qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qemu-common.h"
  33#include "qemu/datadir.h"
  34#include "qemu/units.h"
  35#include "qemu/option.h"
  36#include "monitor/qdev.h"
  37#include "qapi/error.h"
  38#include "hw/sysbus.h"
  39#include "hw/arm/boot.h"
  40#include "hw/arm/primecell.h"
  41#include "hw/arm/virt.h"
  42#include "hw/block/flash.h"
  43#include "hw/vfio/vfio-calxeda-xgmac.h"
  44#include "hw/vfio/vfio-amd-xgbe.h"
  45#include "hw/display/ramfb.h"
  46#include "net/net.h"
  47#include "sysemu/device_tree.h"
  48#include "sysemu/numa.h"
  49#include "sysemu/runstate.h"
  50#include "sysemu/tpm.h"
  51#include "sysemu/kvm.h"
  52#include "hw/loader.h"
  53#include "qapi/error.h"
  54#include "qemu/bitops.h"
  55#include "qemu/error-report.h"
  56#include "qemu/module.h"
  57#include "hw/pci-host/gpex.h"
  58#include "hw/virtio/virtio-pci.h"
  59#include "hw/arm/sysbus-fdt.h"
  60#include "hw/platform-bus.h"
  61#include "hw/qdev-properties.h"
  62#include "hw/arm/fdt.h"
  63#include "hw/intc/arm_gic.h"
  64#include "hw/intc/arm_gicv3_common.h"
  65#include "hw/irq.h"
  66#include "kvm_arm.h"
  67#include "hw/firmware/smbios.h"
  68#include "qapi/visitor.h"
  69#include "qapi/qapi-visit-common.h"
  70#include "standard-headers/linux/input.h"
  71#include "hw/arm/smmuv3.h"
  72#include "hw/acpi/acpi.h"
  73#include "target/arm/internals.h"
  74#include "hw/mem/pc-dimm.h"
  75#include "hw/mem/nvdimm.h"
  76#include "hw/acpi/generic_event_device.h"
  77#include "hw/virtio/virtio-iommu.h"
  78#include "hw/char/pl011.h"
  79#include "qemu/guest-random.h"
  80
  81#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  82    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  83                                                    void *data) \
  84    { \
  85        MachineClass *mc = MACHINE_CLASS(oc); \
  86        virt_machine_##major##_##minor##_options(mc); \
  87        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  88        if (latest) { \
  89            mc->alias = "virt"; \
  90        } \
  91    } \
  92    static const TypeInfo machvirt_##major##_##minor##_info = { \
  93        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  94        .parent = TYPE_VIRT_MACHINE, \
  95        .class_init = virt_##major##_##minor##_class_init, \
  96    }; \
  97    static void machvirt_machine_##major##_##minor##_init(void) \
  98    { \
  99        type_register_static(&machvirt_##major##_##minor##_info); \
 100    } \
 101    type_init(machvirt_machine_##major##_##minor##_init);
 102
 103#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
 104    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
 105#define DEFINE_VIRT_MACHINE(major, minor) \
 106    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
 107
 108
 109/* Number of external interrupt lines to configure the GIC with */
 110#define NUM_IRQS 256
 111
 112#define PLATFORM_BUS_NUM_IRQS 64
 113
 114/* Legacy RAM limit in GB (< version 4.0) */
 115#define LEGACY_RAMLIMIT_GB 255
 116#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
 117
 118/* Addresses and sizes of our components.
 119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 120 * 128MB..256MB is used for miscellaneous device I/O.
 121 * 256MB..1GB is reserved for possible future PCI support (ie where the
 122 * PCI memory window will go if we add a PCI host controller).
 123 * 1GB and up is RAM (which may happily spill over into the
 124 * high memory region beyond 4GB).
 125 * This represents a compromise between how much RAM can be given to
 126 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 127 * Note that devices should generally be placed at multiples of 0x10000,
 128 * to accommodate guests using 64K pages.
 129 */
 130static const MemMapEntry base_memmap[] = {
 131    /* Space up to 0x8000000 is reserved for a boot ROM */
 132    [VIRT_FLASH] =              {          0, 0x08000000 },
 133    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 134    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 135    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 136    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 137    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 138    [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
 139    [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
 140    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 141    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 142    /* This redistributor space allows up to 2*64kB*123 CPUs */
 143    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 144    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 145    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 146    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 147    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 148    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 149    [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
 150    [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
 151    [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
 152    [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
 153    [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
 154    [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
 155    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 156    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 157    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 158    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 159    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 160    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 161    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 162    /* Actual RAM size depends on initial RAM and device memory settings */
 163    [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
 164};
 165
 166/*
 167 * Highmem IO Regions: This memory map is floating, located after the RAM.
 168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
 169 * top of the RAM, so that its base get the same alignment as the size,
 170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
 171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
 172 * Note the extended_memmap is sized so that it eventually also includes the
 173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
 174 * index of base_memmap).
 175 */
 176static MemMapEntry extended_memmap[] = {
 177    /* Additional 64 MB redist region (can contain up to 512 redistributors) */
 178    [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
 179    [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
 180    /* Second PCIe window */
 181    [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
 182};
 183
 184static const int a15irqmap[] = {
 185    [VIRT_UART] = 1,
 186    [VIRT_RTC] = 2,
 187    [VIRT_PCIE] = 3, /* ... to 6 */
 188    [VIRT_GPIO] = 7,
 189    [VIRT_SECURE_UART] = 8,
 190    [VIRT_ACPI_GED] = 9,
 191    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 192    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 193    [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
 194    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 195};
 196
 197static const char *valid_cpus[] = {
 198    ARM_CPU_TYPE_NAME("cortex-a7"),
 199    ARM_CPU_TYPE_NAME("cortex-a15"),
 200    ARM_CPU_TYPE_NAME("cortex-a53"),
 201    ARM_CPU_TYPE_NAME("cortex-a57"),
 202    ARM_CPU_TYPE_NAME("cortex-a72"),
 203    ARM_CPU_TYPE_NAME("host"),
 204    ARM_CPU_TYPE_NAME("max"),
 205};
 206
 207static bool cpu_type_valid(const char *cpu)
 208{
 209    int i;
 210
 211    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 212        if (strcmp(cpu, valid_cpus[i]) == 0) {
 213            return true;
 214        }
 215    }
 216    return false;
 217}
 218
 219static void create_kaslr_seed(MachineState *ms, const char *node)
 220{
 221    uint64_t seed;
 222
 223    if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
 224        return;
 225    }
 226    qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
 227}
 228
 229static void create_fdt(VirtMachineState *vms)
 230{
 231    MachineState *ms = MACHINE(vms);
 232    int nb_numa_nodes = ms->numa_state->num_nodes;
 233    void *fdt = create_device_tree(&vms->fdt_size);
 234
 235    if (!fdt) {
 236        error_report("create_device_tree() failed");
 237        exit(1);
 238    }
 239
 240    ms->fdt = fdt;
 241
 242    /* Header */
 243    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 244    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 245    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 246
 247    /* /chosen must exist for load_dtb to fill in necessary properties later */
 248    qemu_fdt_add_subnode(fdt, "/chosen");
 249    create_kaslr_seed(ms, "/chosen");
 250
 251    if (vms->secure) {
 252        qemu_fdt_add_subnode(fdt, "/secure-chosen");
 253        create_kaslr_seed(ms, "/secure-chosen");
 254    }
 255
 256    /* Clock node, for the benefit of the UART. The kernel device tree
 257     * binding documentation claims the PL011 node clock properties are
 258     * optional but in practice if you omit them the kernel refuses to
 259     * probe for the device.
 260     */
 261    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 262    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 263    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 264    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 265    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 266    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 267                                "clk24mhz");
 268    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 269
 270    if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
 271        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 272        uint32_t *matrix = g_malloc0(size);
 273        int idx, i, j;
 274
 275        for (i = 0; i < nb_numa_nodes; i++) {
 276            for (j = 0; j < nb_numa_nodes; j++) {
 277                idx = (i * nb_numa_nodes + j) * 3;
 278                matrix[idx + 0] = cpu_to_be32(i);
 279                matrix[idx + 1] = cpu_to_be32(j);
 280                matrix[idx + 2] =
 281                    cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
 282            }
 283        }
 284
 285        qemu_fdt_add_subnode(fdt, "/distance-map");
 286        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 287                                "numa-distance-map-v1");
 288        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 289                         matrix, size);
 290        g_free(matrix);
 291    }
 292}
 293
 294static void fdt_add_timer_nodes(const VirtMachineState *vms)
 295{
 296    /* On real hardware these interrupts are level-triggered.
 297     * On KVM they were edge-triggered before host kernel version 4.4,
 298     * and level-triggered afterwards.
 299     * On emulated QEMU they are level-triggered.
 300     *
 301     * Getting the DTB info about them wrong is awkward for some
 302     * guest kernels:
 303     *  pre-4.8 ignore the DT and leave the interrupt configured
 304     *   with whatever the GIC reset value (or the bootloader) left it at
 305     *  4.8 before rc6 honour the incorrect data by programming it back
 306     *   into the GIC, causing problems
 307     *  4.8rc6 and later ignore the DT and always write "level triggered"
 308     *   into the GIC
 309     *
 310     * For backwards-compatibility, virt-2.8 and earlier will continue
 311     * to say these are edge-triggered, but later machines will report
 312     * the correct information.
 313     */
 314    ARMCPU *armcpu;
 315    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 316    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 317    MachineState *ms = MACHINE(vms);
 318
 319    if (vmc->claim_edge_triggered_timers) {
 320        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 321    }
 322
 323    if (vms->gic_version == VIRT_GIC_VERSION_2) {
 324        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 325                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 326                             (1 << MACHINE(vms)->smp.cpus) - 1);
 327    }
 328
 329    qemu_fdt_add_subnode(ms->fdt, "/timer");
 330
 331    armcpu = ARM_CPU(qemu_get_cpu(0));
 332    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 333        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 334        qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
 335                         compat, sizeof(compat));
 336    } else {
 337        qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
 338                                "arm,armv7-timer");
 339    }
 340    qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
 341    qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
 342                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 343                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 344                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 345                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 346}
 347
 348static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 349{
 350    int cpu;
 351    int addr_cells = 1;
 352    const MachineState *ms = MACHINE(vms);
 353    int smp_cpus = ms->smp.cpus;
 354
 355    /*
 356     * From Documentation/devicetree/bindings/arm/cpus.txt
 357     *  On ARM v8 64-bit systems value should be set to 2,
 358     *  that corresponds to the MPIDR_EL1 register size.
 359     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 360     *  in the system, #address-cells can be set to 1, since
 361     *  MPIDR_EL1[63:32] bits are not used for CPUs
 362     *  identification.
 363     *
 364     *  Here we actually don't know whether our system is 32- or 64-bit one.
 365     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 366     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 367     */
 368    for (cpu = 0; cpu < smp_cpus; cpu++) {
 369        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 370
 371        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 372            addr_cells = 2;
 373            break;
 374        }
 375    }
 376
 377    qemu_fdt_add_subnode(ms->fdt, "/cpus");
 378    qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
 379    qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
 380
 381    for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
 382        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 383        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 384        CPUState *cs = CPU(armcpu);
 385
 386        qemu_fdt_add_subnode(ms->fdt, nodename);
 387        qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
 388        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 389                                    armcpu->dtb_compatible);
 390
 391        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
 392            qemu_fdt_setprop_string(ms->fdt, nodename,
 393                                        "enable-method", "psci");
 394        }
 395
 396        if (addr_cells == 2) {
 397            qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
 398                                 armcpu->mp_affinity);
 399        } else {
 400            qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
 401                                  armcpu->mp_affinity);
 402        }
 403
 404        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 405            qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
 406                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 407        }
 408
 409        g_free(nodename);
 410    }
 411}
 412
 413static void fdt_add_its_gic_node(VirtMachineState *vms)
 414{
 415    char *nodename;
 416    MachineState *ms = MACHINE(vms);
 417
 418    vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
 419    nodename = g_strdup_printf("/intc/its@%" PRIx64,
 420                               vms->memmap[VIRT_GIC_ITS].base);
 421    qemu_fdt_add_subnode(ms->fdt, nodename);
 422    qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 423                            "arm,gic-v3-its");
 424    qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
 425    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 426                                 2, vms->memmap[VIRT_GIC_ITS].base,
 427                                 2, vms->memmap[VIRT_GIC_ITS].size);
 428    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
 429    g_free(nodename);
 430}
 431
 432static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 433{
 434    MachineState *ms = MACHINE(vms);
 435    char *nodename;
 436
 437    nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
 438                               vms->memmap[VIRT_GIC_V2M].base);
 439    vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
 440    qemu_fdt_add_subnode(ms->fdt, nodename);
 441    qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 442                            "arm,gic-v2m-frame");
 443    qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
 444    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 445                                 2, vms->memmap[VIRT_GIC_V2M].base,
 446                                 2, vms->memmap[VIRT_GIC_V2M].size);
 447    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
 448    g_free(nodename);
 449}
 450
 451static void fdt_add_gic_node(VirtMachineState *vms)
 452{
 453    MachineState *ms = MACHINE(vms);
 454    char *nodename;
 455
 456    vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
 457    qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 458
 459    nodename = g_strdup_printf("/intc@%" PRIx64,
 460                               vms->memmap[VIRT_GIC_DIST].base);
 461    qemu_fdt_add_subnode(ms->fdt, nodename);
 462    qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
 463    qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
 464    qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
 465    qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
 466    qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
 467    if (vms->gic_version == VIRT_GIC_VERSION_3) {
 468        int nb_redist_regions = virt_gicv3_redist_region_count(vms);
 469
 470        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 471                                "arm,gic-v3");
 472
 473        qemu_fdt_setprop_cell(ms->fdt, nodename,
 474                              "#redistributor-regions", nb_redist_regions);
 475
 476        if (nb_redist_regions == 1) {
 477            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 478                                         2, vms->memmap[VIRT_GIC_DIST].base,
 479                                         2, vms->memmap[VIRT_GIC_DIST].size,
 480                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 481                                         2, vms->memmap[VIRT_GIC_REDIST].size);
 482        } else {
 483            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 484                                 2, vms->memmap[VIRT_GIC_DIST].base,
 485                                 2, vms->memmap[VIRT_GIC_DIST].size,
 486                                 2, vms->memmap[VIRT_GIC_REDIST].base,
 487                                 2, vms->memmap[VIRT_GIC_REDIST].size,
 488                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
 489                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
 490        }
 491
 492        if (vms->virt) {
 493            qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 494                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 495                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 496        }
 497    } else {
 498        /* 'cortex-a15-gic' means 'GIC v2' */
 499        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
 500                                "arm,cortex-a15-gic");
 501        if (!vms->virt) {
 502            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 503                                         2, vms->memmap[VIRT_GIC_DIST].base,
 504                                         2, vms->memmap[VIRT_GIC_DIST].size,
 505                                         2, vms->memmap[VIRT_GIC_CPU].base,
 506                                         2, vms->memmap[VIRT_GIC_CPU].size);
 507        } else {
 508            qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 509                                         2, vms->memmap[VIRT_GIC_DIST].base,
 510                                         2, vms->memmap[VIRT_GIC_DIST].size,
 511                                         2, vms->memmap[VIRT_GIC_CPU].base,
 512                                         2, vms->memmap[VIRT_GIC_CPU].size,
 513                                         2, vms->memmap[VIRT_GIC_HYP].base,
 514                                         2, vms->memmap[VIRT_GIC_HYP].size,
 515                                         2, vms->memmap[VIRT_GIC_VCPU].base,
 516                                         2, vms->memmap[VIRT_GIC_VCPU].size);
 517            qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 518                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 519                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 520        }
 521    }
 522
 523    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
 524    g_free(nodename);
 525}
 526
 527static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 528{
 529    ARMCPU *armcpu = ARM_CPU(first_cpu);
 530    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 531    MachineState *ms = MACHINE(vms);
 532
 533    if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 534        assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
 535        return;
 536    }
 537
 538    if (vms->gic_version == VIRT_GIC_VERSION_2) {
 539        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 540                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 541                             (1 << MACHINE(vms)->smp.cpus) - 1);
 542    }
 543
 544    qemu_fdt_add_subnode(ms->fdt, "/pmu");
 545    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 546        const char compat[] = "arm,armv8-pmuv3";
 547        qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
 548                         compat, sizeof(compat));
 549        qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
 550                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 551    }
 552}
 553
 554static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
 555{
 556    DeviceState *dev;
 557    MachineState *ms = MACHINE(vms);
 558    int irq = vms->irqmap[VIRT_ACPI_GED];
 559    uint32_t event = ACPI_GED_PWR_DOWN_EVT;
 560
 561    if (ms->ram_slots) {
 562        event |= ACPI_GED_MEM_HOTPLUG_EVT;
 563    }
 564
 565    if (ms->nvdimms_state->is_enabled) {
 566        event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
 567    }
 568
 569    dev = qdev_new(TYPE_ACPI_GED);
 570    qdev_prop_set_uint32(dev, "ged-event", event);
 571
 572    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
 573    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
 574    sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
 575
 576    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 577
 578    return dev;
 579}
 580
 581static void create_its(VirtMachineState *vms)
 582{
 583    const char *itsclass = its_class_name();
 584    DeviceState *dev;
 585
 586    if (!itsclass) {
 587        /* Do nothing if not supported */
 588        return;
 589    }
 590
 591    dev = qdev_new(itsclass);
 592
 593    object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
 594                             &error_abort);
 595    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 596    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 597
 598    fdt_add_its_gic_node(vms);
 599    vms->msi_controller = VIRT_MSI_CTRL_ITS;
 600}
 601
 602static void create_v2m(VirtMachineState *vms)
 603{
 604    int i;
 605    int irq = vms->irqmap[VIRT_GIC_V2M];
 606    DeviceState *dev;
 607
 608    dev = qdev_new("arm-gicv2m");
 609    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 610    qdev_prop_set_uint32(dev, "base-spi", irq);
 611    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 612    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 613
 614    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 615        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
 616                           qdev_get_gpio_in(vms->gic, irq + i));
 617    }
 618
 619    fdt_add_v2m_gic_node(vms);
 620    vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
 621}
 622
 623static void create_gic(VirtMachineState *vms)
 624{
 625    MachineState *ms = MACHINE(vms);
 626    /* We create a standalone GIC */
 627    SysBusDevice *gicbusdev;
 628    const char *gictype;
 629    int type = vms->gic_version, i;
 630    unsigned int smp_cpus = ms->smp.cpus;
 631    uint32_t nb_redist_regions = 0;
 632
 633    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 634
 635    vms->gic = qdev_new(gictype);
 636    qdev_prop_set_uint32(vms->gic, "revision", type);
 637    qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
 638    /* Note that the num-irq property counts both internal and external
 639     * interrupts; there are always 32 of the former (mandated by GIC spec).
 640     */
 641    qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
 642    if (!kvm_irqchip_in_kernel()) {
 643        qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
 644    }
 645
 646    if (type == 3) {
 647        uint32_t redist0_capacity =
 648                    vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
 649        uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
 650
 651        nb_redist_regions = virt_gicv3_redist_region_count(vms);
 652
 653        qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
 654                             nb_redist_regions);
 655        qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
 656
 657        if (nb_redist_regions == 2) {
 658            uint32_t redist1_capacity =
 659                    vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
 660
 661            qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
 662                MIN(smp_cpus - redist0_count, redist1_capacity));
 663        }
 664    } else {
 665        if (!kvm_irqchip_in_kernel()) {
 666            qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
 667                              vms->virt);
 668        }
 669    }
 670    gicbusdev = SYS_BUS_DEVICE(vms->gic);
 671    sysbus_realize_and_unref(gicbusdev, &error_fatal);
 672    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 673    if (type == 3) {
 674        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 675        if (nb_redist_regions == 2) {
 676            sysbus_mmio_map(gicbusdev, 2,
 677                            vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
 678        }
 679    } else {
 680        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 681        if (vms->virt) {
 682            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
 683            sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
 684        }
 685    }
 686
 687    /* Wire the outputs from each CPU's generic timer and the GICv3
 688     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 689     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 690     */
 691    for (i = 0; i < smp_cpus; i++) {
 692        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 693        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 694        int irq;
 695        /* Mapping from the output timer irq lines from the CPU to the
 696         * GIC PPI inputs we use for the virt board.
 697         */
 698        const int timer_irq[] = {
 699            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 700            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 701            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 702            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 703        };
 704
 705        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 706            qdev_connect_gpio_out(cpudev, irq,
 707                                  qdev_get_gpio_in(vms->gic,
 708                                                   ppibase + timer_irq[irq]));
 709        }
 710
 711        if (type == 3) {
 712            qemu_irq irq = qdev_get_gpio_in(vms->gic,
 713                                            ppibase + ARCH_GIC_MAINT_IRQ);
 714            qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
 715                                        0, irq);
 716        } else if (vms->virt) {
 717            qemu_irq irq = qdev_get_gpio_in(vms->gic,
 718                                            ppibase + ARCH_GIC_MAINT_IRQ);
 719            sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
 720        }
 721
 722        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 723                                    qdev_get_gpio_in(vms->gic, ppibase
 724                                                     + VIRTUAL_PMU_IRQ));
 725
 726        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 727        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 728                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 729        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 730                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 731        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 732                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 733    }
 734
 735    fdt_add_gic_node(vms);
 736
 737    if (type == 3 && vms->its) {
 738        create_its(vms);
 739    } else if (type == 2) {
 740        create_v2m(vms);
 741    }
 742}
 743
 744static void create_uart(const VirtMachineState *vms, int uart,
 745                        MemoryRegion *mem, Chardev *chr)
 746{
 747    char *nodename;
 748    hwaddr base = vms->memmap[uart].base;
 749    hwaddr size = vms->memmap[uart].size;
 750    int irq = vms->irqmap[uart];
 751    const char compat[] = "arm,pl011\0arm,primecell";
 752    const char clocknames[] = "uartclk\0apb_pclk";
 753    DeviceState *dev = qdev_new(TYPE_PL011);
 754    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 755    MachineState *ms = MACHINE(vms);
 756
 757    qdev_prop_set_chr(dev, "chardev", chr);
 758    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 759    memory_region_add_subregion(mem, base,
 760                                sysbus_mmio_get_region(s, 0));
 761    sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
 762
 763    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 764    qemu_fdt_add_subnode(ms->fdt, nodename);
 765    /* Note that we can't use setprop_string because of the embedded NUL */
 766    qemu_fdt_setprop(ms->fdt, nodename, "compatible",
 767                         compat, sizeof(compat));
 768    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 769                                     2, base, 2, size);
 770    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 771                               GIC_FDT_IRQ_TYPE_SPI, irq,
 772                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 773    qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
 774                               vms->clock_phandle, vms->clock_phandle);
 775    qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
 776                         clocknames, sizeof(clocknames));
 777
 778    if (uart == VIRT_UART) {
 779        qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
 780    } else {
 781        /* Mark as not usable by the normal world */
 782        qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
 783        qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
 784
 785        qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
 786                                nodename);
 787    }
 788
 789    g_free(nodename);
 790}
 791
 792static void create_rtc(const VirtMachineState *vms)
 793{
 794    char *nodename;
 795    hwaddr base = vms->memmap[VIRT_RTC].base;
 796    hwaddr size = vms->memmap[VIRT_RTC].size;
 797    int irq = vms->irqmap[VIRT_RTC];
 798    const char compat[] = "arm,pl031\0arm,primecell";
 799    MachineState *ms = MACHINE(vms);
 800
 801    sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
 802
 803    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 804    qemu_fdt_add_subnode(ms->fdt, nodename);
 805    qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
 806    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 807                                 2, base, 2, size);
 808    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 809                           GIC_FDT_IRQ_TYPE_SPI, irq,
 810                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 811    qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
 812    qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
 813    g_free(nodename);
 814}
 815
 816static DeviceState *gpio_key_dev;
 817static void virt_powerdown_req(Notifier *n, void *opaque)
 818{
 819    VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
 820
 821    if (s->acpi_dev) {
 822        acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
 823    } else {
 824        /* use gpio Pin 3 for power button event */
 825        qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 826    }
 827}
 828
 829static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
 830                             uint32_t phandle)
 831{
 832    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 833                                        qdev_get_gpio_in(pl061_dev, 3));
 834
 835    qemu_fdt_add_subnode(fdt, "/gpio-keys");
 836    qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
 837    qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
 838    qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
 839
 840    qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
 841    qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
 842                            "label", "GPIO Key Poweroff");
 843    qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
 844                          KEY_POWER);
 845    qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
 846                           "gpios", phandle, 3, 0);
 847}
 848
 849#define SECURE_GPIO_POWEROFF 0
 850#define SECURE_GPIO_RESET    1
 851
 852static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
 853                                   uint32_t phandle)
 854{
 855    DeviceState *gpio_pwr_dev;
 856
 857    /* gpio-pwr */
 858    gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
 859
 860    /* connect secure pl061 to gpio-pwr */
 861    qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
 862                          qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
 863    qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
 864                          qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
 865
 866    qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
 867    qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
 868                            "gpio-poweroff");
 869    qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
 870                           "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
 871    qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
 872    qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
 873                            "okay");
 874
 875    qemu_fdt_add_subnode(fdt, "/gpio-restart");
 876    qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
 877                            "gpio-restart");
 878    qemu_fdt_setprop_cells(fdt, "/gpio-restart",
 879                           "gpios", phandle, SECURE_GPIO_RESET, 0);
 880    qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
 881    qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
 882                            "okay");
 883}
 884
 885static void create_gpio_devices(const VirtMachineState *vms, int gpio,
 886                                MemoryRegion *mem)
 887{
 888    char *nodename;
 889    DeviceState *pl061_dev;
 890    hwaddr base = vms->memmap[gpio].base;
 891    hwaddr size = vms->memmap[gpio].size;
 892    int irq = vms->irqmap[gpio];
 893    const char compat[] = "arm,pl061\0arm,primecell";
 894    SysBusDevice *s;
 895    MachineState *ms = MACHINE(vms);
 896
 897    pl061_dev = qdev_new("pl061");
 898    /* Pull lines down to 0 if not driven by the PL061 */
 899    qdev_prop_set_uint32(pl061_dev, "pullups", 0);
 900    qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
 901    s = SYS_BUS_DEVICE(pl061_dev);
 902    sysbus_realize_and_unref(s, &error_fatal);
 903    memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
 904    sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
 905
 906    uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
 907    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 908    qemu_fdt_add_subnode(ms->fdt, nodename);
 909    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 910                                 2, base, 2, size);
 911    qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
 912    qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
 913    qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
 914    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 915                           GIC_FDT_IRQ_TYPE_SPI, irq,
 916                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 917    qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
 918    qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
 919    qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
 920
 921    if (gpio != VIRT_GPIO) {
 922        /* Mark as not usable by the normal world */
 923        qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
 924        qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
 925    }
 926    g_free(nodename);
 927
 928    /* Child gpio devices */
 929    if (gpio == VIRT_GPIO) {
 930        create_gpio_keys(ms->fdt, pl061_dev, phandle);
 931    } else {
 932        create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
 933    }
 934}
 935
 936static void create_virtio_devices(const VirtMachineState *vms)
 937{
 938    int i;
 939    hwaddr size = vms->memmap[VIRT_MMIO].size;
 940    MachineState *ms = MACHINE(vms);
 941
 942    /* We create the transports in forwards order. Since qbus_realize()
 943     * prepends (not appends) new child buses, the incrementing loop below will
 944     * create a list of virtio-mmio buses with decreasing base addresses.
 945     *
 946     * When a -device option is processed from the command line,
 947     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 948     * order. The upshot is that -device options in increasing command line
 949     * order are mapped to virtio-mmio buses with decreasing base addresses.
 950     *
 951     * When this code was originally written, that arrangement ensured that the
 952     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 953     * the first -device on the command line. (The end-to-end order is a
 954     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 955     * guest kernel's name-to-address assignment strategy.)
 956     *
 957     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 958     * the message, if not necessarily the code, of commit 70161ff336.
 959     * Therefore the loop now establishes the inverse of the original intent.
 960     *
 961     * Unfortunately, we can't counteract the kernel change by reversing the
 962     * loop; it would break existing command lines.
 963     *
 964     * In any case, the kernel makes no guarantee about the stability of
 965     * enumeration order of virtio devices (as demonstrated by it changing
 966     * between kernel versions). For reliable and stable identification
 967     * of disks users must use UUIDs or similar mechanisms.
 968     */
 969    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 970        int irq = vms->irqmap[VIRT_MMIO] + i;
 971        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 972
 973        sysbus_create_simple("virtio-mmio", base,
 974                             qdev_get_gpio_in(vms->gic, irq));
 975    }
 976
 977    /* We add dtb nodes in reverse order so that they appear in the finished
 978     * device tree lowest address first.
 979     *
 980     * Note that this mapping is independent of the loop above. The previous
 981     * loop influences virtio device to virtio transport assignment, whereas
 982     * this loop controls how virtio transports are laid out in the dtb.
 983     */
 984    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 985        char *nodename;
 986        int irq = vms->irqmap[VIRT_MMIO] + i;
 987        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 988
 989        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 990        qemu_fdt_add_subnode(ms->fdt, nodename);
 991        qemu_fdt_setprop_string(ms->fdt, nodename,
 992                                "compatible", "virtio,mmio");
 993        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
 994                                     2, base, 2, size);
 995        qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
 996                               GIC_FDT_IRQ_TYPE_SPI, irq,
 997                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 998        qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
 999        g_free(nodename);
1000    }
1001}
1002
1003#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1004
1005static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1006                                        const char *name,
1007                                        const char *alias_prop_name)
1008{
1009    /*
1010     * Create a single flash device.  We use the same parameters as
1011     * the flash devices on the Versatile Express board.
1012     */
1013    DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1014
1015    qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1016    qdev_prop_set_uint8(dev, "width", 4);
1017    qdev_prop_set_uint8(dev, "device-width", 2);
1018    qdev_prop_set_bit(dev, "big-endian", false);
1019    qdev_prop_set_uint16(dev, "id0", 0x89);
1020    qdev_prop_set_uint16(dev, "id1", 0x18);
1021    qdev_prop_set_uint16(dev, "id2", 0x00);
1022    qdev_prop_set_uint16(dev, "id3", 0x00);
1023    qdev_prop_set_string(dev, "name", name);
1024    object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1025    object_property_add_alias(OBJECT(vms), alias_prop_name,
1026                              OBJECT(dev), "drive");
1027    return PFLASH_CFI01(dev);
1028}
1029
1030static void virt_flash_create(VirtMachineState *vms)
1031{
1032    vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1033    vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1034}
1035
1036static void virt_flash_map1(PFlashCFI01 *flash,
1037                            hwaddr base, hwaddr size,
1038                            MemoryRegion *sysmem)
1039{
1040    DeviceState *dev = DEVICE(flash);
1041
1042    assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1043    assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1044    qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1045    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1046
1047    memory_region_add_subregion(sysmem, base,
1048                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1049                                                       0));
1050}
1051
1052static void virt_flash_map(VirtMachineState *vms,
1053                           MemoryRegion *sysmem,
1054                           MemoryRegion *secure_sysmem)
1055{
1056    /*
1057     * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1058     * sysmem is the system memory space. secure_sysmem is the secure view
1059     * of the system, and the first flash device should be made visible only
1060     * there. The second flash device is visible to both secure and nonsecure.
1061     * If sysmem == secure_sysmem this means there is no separate Secure
1062     * address space and both flash devices are generally visible.
1063     */
1064    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1065    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1066
1067    virt_flash_map1(vms->flash[0], flashbase, flashsize,
1068                    secure_sysmem);
1069    virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1070                    sysmem);
1071}
1072
1073static void virt_flash_fdt(VirtMachineState *vms,
1074                           MemoryRegion *sysmem,
1075                           MemoryRegion *secure_sysmem)
1076{
1077    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1078    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1079    MachineState *ms = MACHINE(vms);
1080    char *nodename;
1081
1082    if (sysmem == secure_sysmem) {
1083        /* Report both flash devices as a single node in the DT */
1084        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1085        qemu_fdt_add_subnode(ms->fdt, nodename);
1086        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1087        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1088                                     2, flashbase, 2, flashsize,
1089                                     2, flashbase + flashsize, 2, flashsize);
1090        qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1091        g_free(nodename);
1092    } else {
1093        /*
1094         * Report the devices as separate nodes so we can mark one as
1095         * only visible to the secure world.
1096         */
1097        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1098        qemu_fdt_add_subnode(ms->fdt, nodename);
1099        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1100        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1101                                     2, flashbase, 2, flashsize);
1102        qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1103        qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1104        qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1105        g_free(nodename);
1106
1107        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1108        qemu_fdt_add_subnode(ms->fdt, nodename);
1109        qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1110        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1111                                     2, flashbase + flashsize, 2, flashsize);
1112        qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1113        g_free(nodename);
1114    }
1115}
1116
1117static bool virt_firmware_init(VirtMachineState *vms,
1118                               MemoryRegion *sysmem,
1119                               MemoryRegion *secure_sysmem)
1120{
1121    int i;
1122    const char *bios_name;
1123    BlockBackend *pflash_blk0;
1124
1125    /* Map legacy -drive if=pflash to machine properties */
1126    for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1127        pflash_cfi01_legacy_drive(vms->flash[i],
1128                                  drive_get(IF_PFLASH, 0, i));
1129    }
1130
1131    virt_flash_map(vms, sysmem, secure_sysmem);
1132
1133    pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1134
1135    bios_name = MACHINE(vms)->firmware;
1136    if (bios_name) {
1137        char *fname;
1138        MemoryRegion *mr;
1139        int image_size;
1140
1141        if (pflash_blk0) {
1142            error_report("The contents of the first flash device may be "
1143                         "specified with -bios or with -drive if=pflash... "
1144                         "but you cannot use both options at once");
1145            exit(1);
1146        }
1147
1148        /* Fall back to -bios */
1149
1150        fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1151        if (!fname) {
1152            error_report("Could not find ROM image '%s'", bios_name);
1153            exit(1);
1154        }
1155        mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1156        image_size = load_image_mr(fname, mr);
1157        g_free(fname);
1158        if (image_size < 0) {
1159            error_report("Could not load ROM image '%s'", bios_name);
1160            exit(1);
1161        }
1162    }
1163
1164    return pflash_blk0 || bios_name;
1165}
1166
1167static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1168{
1169    MachineState *ms = MACHINE(vms);
1170    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1171    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1172    FWCfgState *fw_cfg;
1173    char *nodename;
1174
1175    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1176    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1177
1178    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1179    qemu_fdt_add_subnode(ms->fdt, nodename);
1180    qemu_fdt_setprop_string(ms->fdt, nodename,
1181                            "compatible", "qemu,fw-cfg-mmio");
1182    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1183                                 2, base, 2, size);
1184    qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1185    g_free(nodename);
1186    return fw_cfg;
1187}
1188
1189static void create_pcie_irq_map(const MachineState *ms,
1190                                uint32_t gic_phandle,
1191                                int first_irq, const char *nodename)
1192{
1193    int devfn, pin;
1194    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1195    uint32_t *irq_map = full_irq_map;
1196
1197    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1198        for (pin = 0; pin < 4; pin++) {
1199            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1200            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1201            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1202            int i;
1203
1204            uint32_t map[] = {
1205                devfn << 8, 0, 0,                           /* devfn */
1206                pin + 1,                                    /* PCI pin */
1207                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1208
1209            /* Convert map to big endian */
1210            for (i = 0; i < 10; i++) {
1211                irq_map[i] = cpu_to_be32(map[i]);
1212            }
1213            irq_map += 10;
1214        }
1215    }
1216
1217    qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1218                     full_irq_map, sizeof(full_irq_map));
1219
1220    qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1221                           cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1222                           0, 0,
1223                           0x7           /* PCI irq */);
1224}
1225
1226static void create_smmu(const VirtMachineState *vms,
1227                        PCIBus *bus)
1228{
1229    char *node;
1230    const char compat[] = "arm,smmu-v3";
1231    int irq =  vms->irqmap[VIRT_SMMU];
1232    int i;
1233    hwaddr base = vms->memmap[VIRT_SMMU].base;
1234    hwaddr size = vms->memmap[VIRT_SMMU].size;
1235    const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1236    DeviceState *dev;
1237    MachineState *ms = MACHINE(vms);
1238
1239    if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1240        return;
1241    }
1242
1243    dev = qdev_new("arm-smmuv3");
1244
1245    object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1246                             &error_abort);
1247    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1248    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1249    for (i = 0; i < NUM_SMMU_IRQS; i++) {
1250        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1251                           qdev_get_gpio_in(vms->gic, irq + i));
1252    }
1253
1254    node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1255    qemu_fdt_add_subnode(ms->fdt, node);
1256    qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1257    qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1258
1259    qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1260            GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1261            GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1262            GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1263            GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1264
1265    qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1266                     sizeof(irq_names));
1267
1268    qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1269    qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1270    qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1271
1272    qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1273
1274    qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1275    g_free(node);
1276}
1277
1278static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1279{
1280    const char compat[] = "virtio,pci-iommu";
1281    uint16_t bdf = vms->virtio_iommu_bdf;
1282    MachineState *ms = MACHINE(vms);
1283    char *node;
1284
1285    vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1286
1287    node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1288    qemu_fdt_add_subnode(ms->fdt, node);
1289    qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1290    qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1291                                 1, bdf << 8, 1, 0, 1, 0,
1292                                 1, 0, 1, 0);
1293
1294    qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1295    qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1296    g_free(node);
1297
1298    qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1299                           0x0, vms->iommu_phandle, 0x0, bdf,
1300                           bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1301}
1302
1303static void create_pcie(VirtMachineState *vms)
1304{
1305    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1306    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1307    hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1308    hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1309    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1310    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1311    hwaddr base_ecam, size_ecam;
1312    hwaddr base = base_mmio;
1313    int nr_pcie_buses;
1314    int irq = vms->irqmap[VIRT_PCIE];
1315    MemoryRegion *mmio_alias;
1316    MemoryRegion *mmio_reg;
1317    MemoryRegion *ecam_alias;
1318    MemoryRegion *ecam_reg;
1319    DeviceState *dev;
1320    char *nodename;
1321    int i, ecam_id;
1322    PCIHostState *pci;
1323    MachineState *ms = MACHINE(vms);
1324
1325    dev = qdev_new(TYPE_GPEX_HOST);
1326    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1327
1328    ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1329    base_ecam = vms->memmap[ecam_id].base;
1330    size_ecam = vms->memmap[ecam_id].size;
1331    nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1332    /* Map only the first size_ecam bytes of ECAM space */
1333    ecam_alias = g_new0(MemoryRegion, 1);
1334    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1335    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1336                             ecam_reg, 0, size_ecam);
1337    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1338
1339    /* Map the MMIO window into system address space so as to expose
1340     * the section of PCI MMIO space which starts at the same base address
1341     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1342     * the window).
1343     */
1344    mmio_alias = g_new0(MemoryRegion, 1);
1345    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1346    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1347                             mmio_reg, base_mmio, size_mmio);
1348    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1349
1350    if (vms->highmem) {
1351        /* Map high MMIO space */
1352        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1353
1354        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1355                                 mmio_reg, base_mmio_high, size_mmio_high);
1356        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1357                                    high_mmio_alias);
1358    }
1359
1360    /* Map IO port space */
1361    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1362
1363    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1364        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1365                           qdev_get_gpio_in(vms->gic, irq + i));
1366        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1367    }
1368
1369    pci = PCI_HOST_BRIDGE(dev);
1370    pci->bypass_iommu = vms->default_bus_bypass_iommu;
1371    vms->bus = pci->bus;
1372    if (vms->bus) {
1373        for (i = 0; i < nb_nics; i++) {
1374            NICInfo *nd = &nd_table[i];
1375
1376            if (!nd->model) {
1377                nd->model = g_strdup("virtio");
1378            }
1379
1380            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1381        }
1382    }
1383
1384    nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1385    qemu_fdt_add_subnode(ms->fdt, nodename);
1386    qemu_fdt_setprop_string(ms->fdt, nodename,
1387                            "compatible", "pci-host-ecam-generic");
1388    qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1389    qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1390    qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1391    qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1392    qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1393                           nr_pcie_buses - 1);
1394    qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1395
1396    if (vms->msi_phandle) {
1397        qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1398                               vms->msi_phandle);
1399    }
1400
1401    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1402                                 2, base_ecam, 2, size_ecam);
1403
1404    if (vms->highmem) {
1405        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1406                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1407                                     2, base_pio, 2, size_pio,
1408                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1409                                     2, base_mmio, 2, size_mmio,
1410                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1411                                     2, base_mmio_high,
1412                                     2, base_mmio_high, 2, size_mmio_high);
1413    } else {
1414        qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1415                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1416                                     2, base_pio, 2, size_pio,
1417                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1418                                     2, base_mmio, 2, size_mmio);
1419    }
1420
1421    qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1422    create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1423
1424    if (vms->iommu) {
1425        vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1426
1427        switch (vms->iommu) {
1428        case VIRT_IOMMU_SMMUV3:
1429            create_smmu(vms, vms->bus);
1430            qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1431                                   0x0, vms->iommu_phandle, 0x0, 0x10000);
1432            break;
1433        default:
1434            g_assert_not_reached();
1435        }
1436    }
1437}
1438
1439static void create_platform_bus(VirtMachineState *vms)
1440{
1441    DeviceState *dev;
1442    SysBusDevice *s;
1443    int i;
1444    MemoryRegion *sysmem = get_system_memory();
1445
1446    dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1447    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1448    qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1449    qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1450    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1451    vms->platform_bus_dev = dev;
1452
1453    s = SYS_BUS_DEVICE(dev);
1454    for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1455        int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1456        sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1457    }
1458
1459    memory_region_add_subregion(sysmem,
1460                                vms->memmap[VIRT_PLATFORM_BUS].base,
1461                                sysbus_mmio_get_region(s, 0));
1462}
1463
1464static void create_tag_ram(MemoryRegion *tag_sysmem,
1465                           hwaddr base, hwaddr size,
1466                           const char *name)
1467{
1468    MemoryRegion *tagram = g_new(MemoryRegion, 1);
1469
1470    memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1471    memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1472}
1473
1474static void create_secure_ram(VirtMachineState *vms,
1475                              MemoryRegion *secure_sysmem,
1476                              MemoryRegion *secure_tag_sysmem)
1477{
1478    MemoryRegion *secram = g_new(MemoryRegion, 1);
1479    char *nodename;
1480    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1481    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1482    MachineState *ms = MACHINE(vms);
1483
1484    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1485                           &error_fatal);
1486    memory_region_add_subregion(secure_sysmem, base, secram);
1487
1488    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1489    qemu_fdt_add_subnode(ms->fdt, nodename);
1490    qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1491    qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1492    qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1493    qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1494
1495    if (secure_tag_sysmem) {
1496        create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1497    }
1498
1499    g_free(nodename);
1500}
1501
1502static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1503{
1504    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1505                                                 bootinfo);
1506    MachineState *ms = MACHINE(board);
1507
1508
1509    *fdt_size = board->fdt_size;
1510    return ms->fdt;
1511}
1512
1513static void virt_build_smbios(VirtMachineState *vms)
1514{
1515    MachineClass *mc = MACHINE_GET_CLASS(vms);
1516    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1517    uint8_t *smbios_tables, *smbios_anchor;
1518    size_t smbios_tables_len, smbios_anchor_len;
1519    const char *product = "QEMU Virtual Machine";
1520
1521    if (kvm_enabled()) {
1522        product = "KVM Virtual Machine";
1523    }
1524
1525    smbios_set_defaults("QEMU", product,
1526                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1527                        true, SMBIOS_ENTRY_POINT_30);
1528
1529    smbios_get_tables(MACHINE(vms), NULL, 0,
1530                      &smbios_tables, &smbios_tables_len,
1531                      &smbios_anchor, &smbios_anchor_len,
1532                      &error_fatal);
1533
1534    if (smbios_anchor) {
1535        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1536                        smbios_tables, smbios_tables_len);
1537        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1538                        smbios_anchor, smbios_anchor_len);
1539    }
1540}
1541
1542static
1543void virt_machine_done(Notifier *notifier, void *data)
1544{
1545    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1546                                         machine_done);
1547    MachineState *ms = MACHINE(vms);
1548    ARMCPU *cpu = ARM_CPU(first_cpu);
1549    struct arm_boot_info *info = &vms->bootinfo;
1550    AddressSpace *as = arm_boot_address_space(cpu, info);
1551
1552    /*
1553     * If the user provided a dtb, we assume the dynamic sysbus nodes
1554     * already are integrated there. This corresponds to a use case where
1555     * the dynamic sysbus nodes are complex and their generation is not yet
1556     * supported. In that case the user can take charge of the guest dt
1557     * while qemu takes charge of the qom stuff.
1558     */
1559    if (info->dtb_filename == NULL) {
1560        platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1561                                       vms->memmap[VIRT_PLATFORM_BUS].base,
1562                                       vms->memmap[VIRT_PLATFORM_BUS].size,
1563                                       vms->irqmap[VIRT_PLATFORM_BUS]);
1564    }
1565    if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1566        exit(1);
1567    }
1568
1569    fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1570
1571    virt_acpi_setup(vms);
1572    virt_build_smbios(vms);
1573}
1574
1575static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1576{
1577    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1578    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1579
1580    if (!vmc->disallow_affinity_adjustment) {
1581        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1582         * GIC's target-list limitations. 32-bit KVM hosts currently
1583         * always create clusters of 4 CPUs, but that is expected to
1584         * change when they gain support for gicv3. When KVM is enabled
1585         * it will override the changes we make here, therefore our
1586         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1587         * and to improve SGI efficiency.
1588         */
1589        if (vms->gic_version == VIRT_GIC_VERSION_3) {
1590            clustersz = GICV3_TARGETLIST_BITS;
1591        } else {
1592            clustersz = GIC_TARGETLIST_BITS;
1593        }
1594    }
1595    return arm_cpu_mp_affinity(idx, clustersz);
1596}
1597
1598static void virt_set_memmap(VirtMachineState *vms)
1599{
1600    MachineState *ms = MACHINE(vms);
1601    hwaddr base, device_memory_base, device_memory_size;
1602    int i;
1603
1604    vms->memmap = extended_memmap;
1605
1606    for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1607        vms->memmap[i] = base_memmap[i];
1608    }
1609
1610    if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1611        error_report("unsupported number of memory slots: %"PRIu64,
1612                     ms->ram_slots);
1613        exit(EXIT_FAILURE);
1614    }
1615
1616    /*
1617     * We compute the base of the high IO region depending on the
1618     * amount of initial and device memory. The device memory start/size
1619     * is aligned on 1GiB. We never put the high IO region below 256GiB
1620     * so that if maxram_size is < 255GiB we keep the legacy memory map.
1621     * The device region size assumes 1GiB page max alignment per slot.
1622     */
1623    device_memory_base =
1624        ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1625    device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1626
1627    /* Base address of the high IO region */
1628    base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1629    if (base < device_memory_base) {
1630        error_report("maxmem/slots too huge");
1631        exit(EXIT_FAILURE);
1632    }
1633    if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1634        base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1635    }
1636
1637    for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1638        hwaddr size = extended_memmap[i].size;
1639
1640        base = ROUND_UP(base, size);
1641        vms->memmap[i].base = base;
1642        vms->memmap[i].size = size;
1643        base += size;
1644    }
1645    vms->highest_gpa = base - 1;
1646    if (device_memory_size > 0) {
1647        ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1648        ms->device_memory->base = device_memory_base;
1649        memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1650                           "device-memory", device_memory_size);
1651    }
1652}
1653
1654/*
1655 * finalize_gic_version - Determines the final gic_version
1656 * according to the gic-version property
1657 *
1658 * Default GIC type is v2
1659 */
1660static void finalize_gic_version(VirtMachineState *vms)
1661{
1662    unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1663
1664    if (kvm_enabled()) {
1665        int probe_bitmap;
1666
1667        if (!kvm_irqchip_in_kernel()) {
1668            switch (vms->gic_version) {
1669            case VIRT_GIC_VERSION_HOST:
1670                warn_report(
1671                    "gic-version=host not relevant with kernel-irqchip=off "
1672                     "as only userspace GICv2 is supported. Using v2 ...");
1673                return;
1674            case VIRT_GIC_VERSION_MAX:
1675            case VIRT_GIC_VERSION_NOSEL:
1676                vms->gic_version = VIRT_GIC_VERSION_2;
1677                return;
1678            case VIRT_GIC_VERSION_2:
1679                return;
1680            case VIRT_GIC_VERSION_3:
1681                error_report(
1682                    "gic-version=3 is not supported with kernel-irqchip=off");
1683                exit(1);
1684            }
1685        }
1686
1687        probe_bitmap = kvm_arm_vgic_probe();
1688        if (!probe_bitmap) {
1689            error_report("Unable to determine GIC version supported by host");
1690            exit(1);
1691        }
1692
1693        switch (vms->gic_version) {
1694        case VIRT_GIC_VERSION_HOST:
1695        case VIRT_GIC_VERSION_MAX:
1696            if (probe_bitmap & KVM_ARM_VGIC_V3) {
1697                vms->gic_version = VIRT_GIC_VERSION_3;
1698            } else {
1699                vms->gic_version = VIRT_GIC_VERSION_2;
1700            }
1701            return;
1702        case VIRT_GIC_VERSION_NOSEL:
1703            if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1704                vms->gic_version = VIRT_GIC_VERSION_2;
1705            } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1706                /*
1707                 * in case the host does not support v2 in-kernel emulation or
1708                 * the end-user requested more than 8 VCPUs we now default
1709                 * to v3. In any case defaulting to v2 would be broken.
1710                 */
1711                vms->gic_version = VIRT_GIC_VERSION_3;
1712            } else if (max_cpus > GIC_NCPU) {
1713                error_report("host only supports in-kernel GICv2 emulation "
1714                             "but more than 8 vcpus are requested");
1715                exit(1);
1716            }
1717            break;
1718        case VIRT_GIC_VERSION_2:
1719        case VIRT_GIC_VERSION_3:
1720            break;
1721        }
1722
1723        /* Check chosen version is effectively supported by the host */
1724        if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1725            !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1726            error_report("host does not support in-kernel GICv2 emulation");
1727            exit(1);
1728        } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1729                   !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1730            error_report("host does not support in-kernel GICv3 emulation");
1731            exit(1);
1732        }
1733        return;
1734    }
1735
1736    /* TCG mode */
1737    switch (vms->gic_version) {
1738    case VIRT_GIC_VERSION_NOSEL:
1739        vms->gic_version = VIRT_GIC_VERSION_2;
1740        break;
1741    case VIRT_GIC_VERSION_MAX:
1742        vms->gic_version = VIRT_GIC_VERSION_3;
1743        break;
1744    case VIRT_GIC_VERSION_HOST:
1745        error_report("gic-version=host requires KVM");
1746        exit(1);
1747    case VIRT_GIC_VERSION_2:
1748    case VIRT_GIC_VERSION_3:
1749        break;
1750    }
1751}
1752
1753/*
1754 * virt_cpu_post_init() must be called after the CPUs have
1755 * been realized and the GIC has been created.
1756 */
1757static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1758{
1759    int max_cpus = MACHINE(vms)->smp.max_cpus;
1760    bool aarch64, pmu, steal_time;
1761    CPUState *cpu;
1762
1763    aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1764    pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1765    steal_time = object_property_get_bool(OBJECT(first_cpu),
1766                                          "kvm-steal-time", NULL);
1767
1768    if (kvm_enabled()) {
1769        hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1770        hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1771
1772        if (steal_time) {
1773            MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1774            hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1775
1776            /* The memory region size must be a multiple of host page size. */
1777            pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1778
1779            if (pvtime_size > pvtime_reg_size) {
1780                error_report("pvtime requires a %" HWADDR_PRId
1781                             " byte memory region for %d CPUs,"
1782                             " but only %" HWADDR_PRId " has been reserved",
1783                             pvtime_size, max_cpus, pvtime_reg_size);
1784                exit(1);
1785            }
1786
1787            memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1788            memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1789        }
1790
1791        CPU_FOREACH(cpu) {
1792            if (pmu) {
1793                assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1794                if (kvm_irqchip_in_kernel()) {
1795                    kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1796                }
1797                kvm_arm_pmu_init(cpu);
1798            }
1799            if (steal_time) {
1800                kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1801                                         cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1802            }
1803        }
1804    } else {
1805        if (aarch64 && vms->highmem) {
1806            int requested_pa_size = 64 - clz64(vms->highest_gpa);
1807            int pamax = arm_pamax(ARM_CPU(first_cpu));
1808
1809            if (pamax < requested_pa_size) {
1810                error_report("VCPU supports less PA bits (%d) than "
1811                             "requested by the memory map (%d)",
1812                             pamax, requested_pa_size);
1813                exit(1);
1814            }
1815        }
1816    }
1817}
1818
1819static void machvirt_init(MachineState *machine)
1820{
1821    VirtMachineState *vms = VIRT_MACHINE(machine);
1822    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1823    MachineClass *mc = MACHINE_GET_CLASS(machine);
1824    const CPUArchIdList *possible_cpus;
1825    MemoryRegion *sysmem = get_system_memory();
1826    MemoryRegion *secure_sysmem = NULL;
1827    MemoryRegion *tag_sysmem = NULL;
1828    MemoryRegion *secure_tag_sysmem = NULL;
1829    int n, virt_max_cpus;
1830    bool firmware_loaded;
1831    bool aarch64 = true;
1832    bool has_ged = !vmc->no_ged;
1833    unsigned int smp_cpus = machine->smp.cpus;
1834    unsigned int max_cpus = machine->smp.max_cpus;
1835
1836    /*
1837     * In accelerated mode, the memory map is computed earlier in kvm_type()
1838     * to create a VM with the right number of IPA bits.
1839     */
1840    if (!vms->memmap) {
1841        virt_set_memmap(vms);
1842    }
1843
1844    /* We can probe only here because during property set
1845     * KVM is not available yet
1846     */
1847    finalize_gic_version(vms);
1848
1849    if (!cpu_type_valid(machine->cpu_type)) {
1850        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1851        exit(1);
1852    }
1853
1854    if (vms->secure) {
1855        if (kvm_enabled()) {
1856            error_report("mach-virt: KVM does not support Security extensions");
1857            exit(1);
1858        }
1859
1860        /*
1861         * The Secure view of the world is the same as the NonSecure,
1862         * but with a few extra devices. Create it as a container region
1863         * containing the system memory at low priority; any secure-only
1864         * devices go in at higher priority and take precedence.
1865         */
1866        secure_sysmem = g_new(MemoryRegion, 1);
1867        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1868                           UINT64_MAX);
1869        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1870    }
1871
1872    firmware_loaded = virt_firmware_init(vms, sysmem,
1873                                         secure_sysmem ?: sysmem);
1874
1875    /* If we have an EL3 boot ROM then the assumption is that it will
1876     * implement PSCI itself, so disable QEMU's internal implementation
1877     * so it doesn't get in the way. Instead of starting secondary
1878     * CPUs in PSCI powerdown state we will start them all running and
1879     * let the boot ROM sort them out.
1880     * The usual case is that we do use QEMU's PSCI implementation;
1881     * if the guest has EL2 then we will use SMC as the conduit,
1882     * and otherwise we will use HVC (for backwards compatibility and
1883     * because if we're using KVM then we must use HVC).
1884     */
1885    if (vms->secure && firmware_loaded) {
1886        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1887    } else if (vms->virt) {
1888        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1889    } else {
1890        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1891    }
1892
1893    /* The maximum number of CPUs depends on the GIC version, or on how
1894     * many redistributors we can fit into the memory map.
1895     */
1896    if (vms->gic_version == VIRT_GIC_VERSION_3) {
1897        virt_max_cpus =
1898            vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1899        virt_max_cpus +=
1900            vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1901    } else {
1902        virt_max_cpus = GIC_NCPU;
1903    }
1904
1905    if (max_cpus > virt_max_cpus) {
1906        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1907                     "supported by machine 'mach-virt' (%d)",
1908                     max_cpus, virt_max_cpus);
1909        exit(1);
1910    }
1911
1912    if (vms->virt && kvm_enabled()) {
1913        error_report("mach-virt: KVM does not support providing "
1914                     "Virtualization extensions to the guest CPU");
1915        exit(1);
1916    }
1917
1918    if (vms->mte && kvm_enabled()) {
1919        error_report("mach-virt: KVM does not support providing "
1920                     "MTE to the guest CPU");
1921        exit(1);
1922    }
1923
1924    create_fdt(vms);
1925
1926    possible_cpus = mc->possible_cpu_arch_ids(machine);
1927    assert(possible_cpus->len == max_cpus);
1928    for (n = 0; n < possible_cpus->len; n++) {
1929        Object *cpuobj;
1930        CPUState *cs;
1931
1932        if (n >= smp_cpus) {
1933            break;
1934        }
1935
1936        cpuobj = object_new(possible_cpus->cpus[n].type);
1937        object_property_set_int(cpuobj, "mp-affinity",
1938                                possible_cpus->cpus[n].arch_id, NULL);
1939
1940        cs = CPU(cpuobj);
1941        cs->cpu_index = n;
1942
1943        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1944                          &error_fatal);
1945
1946        aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1947
1948        if (!vms->secure) {
1949            object_property_set_bool(cpuobj, "has_el3", false, NULL);
1950        }
1951
1952        if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1953            object_property_set_bool(cpuobj, "has_el2", false, NULL);
1954        }
1955
1956        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1957            object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1958                                    NULL);
1959
1960            /* Secondary CPUs start in PSCI powered-down state */
1961            if (n > 0) {
1962                object_property_set_bool(cpuobj, "start-powered-off", true,
1963                                         NULL);
1964            }
1965        }
1966
1967        if (vmc->kvm_no_adjvtime &&
1968            object_property_find(cpuobj, "kvm-no-adjvtime")) {
1969            object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1970        }
1971
1972        if (vmc->no_kvm_steal_time &&
1973            object_property_find(cpuobj, "kvm-steal-time")) {
1974            object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1975        }
1976
1977        if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1978            object_property_set_bool(cpuobj, "pmu", false, NULL);
1979        }
1980
1981        if (object_property_find(cpuobj, "reset-cbar")) {
1982            object_property_set_int(cpuobj, "reset-cbar",
1983                                    vms->memmap[VIRT_CPUPERIPHS].base,
1984                                    &error_abort);
1985        }
1986
1987        object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1988                                 &error_abort);
1989        if (vms->secure) {
1990            object_property_set_link(cpuobj, "secure-memory",
1991                                     OBJECT(secure_sysmem), &error_abort);
1992        }
1993
1994        if (vms->mte) {
1995            /* Create the memory region only once, but link to all cpus. */
1996            if (!tag_sysmem) {
1997                /*
1998                 * The property exists only if MemTag is supported.
1999                 * If it is, we must allocate the ram to back that up.
2000                 */
2001                if (!object_property_find(cpuobj, "tag-memory")) {
2002                    error_report("MTE requested, but not supported "
2003                                 "by the guest CPU");
2004                    exit(1);
2005                }
2006
2007                tag_sysmem = g_new(MemoryRegion, 1);
2008                memory_region_init(tag_sysmem, OBJECT(machine),
2009                                   "tag-memory", UINT64_MAX / 32);
2010
2011                if (vms->secure) {
2012                    secure_tag_sysmem = g_new(MemoryRegion, 1);
2013                    memory_region_init(secure_tag_sysmem, OBJECT(machine),
2014                                       "secure-tag-memory", UINT64_MAX / 32);
2015
2016                    /* As with ram, secure-tag takes precedence over tag.  */
2017                    memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2018                                                        tag_sysmem, -1);
2019                }
2020            }
2021
2022            object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2023                                     &error_abort);
2024            if (vms->secure) {
2025                object_property_set_link(cpuobj, "secure-tag-memory",
2026                                         OBJECT(secure_tag_sysmem),
2027                                         &error_abort);
2028            }
2029        }
2030
2031        qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2032        object_unref(cpuobj);
2033    }
2034    fdt_add_timer_nodes(vms);
2035    fdt_add_cpu_nodes(vms);
2036
2037    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2038                                machine->ram);
2039    if (machine->device_memory) {
2040        memory_region_add_subregion(sysmem, machine->device_memory->base,
2041                                    &machine->device_memory->mr);
2042    }
2043
2044    virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2045
2046    create_gic(vms);
2047
2048    virt_cpu_post_init(vms, sysmem);
2049
2050    fdt_add_pmu_nodes(vms);
2051
2052    create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2053
2054    if (vms->secure) {
2055        create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2056        create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2057    }
2058
2059    if (tag_sysmem) {
2060        create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2061                       machine->ram_size, "mach-virt.tag");
2062    }
2063
2064    vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2065
2066    create_rtc(vms);
2067
2068    create_pcie(vms);
2069
2070    if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2071        vms->acpi_dev = create_acpi_ged(vms);
2072    } else {
2073        create_gpio_devices(vms, VIRT_GPIO, sysmem);
2074    }
2075
2076    if (vms->secure && !vmc->no_secure_gpio) {
2077        create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2078    }
2079
2080     /* connect powerdown request */
2081     vms->powerdown_notifier.notify = virt_powerdown_req;
2082     qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2083
2084    /* Create mmio transports, so the user can create virtio backends
2085     * (which will be automatically plugged in to the transports). If
2086     * no backend is created the transport will just sit harmlessly idle.
2087     */
2088    create_virtio_devices(vms);
2089
2090    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2091    rom_set_fw(vms->fw_cfg);
2092
2093    create_platform_bus(vms);
2094
2095    if (machine->nvdimms_state->is_enabled) {
2096        const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2097            .space_id = AML_AS_SYSTEM_MEMORY,
2098            .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2099            .bit_width = NVDIMM_ACPI_IO_LEN << 3
2100        };
2101
2102        nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2103                               arm_virt_nvdimm_acpi_dsmio,
2104                               vms->fw_cfg, OBJECT(vms));
2105    }
2106
2107    vms->bootinfo.ram_size = machine->ram_size;
2108    vms->bootinfo.nb_cpus = smp_cpus;
2109    vms->bootinfo.board_id = -1;
2110    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2111    vms->bootinfo.get_dtb = machvirt_dtb;
2112    vms->bootinfo.skip_dtb_autoload = true;
2113    vms->bootinfo.firmware_loaded = firmware_loaded;
2114    arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2115
2116    vms->machine_done.notify = virt_machine_done;
2117    qemu_add_machine_init_done_notifier(&vms->machine_done);
2118}
2119
2120static bool virt_get_secure(Object *obj, Error **errp)
2121{
2122    VirtMachineState *vms = VIRT_MACHINE(obj);
2123
2124    return vms->secure;
2125}
2126
2127static void virt_set_secure(Object *obj, bool value, Error **errp)
2128{
2129    VirtMachineState *vms = VIRT_MACHINE(obj);
2130
2131    vms->secure = value;
2132}
2133
2134static bool virt_get_virt(Object *obj, Error **errp)
2135{
2136    VirtMachineState *vms = VIRT_MACHINE(obj);
2137
2138    return vms->virt;
2139}
2140
2141static void virt_set_virt(Object *obj, bool value, Error **errp)
2142{
2143    VirtMachineState *vms = VIRT_MACHINE(obj);
2144
2145    vms->virt = value;
2146}
2147
2148static bool virt_get_highmem(Object *obj, Error **errp)
2149{
2150    VirtMachineState *vms = VIRT_MACHINE(obj);
2151
2152    return vms->highmem;
2153}
2154
2155static void virt_set_highmem(Object *obj, bool value, Error **errp)
2156{
2157    VirtMachineState *vms = VIRT_MACHINE(obj);
2158
2159    vms->highmem = value;
2160}
2161
2162static bool virt_get_its(Object *obj, Error **errp)
2163{
2164    VirtMachineState *vms = VIRT_MACHINE(obj);
2165
2166    return vms->its;
2167}
2168
2169static void virt_set_its(Object *obj, bool value, Error **errp)
2170{
2171    VirtMachineState *vms = VIRT_MACHINE(obj);
2172
2173    vms->its = value;
2174}
2175
2176static char *virt_get_oem_id(Object *obj, Error **errp)
2177{
2178    VirtMachineState *vms = VIRT_MACHINE(obj);
2179
2180    return g_strdup(vms->oem_id);
2181}
2182
2183static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2184{
2185    VirtMachineState *vms = VIRT_MACHINE(obj);
2186    size_t len = strlen(value);
2187
2188    if (len > 6) {
2189        error_setg(errp,
2190                   "User specified oem-id value is bigger than 6 bytes in size");
2191        return;
2192    }
2193
2194    strncpy(vms->oem_id, value, 6);
2195}
2196
2197static char *virt_get_oem_table_id(Object *obj, Error **errp)
2198{
2199    VirtMachineState *vms = VIRT_MACHINE(obj);
2200
2201    return g_strdup(vms->oem_table_id);
2202}
2203
2204static void virt_set_oem_table_id(Object *obj, const char *value,
2205                                  Error **errp)
2206{
2207    VirtMachineState *vms = VIRT_MACHINE(obj);
2208    size_t len = strlen(value);
2209
2210    if (len > 8) {
2211        error_setg(errp,
2212                   "User specified oem-table-id value is bigger than 8 bytes in size");
2213        return;
2214    }
2215    strncpy(vms->oem_table_id, value, 8);
2216}
2217
2218
2219bool virt_is_acpi_enabled(VirtMachineState *vms)
2220{
2221    if (vms->acpi == ON_OFF_AUTO_OFF) {
2222        return false;
2223    }
2224    return true;
2225}
2226
2227static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2228                          void *opaque, Error **errp)
2229{
2230    VirtMachineState *vms = VIRT_MACHINE(obj);
2231    OnOffAuto acpi = vms->acpi;
2232
2233    visit_type_OnOffAuto(v, name, &acpi, errp);
2234}
2235
2236static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2237                          void *opaque, Error **errp)
2238{
2239    VirtMachineState *vms = VIRT_MACHINE(obj);
2240
2241    visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2242}
2243
2244static bool virt_get_ras(Object *obj, Error **errp)
2245{
2246    VirtMachineState *vms = VIRT_MACHINE(obj);
2247
2248    return vms->ras;
2249}
2250
2251static void virt_set_ras(Object *obj, bool value, Error **errp)
2252{
2253    VirtMachineState *vms = VIRT_MACHINE(obj);
2254
2255    vms->ras = value;
2256}
2257
2258static bool virt_get_mte(Object *obj, Error **errp)
2259{
2260    VirtMachineState *vms = VIRT_MACHINE(obj);
2261
2262    return vms->mte;
2263}
2264
2265static void virt_set_mte(Object *obj, bool value, Error **errp)
2266{
2267    VirtMachineState *vms = VIRT_MACHINE(obj);
2268
2269    vms->mte = value;
2270}
2271
2272static char *virt_get_gic_version(Object *obj, Error **errp)
2273{
2274    VirtMachineState *vms = VIRT_MACHINE(obj);
2275    const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2276
2277    return g_strdup(val);
2278}
2279
2280static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2281{
2282    VirtMachineState *vms = VIRT_MACHINE(obj);
2283
2284    if (!strcmp(value, "3")) {
2285        vms->gic_version = VIRT_GIC_VERSION_3;
2286    } else if (!strcmp(value, "2")) {
2287        vms->gic_version = VIRT_GIC_VERSION_2;
2288    } else if (!strcmp(value, "host")) {
2289        vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2290    } else if (!strcmp(value, "max")) {
2291        vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2292    } else {
2293        error_setg(errp, "Invalid gic-version value");
2294        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2295    }
2296}
2297
2298static char *virt_get_iommu(Object *obj, Error **errp)
2299{
2300    VirtMachineState *vms = VIRT_MACHINE(obj);
2301
2302    switch (vms->iommu) {
2303    case VIRT_IOMMU_NONE:
2304        return g_strdup("none");
2305    case VIRT_IOMMU_SMMUV3:
2306        return g_strdup("smmuv3");
2307    default:
2308        g_assert_not_reached();
2309    }
2310}
2311
2312static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2313{
2314    VirtMachineState *vms = VIRT_MACHINE(obj);
2315
2316    if (!strcmp(value, "smmuv3")) {
2317        vms->iommu = VIRT_IOMMU_SMMUV3;
2318    } else if (!strcmp(value, "none")) {
2319        vms->iommu = VIRT_IOMMU_NONE;
2320    } else {
2321        error_setg(errp, "Invalid iommu value");
2322        error_append_hint(errp, "Valid values are none, smmuv3.\n");
2323    }
2324}
2325
2326static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2327{
2328    VirtMachineState *vms = VIRT_MACHINE(obj);
2329
2330    return vms->default_bus_bypass_iommu;
2331}
2332
2333static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2334                                              Error **errp)
2335{
2336    VirtMachineState *vms = VIRT_MACHINE(obj);
2337
2338    vms->default_bus_bypass_iommu = value;
2339}
2340
2341static CpuInstanceProperties
2342virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2343{
2344    MachineClass *mc = MACHINE_GET_CLASS(ms);
2345    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2346
2347    assert(cpu_index < possible_cpus->len);
2348    return possible_cpus->cpus[cpu_index].props;
2349}
2350
2351static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2352{
2353    return idx % ms->numa_state->num_nodes;
2354}
2355
2356static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2357{
2358    int n;
2359    unsigned int max_cpus = ms->smp.max_cpus;
2360    VirtMachineState *vms = VIRT_MACHINE(ms);
2361
2362    if (ms->possible_cpus) {
2363        assert(ms->possible_cpus->len == max_cpus);
2364        return ms->possible_cpus;
2365    }
2366
2367    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2368                                  sizeof(CPUArchId) * max_cpus);
2369    ms->possible_cpus->len = max_cpus;
2370    for (n = 0; n < ms->possible_cpus->len; n++) {
2371        ms->possible_cpus->cpus[n].type = ms->cpu_type;
2372        ms->possible_cpus->cpus[n].arch_id =
2373            virt_cpu_mp_affinity(vms, n);
2374        ms->possible_cpus->cpus[n].props.has_thread_id = true;
2375        ms->possible_cpus->cpus[n].props.thread_id = n;
2376    }
2377    return ms->possible_cpus;
2378}
2379
2380static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2381                                 Error **errp)
2382{
2383    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2384    const MachineState *ms = MACHINE(hotplug_dev);
2385    const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2386
2387    if (!vms->acpi_dev) {
2388        error_setg(errp,
2389                   "memory hotplug is not enabled: missing acpi-ged device");
2390        return;
2391    }
2392
2393    if (vms->mte) {
2394        error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2395        return;
2396    }
2397
2398    if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2399        error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2400        return;
2401    }
2402
2403    pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2404}
2405
2406static void virt_memory_plug(HotplugHandler *hotplug_dev,
2407                             DeviceState *dev, Error **errp)
2408{
2409    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2410    MachineState *ms = MACHINE(hotplug_dev);
2411    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2412
2413    pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2414
2415    if (is_nvdimm) {
2416        nvdimm_plug(ms->nvdimms_state);
2417    }
2418
2419    hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2420                         dev, &error_abort);
2421}
2422
2423static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2424                                            DeviceState *dev, Error **errp)
2425{
2426    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2427
2428    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2429        virt_memory_pre_plug(hotplug_dev, dev, errp);
2430    } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2431        hwaddr db_start = 0, db_end = 0;
2432        char *resv_prop_str;
2433
2434        switch (vms->msi_controller) {
2435        case VIRT_MSI_CTRL_NONE:
2436            return;
2437        case VIRT_MSI_CTRL_ITS:
2438            /* GITS_TRANSLATER page */
2439            db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2440            db_end = base_memmap[VIRT_GIC_ITS].base +
2441                     base_memmap[VIRT_GIC_ITS].size - 1;
2442            break;
2443        case VIRT_MSI_CTRL_GICV2M:
2444            /* MSI_SETSPI_NS page */
2445            db_start = base_memmap[VIRT_GIC_V2M].base;
2446            db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2447            break;
2448        }
2449        resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2450                                        db_start, db_end,
2451                                        VIRTIO_IOMMU_RESV_MEM_T_MSI);
2452
2453        qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2454        qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2455        g_free(resv_prop_str);
2456    }
2457}
2458
2459static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2460                                        DeviceState *dev, Error **errp)
2461{
2462    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2463
2464    if (vms->platform_bus_dev) {
2465        MachineClass *mc = MACHINE_GET_CLASS(vms);
2466
2467        if (device_is_dynamic_sysbus(mc, dev)) {
2468            platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2469                                     SYS_BUS_DEVICE(dev));
2470        }
2471    }
2472    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2473        virt_memory_plug(hotplug_dev, dev, errp);
2474    }
2475    if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2476        PCIDevice *pdev = PCI_DEVICE(dev);
2477
2478        vms->iommu = VIRT_IOMMU_VIRTIO;
2479        vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2480        create_virtio_iommu_dt_bindings(vms);
2481    }
2482}
2483
2484static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2485                                     DeviceState *dev, Error **errp)
2486{
2487    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2488    Error *local_err = NULL;
2489
2490    if (!vms->acpi_dev) {
2491        error_setg(&local_err,
2492                   "memory hotplug is not enabled: missing acpi-ged device");
2493        goto out;
2494    }
2495
2496    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2497        error_setg(&local_err,
2498                   "nvdimm device hot unplug is not supported yet.");
2499        goto out;
2500    }
2501
2502    hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2503                                   &local_err);
2504out:
2505    error_propagate(errp, local_err);
2506}
2507
2508static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2509                             DeviceState *dev, Error **errp)
2510{
2511    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2512    Error *local_err = NULL;
2513
2514    hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2515    if (local_err) {
2516        goto out;
2517    }
2518
2519    pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2520    qdev_unrealize(dev);
2521
2522out:
2523    error_propagate(errp, local_err);
2524}
2525
2526static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2527                                          DeviceState *dev, Error **errp)
2528{
2529    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2530        virt_dimm_unplug_request(hotplug_dev, dev, errp);
2531    } else {
2532        error_setg(errp, "device unplug request for unsupported device"
2533                   " type: %s", object_get_typename(OBJECT(dev)));
2534    }
2535}
2536
2537static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2538                                          DeviceState *dev, Error **errp)
2539{
2540    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2541        virt_dimm_unplug(hotplug_dev, dev, errp);
2542    } else {
2543        error_setg(errp, "virt: device unplug for unsupported device"
2544                   " type: %s", object_get_typename(OBJECT(dev)));
2545    }
2546}
2547
2548static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2549                                                        DeviceState *dev)
2550{
2551    MachineClass *mc = MACHINE_GET_CLASS(machine);
2552
2553    if (device_is_dynamic_sysbus(mc, dev) ||
2554       (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2555        return HOTPLUG_HANDLER(machine);
2556    }
2557    if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2558        VirtMachineState *vms = VIRT_MACHINE(machine);
2559
2560        if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2561            return HOTPLUG_HANDLER(machine);
2562        }
2563    }
2564    return NULL;
2565}
2566
2567/*
2568 * for arm64 kvm_type [7-0] encodes the requested number of bits
2569 * in the IPA address space
2570 */
2571static int virt_kvm_type(MachineState *ms, const char *type_str)
2572{
2573    VirtMachineState *vms = VIRT_MACHINE(ms);
2574    int max_vm_pa_size, requested_pa_size;
2575    bool fixed_ipa;
2576
2577    max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2578
2579    /* we freeze the memory map to compute the highest gpa */
2580    virt_set_memmap(vms);
2581
2582    requested_pa_size = 64 - clz64(vms->highest_gpa);
2583
2584    /*
2585     * KVM requires the IPA size to be at least 32 bits.
2586     */
2587    if (requested_pa_size < 32) {
2588        requested_pa_size = 32;
2589    }
2590
2591    if (requested_pa_size > max_vm_pa_size) {
2592        error_report("-m and ,maxmem option values "
2593                     "require an IPA range (%d bits) larger than "
2594                     "the one supported by the host (%d bits)",
2595                     requested_pa_size, max_vm_pa_size);
2596        exit(1);
2597    }
2598    /*
2599     * We return the requested PA log size, unless KVM only supports
2600     * the implicit legacy 40b IPA setting, in which case the kvm_type
2601     * must be 0.
2602     */
2603    return fixed_ipa ? 0 : requested_pa_size;
2604}
2605
2606static void virt_machine_class_init(ObjectClass *oc, void *data)
2607{
2608    MachineClass *mc = MACHINE_CLASS(oc);
2609    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2610
2611    mc->init = machvirt_init;
2612    /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2613     * The value may be reduced later when we have more information about the
2614     * configuration of the particular instance.
2615     */
2616    mc->max_cpus = 512;
2617    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2618    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2619    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2620    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2621#ifdef CONFIG_TPM
2622    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2623#endif
2624    mc->block_default_type = IF_VIRTIO;
2625    mc->no_cdrom = 1;
2626    mc->pci_allow_0_address = true;
2627    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2628    mc->minimum_page_bits = 12;
2629    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2630    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2631    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2632    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2633    mc->kvm_type = virt_kvm_type;
2634    assert(!mc->get_hotplug_handler);
2635    mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2636    hc->pre_plug = virt_machine_device_pre_plug_cb;
2637    hc->plug = virt_machine_device_plug_cb;
2638    hc->unplug_request = virt_machine_device_unplug_request_cb;
2639    hc->unplug = virt_machine_device_unplug_cb;
2640    mc->nvdimm_supported = true;
2641    mc->auto_enable_numa_with_memhp = true;
2642    mc->auto_enable_numa_with_memdev = true;
2643    mc->default_ram_id = "mach-virt.ram";
2644
2645    object_class_property_add(oc, "acpi", "OnOffAuto",
2646        virt_get_acpi, virt_set_acpi,
2647        NULL, NULL);
2648    object_class_property_set_description(oc, "acpi",
2649        "Enable ACPI");
2650    object_class_property_add_bool(oc, "secure", virt_get_secure,
2651                                   virt_set_secure);
2652    object_class_property_set_description(oc, "secure",
2653                                                "Set on/off to enable/disable the ARM "
2654                                                "Security Extensions (TrustZone)");
2655
2656    object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2657                                   virt_set_virt);
2658    object_class_property_set_description(oc, "virtualization",
2659                                          "Set on/off to enable/disable emulating a "
2660                                          "guest CPU which implements the ARM "
2661                                          "Virtualization Extensions");
2662
2663    object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2664                                   virt_set_highmem);
2665    object_class_property_set_description(oc, "highmem",
2666                                          "Set on/off to enable/disable using "
2667                                          "physical address space above 32 bits");
2668
2669    object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2670                                  virt_set_gic_version);
2671    object_class_property_set_description(oc, "gic-version",
2672                                          "Set GIC version. "
2673                                          "Valid values are 2, 3, host and max");
2674
2675    object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2676    object_class_property_set_description(oc, "iommu",
2677                                          "Set the IOMMU type. "
2678                                          "Valid values are none and smmuv3");
2679
2680    object_class_property_add_bool(oc, "default_bus_bypass_iommu",
2681                                   virt_get_default_bus_bypass_iommu,
2682                                   virt_set_default_bus_bypass_iommu);
2683    object_class_property_set_description(oc, "default_bus_bypass_iommu",
2684                                          "Set on/off to enable/disable "
2685                                          "bypass_iommu for default root bus");
2686
2687    object_class_property_add_bool(oc, "ras", virt_get_ras,
2688                                   virt_set_ras);
2689    object_class_property_set_description(oc, "ras",
2690                                          "Set on/off to enable/disable reporting host memory errors "
2691                                          "to a KVM guest using ACPI and guest external abort exceptions");
2692
2693    object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2694    object_class_property_set_description(oc, "mte",
2695                                          "Set on/off to enable/disable emulating a "
2696                                          "guest CPU which implements the ARM "
2697                                          "Memory Tagging Extension");
2698
2699    object_class_property_add_bool(oc, "its", virt_get_its,
2700                                   virt_set_its);
2701    object_class_property_set_description(oc, "its",
2702                                          "Set on/off to enable/disable "
2703                                          "ITS instantiation");
2704
2705    object_class_property_add_str(oc, "x-oem-id",
2706                                  virt_get_oem_id,
2707                                  virt_set_oem_id);
2708    object_class_property_set_description(oc, "x-oem-id",
2709                                          "Override the default value of field OEMID "
2710                                          "in ACPI table header."
2711                                          "The string may be up to 6 bytes in size");
2712
2713
2714    object_class_property_add_str(oc, "x-oem-table-id",
2715                                  virt_get_oem_table_id,
2716                                  virt_set_oem_table_id);
2717    object_class_property_set_description(oc, "x-oem-table-id",
2718                                          "Override the default value of field OEM Table ID "
2719                                          "in ACPI table header."
2720                                          "The string may be up to 8 bytes in size");
2721
2722}
2723
2724static void virt_instance_init(Object *obj)
2725{
2726    VirtMachineState *vms = VIRT_MACHINE(obj);
2727    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2728
2729    /* EL3 is disabled by default on virt: this makes us consistent
2730     * between KVM and TCG for this board, and it also allows us to
2731     * boot UEFI blobs which assume no TrustZone support.
2732     */
2733    vms->secure = false;
2734
2735    /* EL2 is also disabled by default, for similar reasons */
2736    vms->virt = false;
2737
2738    /* High memory is enabled by default */
2739    vms->highmem = true;
2740    vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2741
2742    vms->highmem_ecam = !vmc->no_highmem_ecam;
2743
2744    if (vmc->no_its) {
2745        vms->its = false;
2746    } else {
2747        /* Default allows ITS instantiation */
2748        vms->its = true;
2749    }
2750
2751    /* Default disallows iommu instantiation */
2752    vms->iommu = VIRT_IOMMU_NONE;
2753
2754    /* The default root bus is attached to iommu by default */
2755    vms->default_bus_bypass_iommu = false;
2756
2757    /* Default disallows RAS instantiation */
2758    vms->ras = false;
2759
2760    /* MTE is disabled by default.  */
2761    vms->mte = false;
2762
2763    vms->irqmap = a15irqmap;
2764
2765    virt_flash_create(vms);
2766
2767    vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2768    vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2769}
2770
2771static const TypeInfo virt_machine_info = {
2772    .name          = TYPE_VIRT_MACHINE,
2773    .parent        = TYPE_MACHINE,
2774    .abstract      = true,
2775    .instance_size = sizeof(VirtMachineState),
2776    .class_size    = sizeof(VirtMachineClass),
2777    .class_init    = virt_machine_class_init,
2778    .instance_init = virt_instance_init,
2779    .interfaces = (InterfaceInfo[]) {
2780         { TYPE_HOTPLUG_HANDLER },
2781         { }
2782    },
2783};
2784
2785static void machvirt_machine_init(void)
2786{
2787    type_register_static(&virt_machine_info);
2788}
2789type_init(machvirt_machine_init);
2790
2791static void virt_machine_6_1_options(MachineClass *mc)
2792{
2793}
2794DEFINE_VIRT_MACHINE_AS_LATEST(6, 1)
2795
2796static void virt_machine_6_0_options(MachineClass *mc)
2797{
2798    virt_machine_6_1_options(mc);
2799    compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
2800}
2801DEFINE_VIRT_MACHINE(6, 0)
2802
2803static void virt_machine_5_2_options(MachineClass *mc)
2804{
2805    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2806
2807    virt_machine_6_0_options(mc);
2808    compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2809    vmc->no_secure_gpio = true;
2810}
2811DEFINE_VIRT_MACHINE(5, 2)
2812
2813static void virt_machine_5_1_options(MachineClass *mc)
2814{
2815    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2816
2817    virt_machine_5_2_options(mc);
2818    compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2819    vmc->no_kvm_steal_time = true;
2820}
2821DEFINE_VIRT_MACHINE(5, 1)
2822
2823static void virt_machine_5_0_options(MachineClass *mc)
2824{
2825    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2826
2827    virt_machine_5_1_options(mc);
2828    compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2829    mc->numa_mem_supported = true;
2830    vmc->acpi_expose_flash = true;
2831    mc->auto_enable_numa_with_memdev = false;
2832}
2833DEFINE_VIRT_MACHINE(5, 0)
2834
2835static void virt_machine_4_2_options(MachineClass *mc)
2836{
2837    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2838
2839    virt_machine_5_0_options(mc);
2840    compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2841    vmc->kvm_no_adjvtime = true;
2842}
2843DEFINE_VIRT_MACHINE(4, 2)
2844
2845static void virt_machine_4_1_options(MachineClass *mc)
2846{
2847    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2848
2849    virt_machine_4_2_options(mc);
2850    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2851    vmc->no_ged = true;
2852    mc->auto_enable_numa_with_memhp = false;
2853}
2854DEFINE_VIRT_MACHINE(4, 1)
2855
2856static void virt_machine_4_0_options(MachineClass *mc)
2857{
2858    virt_machine_4_1_options(mc);
2859    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2860}
2861DEFINE_VIRT_MACHINE(4, 0)
2862
2863static void virt_machine_3_1_options(MachineClass *mc)
2864{
2865    virt_machine_4_0_options(mc);
2866    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2867}
2868DEFINE_VIRT_MACHINE(3, 1)
2869
2870static void virt_machine_3_0_options(MachineClass *mc)
2871{
2872    virt_machine_3_1_options(mc);
2873    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2874}
2875DEFINE_VIRT_MACHINE(3, 0)
2876
2877static void virt_machine_2_12_options(MachineClass *mc)
2878{
2879    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2880
2881    virt_machine_3_0_options(mc);
2882    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2883    vmc->no_highmem_ecam = true;
2884    mc->max_cpus = 255;
2885}
2886DEFINE_VIRT_MACHINE(2, 12)
2887
2888static void virt_machine_2_11_options(MachineClass *mc)
2889{
2890    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2891
2892    virt_machine_2_12_options(mc);
2893    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2894    vmc->smbios_old_sys_ver = true;
2895}
2896DEFINE_VIRT_MACHINE(2, 11)
2897
2898static void virt_machine_2_10_options(MachineClass *mc)
2899{
2900    virt_machine_2_11_options(mc);
2901    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2902    /* before 2.11 we never faulted accesses to bad addresses */
2903    mc->ignore_memory_transaction_failures = true;
2904}
2905DEFINE_VIRT_MACHINE(2, 10)
2906
2907static void virt_machine_2_9_options(MachineClass *mc)
2908{
2909    virt_machine_2_10_options(mc);
2910    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2911}
2912DEFINE_VIRT_MACHINE(2, 9)
2913
2914static void virt_machine_2_8_options(MachineClass *mc)
2915{
2916    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2917
2918    virt_machine_2_9_options(mc);
2919    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2920    /* For 2.8 and earlier we falsely claimed in the DT that
2921     * our timers were edge-triggered, not level-triggered.
2922     */
2923    vmc->claim_edge_triggered_timers = true;
2924}
2925DEFINE_VIRT_MACHINE(2, 8)
2926
2927static void virt_machine_2_7_options(MachineClass *mc)
2928{
2929    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2930
2931    virt_machine_2_8_options(mc);
2932    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2933    /* ITS was introduced with 2.8 */
2934    vmc->no_its = true;
2935    /* Stick with 1K pages for migration compatibility */
2936    mc->minimum_page_bits = 0;
2937}
2938DEFINE_VIRT_MACHINE(2, 7)
2939
2940static void virt_machine_2_6_options(MachineClass *mc)
2941{
2942    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2943
2944    virt_machine_2_7_options(mc);
2945    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2946    vmc->disallow_affinity_adjustment = true;
2947    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2948    vmc->no_pmu = true;
2949}
2950DEFINE_VIRT_MACHINE(2, 6)
2951