                const int *irqs);
 386
 387typedef struct PPCPortInfo {
 388    const char *name;
 389    MakeDevFn *devfn;
 390    void *opaque;
 391    hwaddr addr;
 392    hwaddr size;
 393    int irqs[3]; /* currently no device needs more IRQ lines than this */
 394} PPCPortInfo;
 395
 396typedef struct PPCInfo {
 397    const char *name;
 398    PPCPortInfo ports[TZ_NUM_PORTS];
 399} PPCInfo;
 400
 401static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
 402                                    void *opaque,
 403                                    const char *name, hwaddr size,
 404                                    const int *irqs)
 405{
 406    /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
 407     * and return a pointer to its MemoryRegion.
 408     */
 409    UnimplementedDeviceState *uds = opaque;
 410
 411    object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
 412    qdev_prop_set_string(DEVICE(uds), "name", name);
 413    qdev_prop_set_uint64(DEVICE(uds), "size", size);
 414    sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
 415    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
 416}
 417
 418static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
 419                               const char *name, hwaddr size,
 420                               const int *irqs)
 421{
 422    /* The irq[] array is tx, rx, combined, in that order */
 423    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 424    CMSDKAPBUART *uart = opaque;
 425    int i = uart - &mms->uart[0];
 426    SysBusDevice *s;
 427    DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
 428
 429    object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
 430    qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
 431    qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
 432    sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
 433    s = SYS_BUS_DEVICE(uart);
 434    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 435    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
 436    sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
 437    sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
 438    sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
 439    return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
 440}
 441
 442static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
 443                              const char *name, hwaddr size,
 444                              const int *irqs)
 445{
 446    MPS2SCC *scc = opaque;
 447    DeviceState *sccdev;
 448    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 449    uint32_t i;
 450
 451    object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
 452    sccdev = DEVICE(scc);
 453    qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
 454    qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
 455    qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
 456    qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
 457    qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
 458    for (i = 0; i < mmc->len_oscclk; i++) {
 459        g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
 460        qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
 461    }
 462    sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
 463    return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
 464}
 465
 466static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
 467                                 const char *name, hwaddr size,
 468                                 const int *irqs)
 469{
 470    MPS2FPGAIO *fpgaio = opaque;
 471    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 472
 473    object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
 474    qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
 475    qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
 476    qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
 477    sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
 478    return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
 479}
 480
 481static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
 482                                  const char *name, hwaddr size,
 483                                  const int *irqs)
 484{
 485    SysBusDevice *s;
 486    NICInfo *nd = &nd_table[0];
 487
 488    /* In hardware this is a LAN9220; the LAN9118 is software compatible
 489     * except that it doesn't support the checksum-offload feature.
 490     */
 491    qemu_check_nic_model(nd, "lan9118");
 492    mms->lan9118 = qdev_new(TYPE_LAN9118);
 493    qdev_set_nic_properties(mms->lan9118, nd);
 494
 495    s = SYS_BUS_DEVICE(mms->lan9118);
 496    sysbus_realize_and_unref(s, &error_fatal);
 497    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 498    return sysbus_mmio_get_region(s, 0);
 499}
 500
 501static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
 502                                  const char *name, hwaddr size,
 503                                  const int *irqs)
 504{
 505    /*
 506     * The AN524 makes the ethernet and USB share a PPC port.
 507     * irqs[] is the ethernet IRQ.
 508     */
 509    SysBusDevice *s;
 510    NICInfo *nd = &nd_table[0];
 511
 512    memory_region_init(&mms->eth_usb_container, OBJECT(mms),
 513                       "mps2-tz-eth-usb-container", 0x200000);
 514
 515    /*
 516     * In hardware this is a LAN9220; the LAN9118 is software compatible
 517     * except that it doesn't support the checksum-offload feature.
 518     */
 519    qemu_check_nic_model(nd, "lan9118");
 520    mms->lan9118 = qdev_new(TYPE_LAN9118);
 521    qdev_set_nic_properties(mms->lan9118, nd);
 522
 523    s = SYS_BUS_DEVICE(mms->lan9118);
 524    sysbus_realize_and_unref(s, &error_fatal);
 525    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 526
 527    memory_region_add_subregion(&mms->eth_usb_container,
 528                                0, sysbus_mmio_get_region(s, 0));
 529
 530    /* The USB OTG controller is an ISP1763; we don't have a model of it. */
 531    object_initialize_child(OBJECT(mms), "usb-otg",
 532                            &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
 533    qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
 534    qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
 535    s = SYS_BUS_DEVICE(&mms->usb);
 536    sysbus_realize(s, &error_fatal);
 537
 538    memory_region_add_subregion(&mms->eth_usb_container,
 539                                0x100000, sysbus_mmio_get_region(s, 0));
 540
 541    return &mms->eth_usb_container;
 542}
 543
 544static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
 545                              const char *name, hwaddr size,
 546                              const int *irqs)
 547{
 548    TZMPC *mpc = opaque;
 549    int i = mpc - &mms->mpc[0];
 550    MemoryRegion *upstream;
 551    const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
 552    MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
 553
 554    object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
 555    object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
 556                             &error_fatal);
 557    sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
 558    /* Map the upstream end of the MPC into system memory */
 559    upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
 560    memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
 561    /* and connect its interrupt to the IoTKit */
 562    qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
 563                                qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 564                                                       "mpcexp_status", i));
 565
 566    /* Return the register interface MR for our caller to map behind the PPC */
 567    return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
 568}
 569
 570static hwaddr boot_mem_base(MPS2TZMachineState *mms)
 571{
 572    /*
 573     * Return the canonical address of the block which will be mapped
 574     * at address 0x0 (i.e. where the vector table is).
 575     * This is usually 0, but if the AN524 alternate memory map is
 576     * enabled it will be the base address of the QSPI block.
 577     */
 578    return mms->remap ? 0x28000000 : 0;
 579}
 580
 581static void remap_memory(MPS2TZMachineState *mms, int map)
 582{
 583    /*
 584     * Remap the memory for the AN524. 'map' is the value of
 585     * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
 586     * for the "option 1" mapping where QSPI is at address 0.
 587     *
 588     * Effectively we need to swap around the "upstream" ends of
 589     * MPC 0 and MPC 1.
 590     */
 591    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 592    int i;
 593
 594    if (mmc->fpga_type != FPGA_AN524) {
 595        return;
 596    }
 597
 598    memory_region_transaction_begin();
 599    for (i = 0; i < 2; i++) {
 600        TZMPC *mpc = &mms->mpc[i];
 601        MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
 602        hwaddr addr = (i ^ map) ? 0x28000000 : 0;
 603
 604        memory_region_set_address(upstream, addr);
 605    }
 606    memory_region_transaction_commit();
 607}
 608
 609static void remap_irq_fn(void *opaque, int n, int level)
 610{
 611    MPS2TZMachineState *mms = opaque;
 612
 613    remap_memory(mms, level);
 614}
 615
 616static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
 617                              const char *name, hwaddr size,
 618                              const int *irqs)
 619{
 620    /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
 621    PL080State *dma = opaque;
 622    int i = dma - &mms->dma[0];
 623    SysBusDevice *s;
 624    char *mscname = g_strdup_printf("%s-msc", name);
 625    TZMSC *msc = &mms->msc[i];
 626    DeviceState *iotkitdev = DEVICE(&mms->iotkit);
 627    MemoryRegion *msc_upstream;
 628    MemoryRegion *msc_downstream;
 629
 630    /*
 631     * Each DMA device is a PL081 whose transaction master interface
 632     * is guarded by a Master Security Controller. The downstream end of
 633     * the MSC connects to the IoTKit AHB Slave Expansion port, so the
 634     * DMA devices can see all devices and memory that the CPU does.
 635     */
 636    object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
 637    msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
 638    object_property_set_link(OBJECT(msc), "downstream",
 639                             OBJECT(msc_downstream), &error_fatal);
 640    object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
 641    sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
 642
 643    qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
 644                                qdev_get_gpio_in_named(iotkitdev,
 645                                                       "mscexp_status", i));
 646    qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
 647                                qdev_get_gpio_in_named(DEVICE(msc),
 648                                                       "irq_clear", 0));
 649    qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
 650                                qdev_get_gpio_in_named(DEVICE(msc),
 651                                                       "cfg_nonsec", 0));
 652    qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
 653                          ARRAY_SIZE(mms->ppc) + i,
 654                          qdev_get_gpio_in_named(DEVICE(msc),
 655                                                 "cfg_sec_resp", 0));
 656    msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
 657
 658    object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
 659    object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
 660                             &error_fatal);
 661    sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
 662
 663    s = SYS_BUS_DEVICE(dma);
 664    /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
 665    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 666    sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
 667    sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
 668
 669    g_free(mscname);
 670    return sysbus_mmio_get_region(s, 0);
 671}
 672
 673static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
 674                              const char *name, hwaddr size,
 675                              const int *irqs)
 676{
 677    /*
 678     * The AN505 has five PL022 SPI controllers.
 679     * One of these should have the LCD controller behind it; the others
 680     * are connected only to the FPGA's "general purpose SPI connector"
 681     * or "shield" expansion connectors.
 682     * Note that if we do implement devices behind SPI, the chip select
 683     * lines are set via the "MISC" register in the MPS2 FPGAIO device.
 684     */
 685    PL022State *spi = opaque;
 686    SysBusDevice *s;
 687
 688    object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
 689    sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
 690    s = SYS_BUS_DEVICE(spi);
 691    sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
 692    return sysbus_mmio_get_region(s, 0);
 693}
 694
 695static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
 696                              const char *name, hwaddr size,
 697                              const int *irqs)
 698{
 699    ArmSbconI2CState *i2c = opaque;
 700    SysBusDevice *s;
 701
 702    object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
 703    s = SYS_BUS_DEVICE(i2c);
 704    sysbus_realize(s, &error_fatal);
 705    return sysbus_mmio_get_region(s, 0);
 706}
 707
 708static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
 709                              const char *name, hwaddr size,
 710                              const int *irqs)
 711{
 712    PL031State *pl031 = opaque;
 713    SysBusDevice *s;
 714
 715    object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
 716    s = SYS_BUS_DEVICE(pl031);
 717    sysbus_realize(s, &error_fatal);
 718    /*
 719     * The board docs don't give an IRQ number for the PL031, so
 720     * presumably it is not connected.
 721     */
 722    return sysbus_mmio_get_region(s, 0);
 723}
 724
 725static void create_non_mpc_ram(MPS2TZMachineState *mms)
 726{
 727    /*
 728     * Handle the RAMs which are either not behind MPCs or which are
 729     * aliases to another MPC.
 730     */
 731    const RAMInfo *p;
 732    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 733
 734    for (p = mmc->raminfo; p->name; p++) {
 735        if (p->flags & IS_ALIAS) {
 736            SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
 737            MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
 738            make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
 739        } else if (p->mpc == -1) {
 740            /* RAM not behind an MPC */
 741            MemoryRegion *mr = mr_for_raminfo(mms, p);
 742            memory_region_add_subregion(get_system_memory(), p->base, mr);
 743        }
 744    }
 745}
 746
 747static uint32_t boot_ram_size(MPS2TZMachineState *mms)
 748{
 749    /* Return the size of the RAM block at guest address zero */
 750    const RAMInfo *p;
 751    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 752
 753    /*
 754     * Use a per-board specification (for when the boot RAM is in
 755     * the SSE and so doesn't have a RAMInfo list entry)
 756     */
 757    if (mmc->boot_ram_size) {
 758        return mmc->boot_ram_size;
 759    }
 760
 761    for (p = mmc->raminfo; p->name; p++) {
 762        if (p->base == boot_mem_base(mms)) {
 763            return p->size;
 764        }
 765    }
 766    g_assert_not_reached();
 767}
 768
 769static void mps2tz_common_init(MachineState *machine)
 770{
 771    MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
 772    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
 773    MachineClass *mc = MACHINE_GET_CLASS(machine);
 774    MemoryRegion *system_memory = get_system_memory();
 775    DeviceState *iotkitdev;
 776    DeviceState *dev_splitter;
 777    const PPCInfo *ppcs;
 778    int num_ppcs;
 779    int i;
 780
 781    if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
 782        error_report("This board can only be used with CPU %s",
 783                     mc->default_cpu_type);
 784        exit(1);
 785    }
 786
 787    if (machine->ram_size != mc->default_ram_size) {
 788        char *sz = size_to_str(mc->default_ram_size);
 789        error_report("Invalid RAM size, should be %s", sz);
 790        g_free(sz);
 791        exit(EXIT_FAILURE);
 792    }
 793
 794    /* These clocks don't need migration because they are fixed-frequency */
 795    mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
 796    clock_set_hz(mms->sysclk, mmc->sysclk_frq);
 797    mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
 798    clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
 799
 800    object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
 801                            mmc->armsse_type);
 802    iotkitdev = DEVICE(&mms->iotkit);
 803    object_property_set_link(OBJECT(&mms->iotkit), "memory",
 804                             OBJECT(system_memory), &error_abort);
 805    qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
 806    qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
 807    qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
 808    qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
 809    qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
 810    sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
 811
 812    /*
 813     * If this board has more than one CPU, then we need to create splitters
 814     * to feed the IRQ inputs for each CPU in the SSE from each device in the
 815     * board. If there is only one CPU, we can just wire the device IRQ
 816     * directly to the SSE's IRQ input.
 817     */
 818    assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
 819    if (mc->max_cpus > 1) {
 820        for (i = 0; i < mmc->numirq; i++) {
 821            char *name = g_strdup_printf("mps2-irq-splitter%d", i);
 822            SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
 823
 824            object_initialize_child_with_props(OBJECT(machine), name,
 825                                               splitter, sizeof(*splitter),
 826                                               TYPE_SPLIT_IRQ, &error_fatal,
 827                                               NULL);
 828            g_free(name);
 829
 830            object_property_set_int(OBJECT(splitter), "num-lines", 2,
 831                                    &error_fatal);
 832            qdev_realize(DEVICE(splitter), NULL, &error_fatal);
 833            qdev_connect_gpio_out(DEVICE(splitter), 0,
 834                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 835                                                         "EXP_IRQ", i));
 836            qdev_connect_gpio_out(DEVICE(splitter), 1,
 837                                  qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
 838                                                         "EXP_CPU1_IRQ", i));
 839        }
 840    }
 841
 842    /* The sec_resp_cfg output from the IoTKit must be split into multiple
 843     * lines, one for each of the PPCs we create here, plus one per MSC.
 844     */
 845    object_initialize_child(OBJECT(machine), "sec-resp-splitter",
 846                            &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
 847    object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
 848                            ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
 849                            &error_fatal);
 850    qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
 851    dev_splitter = DEVICE(&mms->sec_resp_splitter);
 852    qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
 853                                qdev_get_gpio_in(dev_splitter, 0));
 854
 855    /*
 856     * The IoTKit sets up much of the memory layout, including
 857     * the aliases between secure and non-secure regions in the
 858     * address space, and also most of the devices in the system.
 859     * The FPGA itself contains various RAMs and some additional devices.
 860     * The FPGA images have an odd combination of different RAMs,
 861     * because in hardware they are different implementations and
 862     * connected to different buses, giving varying performance/size
 863     * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
 864     * call the largest lump our "system memory".
 865     */
 866
 867    /*
 868     * The overflow IRQs for all UARTs are ORed together.
 869     * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
 870     * Create the OR gate for this: it has one input for the TX overflow
 871     * and one for the RX overflow for each UART we might have.
 872     * (If the board has fewer than the maximum possible number of UARTs
 873     * those inputs are never wired up and are treated as always-zero.)
 874     */
 875    object_initialize_child(OBJECT(mms), "uart-irq-orgate",
 876                            &mms->uart_irq_orgate, TYPE_OR_IRQ);
 877    object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
 878                            2 * ARRAY_SIZE(mms->uart),
 879                            &error_fatal);
 880    qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
 881    qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
 882                          get_sse_irq_in(mms, mmc->uart_overflow_irq));
 883
 884    /* Most of the devices in the FPGA are behind Peripheral Protection
 885     * Controllers. The required order for initializing things is:
 886     *  + initialize the PPC
 887     *  + initialize, configure and realize downstream devices
 888     *  + connect downstream device MemoryRegions to the PPC
 889     *  + realize the PPC
 890     *  + map the PPC's MemoryRegions to the places in the address map
 891     *    where the downstream devices should appear
 892     *  + wire up the PPC's control lines to the IoTKit object
 893     */
 894
 895    const PPCInfo an505_ppcs[] = { {
 896            .name = "apb_ppcexp0",
 897            .ports = {
 898                { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
 899                { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
 900                { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
 901            },
 902        }, {
 903            .name = "apb_ppcexp1",
 904            .ports = {
 905                { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
 906                { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
 907                { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
 908                { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
 909                { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
 910                { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
 911                { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
 912                { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
 913                { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
 914                { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
 915                { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
 916                { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
 917                { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
 918                { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
 919            },
 920        }, {
 921            .name = "apb_ppcexp2",
 922            .ports = {
 923                { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
 924                { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
 925                  0x40301000, 0x1000 },
 926                { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
 927            },
 928        }, {
 929            .name = "ahb_ppcexp0",
 930            .ports = {
 931                { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
 932                { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
 933                { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
 934                { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
 935                { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
 936                { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
 937            },
 938        }, {
 939            .name = "ahb_ppcexp1",
 940            .ports = {
 941                { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
 942                { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
 943                { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
 944                { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
 945            },
 946        },
 947    };
 948
 949    const PPCInfo an524_ppcs[] = { {
 950            .name = "apb_ppcexp0",
 951            .ports = {
 952                { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
 953                { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
 954                { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
 955            },
 956        }, {
 957            .name = "apb_ppcexp1",
 958            .ports = {
 959                { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000 },
 960                { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000 },
 961                { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
 962                { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
 963                { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
 964                { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000 },
 965                { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000 },
 966                { /* port 7 reserved */ },
 967                { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000 },
 968            },
 969        }, {
 970            .name = "apb_ppcexp2",
 971            .ports = {
 972                { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
 973                { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
 974                  0x41301000, 0x1000 },
 975                { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
 976                { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
 977                { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
 978                { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
 979                { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
 980                { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
 981                { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
 982
 983                { /* port 9 reserved */ },
 984                { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
 985                { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
 986            },
 987        }, {
 988            .name = "ahb_ppcexp0",
 989            .ports = {
 990                { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
 991                { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
 992                { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
 993                { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
 994                { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
 995            },
 996        },
 997    };
 998
 999    const PPCInfo an547_ppcs[] = { {
1000            .name = "apb_ppcexp0",
1001            .ports = {
1002                { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1003                { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1004                { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1005            },
1006        }, {
1007            .name = "apb_ppcexp1",
1008            .ports = {
1009                { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000 },
1010                { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000 },
1011                { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1012                { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1013                { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1014                { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000 },
1015                { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000 },
1016                { /* port 7 reserved */ },
1017                { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000 },
1018            },
1019        }, {
1020            .name = "apb_ppcexp2",
1021            .ports = {
1022                { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1023                { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1024                { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1025                { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1026                { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1027                { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1028                { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1029                { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1030                { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1031
1032                { /* port 9 reserved */ },
1033                { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1034                { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1035            },
1036        }, {
1037            .name = "ahb_ppcexp0",
1038            .ports = {
1039                { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1040                { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1041                { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1042                { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1043                { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1044            },
1045        },
1046    };
1047
1048    switch (mmc->fpga_type) {
1049    case FPGA_AN505:
1050    case FPGA_AN521:
1051        ppcs = an505_ppcs;
1052        num_ppcs = ARRAY_SIZE(an505_ppcs);
1053        break;
1054    case FPGA_AN524:
1055        ppcs = an524_ppcs;
1056        num_ppcs = ARRAY_SIZE(an524_ppcs);
1057        break;
1058    case FPGA_AN547:
1059        ppcs = an547_ppcs;
1060        num_ppcs = ARRAY_SIZE(an547_ppcs);
1061        break;
1062    default:
1063        g_assert_not_reached();
1064    }
1065
1066    for (i = 0; i < num_ppcs; i++) {
1067        const PPCInfo *ppcinfo = &ppcs[i];
1068        TZPPC *ppc = &mms->ppc[i];
1069        DeviceState *ppcdev;
1070        int port;
1071        char *gpioname;
1072
1073        object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1074                                TYPE_TZ_PPC);
1075        ppcdev = DEVICE(ppc);
1076
1077        for (port = 0; port < TZ_NUM_PORTS; port++) {
1078            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1079            MemoryRegion *mr;
1080            char *portname;
1081
1082            if (!pinfo->devfn) {
1083                continue;
1084            }
1085
1086            mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1087                              pinfo->irqs);
1088            portname = g_strdup_printf("port[%d]", port);
1089            object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1090                                     &error_fatal);
1091            g_free(portname);
1092        }
1093
1094        sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1095
1096        for (port = 0; port < TZ_NUM_PORTS; port++) {
1097            const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1098
1099            if (!pinfo->devfn) {
1100                continue;
1101            }
1102            sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1103
1104            gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1105            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1106                                        qdev_get_gpio_in_named(ppcdev,
1107                                                               "cfg_nonsec",
1108                                                               port));
1109            g_free(gpioname);
1110            gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1111            qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1112                                        qdev_get_gpio_in_named(ppcdev,
1113                                                               "cfg_ap", port));
1114            g_free(gpioname);
1115        }
1116
1117        gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1118        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1119                                    qdev_get_gpio_in_named(ppcdev,
1120                                                           "irq_enable", 0));
1121        g_free(gpioname);
1122        gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1123        qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1124                                    qdev_get_gpio_in_named(ppcdev,
1125                                                           "irq_clear", 0));
1126        g_free(gpioname);
1127        gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1128        qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1129                                    qdev_get_gpio_in_named(iotkitdev,
1130                                                           gpioname, 0));
1131        g_free(gpioname);
1132
1133        qdev_connect_gpio_out(dev_splitter, i,
1134                              qdev_get_gpio_in_named(ppcdev,
1135                                                     "cfg_sec_resp", 0));
1136    }
1137
1138    create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1139
1140    if (mmc->fpga_type == FPGA_AN547) {
1141        create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1142        create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1143    }
1144
1145    create_non_mpc_ram(mms);
1146
1147    if (mmc->fpga_type == FPGA_AN524) {
1148        /*
1149         * Connect the line from the SCC so that we can remap when the
1150         * guest updates that register.
1151         */
1152        mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1153        qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1154                                    mms->remap_irq);
1155    }
1156
1157    armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1158                       boot_ram_size(mms));
1159}
1160
1161static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1162                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1163{
1164    /*
1165     * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1166     * the Master Security Controllers. Thes have the same logic as
1167     * is used by the IoTKit for the IDAU connected to the CPU, except
1168     * that MSCs don't care about the NSC attribute.
1169     */
1170    int region = extract32(address, 28, 4);
1171
1172    *ns = !(region & 1);
1173    *nsc = false;
1174    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1175    *exempt = (address & 0xeff00000) == 0xe0000000;
1176    *iregion = region;
1177}
1178
1179static char *mps2_get_remap(Object *obj, Error **errp)
1180{
1181    MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1182    const char *val = mms->remap ? "QSPI" : "BRAM";
1183    return g_strdup(val);
1184}
1185
1186static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1187{
1188    MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1189
1190    if (!strcmp(value, "BRAM")) {
1191        mms->remap = false;
1192    } else if (!strcmp(value, "QSPI")) {
1193        mms->remap = true;
1194    } else {
1195        error_setg(errp, "Invalid remap value");
1196        error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1197    }
1198}
1199
1200static void mps2_machine_reset(MachineState *machine)
1201{
1202    MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1203
1204    /*
1205     * Set the initial memory mapping before triggering the reset of
1206     * the rest of the system, so that the guest image loader and CPU
1207     * reset see the correct mapping.
1208     */
1209    remap_memory(mms, mms->remap);
1210    qemu_devices_reset();
1211}
1212
1213static void mps2tz_class_init(ObjectClass *oc, void *data)
1214{
1215    MachineClass *mc = MACHINE_CLASS(oc);
1216    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1217
1218    mc->init = mps2tz_common_init;
1219    mc->reset = mps2_machine_reset;
1220    iic->check = mps2_tz_idau_check;
1221}
1222
1223static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1224{
1225    /*
1226     * Set mc->default_ram_size and default_ram_id from the
1227     * information in mmc->raminfo.
1228     */
1229    MachineClass *mc = MACHINE_CLASS(mmc);
1230    const RAMInfo *p;
1231
1232    for (p = mmc->raminfo; p->name; p++) {
1233        if (p->mrindex < 0) {
1234            /* Found the entry for "system memory" */
1235            mc->default_ram_size = p->size;
1236            mc->default_ram_id = p->name;
1237            return;
1238        }
1239    }
1240    g_assert_not_reached();
1241}
1242
1243static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1244{
1245    MachineClass *mc = MACHINE_CLASS(oc);
1246    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1247
1248    mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1249    mc->default_cpus = 1;
1250    mc->min_cpus = mc->default_cpus;
1251    mc->max_cpus = mc->default_cpus;
1252    mmc->fpga_type = FPGA_AN505;
1253    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1254    mmc->scc_id = 0x41045050;
1255    mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1256    mmc->apb_periph_frq = mmc->sysclk_frq;
1257    mmc->oscclk = an505_oscclk;
1258    mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1259    mmc->fpgaio_num_leds = 2;
1260    mmc->fpgaio_has_switches = false;
1261    mmc->fpgaio_has_dbgctrl = false;
1262    mmc->numirq = 92;
1263    mmc->uart_overflow_irq = 47;
1264    mmc->init_svtor = 0x10000000;
1265    mmc->sram_addr_width = 15;
1266    mmc->raminfo = an505_raminfo;
1267    mmc->armsse_type = TYPE_IOTKIT;
1268    mmc->boot_ram_size = 0;
1269    mps2tz_set_default_ram_info(mmc);
1270}
1271
1272static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1273{
1274    MachineClass *mc = MACHINE_CLASS(oc);
1275    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1276
1277    mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1278    mc->default_cpus = 2;
1279    mc->min_cpus = mc->default_cpus;
1280    mc->max_cpus = mc->default_cpus;
1281    mmc->fpga_type = FPGA_AN521;
1282    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1283    mmc->scc_id = 0x41045210;
1284    mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1285    mmc->apb_periph_frq = mmc->sysclk_frq;
1286    mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1287    mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1288    mmc->fpgaio_num_leds = 2;
1289    mmc->fpgaio_has_switches = false;
1290    mmc->fpgaio_has_dbgctrl = false;
1291    mmc->numirq = 92;
1292    mmc->uart_overflow_irq = 47;
1293    mmc->init_svtor = 0x10000000;
1294    mmc->sram_addr_width = 15;
1295    mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1296    mmc->armsse_type = TYPE_SSE200;
1297    mmc->boot_ram_size = 0;
1298    mps2tz_set_default_ram_info(mmc);
1299}
1300
1301static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1302{
1303    MachineClass *mc = MACHINE_CLASS(oc);
1304    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1305
1306    mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1307    mc->default_cpus = 2;
1308    mc->min_cpus = mc->default_cpus;
1309    mc->max_cpus = mc->default_cpus;
1310    mmc->fpga_type = FPGA_AN524;
1311    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1312    mmc->scc_id = 0x41045240;
1313    mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1314    mmc->apb_periph_frq = mmc->sysclk_frq;
1315    mmc->oscclk = an524_oscclk;
1316    mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1317    mmc->fpgaio_num_leds = 10;
1318    mmc->fpgaio_has_switches = true;
1319    mmc->fpgaio_has_dbgctrl = false;
1320    mmc->numirq = 95;
1321    mmc->uart_overflow_irq = 47;
1322    mmc->init_svtor = 0x10000000;
1323    mmc->sram_addr_width = 15;
1324    mmc->raminfo = an524_raminfo;
1325    mmc->armsse_type = TYPE_SSE200;
1326    mmc->boot_ram_size = 0;
1327    mps2tz_set_default_ram_info(mmc);
1328
1329    object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1330    object_class_property_set_description(oc, "remap",
1331                                          "Set memory mapping. Valid values "
1332                                          "are BRAM (default) and QSPI.");
1333}
1334
1335static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1336{
1337    MachineClass *mc = MACHINE_CLASS(oc);
1338    MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1339
1340    mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1341    mc->default_cpus = 1;
1342    mc->min_cpus = mc->default_cpus;
1343    mc->max_cpus = mc->default_cpus;
1344    mmc->fpga_type = FPGA_AN547;
1345    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1346    mmc->scc_id = 0x41055470;
1347    mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1348    mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1349    mmc->oscclk = an524_oscclk; /* same as AN524 */
1350    mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1351    mmc->fpgaio_num_leds = 10;
1352    mmc->fpgaio_has_switches = true;
1353    mmc->fpgaio_has_dbgctrl = true;
1354    mmc->numirq = 96;
1355    mmc->uart_overflow_irq = 48;
1356    mmc->init_svtor = 0x00000000;
1357    mmc->sram_addr_width = 21;
1358    mmc->raminfo = an547_raminfo;
1359    mmc->armsse_type = TYPE_SSE300;
1360    mmc->boot_ram_size = 512 * KiB;
1361    mps2tz_set_default_ram_info(mmc);
1362}
1363
1364static const TypeInfo mps2tz_info = {
1365    .name = TYPE_MPS2TZ_MACHINE,
1366    .parent = TYPE_MACHINE,
1367    .abstract = true,
1368    .instance_size = sizeof(MPS2TZMachineState),
1369    .class_size = sizeof(MPS2TZMachineClass),
1370    .class_init = mps2tz_class_init,
1371    .interfaces = (InterfaceInfo[]) {
1372        { TYPE_IDAU_INTERFACE },
1373        { }
1374    },
1375};
1376
1377static const TypeInfo mps2tz_an505_info = {
1378    .name = TYPE_MPS2TZ_AN505_MACHINE,
1379    .parent = TYPE_MPS2TZ_MACHINE,
1380    .class_init = mps2tz_an505_class_init,
1381};
1382
1383static const TypeInfo mps2tz_an521_info = {
1384    .name = TYPE_MPS2TZ_AN521_MACHINE,
1385    .parent = TYPE_MPS2TZ_MACHINE,
1386    .class_init = mps2tz_an521_class_init,
1387};
1388
1389static const TypeInfo mps3tz_an524_info = {
1390    .name = TYPE_MPS3TZ_AN524_MACHINE,
1391    .parent = TYPE_MPS2TZ_MACHINE,
1392    .class_init = mps3tz_an524_class_init,
1393};
1394
1395static const TypeInfo mps3tz_an547_info = {
1396    .name = TYPE_MPS3TZ_AN547_MACHINE,
1397    .parent = TYPE_MPS2TZ_MACHINE,
1398    .class_init = mps3tz_an547_class_init,
1399};
1400
1401static void mps2tz_machine_init(void)
1402{
1403    type_register_static(&mps2tz_info);
1404    type_register_static(&mps2tz_an505_info);
1405    type_register_static(&mps2tz_an521_info);
1406    type_register_static(&mps3tz_an524_info);
1407    type_register_static(&mps3tz_an547_info);
1408}
1409
1410type_init(mps2tz_machine_init);
1411