qemu/hw/mips/malta.c
<<
>>
Prefs
   1/*
   2 * QEMU Malta board support
   3 *
   4 * Copyright (c) 2006 Aurelien Jarno
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "qemu/bitops.h"
  28#include "qemu-common.h"
  29#include "qemu/datadir.h"
  30#include "hw/clock.h"
  31#include "hw/southbridge/piix.h"
  32#include "hw/isa/superio.h"
  33#include "hw/char/serial.h"
  34#include "net/net.h"
  35#include "hw/boards.h"
  36#include "hw/i2c/smbus_eeprom.h"
  37#include "hw/block/flash.h"
  38#include "hw/mips/mips.h"
  39#include "hw/mips/cpudevs.h"
  40#include "hw/pci/pci.h"
  41#include "sysemu/arch_init.h"
  42#include "qemu/log.h"
  43#include "hw/mips/bios.h"
  44#include "hw/ide.h"
  45#include "hw/irq.h"
  46#include "hw/loader.h"
  47#include "elf.h"
  48#include "qom/object.h"
  49#include "hw/sysbus.h"             /* SysBusDevice */
  50#include "qemu/host-utils.h"
  51#include "sysemu/qtest.h"
  52#include "sysemu/reset.h"
  53#include "sysemu/runstate.h"
  54#include "qapi/error.h"
  55#include "qemu/error-report.h"
  56#include "hw/misc/empty_slot.h"
  57#include "sysemu/kvm.h"
  58#include "semihosting/semihost.h"
  59#include "hw/mips/cps.h"
  60#include "hw/qdev-clock.h"
  61
  62#define ENVP_PADDR          0x2000
  63#define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
  64#define ENVP_NB_ENTRIES     16
  65#define ENVP_ENTRY_SIZE     256
  66
  67/* Hardware addresses */
  68#define FLASH_ADDRESS       0x1e000000ULL
  69#define FPGA_ADDRESS        0x1f000000ULL
  70#define RESET_ADDRESS       0x1fc00000ULL
  71
  72#define FLASH_SIZE          0x400000
  73
  74#define MAX_IDE_BUS         2
  75
  76typedef struct {
  77    MemoryRegion iomem;
  78    MemoryRegion iomem_lo; /* 0 - 0x900 */
  79    MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
  80    uint32_t leds;
  81    uint32_t brk;
  82    uint32_t gpout;
  83    uint32_t i2cin;
  84    uint32_t i2coe;
  85    uint32_t i2cout;
  86    uint32_t i2csel;
  87    CharBackend display;
  88    char display_text[9];
  89    SerialMM *uart;
  90    bool display_inited;
  91} MaltaFPGAState;
  92
  93#define TYPE_MIPS_MALTA "mips-malta"
  94OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
  95
  96struct MaltaState {
  97    SysBusDevice parent_obj;
  98
  99    Clock *cpuclk;
 100    MIPSCPSState cps;
 101    qemu_irq i8259[ISA_NUM_IRQS];
 102};
 103
 104static struct _loaderparams {
 105    int ram_size, ram_low_size;
 106    const char *kernel_filename;
 107    const char *kernel_cmdline;
 108    const char *initrd_filename;
 109} loaderparams;
 110
 111/* Malta FPGA */
 112static void malta_fpga_update_display(void *opaque)
 113{
 114    char leds_text[9];
 115    int i;
 116    MaltaFPGAState *s = opaque;
 117
 118    for (i = 7 ; i >= 0 ; i--) {
 119        if (s->leds & (1 << i)) {
 120            leds_text[i] = '#';
 121        } else {
 122            leds_text[i] = ' ';
 123        }
 124    }
 125    leds_text[8] = '\0';
 126
 127    qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
 128                       leds_text);
 129    qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
 130                       s->display_text);
 131}
 132
 133/*
 134 * EEPROM 24C01 / 24C02 emulation.
 135 *
 136 * Emulation for serial EEPROMs:
 137 * 24C01 - 1024 bit (128 x 8)
 138 * 24C02 - 2048 bit (256 x 8)
 139 *
 140 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
 141 */
 142
 143#if defined(DEBUG)
 144#  define logout(fmt, ...) \
 145          fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
 146#else
 147#  define logout(fmt, ...) ((void)0)
 148#endif
 149
 150struct _eeprom24c0x_t {
 151  uint8_t tick;
 152  uint8_t address;
 153  uint8_t command;
 154  uint8_t ack;
 155  uint8_t scl;
 156  uint8_t sda;
 157  uint8_t data;
 158  /* uint16_t size; */
 159  uint8_t contents[256];
 160};
 161
 162typedef struct _eeprom24c0x_t eeprom24c0x_t;
 163
 164static eeprom24c0x_t spd_eeprom = {
 165    .contents = {
 166        /* 00000000: */
 167        0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
 168        /* 00000008: */
 169        0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
 170        /* 00000010: */
 171        0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
 172        /* 00000018: */
 173        0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
 174        /* 00000020: */
 175        0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
 176        /* 00000028: */
 177        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 178        /* 00000030: */
 179        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 180        /* 00000038: */
 181        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
 182        /* 00000040: */
 183        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 184        /* 00000048: */
 185        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 186        /* 00000050: */
 187        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 188        /* 00000058: */
 189        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 190        /* 00000060: */
 191        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 192        /* 00000068: */
 193        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 194        /* 00000070: */
 195        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 196        /* 00000078: */
 197        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
 198    },
 199};
 200
 201static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
 202{
 203    enum { SDR = 0x4, DDR2 = 0x8 } type;
 204    uint8_t *spd = spd_eeprom.contents;
 205    uint8_t nbanks = 0;
 206    uint16_t density = 0;
 207    int i;
 208
 209    /* work in terms of MB */
 210    ram_size /= MiB;
 211
 212    while ((ram_size >= 4) && (nbanks <= 2)) {
 213        int sz_log2 = MIN(31 - clz32(ram_size), 14);
 214        nbanks++;
 215        density |= 1 << (sz_log2 - 2);
 216        ram_size -= 1 << sz_log2;
 217    }
 218
 219    /* split to 2 banks if possible */
 220    if ((nbanks == 1) && (density > 1)) {
 221        nbanks++;
 222        density >>= 1;
 223    }
 224
 225    if (density & 0xff00) {
 226        density = (density & 0xe0) | ((density >> 8) & 0x1f);
 227        type = DDR2;
 228    } else if (!(density & 0x1f)) {
 229        type = DDR2;
 230    } else {
 231        type = SDR;
 232    }
 233
 234    if (ram_size) {
 235        warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
 236                    " of SDRAM", ram_size);
 237    }
 238
 239    /* fill in SPD memory information */
 240    spd[2] = type;
 241    spd[5] = nbanks;
 242    spd[31] = density;
 243
 244    /* checksum */
 245    spd[63] = 0;
 246    for (i = 0; i < 63; i++) {
 247        spd[63] += spd[i];
 248    }
 249
 250    /* copy for SMBUS */
 251    memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
 252}
 253
 254static void generate_eeprom_serial(uint8_t *eeprom)
 255{
 256    int i, pos = 0;
 257    uint8_t mac[6] = { 0x00 };
 258    uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
 259
 260    /* version */
 261    eeprom[pos++] = 0x01;
 262
 263    /* count */
 264    eeprom[pos++] = 0x02;
 265
 266    /* MAC address */
 267    eeprom[pos++] = 0x01; /* MAC */
 268    eeprom[pos++] = 0x06; /* length */
 269    memcpy(&eeprom[pos], mac, sizeof(mac));
 270    pos += sizeof(mac);
 271
 272    /* serial number */
 273    eeprom[pos++] = 0x02; /* serial */
 274    eeprom[pos++] = 0x05; /* length */
 275    memcpy(&eeprom[pos], sn, sizeof(sn));
 276    pos += sizeof(sn);
 277
 278    /* checksum */
 279    eeprom[pos] = 0;
 280    for (i = 0; i < pos; i++) {
 281        eeprom[pos] += eeprom[i];
 282    }
 283}
 284
 285static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
 286{
 287    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
 288        eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
 289    return eeprom->sda;
 290}
 291
 292static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
 293{
 294    if (eeprom->scl && scl && (eeprom->sda != sda)) {
 295        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
 296                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
 297                sda ? "stop" : "start");
 298        if (!sda) {
 299            eeprom->tick = 1;
 300            eeprom->command = 0;
 301        }
 302    } else if (eeprom->tick == 0 && !eeprom->ack) {
 303        /* Waiting for start. */
 304        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
 305                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
 306    } else if (!eeprom->scl && scl) {
 307        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
 308                eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
 309        if (eeprom->ack) {
 310            logout("\ti2c ack bit = 0\n");
 311            sda = 0;
 312            eeprom->ack = 0;
 313        } else if (eeprom->sda == sda) {
 314            uint8_t bit = (sda != 0);
 315            logout("\ti2c bit = %d\n", bit);
 316            if (eeprom->tick < 9) {
 317                eeprom->command <<= 1;
 318                eeprom->command += bit;
 319                eeprom->tick++;
 320                if (eeprom->tick == 9) {
 321                    logout("\tcommand 0x%04x, %s\n", eeprom->command,
 322                           bit ? "read" : "write");
 323                    eeprom->ack = 1;
 324                }
 325            } else if (eeprom->tick < 17) {
 326                if (eeprom->command & 1) {
 327                    sda = ((eeprom->data & 0x80) != 0);
 328                }
 329                eeprom->address <<= 1;
 330                eeprom->address += bit;
 331                eeprom->tick++;
 332                eeprom->data <<= 1;
 333                if (eeprom->tick == 17) {
 334                    eeprom->data = eeprom->contents[eeprom->address];
 335                    logout("\taddress 0x%04x, data 0x%02x\n",
 336                           eeprom->address, eeprom->data);
 337                    eeprom->ack = 1;
 338                    eeprom->tick = 0;
 339                }
 340            } else if (eeprom->tick >= 17) {
 341                sda = 0;
 342            }
 343        } else {
 344            logout("\tsda changed with raising scl\n");
 345        }
 346    } else {
 347        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
 348               scl, eeprom->sda, sda);
 349    }
 350    eeprom->scl = scl;
 351    eeprom->sda = sda;
 352}
 353
 354static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
 355                                unsigned size)
 356{
 357    MaltaFPGAState *s = opaque;
 358    uint32_t val = 0;
 359    uint32_t saddr;
 360
 361    saddr = (addr & 0xfffff);
 362
 363    switch (saddr) {
 364
 365    /* SWITCH Register */
 366    case 0x00200:
 367        val = 0x00000000;
 368        break;
 369
 370    /* STATUS Register */
 371    case 0x00208:
 372#ifdef TARGET_WORDS_BIGENDIAN
 373        val = 0x00000012;
 374#else
 375        val = 0x00000010;
 376#endif
 377        break;
 378
 379    /* JMPRS Register */
 380    case 0x00210:
 381        val = 0x00;
 382        break;
 383
 384    /* LEDBAR Register */
 385    case 0x00408:
 386        val = s->leds;
 387        break;
 388
 389    /* BRKRES Register */
 390    case 0x00508:
 391        val = s->brk;
 392        break;
 393
 394    /* UART Registers are handled directly by the serial device */
 395
 396    /* GPOUT Register */
 397    case 0x00a00:
 398        val = s->gpout;
 399        break;
 400
 401    /* XXX: implement a real I2C controller */
 402
 403    /* GPINP Register */
 404    case 0x00a08:
 405        /* IN = OUT until a real I2C control is implemented */
 406        if (s->i2csel) {
 407            val = s->i2cout;
 408        } else {
 409            val = 0x00;
 410        }
 411        break;
 412
 413    /* I2CINP Register */
 414    case 0x00b00:
 415        val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
 416        break;
 417
 418    /* I2COE Register */
 419    case 0x00b08:
 420        val = s->i2coe;
 421        break;
 422
 423    /* I2COUT Register */
 424    case 0x00b10:
 425        val = s->i2cout;
 426        break;
 427
 428    /* I2CSEL Register */
 429    case 0x00b18:
 430        val = s->i2csel;
 431        break;
 432
 433    default:
 434        qemu_log_mask(LOG_GUEST_ERROR,
 435                      "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
 436                      addr);
 437        break;
 438    }
 439    return val;
 440}
 441
 442static void malta_fpga_write(void *opaque, hwaddr addr,
 443                             uint64_t val, unsigned size)
 444{
 445    MaltaFPGAState *s = opaque;
 446    uint32_t saddr;
 447
 448    saddr = (addr & 0xfffff);
 449
 450    switch (saddr) {
 451
 452    /* SWITCH Register */
 453    case 0x00200:
 454        break;
 455
 456    /* JMPRS Register */
 457    case 0x00210:
 458        break;
 459
 460    /* LEDBAR Register */
 461    case 0x00408:
 462        s->leds = val & 0xff;
 463        malta_fpga_update_display(s);
 464        break;
 465
 466    /* ASCIIWORD Register */
 467    case 0x00410:
 468        snprintf(s->display_text, 9, "%08X", (uint32_t)val);
 469        malta_fpga_update_display(s);
 470        break;
 471
 472    /* ASCIIPOS0 to ASCIIPOS7 Registers */
 473    case 0x00418:
 474    case 0x00420:
 475    case 0x00428:
 476    case 0x00430:
 477    case 0x00438:
 478    case 0x00440:
 479    case 0x00448:
 480    case 0x00450:
 481        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
 482        malta_fpga_update_display(s);
 483        break;
 484
 485    /* SOFTRES Register */
 486    case 0x00500:
 487        if (val == 0x42) {
 488            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 489        }
 490        break;
 491
 492    /* BRKRES Register */
 493    case 0x00508:
 494        s->brk = val & 0xff;
 495        break;
 496
 497    /* UART Registers are handled directly by the serial device */
 498
 499    /* GPOUT Register */
 500    case 0x00a00:
 501        s->gpout = val & 0xff;
 502        break;
 503
 504    /* I2COE Register */
 505    case 0x00b08:
 506        s->i2coe = val & 0x03;
 507        break;
 508
 509    /* I2COUT Register */
 510    case 0x00b10:
 511        eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
 512        s->i2cout = val;
 513        break;
 514
 515    /* I2CSEL Register */
 516    case 0x00b18:
 517        s->i2csel = val & 0x01;
 518        break;
 519
 520    default:
 521        qemu_log_mask(LOG_GUEST_ERROR,
 522                      "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
 523                      addr);
 524        break;
 525    }
 526}
 527
 528static const MemoryRegionOps malta_fpga_ops = {
 529    .read = malta_fpga_read,
 530    .write = malta_fpga_write,
 531    .endianness = DEVICE_NATIVE_ENDIAN,
 532};
 533
 534static void malta_fpga_reset(void *opaque)
 535{
 536    MaltaFPGAState *s = opaque;
 537
 538    s->leds   = 0x00;
 539    s->brk    = 0x0a;
 540    s->gpout  = 0x00;
 541    s->i2cin  = 0x3;
 542    s->i2coe  = 0x0;
 543    s->i2cout = 0x3;
 544    s->i2csel = 0x1;
 545
 546    s->display_text[8] = '\0';
 547    snprintf(s->display_text, 9, "        ");
 548}
 549
 550static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
 551{
 552    MaltaFPGAState *s = opaque;
 553
 554    if (event == CHR_EVENT_OPENED && !s->display_inited) {
 555        qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
 556        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 557        qemu_chr_fe_printf(&s->display, "+        +\r\n");
 558        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 559        qemu_chr_fe_printf(&s->display, "\n");
 560        qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
 561        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 562        qemu_chr_fe_printf(&s->display, "+        +\r\n");
 563        qemu_chr_fe_printf(&s->display, "+--------+\r\n");
 564        s->display_inited = true;
 565    }
 566}
 567
 568static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
 569         hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
 570{
 571    MaltaFPGAState *s;
 572    Chardev *chr;
 573
 574    s = g_new0(MaltaFPGAState, 1);
 575
 576    memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
 577                          "malta-fpga", 0x100000);
 578    memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
 579                             &s->iomem, 0, 0x900);
 580    memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
 581                             &s->iomem, 0xa00, 0x100000 - 0xa00);
 582
 583    memory_region_add_subregion(address_space, base, &s->iomem_lo);
 584    memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
 585
 586    chr = qemu_chr_new("fpga", "vc:320x200", NULL);
 587    qemu_chr_fe_init(&s->display, chr, NULL);
 588    qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
 589                             malta_fgpa_display_event, NULL, s, NULL, true);
 590
 591    s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
 592                             230400, uart_chr, DEVICE_NATIVE_ENDIAN);
 593
 594    malta_fpga_reset(s);
 595    qemu_register_reset(malta_fpga_reset, s);
 596
 597    return s;
 598}
 599
 600/* Network support */
 601static void network_init(PCIBus *pci_bus)
 602{
 603    int i;
 604
 605    for (i = 0; i < nb_nics; i++) {
 606        NICInfo *nd = &nd_table[i];
 607        const char *default_devaddr = NULL;
 608
 609        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
 610            /* The malta board has a PCNet card using PCI SLOT 11 */
 611            default_devaddr = "0b";
 612
 613        pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
 614    }
 615}
 616
 617static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
 618                                      uint64_t kernel_entry)
 619{
 620    uint16_t *p;
 621
 622    /* Small bootloader */
 623    p = (uint16_t *)base;
 624
 625#define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
 626#define NM_HI2(VAL) \
 627          (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
 628#define NM_LO(VAL)  ((VAL) & 0xfff)
 629
 630    stw_p(p++, 0x2800); stw_p(p++, 0x001c);
 631                                /* bc to_here */
 632    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 633                                /* nop */
 634    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 635                                /* nop */
 636    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 637                                /* nop */
 638    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 639                                /* nop */
 640    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 641                                /* nop */
 642    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 643                                /* nop */
 644    stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 645                                /* nop */
 646
 647    /* to_here: */
 648    if (semihosting_get_argc()) {
 649        /* Preserve a0 content as arguments have been passed    */
 650        stw_p(p++, 0x8000); stw_p(p++, 0xc000);
 651                                /* nop                          */
 652    } else {
 653        stw_p(p++, 0x0080); stw_p(p++, 0x0002);
 654                                /* li a0,2                      */
 655    }
 656
 657    stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
 658
 659    stw_p(p++, NM_HI2(ENVP_VADDR - 64));
 660                                /* lui sp,%hi(ENVP_VADDR - 64)   */
 661
 662    stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
 663                                /* ori sp,sp,%lo(ENVP_VADDR - 64) */
 664
 665    stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
 666
 667    stw_p(p++, NM_HI2(ENVP_VADDR));
 668                                /* lui a1,%hi(ENVP_VADDR)        */
 669
 670    stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
 671                                /* ori a1,a1,%lo(ENVP_VADDR)     */
 672
 673    stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
 674
 675    stw_p(p++, NM_HI2(ENVP_VADDR + 8));
 676                                /* lui a2,%hi(ENVP_VADDR + 8)    */
 677
 678    stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
 679                                /* ori a2,a2,%lo(ENVP_VADDR + 8) */
 680
 681    stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
 682
 683    stw_p(p++, NM_HI2(loaderparams.ram_low_size));
 684                                /* lui a3,%hi(loaderparams.ram_low_size) */
 685
 686    stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
 687                                /* ori a3,a3,%lo(loaderparams.ram_low_size) */
 688
 689    /*
 690     * Load BAR registers as done by YAMON:
 691     *
 692     *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
 693     *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
 694     *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
 695     *
 696     */
 697    stw_p(p++, 0xe040); stw_p(p++, 0x0681);
 698                                /* lui t1, %hi(0xb4000000)      */
 699
 700#ifdef TARGET_WORDS_BIGENDIAN
 701
 702    stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
 703                                /* lui t0, %hi(0xdf000000)      */
 704
 705    /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
 706    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
 707                                /* sw t0, 0x68(t1)              */
 708
 709    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
 710                                /* lui t1, %hi(0xbbe00000)      */
 711
 712    stw_p(p++, 0xe020); stw_p(p++, 0x0801);
 713                                /* lui t0, %hi(0xc0000000)      */
 714
 715    /* 0x48 corresponds to GT_PCI0IOLD                          */
 716    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
 717                                /* sw t0, 0x48(t1)              */
 718
 719    stw_p(p++, 0xe020); stw_p(p++, 0x0800);
 720                                /* lui t0, %hi(0x40000000)      */
 721
 722    /* 0x50 corresponds to GT_PCI0IOHD                          */
 723    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
 724                                /* sw t0, 0x50(t1)              */
 725
 726    stw_p(p++, 0xe020); stw_p(p++, 0x0001);
 727                                /* lui t0, %hi(0x80000000)      */
 728
 729    /* 0x58 corresponds to GT_PCI0M0LD                          */
 730    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
 731                                /* sw t0, 0x58(t1)              */
 732
 733    stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
 734                                /* lui t0, %hi(0x3f000000)      */
 735
 736    /* 0x60 corresponds to GT_PCI0M0HD                          */
 737    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
 738                                /* sw t0, 0x60(t1)              */
 739
 740    stw_p(p++, 0xe020); stw_p(p++, 0x0821);
 741                                /* lui t0, %hi(0xc1000000)      */
 742
 743    /* 0x80 corresponds to GT_PCI0M1LD                          */
 744    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
 745                                /* sw t0, 0x80(t1)              */
 746
 747    stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
 748                                /* lui t0, %hi(0x5e000000)      */
 749
 750#else
 751
 752    stw_p(p++, 0x0020); stw_p(p++, 0x00df);
 753                                /* addiu[32] t0, $0, 0xdf       */
 754
 755    /* 0x68 corresponds to GT_ISD                               */
 756    stw_p(p++, 0x8422); stw_p(p++, 0x9068);
 757                                /* sw t0, 0x68(t1)              */
 758
 759    /* Use kseg2 remapped address 0x1be00000                    */
 760    stw_p(p++, 0xe040); stw_p(p++, 0x077d);
 761                                /* lui t1, %hi(0xbbe00000)      */
 762
 763    stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
 764                                /* addiu[32] t0, $0, 0xc0       */
 765
 766    /* 0x48 corresponds to GT_PCI0IOLD                          */
 767    stw_p(p++, 0x8422); stw_p(p++, 0x9048);
 768                                /* sw t0, 0x48(t1)              */
 769
 770    stw_p(p++, 0x0020); stw_p(p++, 0x0040);
 771                                /* addiu[32] t0, $0, 0x40       */
 772
 773    /* 0x50 corresponds to GT_PCI0IOHD                          */
 774    stw_p(p++, 0x8422); stw_p(p++, 0x9050);
 775                                /* sw t0, 0x50(t1)              */
 776
 777    stw_p(p++, 0x0020); stw_p(p++, 0x0080);
 778                                /* addiu[32] t0, $0, 0x80       */
 779
 780    /* 0x58 corresponds to GT_PCI0M0LD                          */
 781    stw_p(p++, 0x8422); stw_p(p++, 0x9058);
 782                                /* sw t0, 0x58(t1)              */
 783
 784    stw_p(p++, 0x0020); stw_p(p++, 0x003f);
 785                                /* addiu[32] t0, $0, 0x3f       */
 786
 787    /* 0x60 corresponds to GT_PCI0M0HD                          */
 788    stw_p(p++, 0x8422); stw_p(p++, 0x9060);
 789                                /* sw t0, 0x60(t1)              */
 790
 791    stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
 792                                /* addiu[32] t0, $0, 0xc1       */
 793
 794    /* 0x80 corresponds to GT_PCI0M1LD                          */
 795    stw_p(p++, 0x8422); stw_p(p++, 0x9080);
 796                                /* sw t0, 0x80(t1)              */
 797
 798    stw_p(p++, 0x0020); stw_p(p++, 0x005e);
 799                                /* addiu[32] t0, $0, 0x5e       */
 800
 801#endif
 802
 803    /* 0x88 corresponds to GT_PCI0M1HD                          */
 804    stw_p(p++, 0x8422); stw_p(p++, 0x9088);
 805                                /* sw t0, 0x88(t1)              */
 806
 807    stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
 808
 809    stw_p(p++, NM_HI2(kernel_entry));
 810                                /* lui t9,%hi(kernel_entry)     */
 811
 812    stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
 813                                /* ori t9,t9,%lo(kernel_entry)  */
 814
 815    stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
 816                                /* jalrc   t8                   */
 817}
 818
 819/*
 820 * ROM and pseudo bootloader
 821 *
 822 * The following code implements a very very simple bootloader. It first
 823 * loads the registers a0 to a3 to the values expected by the OS, and
 824 * then jump at the kernel address.
 825 *
 826 * The bootloader should pass the locations of the kernel arguments and
 827 * environment variables tables. Those tables contain the 32-bit address
 828 * of NULL terminated strings. The environment variables table should be
 829 * terminated by a NULL address.
 830 *
 831 * For a simpler implementation, the number of kernel arguments is fixed
 832 * to two (the name of the kernel and the command line), and the two
 833 * tables are actually the same one.
 834 *
 835 * The registers a0 to a3 should contain the following values:
 836 *   a0 - number of kernel arguments
 837 *   a1 - 32-bit address of the kernel arguments table
 838 *   a2 - 32-bit address of the environment variables table
 839 *   a3 - RAM size in bytes
 840 */
 841static void write_bootloader(uint8_t *base, uint64_t run_addr,
 842                             uint64_t kernel_entry)
 843{
 844    uint32_t *p;
 845
 846    /* Small bootloader */
 847    p = (uint32_t *)base;
 848
 849    stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
 850                 ((run_addr + 0x580) & 0x0fffffff) >> 2);
 851    stl_p(p++, 0x00000000);                  /* nop */
 852
 853    /* YAMON service vector */
 854    stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
 855    stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
 856    stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
 857    stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
 858    stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
 859    stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
 860    stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
 861    stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
 862    stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
 863    stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
 864    stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
 865    stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
 866    stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
 867
 868
 869    /* Second part of the bootloader */
 870    p = (uint32_t *) (base + 0x580);
 871
 872    if (semihosting_get_argc()) {
 873        /* Preserve a0 content as arguments have been passed */
 874        stl_p(p++, 0x00000000);              /* nop */
 875    } else {
 876        stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
 877    }
 878
 879    /* lui sp, high(ENVP_VADDR) */
 880    stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
 881    /* ori sp, sp, low(ENVP_VADDR) */
 882    stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
 883    /* lui a1, high(ENVP_VADDR) */
 884    stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
 885    /* ori a1, a1, low(ENVP_VADDR) */
 886    stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
 887    /* lui a2, high(ENVP_VADDR + 8) */
 888    stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
 889    /* ori a2, a2, low(ENVP_VADDR + 8) */
 890    stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
 891    /* lui a3, high(ram_low_size) */
 892    stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
 893    /* ori a3, a3, low(ram_low_size) */
 894    stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
 895
 896    /* Load BAR registers as done by YAMON */
 897    stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
 898
 899#ifdef TARGET_WORDS_BIGENDIAN
 900    stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
 901#else
 902    stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
 903#endif
 904    stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
 905
 906    stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
 907
 908#ifdef TARGET_WORDS_BIGENDIAN
 909    stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
 910#else
 911    stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
 912#endif
 913    stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
 914#ifdef TARGET_WORDS_BIGENDIAN
 915    stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
 916#else
 917    stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
 918#endif
 919    stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
 920
 921#ifdef TARGET_WORDS_BIGENDIAN
 922    stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
 923#else
 924    stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
 925#endif
 926    stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
 927#ifdef TARGET_WORDS_BIGENDIAN
 928    stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
 929#else
 930    stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
 931#endif
 932    stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
 933
 934#ifdef TARGET_WORDS_BIGENDIAN
 935    stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
 936#else
 937    stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
 938#endif
 939    stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
 940#ifdef TARGET_WORDS_BIGENDIAN
 941    stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
 942#else
 943    stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
 944#endif
 945    stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
 946
 947    /* Jump to kernel code */
 948    stl_p(p++, 0x3c1f0000 |
 949          ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
 950    stl_p(p++, 0x37ff0000 |
 951          (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
 952    stl_p(p++, 0x03e00009);                  /* jalr ra */
 953    stl_p(p++, 0x00000000);                  /* nop */
 954
 955    /* YAMON subroutines */
 956    p = (uint32_t *) (base + 0x800);
 957    stl_p(p++, 0x03e00009);                  /* jalr ra */
 958    stl_p(p++, 0x24020000);                  /* li v0,0 */
 959    /* 808 YAMON print */
 960    stl_p(p++, 0x03e06821);                  /* move t5,ra */
 961    stl_p(p++, 0x00805821);                  /* move t3,a0 */
 962    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
 963    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
 964    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
 965    stl_p(p++, 0x10800005);                  /* beqz a0,834 */
 966    stl_p(p++, 0x00000000);                  /* nop */
 967    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
 968    stl_p(p++, 0x00000000);                  /* nop */
 969    stl_p(p++, 0x1000fff9);                  /* b 814 */
 970    stl_p(p++, 0x00000000);                  /* nop */
 971    stl_p(p++, 0x01a00009);                  /* jalr t5 */
 972    stl_p(p++, 0x01602021);                  /* move a0,t3 */
 973    /* 0x83c YAMON print_count */
 974    stl_p(p++, 0x03e06821);                  /* move t5,ra */
 975    stl_p(p++, 0x00805821);                  /* move t3,a0 */
 976    stl_p(p++, 0x00a05021);                  /* move t2,a1 */
 977    stl_p(p++, 0x00c06021);                  /* move t4,a2 */
 978    stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
 979    stl_p(p++, 0x0ff0021c);                  /* jal 870 */
 980    stl_p(p++, 0x00000000);                  /* nop */
 981    stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
 982    stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
 983    stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
 984    stl_p(p++, 0x00000000);                  /* nop */
 985    stl_p(p++, 0x01a00009);                  /* jalr t5 */
 986    stl_p(p++, 0x01602021);                  /* move a0,t3 */
 987    /* 0x870 */
 988    stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
 989    stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
 990    stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
 991    stl_p(p++, 0x00000000);                  /* nop */
 992    stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
 993    stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
 994    stl_p(p++, 0x00000000);                  /* nop */
 995    stl_p(p++, 0x03e00009);                  /* jalr ra */
 996    stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
 997
 998}
 999
1000static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1001                                        const char *string, ...)
1002{
1003    va_list ap;
1004    uint32_t table_addr;
1005
1006    if (index >= ENVP_NB_ENTRIES) {
1007        return;
1008    }
1009
1010    if (string == NULL) {
1011        prom_buf[index] = 0;
1012        return;
1013    }
1014
1015    table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1016    prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
1017
1018    va_start(ap, string);
1019    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1020    va_end(ap);
1021}
1022
1023/* Kernel */
1024static uint64_t load_kernel(void)
1025{
1026    uint64_t kernel_entry, kernel_high, initrd_size;
1027    long kernel_size;
1028    ram_addr_t initrd_offset;
1029    int big_endian;
1030    uint32_t *prom_buf;
1031    long prom_size;
1032    int prom_index = 0;
1033    uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1034
1035#ifdef TARGET_WORDS_BIGENDIAN
1036    big_endian = 1;
1037#else
1038    big_endian = 0;
1039#endif
1040
1041    kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1042                           cpu_mips_kseg0_to_phys, NULL,
1043                           &kernel_entry, NULL,
1044                           &kernel_high, NULL, big_endian, EM_MIPS,
1045                           1, 0);
1046    if (kernel_size < 0) {
1047        error_report("could not load kernel '%s': %s",
1048                     loaderparams.kernel_filename,
1049                     load_elf_strerror(kernel_size));
1050        exit(1);
1051    }
1052
1053    /* Check where the kernel has been linked */
1054    if (kernel_entry & 0x80000000ll) {
1055        if (kvm_enabled()) {
1056            error_report("KVM guest kernels must be linked in useg. "
1057                         "Did you forget to enable CONFIG_KVM_GUEST?");
1058            exit(1);
1059        }
1060
1061        xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1062    } else {
1063        /* if kernel entry is in useg it is probably a KVM T&E kernel */
1064        mips_um_ksegs_enable();
1065
1066        xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1067    }
1068
1069    /* load initrd */
1070    initrd_size = 0;
1071    initrd_offset = 0;
1072    if (loaderparams.initrd_filename) {
1073        initrd_size = get_image_size(loaderparams.initrd_filename);
1074        if (initrd_size > 0) {
1075            /*
1076             * The kernel allocates the bootmap memory in the low memory after
1077             * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1078             * pages.
1079             */
1080            initrd_offset = ROUND_UP(loaderparams.ram_low_size
1081                                     - (initrd_size + 128 * KiB),
1082                                     INITRD_PAGE_SIZE);
1083            if (kernel_high >= initrd_offset) {
1084                error_report("memory too small for initial ram disk '%s'",
1085                             loaderparams.initrd_filename);
1086                exit(1);
1087            }
1088            initrd_size = load_image_targphys(loaderparams.initrd_filename,
1089                                              initrd_offset,
1090                                              loaderparams.ram_size - initrd_offset);
1091        }
1092        if (initrd_size == (target_ulong) -1) {
1093            error_report("could not load initial ram disk '%s'",
1094                         loaderparams.initrd_filename);
1095            exit(1);
1096        }
1097    }
1098
1099    /* Setup prom parameters. */
1100    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1101    prom_buf = g_malloc(prom_size);
1102
1103    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1104    if (initrd_size > 0) {
1105        prom_set(prom_buf, prom_index++,
1106                 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1107                 xlate_to_kseg0(NULL, initrd_offset),
1108                 initrd_size, loaderparams.kernel_cmdline);
1109    } else {
1110        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1111    }
1112
1113    prom_set(prom_buf, prom_index++, "memsize");
1114    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1115
1116    prom_set(prom_buf, prom_index++, "ememsize");
1117    prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1118
1119    prom_set(prom_buf, prom_index++, "modetty0");
1120    prom_set(prom_buf, prom_index++, "38400n8r");
1121    prom_set(prom_buf, prom_index++, NULL);
1122
1123    rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1124
1125    g_free(prom_buf);
1126    return kernel_entry;
1127}
1128
1129static void malta_mips_config(MIPSCPU *cpu)
1130{
1131    MachineState *ms = MACHINE(qdev_get_machine());
1132    unsigned int smp_cpus = ms->smp.cpus;
1133    CPUMIPSState *env = &cpu->env;
1134    CPUState *cs = CPU(cpu);
1135
1136    if (ase_mt_available(env)) {
1137        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1138                                           CP0MVPC0_PTC, 8,
1139                                           smp_cpus * cs->nr_threads - 1);
1140        env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1141                                           CP0MVPC0_PVPE, 4, smp_cpus - 1);
1142    }
1143}
1144
1145static void main_cpu_reset(void *opaque)
1146{
1147    MIPSCPU *cpu = opaque;
1148    CPUMIPSState *env = &cpu->env;
1149
1150    cpu_reset(CPU(cpu));
1151
1152    /*
1153     * The bootloader does not need to be rewritten as it is located in a
1154     * read only location. The kernel location and the arguments table
1155     * location does not change.
1156     */
1157    if (loaderparams.kernel_filename) {
1158        env->CP0_Status &= ~(1 << CP0St_ERL);
1159    }
1160
1161    malta_mips_config(cpu);
1162
1163    if (kvm_enabled()) {
1164        /* Start running from the bootloader we wrote to end of RAM */
1165        env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1166    }
1167}
1168
1169static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1170                                   qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1171{
1172    CPUMIPSState *env;
1173    MIPSCPU *cpu;
1174    int i;
1175
1176    for (i = 0; i < ms->smp.cpus; i++) {
1177        cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1178
1179        /* Init internal devices */
1180        cpu_mips_irq_init_cpu(cpu);
1181        cpu_mips_clock_init(cpu);
1182        qemu_register_reset(main_cpu_reset, cpu);
1183    }
1184
1185    cpu = MIPS_CPU(first_cpu);
1186    env = &cpu->env;
1187    *i8259_irq = env->irq[2];
1188    *cbus_irq = env->irq[4];
1189}
1190
1191static void create_cps(MachineState *ms, MaltaState *s,
1192                       qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1193{
1194    object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1195    object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1196                            &error_fatal);
1197    object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1198                            &error_fatal);
1199    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1200    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1201
1202    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1203
1204    *i8259_irq = get_cps_irq(&s->cps, 3);
1205    *cbus_irq = NULL;
1206}
1207
1208static void mips_create_cpu(MachineState *ms, MaltaState *s,
1209                            qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1210{
1211    if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1212        create_cps(ms, s, cbus_irq, i8259_irq);
1213    } else {
1214        create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1215    }
1216}
1217
1218static
1219void mips_malta_init(MachineState *machine)
1220{
1221    ram_addr_t ram_size = machine->ram_size;
1222    ram_addr_t ram_low_size;
1223    const char *kernel_filename = machine->kernel_filename;
1224    const char *kernel_cmdline = machine->kernel_cmdline;
1225    const char *initrd_filename = machine->initrd_filename;
1226    char *filename;
1227    PFlashCFI01 *fl;
1228    MemoryRegion *system_memory = get_system_memory();
1229    MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1230    MemoryRegion *ram_low_postio;
1231    MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1232    const size_t smbus_eeprom_size = 8 * 256;
1233    uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1234    uint64_t kernel_entry, bootloader_run_addr;
1235    PCIBus *pci_bus;
1236    ISABus *isa_bus;
1237    qemu_irq cbus_irq, i8259_irq;
1238    I2CBus *smbus;
1239    DriveInfo *dinfo;
1240    int fl_idx = 0;
1241    int be;
1242    MaltaState *s;
1243    DeviceState *dev;
1244
1245    s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1246    sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1247
1248    /* create CPU */
1249    mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1250
1251    /* allocate RAM */
1252    if (ram_size > 2 * GiB) {
1253        error_report("Too much memory for this machine: %" PRId64 "MB,"
1254                     " maximum 2048MB", ram_size / MiB);
1255        exit(1);
1256    }
1257
1258    /* register RAM at high address where it is undisturbed by IO */
1259    memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1260
1261    /* alias for pre IO hole access */
1262    memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1263                             machine->ram, 0, MIN(ram_size, 256 * MiB));
1264    memory_region_add_subregion(system_memory, 0, ram_low_preio);
1265
1266    /* alias for post IO hole access, if there is enough RAM */
1267    if (ram_size > 512 * MiB) {
1268        ram_low_postio = g_new(MemoryRegion, 1);
1269        memory_region_init_alias(ram_low_postio, NULL,
1270                                 "mips_malta_low_postio.ram",
1271                                 machine->ram, 512 * MiB,
1272                                 ram_size - 512 * MiB);
1273        memory_region_add_subregion(system_memory, 512 * MiB,
1274                                    ram_low_postio);
1275    }
1276
1277#ifdef TARGET_WORDS_BIGENDIAN
1278    be = 1;
1279#else
1280    be = 0;
1281#endif
1282
1283    /* FPGA */
1284
1285    /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1286    malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1287
1288    /* Load firmware in flash / BIOS. */
1289    dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1290    fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1291                               FLASH_SIZE,
1292                               dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1293                               65536,
1294                               4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1295    bios = pflash_cfi01_get_memory(fl);
1296    fl_idx++;
1297    if (kernel_filename) {
1298        ram_low_size = MIN(ram_size, 256 * MiB);
1299        /* For KVM we reserve 1MB of RAM for running bootloader */
1300        if (kvm_enabled()) {
1301            ram_low_size -= 0x100000;
1302            bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1303        } else {
1304            bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1305        }
1306
1307        /* Write a small bootloader to the flash location. */
1308        loaderparams.ram_size = ram_size;
1309        loaderparams.ram_low_size = ram_low_size;
1310        loaderparams.kernel_filename = kernel_filename;
1311        loaderparams.kernel_cmdline = kernel_cmdline;
1312        loaderparams.initrd_filename = initrd_filename;
1313        kernel_entry = load_kernel();
1314
1315        if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1316            write_bootloader(memory_region_get_ram_ptr(bios),
1317                             bootloader_run_addr, kernel_entry);
1318        } else {
1319            write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1320                                      bootloader_run_addr, kernel_entry);
1321        }
1322        if (kvm_enabled()) {
1323            /* Write the bootloader code @ the end of RAM, 1MB reserved */
1324            write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1325                                    ram_low_size,
1326                             bootloader_run_addr, kernel_entry);
1327        }
1328    } else {
1329        target_long bios_size = FLASH_SIZE;
1330        /* The flash region isn't executable from a KVM guest */
1331        if (kvm_enabled()) {
1332            error_report("KVM enabled but no -kernel argument was specified. "
1333                         "Booting from flash is not supported with KVM.");
1334            exit(1);
1335        }
1336        /* Load firmware from flash. */
1337        if (!dinfo) {
1338            /* Load a BIOS image. */
1339            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1340                                      machine->firmware ?: BIOS_FILENAME);
1341            if (filename) {
1342                bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1343                                                BIOS_SIZE);
1344                g_free(filename);
1345            } else {
1346                bios_size = -1;
1347            }
1348            if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1349                machine->firmware && !qtest_enabled()) {
1350                error_report("Could not load MIPS bios '%s'", machine->firmware);
1351                exit(1);
1352            }
1353        }
1354        /*
1355         * In little endian mode the 32bit words in the bios are swapped,
1356         * a neat trick which allows bi-endian firmware.
1357         */
1358#ifndef TARGET_WORDS_BIGENDIAN
1359        {
1360            uint32_t *end, *addr;
1361            const size_t swapsize = MIN(bios_size, 0x3e0000);
1362            addr = rom_ptr(FLASH_ADDRESS, swapsize);
1363            if (!addr) {
1364                addr = memory_region_get_ram_ptr(bios);
1365            }
1366            end = (void *)addr + swapsize;
1367            while (addr < end) {
1368                bswap32s(addr);
1369                addr++;
1370            }
1371        }
1372#endif
1373    }
1374
1375    /*
1376     * Map the BIOS at a 2nd physical location, as on the real board.
1377     * Copy it so that we can patch in the MIPS revision, which cannot be
1378     * handled by an overlapping region as the resulting ROM code subpage
1379     * regions are not executable.
1380     */
1381    memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1382                           &error_fatal);
1383    if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1384                  FLASH_ADDRESS, BIOS_SIZE)) {
1385        memcpy(memory_region_get_ram_ptr(bios_copy),
1386               memory_region_get_ram_ptr(bios), BIOS_SIZE);
1387    }
1388    memory_region_set_readonly(bios_copy, true);
1389    memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1390
1391    /* Board ID = 0x420 (Malta Board with CoreLV) */
1392    stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1393
1394    /* Northbridge */
1395    pci_bus = gt64120_register(s->i8259);
1396    /*
1397     * The whole address space decoded by the GT-64120A doesn't generate
1398     * exception when accessing invalid memory. Create an empty slot to
1399     * emulate this feature.
1400     */
1401    empty_slot_init("GT64120", 0, 0x20000000);
1402
1403    /* Southbridge */
1404    dev = piix4_create(pci_bus, &isa_bus, &smbus);
1405
1406    /* Interrupt controller */
1407    qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1408    for (int i = 0; i < ISA_NUM_IRQS; i++) {
1409        s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1410    }
1411
1412    /* generate SPD EEPROM data */
1413    generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1414    generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1415    smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1416    g_free(smbus_eeprom_buf);
1417
1418    /* Super I/O: SMS FDC37M817 */
1419    isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1420
1421    /* Network card */
1422    network_init(pci_bus);
1423
1424    /* Optional PCI video card */
1425    pci_vga_init(pci_bus);
1426}
1427
1428static void mips_malta_instance_init(Object *obj)
1429{
1430    MaltaState *s = MIPS_MALTA(obj);
1431
1432    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1433    clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1434}
1435
1436static const TypeInfo mips_malta_device = {
1437    .name          = TYPE_MIPS_MALTA,
1438    .parent        = TYPE_SYS_BUS_DEVICE,
1439    .instance_size = sizeof(MaltaState),
1440    .instance_init = mips_malta_instance_init,
1441};
1442
1443static void mips_malta_machine_init(MachineClass *mc)
1444{
1445    mc->desc = "MIPS Malta Core LV";
1446    mc->init = mips_malta_init;
1447    mc->block_default_type = IF_IDE;
1448    mc->max_cpus = 16;
1449    mc->is_default = true;
1450#ifdef TARGET_MIPS64
1451    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1452#else
1453    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1454#endif
1455    mc->default_ram_id = "mips_malta.ram";
1456}
1457
1458DEFINE_MACHINE("malta", mips_malta_machine_init)
1459
1460static void mips_malta_register_types(void)
1461{
1462    type_register_static(&mips_malta_device);
1463}
1464
1465type_init(mips_malta_register_types)
1466