qemu/hw/nvme/ctrl.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
  13 *
  14 *  https://nvmexpress.org/developers/nvme-specification/
  15 *
  16 *
  17 * Notes on coding style
  18 * ---------------------
  19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
  20 * NVMe subsystem use thes format from the NVMe specifications in the comments
  21 * (i.e. 'h' suffix instead of '0x' prefix).
  22 *
  23 * Usage
  24 * -----
  25 * See docs/system/nvme.rst for extensive documentation.
  26 *
  27 * Add options:
  28 *      -drive file=<file>,if=none,id=<drive_id>
  29 *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
  30 *      -device nvme,serial=<serial>,id=<bus_name>, \
  31 *              cmb_size_mb=<cmb_size_mb[optional]>, \
  32 *              [pmrdev=<mem_backend_file_id>,] \
  33 *              max_ioqpairs=<N[optional]>, \
  34 *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
  35 *              mdts=<N[optional]>,vsl=<N[optional]>, \
  36 *              zoned.zasl=<N[optional]>, \
  37 *              zoned.auto_transition=<on|off[optional]>, \
  38 *              subsys=<subsys_id>
  39 *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
  40 *              zoned=<true|false[optional]>, \
  41 *              subsys=<subsys_id>,detached=<true|false[optional]>
  42 *
  43 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
  44 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
  45 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
  46 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
  47 *
  48 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
  49 * For example:
  50 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
  51 *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
  52 *
  53 * The PMR will use BAR 4/5 exclusively.
  54 *
  55 * To place controller(s) and namespace(s) to a subsystem, then provide
  56 * nvme-subsys device as above.
  57 *
  58 * nvme subsystem device parameters
  59 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  60 * - `nqn`
  61 *   This parameter provides the `<nqn_id>` part of the string
  62 *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
  63 *   of subsystem controllers. Note that `<nqn_id>` should be unique per
  64 *   subsystem, but this is not enforced by QEMU. If not specified, it will
  65 *   default to the value of the `id` parameter (`<subsys_id>`).
  66 *
  67 * nvme device parameters
  68 * ~~~~~~~~~~~~~~~~~~~~~~
  69 * - `subsys`
  70 *   Specifying this parameter attaches the controller to the subsystem and
  71 *   the SUBNQN field in the controller will report the NQN of the subsystem
  72 *   device. This also enables multi controller capability represented in
  73 *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
  74 *   Namesapce Sharing Capabilities).
  75 *
  76 * - `aerl`
  77 *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
  78 *   of concurrently outstanding Asynchronous Event Request commands support
  79 *   by the controller. This is a 0's based value.
  80 *
  81 * - `aer_max_queued`
  82 *   This is the maximum number of events that the device will enqueue for
  83 *   completion when there are no outstanding AERs. When the maximum number of
  84 *   enqueued events are reached, subsequent events will be dropped.
  85 *
  86 * - `mdts`
  87 *   Indicates the maximum data transfer size for a command that transfers data
  88 *   between host-accessible memory and the controller. The value is specified
  89 *   as a power of two (2^n) and is in units of the minimum memory page size
  90 *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
  91 *
  92 * - `vsl`
  93 *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
  94 *   this value is specified as a power of two (2^n) and is in units of the
  95 *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
  96 *   KiB).
  97 *
  98 * - `zoned.zasl`
  99 *   Indicates the maximum data transfer size for the Zone Append command. Like
 100 *   `mdts`, the value is specified as a power of two (2^n) and is in units of
 101 *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
 102 *   defaulting to the value of `mdts`).
 103 *
 104 * - `zoned.auto_transition`
 105 *   Indicates if zones in zone state implicitly opened can be automatically
 106 *   transitioned to zone state closed for resource management purposes.
 107 *   Defaults to 'on'.
 108 *
 109 * nvme namespace device parameters
 110 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 111 * - `shared`
 112 *   When the parent nvme device (as defined explicitly by the 'bus' parameter
 113 *   or implicitly by the most recently defined NvmeBus) is linked to an
 114 *   nvme-subsys device, the namespace will be attached to all controllers in
 115 *   the subsystem. If set to 'off' (the default), the namespace will remain a
 116 *   private namespace and may only be attached to a single controller at a
 117 *   time.
 118 *
 119 * - `detached`
 120 *   This parameter is only valid together with the `subsys` parameter. If left
 121 *   at the default value (`false/off`), the namespace will be attached to all
 122 *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
 123 *   namespace will be available in the subsystem but not attached to any
 124 *   controllers.
 125 *
 126 * Setting `zoned` to true selects Zoned Command Set at the namespace.
 127 * In this case, the following namespace properties are available to configure
 128 * zoned operation:
 129 *     zoned.zone_size=<zone size in bytes, default: 128MiB>
 130 *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
 131 *
 132 *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
 133 *         The value 0 (default) forces zone capacity to be the same as zone
 134 *         size. The value of this property may not exceed zone size.
 135 *
 136 *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
 137 *         This value needs to be specified in 64B units. If it is zero,
 138 *         namespace(s) will not support zone descriptor extensions.
 139 *
 140 *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
 141 *         The default value means there is no limit to the number of
 142 *         concurrently active zones.
 143 *
 144 *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
 145 *         The default value means there is no limit to the number of
 146 *         concurrently open zones.
 147 *
 148 *     zoned.cross_read=<enable RAZB, default: false>
 149 *         Setting this property to true enables Read Across Zone Boundaries.
 150 */
 151
 152#include "qemu/osdep.h"
 153#include "qemu/cutils.h"
 154#include "qemu/error-report.h"
 155#include "qemu/log.h"
 156#include "qemu/units.h"
 157#include "qapi/error.h"
 158#include "qapi/visitor.h"
 159#include "sysemu/sysemu.h"
 160#include "sysemu/block-backend.h"
 161#include "sysemu/hostmem.h"
 162#include "hw/pci/msix.h"
 163#include "migration/vmstate.h"
 164
 165#include "nvme.h"
 166#include "trace.h"
 167
 168#define NVME_MAX_IOQPAIRS 0xffff
 169#define NVME_DB_SIZE  4
 170#define NVME_SPEC_VER 0x00010400
 171#define NVME_CMB_BIR 2
 172#define NVME_PMR_BIR 4
 173#define NVME_TEMPERATURE 0x143
 174#define NVME_TEMPERATURE_WARNING 0x157
 175#define NVME_TEMPERATURE_CRITICAL 0x175
 176#define NVME_NUM_FW_SLOTS 1
 177#define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
 178
 179#define NVME_GUEST_ERR(trace, fmt, ...) \
 180    do { \
 181        (trace_##trace)(__VA_ARGS__); \
 182        qemu_log_mask(LOG_GUEST_ERROR, #trace \
 183            " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
 184    } while (0)
 185
 186static const bool nvme_feature_support[NVME_FID_MAX] = {
 187    [NVME_ARBITRATION]              = true,
 188    [NVME_POWER_MANAGEMENT]         = true,
 189    [NVME_TEMPERATURE_THRESHOLD]    = true,
 190    [NVME_ERROR_RECOVERY]           = true,
 191    [NVME_VOLATILE_WRITE_CACHE]     = true,
 192    [NVME_NUMBER_OF_QUEUES]         = true,
 193    [NVME_INTERRUPT_COALESCING]     = true,
 194    [NVME_INTERRUPT_VECTOR_CONF]    = true,
 195    [NVME_WRITE_ATOMICITY]          = true,
 196    [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
 197    [NVME_TIMESTAMP]                = true,
 198    [NVME_COMMAND_SET_PROFILE]      = true,
 199};
 200
 201static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
 202    [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
 203    [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
 204    [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
 205    [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
 206    [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
 207    [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
 208    [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
 209};
 210
 211static const uint32_t nvme_cse_acs[256] = {
 212    [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
 213    [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
 214    [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
 215    [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
 216    [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
 217    [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
 218    [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
 219    [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 220    [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 221    [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
 222    [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
 223    [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 224};
 225
 226static const uint32_t nvme_cse_iocs_none[256];
 227
 228static const uint32_t nvme_cse_iocs_nvm[256] = {
 229    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 230    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 231    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 232    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 233    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 234    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 235    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 236    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 237};
 238
 239static const uint32_t nvme_cse_iocs_zoned[256] = {
 240    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 241    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 242    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 243    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 244    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 245    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 246    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 247    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 248    [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 249    [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 250    [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
 251};
 252
 253static void nvme_process_sq(void *opaque);
 254
 255static uint16_t nvme_sqid(NvmeRequest *req)
 256{
 257    return le16_to_cpu(req->sq->sqid);
 258}
 259
 260static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
 261                                   NvmeZoneState state)
 262{
 263    if (QTAILQ_IN_USE(zone, entry)) {
 264        switch (nvme_get_zone_state(zone)) {
 265        case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 266            QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
 267            break;
 268        case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 269            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
 270            break;
 271        case NVME_ZONE_STATE_CLOSED:
 272            QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
 273            break;
 274        case NVME_ZONE_STATE_FULL:
 275            QTAILQ_REMOVE(&ns->full_zones, zone, entry);
 276        default:
 277            ;
 278        }
 279    }
 280
 281    nvme_set_zone_state(zone, state);
 282
 283    switch (state) {
 284    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 285        QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
 286        break;
 287    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 288        QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
 289        break;
 290    case NVME_ZONE_STATE_CLOSED:
 291        QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
 292        break;
 293    case NVME_ZONE_STATE_FULL:
 294        QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
 295    case NVME_ZONE_STATE_READ_ONLY:
 296        break;
 297    default:
 298        zone->d.za = 0;
 299    }
 300}
 301
 302/*
 303 * Check if we can open a zone without exceeding open/active limits.
 304 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
 305 */
 306static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
 307{
 308    if (ns->params.max_active_zones != 0 &&
 309        ns->nr_active_zones + act > ns->params.max_active_zones) {
 310        trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
 311        return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
 312    }
 313    if (ns->params.max_open_zones != 0 &&
 314        ns->nr_open_zones + opn > ns->params.max_open_zones) {
 315        trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
 316        return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
 317    }
 318
 319    return NVME_SUCCESS;
 320}
 321
 322static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
 323{
 324    hwaddr hi, lo;
 325
 326    if (!n->cmb.cmse) {
 327        return false;
 328    }
 329
 330    lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 331    hi = lo + int128_get64(n->cmb.mem.size);
 332
 333    return addr >= lo && addr < hi;
 334}
 335
 336static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
 337{
 338    hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 339    return &n->cmb.buf[addr - base];
 340}
 341
 342static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
 343{
 344    hwaddr hi;
 345
 346    if (!n->pmr.cmse) {
 347        return false;
 348    }
 349
 350    hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
 351
 352    return addr >= n->pmr.cba && addr < hi;
 353}
 354
 355static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
 356{
 357    return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
 358}
 359
 360static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
 361{
 362    hwaddr hi = addr + size - 1;
 363    if (hi < addr) {
 364        return 1;
 365    }
 366
 367    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 368        memcpy(buf, nvme_addr_to_cmb(n, addr), size);
 369        return 0;
 370    }
 371
 372    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 373        memcpy(buf, nvme_addr_to_pmr(n, addr), size);
 374        return 0;
 375    }
 376
 377    return pci_dma_read(&n->parent_obj, addr, buf, size);
 378}
 379
 380static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, void *buf, int size)
 381{
 382    hwaddr hi = addr + size - 1;
 383    if (hi < addr) {
 384        return 1;
 385    }
 386
 387    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 388        memcpy(nvme_addr_to_cmb(n, addr), buf, size);
 389        return 0;
 390    }
 391
 392    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 393        memcpy(nvme_addr_to_pmr(n, addr), buf, size);
 394        return 0;
 395    }
 396
 397    return pci_dma_write(&n->parent_obj, addr, buf, size);
 398}
 399
 400static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
 401{
 402    return nsid &&
 403        (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
 404}
 405
 406static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
 407{
 408    return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
 409}
 410
 411static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
 412{
 413    return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
 414}
 415
 416static void nvme_inc_cq_tail(NvmeCQueue *cq)
 417{
 418    cq->tail++;
 419    if (cq->tail >= cq->size) {
 420        cq->tail = 0;
 421        cq->phase = !cq->phase;
 422    }
 423}
 424
 425static void nvme_inc_sq_head(NvmeSQueue *sq)
 426{
 427    sq->head = (sq->head + 1) % sq->size;
 428}
 429
 430static uint8_t nvme_cq_full(NvmeCQueue *cq)
 431{
 432    return (cq->tail + 1) % cq->size == cq->head;
 433}
 434
 435static uint8_t nvme_sq_empty(NvmeSQueue *sq)
 436{
 437    return sq->head == sq->tail;
 438}
 439
 440static void nvme_irq_check(NvmeCtrl *n)
 441{
 442    uint32_t intms = ldl_le_p(&n->bar.intms);
 443
 444    if (msix_enabled(&(n->parent_obj))) {
 445        return;
 446    }
 447    if (~intms & n->irq_status) {
 448        pci_irq_assert(&n->parent_obj);
 449    } else {
 450        pci_irq_deassert(&n->parent_obj);
 451    }
 452}
 453
 454static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
 455{
 456    if (cq->irq_enabled) {
 457        if (msix_enabled(&(n->parent_obj))) {
 458            trace_pci_nvme_irq_msix(cq->vector);
 459            msix_notify(&(n->parent_obj), cq->vector);
 460        } else {
 461            trace_pci_nvme_irq_pin();
 462            assert(cq->vector < 32);
 463            n->irq_status |= 1 << cq->vector;
 464            nvme_irq_check(n);
 465        }
 466    } else {
 467        trace_pci_nvme_irq_masked();
 468    }
 469}
 470
 471static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
 472{
 473    if (cq->irq_enabled) {
 474        if (msix_enabled(&(n->parent_obj))) {
 475            return;
 476        } else {
 477            assert(cq->vector < 32);
 478            if (!n->cq_pending) {
 479                n->irq_status &= ~(1 << cq->vector);
 480            }
 481            nvme_irq_check(n);
 482        }
 483    }
 484}
 485
 486static void nvme_req_clear(NvmeRequest *req)
 487{
 488    req->ns = NULL;
 489    req->opaque = NULL;
 490    req->aiocb = NULL;
 491    memset(&req->cqe, 0x0, sizeof(req->cqe));
 492    req->status = NVME_SUCCESS;
 493}
 494
 495static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
 496{
 497    if (dma) {
 498        pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
 499        sg->flags = NVME_SG_DMA;
 500    } else {
 501        qemu_iovec_init(&sg->iov, 0);
 502    }
 503
 504    sg->flags |= NVME_SG_ALLOC;
 505}
 506
 507static inline void nvme_sg_unmap(NvmeSg *sg)
 508{
 509    if (!(sg->flags & NVME_SG_ALLOC)) {
 510        return;
 511    }
 512
 513    if (sg->flags & NVME_SG_DMA) {
 514        qemu_sglist_destroy(&sg->qsg);
 515    } else {
 516        qemu_iovec_destroy(&sg->iov);
 517    }
 518
 519    memset(sg, 0x0, sizeof(*sg));
 520}
 521
 522/*
 523 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
 524 * holds both data and metadata. This function splits the data and metadata
 525 * into two separate QSG/IOVs.
 526 */
 527static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
 528                          NvmeSg *mdata)
 529{
 530    NvmeSg *dst = data;
 531    uint32_t trans_len, count = ns->lbasz;
 532    uint64_t offset = 0;
 533    bool dma = sg->flags & NVME_SG_DMA;
 534    size_t sge_len;
 535    size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
 536    int sg_idx = 0;
 537
 538    assert(sg->flags & NVME_SG_ALLOC);
 539
 540    while (sg_len) {
 541        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
 542
 543        trans_len = MIN(sg_len, count);
 544        trans_len = MIN(trans_len, sge_len - offset);
 545
 546        if (dst) {
 547            if (dma) {
 548                qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
 549                                trans_len);
 550            } else {
 551                qemu_iovec_add(&dst->iov,
 552                               sg->iov.iov[sg_idx].iov_base + offset,
 553                               trans_len);
 554            }
 555        }
 556
 557        sg_len -= trans_len;
 558        count -= trans_len;
 559        offset += trans_len;
 560
 561        if (count == 0) {
 562            dst = (dst == data) ? mdata : data;
 563            count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
 564        }
 565
 566        if (sge_len == offset) {
 567            offset = 0;
 568            sg_idx++;
 569        }
 570    }
 571}
 572
 573static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 574                                  size_t len)
 575{
 576    if (!len) {
 577        return NVME_SUCCESS;
 578    }
 579
 580    trace_pci_nvme_map_addr_cmb(addr, len);
 581
 582    if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
 583        return NVME_DATA_TRAS_ERROR;
 584    }
 585
 586    qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
 587
 588    return NVME_SUCCESS;
 589}
 590
 591static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 592                                  size_t len)
 593{
 594    if (!len) {
 595        return NVME_SUCCESS;
 596    }
 597
 598    if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
 599        return NVME_DATA_TRAS_ERROR;
 600    }
 601
 602    qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
 603
 604    return NVME_SUCCESS;
 605}
 606
 607static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
 608{
 609    bool cmb = false, pmr = false;
 610
 611    if (!len) {
 612        return NVME_SUCCESS;
 613    }
 614
 615    trace_pci_nvme_map_addr(addr, len);
 616
 617    if (nvme_addr_is_cmb(n, addr)) {
 618        cmb = true;
 619    } else if (nvme_addr_is_pmr(n, addr)) {
 620        pmr = true;
 621    }
 622
 623    if (cmb || pmr) {
 624        if (sg->flags & NVME_SG_DMA) {
 625            return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 626        }
 627
 628        if (sg->iov.niov + 1 > IOV_MAX) {
 629            goto max_mappings_exceeded;
 630        }
 631
 632        if (cmb) {
 633            return nvme_map_addr_cmb(n, &sg->iov, addr, len);
 634        } else {
 635            return nvme_map_addr_pmr(n, &sg->iov, addr, len);
 636        }
 637    }
 638
 639    if (!(sg->flags & NVME_SG_DMA)) {
 640        return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 641    }
 642
 643    if (sg->qsg.nsg + 1 > IOV_MAX) {
 644        goto max_mappings_exceeded;
 645    }
 646
 647    qemu_sglist_add(&sg->qsg, addr, len);
 648
 649    return NVME_SUCCESS;
 650
 651max_mappings_exceeded:
 652    NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
 653                   "number of mappings exceed 1024");
 654    return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
 655}
 656
 657static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
 658{
 659    return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
 660}
 661
 662static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
 663                             uint64_t prp2, uint32_t len)
 664{
 665    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 666    trans_len = MIN(len, trans_len);
 667    int num_prps = (len >> n->page_bits) + 1;
 668    uint16_t status;
 669    int ret;
 670
 671    trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
 672
 673    nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
 674
 675    status = nvme_map_addr(n, sg, prp1, trans_len);
 676    if (status) {
 677        goto unmap;
 678    }
 679
 680    len -= trans_len;
 681    if (len) {
 682        if (len > n->page_size) {
 683            uint64_t prp_list[n->max_prp_ents];
 684            uint32_t nents, prp_trans;
 685            int i = 0;
 686
 687            /*
 688             * The first PRP list entry, pointed to by PRP2 may contain offset.
 689             * Hence, we need to calculate the number of entries in based on
 690             * that offset.
 691             */
 692            nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
 693            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 694            ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 695            if (ret) {
 696                trace_pci_nvme_err_addr_read(prp2);
 697                status = NVME_DATA_TRAS_ERROR;
 698                goto unmap;
 699            }
 700            while (len != 0) {
 701                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 702
 703                if (i == nents - 1 && len > n->page_size) {
 704                    if (unlikely(prp_ent & (n->page_size - 1))) {
 705                        trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 706                        status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 707                        goto unmap;
 708                    }
 709
 710                    i = 0;
 711                    nents = (len + n->page_size - 1) >> n->page_bits;
 712                    nents = MIN(nents, n->max_prp_ents);
 713                    prp_trans = nents * sizeof(uint64_t);
 714                    ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
 715                                         prp_trans);
 716                    if (ret) {
 717                        trace_pci_nvme_err_addr_read(prp_ent);
 718                        status = NVME_DATA_TRAS_ERROR;
 719                        goto unmap;
 720                    }
 721                    prp_ent = le64_to_cpu(prp_list[i]);
 722                }
 723
 724                if (unlikely(prp_ent & (n->page_size - 1))) {
 725                    trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 726                    status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 727                    goto unmap;
 728                }
 729
 730                trans_len = MIN(len, n->page_size);
 731                status = nvme_map_addr(n, sg, prp_ent, trans_len);
 732                if (status) {
 733                    goto unmap;
 734                }
 735
 736                len -= trans_len;
 737                i++;
 738            }
 739        } else {
 740            if (unlikely(prp2 & (n->page_size - 1))) {
 741                trace_pci_nvme_err_invalid_prp2_align(prp2);
 742                status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 743                goto unmap;
 744            }
 745            status = nvme_map_addr(n, sg, prp2, len);
 746            if (status) {
 747                goto unmap;
 748            }
 749        }
 750    }
 751
 752    return NVME_SUCCESS;
 753
 754unmap:
 755    nvme_sg_unmap(sg);
 756    return status;
 757}
 758
 759/*
 760 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
 761 * number of bytes mapped in len.
 762 */
 763static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
 764                                  NvmeSglDescriptor *segment, uint64_t nsgld,
 765                                  size_t *len, NvmeCmd *cmd)
 766{
 767    dma_addr_t addr, trans_len;
 768    uint32_t dlen;
 769    uint16_t status;
 770
 771    for (int i = 0; i < nsgld; i++) {
 772        uint8_t type = NVME_SGL_TYPE(segment[i].type);
 773
 774        switch (type) {
 775        case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
 776            if (cmd->opcode == NVME_CMD_WRITE) {
 777                continue;
 778            }
 779        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
 780            break;
 781        case NVME_SGL_DESCR_TYPE_SEGMENT:
 782        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 783            return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
 784        default:
 785            return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
 786        }
 787
 788        dlen = le32_to_cpu(segment[i].len);
 789
 790        if (!dlen) {
 791            continue;
 792        }
 793
 794        if (*len == 0) {
 795            /*
 796             * All data has been mapped, but the SGL contains additional
 797             * segments and/or descriptors. The controller might accept
 798             * ignoring the rest of the SGL.
 799             */
 800            uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
 801            if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
 802                break;
 803            }
 804
 805            trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
 806            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 807        }
 808
 809        trans_len = MIN(*len, dlen);
 810
 811        if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
 812            goto next;
 813        }
 814
 815        addr = le64_to_cpu(segment[i].addr);
 816
 817        if (UINT64_MAX - addr < dlen) {
 818            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 819        }
 820
 821        status = nvme_map_addr(n, sg, addr, trans_len);
 822        if (status) {
 823            return status;
 824        }
 825
 826next:
 827        *len -= trans_len;
 828    }
 829
 830    return NVME_SUCCESS;
 831}
 832
 833static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
 834                             size_t len, NvmeCmd *cmd)
 835{
 836    /*
 837     * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
 838     * dynamically allocating a potentially huge SGL. The spec allows the SGL
 839     * to be larger (as in number of bytes required to describe the SGL
 840     * descriptors and segment chain) than the command transfer size, so it is
 841     * not bounded by MDTS.
 842     */
 843    const int SEG_CHUNK_SIZE = 256;
 844
 845    NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
 846    uint64_t nsgld;
 847    uint32_t seg_len;
 848    uint16_t status;
 849    hwaddr addr;
 850    int ret;
 851
 852    sgld = &sgl;
 853    addr = le64_to_cpu(sgl.addr);
 854
 855    trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
 856
 857    nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
 858
 859    /*
 860     * If the entire transfer can be described with a single data block it can
 861     * be mapped directly.
 862     */
 863    if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
 864        status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
 865        if (status) {
 866            goto unmap;
 867        }
 868
 869        goto out;
 870    }
 871
 872    for (;;) {
 873        switch (NVME_SGL_TYPE(sgld->type)) {
 874        case NVME_SGL_DESCR_TYPE_SEGMENT:
 875        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 876            break;
 877        default:
 878            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 879        }
 880
 881        seg_len = le32_to_cpu(sgld->len);
 882
 883        /* check the length of the (Last) Segment descriptor */
 884        if ((!seg_len || seg_len & 0xf) &&
 885            (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
 886            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 887        }
 888
 889        if (UINT64_MAX - addr < seg_len) {
 890            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 891        }
 892
 893        nsgld = seg_len / sizeof(NvmeSglDescriptor);
 894
 895        while (nsgld > SEG_CHUNK_SIZE) {
 896            if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
 897                trace_pci_nvme_err_addr_read(addr);
 898                status = NVME_DATA_TRAS_ERROR;
 899                goto unmap;
 900            }
 901
 902            status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
 903                                       &len, cmd);
 904            if (status) {
 905                goto unmap;
 906            }
 907
 908            nsgld -= SEG_CHUNK_SIZE;
 909            addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
 910        }
 911
 912        ret = nvme_addr_read(n, addr, segment, nsgld *
 913                             sizeof(NvmeSglDescriptor));
 914        if (ret) {
 915            trace_pci_nvme_err_addr_read(addr);
 916            status = NVME_DATA_TRAS_ERROR;
 917            goto unmap;
 918        }
 919
 920        last_sgld = &segment[nsgld - 1];
 921
 922        /*
 923         * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
 924         * then we are done.
 925         */
 926        switch (NVME_SGL_TYPE(last_sgld->type)) {
 927        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
 928        case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
 929            status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
 930            if (status) {
 931                goto unmap;
 932            }
 933
 934            goto out;
 935
 936        default:
 937            break;
 938        }
 939
 940        /*
 941         * If the last descriptor was not a Data Block or Bit Bucket, then the
 942         * current segment must not be a Last Segment.
 943         */
 944        if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
 945            status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 946            goto unmap;
 947        }
 948
 949        sgld = last_sgld;
 950        addr = le64_to_cpu(sgld->addr);
 951
 952        /*
 953         * Do not map the last descriptor; it will be a Segment or Last Segment
 954         * descriptor and is handled by the next iteration.
 955         */
 956        status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
 957        if (status) {
 958            goto unmap;
 959        }
 960    }
 961
 962out:
 963    /* if there is any residual left in len, the SGL was too short */
 964    if (len) {
 965        status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 966        goto unmap;
 967    }
 968
 969    return NVME_SUCCESS;
 970
 971unmap:
 972    nvme_sg_unmap(sg);
 973    return status;
 974}
 975
 976uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
 977                       NvmeCmd *cmd)
 978{
 979    uint64_t prp1, prp2;
 980
 981    switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
 982    case NVME_PSDT_PRP:
 983        prp1 = le64_to_cpu(cmd->dptr.prp1);
 984        prp2 = le64_to_cpu(cmd->dptr.prp2);
 985
 986        return nvme_map_prp(n, sg, prp1, prp2, len);
 987    case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
 988    case NVME_PSDT_SGL_MPTR_SGL:
 989        return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
 990    default:
 991        return NVME_INVALID_FIELD;
 992    }
 993}
 994
 995static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
 996                              NvmeCmd *cmd)
 997{
 998    int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
 999    hwaddr mptr = le64_to_cpu(cmd->mptr);
1000    uint16_t status;
1001
1002    if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1003        NvmeSglDescriptor sgl;
1004
1005        if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1006            return NVME_DATA_TRAS_ERROR;
1007        }
1008
1009        status = nvme_map_sgl(n, sg, sgl, len, cmd);
1010        if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1011            status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1012        }
1013
1014        return status;
1015    }
1016
1017    nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1018    status = nvme_map_addr(n, sg, mptr, len);
1019    if (status) {
1020        nvme_sg_unmap(sg);
1021    }
1022
1023    return status;
1024}
1025
1026static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1027{
1028    NvmeNamespace *ns = req->ns;
1029    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1030    bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1031    bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1032    size_t len = nvme_l2b(ns, nlb);
1033    uint16_t status;
1034
1035    if (nvme_ns_ext(ns) && !(pi && pract && ns->lbaf.ms == 8)) {
1036        NvmeSg sg;
1037
1038        len += nvme_m2b(ns, nlb);
1039
1040        status = nvme_map_dptr(n, &sg, len, &req->cmd);
1041        if (status) {
1042            return status;
1043        }
1044
1045        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1046        nvme_sg_split(&sg, ns, &req->sg, NULL);
1047        nvme_sg_unmap(&sg);
1048
1049        return NVME_SUCCESS;
1050    }
1051
1052    return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1053}
1054
1055static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1056{
1057    NvmeNamespace *ns = req->ns;
1058    size_t len = nvme_m2b(ns, nlb);
1059    uint16_t status;
1060
1061    if (nvme_ns_ext(ns)) {
1062        NvmeSg sg;
1063
1064        len += nvme_l2b(ns, nlb);
1065
1066        status = nvme_map_dptr(n, &sg, len, &req->cmd);
1067        if (status) {
1068            return status;
1069        }
1070
1071        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1072        nvme_sg_split(&sg, ns, NULL, &req->sg);
1073        nvme_sg_unmap(&sg);
1074
1075        return NVME_SUCCESS;
1076    }
1077
1078    return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1079}
1080
1081static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1082                                    uint32_t len, uint32_t bytes,
1083                                    int32_t skip_bytes, int64_t offset,
1084                                    NvmeTxDirection dir)
1085{
1086    hwaddr addr;
1087    uint32_t trans_len, count = bytes;
1088    bool dma = sg->flags & NVME_SG_DMA;
1089    int64_t sge_len;
1090    int sg_idx = 0;
1091    int ret;
1092
1093    assert(sg->flags & NVME_SG_ALLOC);
1094
1095    while (len) {
1096        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1097
1098        if (sge_len - offset < 0) {
1099            offset -= sge_len;
1100            sg_idx++;
1101            continue;
1102        }
1103
1104        if (sge_len == offset) {
1105            offset = 0;
1106            sg_idx++;
1107            continue;
1108        }
1109
1110        trans_len = MIN(len, count);
1111        trans_len = MIN(trans_len, sge_len - offset);
1112
1113        if (dma) {
1114            addr = sg->qsg.sg[sg_idx].base + offset;
1115        } else {
1116            addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1117        }
1118
1119        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1120            ret = nvme_addr_read(n, addr, ptr, trans_len);
1121        } else {
1122            ret = nvme_addr_write(n, addr, ptr, trans_len);
1123        }
1124
1125        if (ret) {
1126            return NVME_DATA_TRAS_ERROR;
1127        }
1128
1129        ptr += trans_len;
1130        len -= trans_len;
1131        count -= trans_len;
1132        offset += trans_len;
1133
1134        if (count == 0) {
1135            count = bytes;
1136            offset += skip_bytes;
1137        }
1138    }
1139
1140    return NVME_SUCCESS;
1141}
1142
1143static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len,
1144                        NvmeTxDirection dir)
1145{
1146    assert(sg->flags & NVME_SG_ALLOC);
1147
1148    if (sg->flags & NVME_SG_DMA) {
1149        uint64_t residual;
1150
1151        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1152            residual = dma_buf_write(ptr, len, &sg->qsg);
1153        } else {
1154            residual = dma_buf_read(ptr, len, &sg->qsg);
1155        }
1156
1157        if (unlikely(residual)) {
1158            trace_pci_nvme_err_invalid_dma();
1159            return NVME_INVALID_FIELD | NVME_DNR;
1160        }
1161    } else {
1162        size_t bytes;
1163
1164        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1165            bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1166        } else {
1167            bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1168        }
1169
1170        if (unlikely(bytes != len)) {
1171            trace_pci_nvme_err_invalid_dma();
1172            return NVME_INVALID_FIELD | NVME_DNR;
1173        }
1174    }
1175
1176    return NVME_SUCCESS;
1177}
1178
1179static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1180                                NvmeRequest *req)
1181{
1182    uint16_t status;
1183
1184    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1185    if (status) {
1186        return status;
1187    }
1188
1189    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1190}
1191
1192static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1193                                NvmeRequest *req)
1194{
1195    uint16_t status;
1196
1197    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1198    if (status) {
1199        return status;
1200    }
1201
1202    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1203}
1204
1205uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1206                          NvmeTxDirection dir, NvmeRequest *req)
1207{
1208    NvmeNamespace *ns = req->ns;
1209    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1210    bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1211    bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1212
1213    if (nvme_ns_ext(ns) && !(pi && pract && ns->lbaf.ms == 8)) {
1214        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1215                                   ns->lbaf.ms, 0, dir);
1216    }
1217
1218    return nvme_tx(n, &req->sg, ptr, len, dir);
1219}
1220
1221uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1222                           NvmeTxDirection dir, NvmeRequest *req)
1223{
1224    NvmeNamespace *ns = req->ns;
1225    uint16_t status;
1226
1227    if (nvme_ns_ext(ns)) {
1228        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1229                                   ns->lbasz, ns->lbasz, dir);
1230    }
1231
1232    nvme_sg_unmap(&req->sg);
1233
1234    status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1235    if (status) {
1236        return status;
1237    }
1238
1239    return nvme_tx(n, &req->sg, ptr, len, dir);
1240}
1241
1242static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1243                                 BlockCompletionFunc *cb, NvmeRequest *req)
1244{
1245    assert(req->sg.flags & NVME_SG_ALLOC);
1246
1247    if (req->sg.flags & NVME_SG_DMA) {
1248        req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1249                                  cb, req);
1250    } else {
1251        req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1252    }
1253}
1254
1255static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1256                                  BlockCompletionFunc *cb, NvmeRequest *req)
1257{
1258    assert(req->sg.flags & NVME_SG_ALLOC);
1259
1260    if (req->sg.flags & NVME_SG_DMA) {
1261        req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1262                                   cb, req);
1263    } else {
1264        req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1265    }
1266}
1267
1268static void nvme_post_cqes(void *opaque)
1269{
1270    NvmeCQueue *cq = opaque;
1271    NvmeCtrl *n = cq->ctrl;
1272    NvmeRequest *req, *next;
1273    bool pending = cq->head != cq->tail;
1274    int ret;
1275
1276    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1277        NvmeSQueue *sq;
1278        hwaddr addr;
1279
1280        if (nvme_cq_full(cq)) {
1281            break;
1282        }
1283
1284        sq = req->sq;
1285        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1286        req->cqe.sq_id = cpu_to_le16(sq->sqid);
1287        req->cqe.sq_head = cpu_to_le16(sq->head);
1288        addr = cq->dma_addr + cq->tail * n->cqe_size;
1289        ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1290                            sizeof(req->cqe));
1291        if (ret) {
1292            trace_pci_nvme_err_addr_write(addr);
1293            trace_pci_nvme_err_cfs();
1294            stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1295            break;
1296        }
1297        QTAILQ_REMOVE(&cq->req_list, req, entry);
1298        nvme_inc_cq_tail(cq);
1299        nvme_sg_unmap(&req->sg);
1300        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1301    }
1302    if (cq->tail != cq->head) {
1303        if (cq->irq_enabled && !pending) {
1304            n->cq_pending++;
1305        }
1306
1307        nvme_irq_assert(n, cq);
1308    }
1309}
1310
1311static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1312{
1313    assert(cq->cqid == req->sq->cqid);
1314    trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1315                                          le32_to_cpu(req->cqe.result),
1316                                          le32_to_cpu(req->cqe.dw1),
1317                                          req->status);
1318
1319    if (req->status) {
1320        trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1321                                      req->status, req->cmd.opcode);
1322    }
1323
1324    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1325    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1326    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1327}
1328
1329static void nvme_process_aers(void *opaque)
1330{
1331    NvmeCtrl *n = opaque;
1332    NvmeAsyncEvent *event, *next;
1333
1334    trace_pci_nvme_process_aers(n->aer_queued);
1335
1336    QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1337        NvmeRequest *req;
1338        NvmeAerResult *result;
1339
1340        /* can't post cqe if there is nothing to complete */
1341        if (!n->outstanding_aers) {
1342            trace_pci_nvme_no_outstanding_aers();
1343            break;
1344        }
1345
1346        /* ignore if masked (cqe posted, but event not cleared) */
1347        if (n->aer_mask & (1 << event->result.event_type)) {
1348            trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1349            continue;
1350        }
1351
1352        QTAILQ_REMOVE(&n->aer_queue, event, entry);
1353        n->aer_queued--;
1354
1355        n->aer_mask |= 1 << event->result.event_type;
1356        n->outstanding_aers--;
1357
1358        req = n->aer_reqs[n->outstanding_aers];
1359
1360        result = (NvmeAerResult *) &req->cqe.result;
1361        result->event_type = event->result.event_type;
1362        result->event_info = event->result.event_info;
1363        result->log_page = event->result.log_page;
1364        g_free(event);
1365
1366        trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1367                                    result->log_page);
1368
1369        nvme_enqueue_req_completion(&n->admin_cq, req);
1370    }
1371}
1372
1373static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1374                               uint8_t event_info, uint8_t log_page)
1375{
1376    NvmeAsyncEvent *event;
1377
1378    trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1379
1380    if (n->aer_queued == n->params.aer_max_queued) {
1381        trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1382        return;
1383    }
1384
1385    event = g_new(NvmeAsyncEvent, 1);
1386    event->result = (NvmeAerResult) {
1387        .event_type = event_type,
1388        .event_info = event_info,
1389        .log_page   = log_page,
1390    };
1391
1392    QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1393    n->aer_queued++;
1394
1395    nvme_process_aers(n);
1396}
1397
1398static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1399{
1400    uint8_t aer_info;
1401
1402    /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1403    if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1404        return;
1405    }
1406
1407    switch (event) {
1408    case NVME_SMART_SPARE:
1409        aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1410        break;
1411    case NVME_SMART_TEMPERATURE:
1412        aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1413        break;
1414    case NVME_SMART_RELIABILITY:
1415    case NVME_SMART_MEDIA_READ_ONLY:
1416    case NVME_SMART_FAILED_VOLATILE_MEDIA:
1417    case NVME_SMART_PMR_UNRELIABLE:
1418        aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1419        break;
1420    default:
1421        return;
1422    }
1423
1424    nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1425}
1426
1427static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1428{
1429    n->aer_mask &= ~(1 << event_type);
1430    if (!QTAILQ_EMPTY(&n->aer_queue)) {
1431        nvme_process_aers(n);
1432    }
1433}
1434
1435static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1436{
1437    uint8_t mdts = n->params.mdts;
1438
1439    if (mdts && len > n->page_size << mdts) {
1440        trace_pci_nvme_err_mdts(len);
1441        return NVME_INVALID_FIELD | NVME_DNR;
1442    }
1443
1444    return NVME_SUCCESS;
1445}
1446
1447static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1448                                         uint32_t nlb)
1449{
1450    uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1451
1452    if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1453        trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1454        return NVME_LBA_RANGE | NVME_DNR;
1455    }
1456
1457    return NVME_SUCCESS;
1458}
1459
1460static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1461                                 uint32_t nlb, int flags)
1462{
1463    BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1464
1465    int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1466    int64_t offset = nvme_l2b(ns, slba);
1467    int ret;
1468
1469    /*
1470     * `pnum` holds the number of bytes after offset that shares the same
1471     * allocation status as the byte at offset. If `pnum` is different from
1472     * `bytes`, we should check the allocation status of the next range and
1473     * continue this until all bytes have been checked.
1474     */
1475    do {
1476        bytes -= pnum;
1477
1478        ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1479        if (ret < 0) {
1480            return ret;
1481        }
1482
1483
1484        trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1485                                    !!(ret & BDRV_BLOCK_ZERO));
1486
1487        if (!(ret & flags)) {
1488            return 1;
1489        }
1490
1491        offset += pnum;
1492    } while (pnum != bytes);
1493
1494    return 0;
1495}
1496
1497static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1498                                 uint32_t nlb)
1499{
1500    int ret;
1501    Error *err = NULL;
1502
1503    ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1504    if (ret) {
1505        if (ret < 0) {
1506            error_setg_errno(&err, -ret, "unable to get block status");
1507            error_report_err(err);
1508
1509            return NVME_INTERNAL_DEV_ERROR;
1510        }
1511
1512        return NVME_DULB;
1513    }
1514
1515    return NVME_SUCCESS;
1516}
1517
1518static void nvme_aio_err(NvmeRequest *req, int ret)
1519{
1520    uint16_t status = NVME_SUCCESS;
1521    Error *local_err = NULL;
1522
1523    switch (req->cmd.opcode) {
1524    case NVME_CMD_READ:
1525        status = NVME_UNRECOVERED_READ;
1526        break;
1527    case NVME_CMD_FLUSH:
1528    case NVME_CMD_WRITE:
1529    case NVME_CMD_WRITE_ZEROES:
1530    case NVME_CMD_ZONE_APPEND:
1531        status = NVME_WRITE_FAULT;
1532        break;
1533    default:
1534        status = NVME_INTERNAL_DEV_ERROR;
1535        break;
1536    }
1537
1538    trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1539
1540    error_setg_errno(&local_err, -ret, "aio failed");
1541    error_report_err(local_err);
1542
1543    /*
1544     * Set the command status code to the first encountered error but allow a
1545     * subsequent Internal Device Error to trump it.
1546     */
1547    if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1548        return;
1549    }
1550
1551    req->status = status;
1552}
1553
1554static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1555{
1556    return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1557                                    slba / ns->zone_size;
1558}
1559
1560static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1561{
1562    uint32_t zone_idx = nvme_zone_idx(ns, slba);
1563
1564    if (zone_idx >= ns->num_zones) {
1565        return NULL;
1566    }
1567
1568    return &ns->zone_array[zone_idx];
1569}
1570
1571static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1572{
1573    uint64_t zslba = zone->d.zslba;
1574
1575    switch (nvme_get_zone_state(zone)) {
1576    case NVME_ZONE_STATE_EMPTY:
1577    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1578    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1579    case NVME_ZONE_STATE_CLOSED:
1580        return NVME_SUCCESS;
1581    case NVME_ZONE_STATE_FULL:
1582        trace_pci_nvme_err_zone_is_full(zslba);
1583        return NVME_ZONE_FULL;
1584    case NVME_ZONE_STATE_OFFLINE:
1585        trace_pci_nvme_err_zone_is_offline(zslba);
1586        return NVME_ZONE_OFFLINE;
1587    case NVME_ZONE_STATE_READ_ONLY:
1588        trace_pci_nvme_err_zone_is_read_only(zslba);
1589        return NVME_ZONE_READ_ONLY;
1590    default:
1591        assert(false);
1592    }
1593
1594    return NVME_INTERNAL_DEV_ERROR;
1595}
1596
1597static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1598                                      uint64_t slba, uint32_t nlb)
1599{
1600    uint64_t zcap = nvme_zone_wr_boundary(zone);
1601    uint16_t status;
1602
1603    status = nvme_check_zone_state_for_write(zone);
1604    if (status) {
1605        return status;
1606    }
1607
1608    if (unlikely(slba != zone->w_ptr)) {
1609        trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr);
1610        return NVME_ZONE_INVALID_WRITE;
1611    }
1612
1613    if (unlikely((slba + nlb) > zcap)) {
1614        trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1615        return NVME_ZONE_BOUNDARY_ERROR;
1616    }
1617
1618    return NVME_SUCCESS;
1619}
1620
1621static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1622{
1623    switch (nvme_get_zone_state(zone)) {
1624    case NVME_ZONE_STATE_EMPTY:
1625    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1626    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1627    case NVME_ZONE_STATE_FULL:
1628    case NVME_ZONE_STATE_CLOSED:
1629    case NVME_ZONE_STATE_READ_ONLY:
1630        return NVME_SUCCESS;
1631    case NVME_ZONE_STATE_OFFLINE:
1632        trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1633        return NVME_ZONE_OFFLINE;
1634    default:
1635        assert(false);
1636    }
1637
1638    return NVME_INTERNAL_DEV_ERROR;
1639}
1640
1641static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1642                                     uint32_t nlb)
1643{
1644    NvmeZone *zone;
1645    uint64_t bndry, end;
1646    uint16_t status;
1647
1648    zone = nvme_get_zone_by_slba(ns, slba);
1649    assert(zone);
1650
1651    bndry = nvme_zone_rd_boundary(ns, zone);
1652    end = slba + nlb;
1653
1654    status = nvme_check_zone_state_for_read(zone);
1655    if (status) {
1656        ;
1657    } else if (unlikely(end > bndry)) {
1658        if (!ns->params.cross_zone_read) {
1659            status = NVME_ZONE_BOUNDARY_ERROR;
1660        } else {
1661            /*
1662             * Read across zone boundary - check that all subsequent
1663             * zones that are being read have an appropriate state.
1664             */
1665            do {
1666                zone++;
1667                status = nvme_check_zone_state_for_read(zone);
1668                if (status) {
1669                    break;
1670                }
1671            } while (end > nvme_zone_rd_boundary(ns, zone));
1672        }
1673    }
1674
1675    return status;
1676}
1677
1678static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1679{
1680    switch (nvme_get_zone_state(zone)) {
1681    case NVME_ZONE_STATE_FULL:
1682        return NVME_SUCCESS;
1683
1684    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1685    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1686        nvme_aor_dec_open(ns);
1687        /* fallthrough */
1688    case NVME_ZONE_STATE_CLOSED:
1689        nvme_aor_dec_active(ns);
1690        /* fallthrough */
1691    case NVME_ZONE_STATE_EMPTY:
1692        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1693        return NVME_SUCCESS;
1694
1695    default:
1696        return NVME_ZONE_INVAL_TRANSITION;
1697    }
1698}
1699
1700static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1701{
1702    switch (nvme_get_zone_state(zone)) {
1703    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1704    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1705        nvme_aor_dec_open(ns);
1706        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1707        /* fall through */
1708    case NVME_ZONE_STATE_CLOSED:
1709        return NVME_SUCCESS;
1710
1711    default:
1712        return NVME_ZONE_INVAL_TRANSITION;
1713    }
1714}
1715
1716static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1717{
1718    switch (nvme_get_zone_state(zone)) {
1719    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1720    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1721        nvme_aor_dec_open(ns);
1722        /* fallthrough */
1723    case NVME_ZONE_STATE_CLOSED:
1724        nvme_aor_dec_active(ns);
1725        /* fallthrough */
1726    case NVME_ZONE_STATE_FULL:
1727        zone->w_ptr = zone->d.zslba;
1728        zone->d.wp = zone->w_ptr;
1729        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1730        /* fallthrough */
1731    case NVME_ZONE_STATE_EMPTY:
1732        return NVME_SUCCESS;
1733
1734    default:
1735        return NVME_ZONE_INVAL_TRANSITION;
1736    }
1737}
1738
1739static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1740{
1741    NvmeZone *zone;
1742
1743    if (ns->params.max_open_zones &&
1744        ns->nr_open_zones == ns->params.max_open_zones) {
1745        zone = QTAILQ_FIRST(&ns->imp_open_zones);
1746        if (zone) {
1747            /*
1748             * Automatically close this implicitly open zone.
1749             */
1750            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1751            nvme_zrm_close(ns, zone);
1752        }
1753    }
1754}
1755
1756enum {
1757    NVME_ZRM_AUTO = 1 << 0,
1758};
1759
1760static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1761                                    NvmeZone *zone, int flags)
1762{
1763    int act = 0;
1764    uint16_t status;
1765
1766    switch (nvme_get_zone_state(zone)) {
1767    case NVME_ZONE_STATE_EMPTY:
1768        act = 1;
1769
1770        /* fallthrough */
1771
1772    case NVME_ZONE_STATE_CLOSED:
1773        if (n->params.auto_transition_zones) {
1774            nvme_zrm_auto_transition_zone(ns);
1775        }
1776        status = nvme_aor_check(ns, act, 1);
1777        if (status) {
1778            return status;
1779        }
1780
1781        if (act) {
1782            nvme_aor_inc_active(ns);
1783        }
1784
1785        nvme_aor_inc_open(ns);
1786
1787        if (flags & NVME_ZRM_AUTO) {
1788            nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1789            return NVME_SUCCESS;
1790        }
1791
1792        /* fallthrough */
1793
1794    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1795        if (flags & NVME_ZRM_AUTO) {
1796            return NVME_SUCCESS;
1797        }
1798
1799        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1800
1801        /* fallthrough */
1802
1803    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1804        return NVME_SUCCESS;
1805
1806    default:
1807        return NVME_ZONE_INVAL_TRANSITION;
1808    }
1809}
1810
1811static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1812                                     NvmeZone *zone)
1813{
1814    return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1815}
1816
1817static inline uint16_t nvme_zrm_open(NvmeCtrl *n, NvmeNamespace *ns,
1818                                     NvmeZone *zone)
1819{
1820    return nvme_zrm_open_flags(n, ns, zone, 0);
1821}
1822
1823static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1824                                 uint32_t nlb)
1825{
1826    zone->d.wp += nlb;
1827
1828    if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1829        nvme_zrm_finish(ns, zone);
1830    }
1831}
1832
1833static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1834{
1835    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1836    NvmeZone *zone;
1837    uint64_t slba;
1838    uint32_t nlb;
1839
1840    slba = le64_to_cpu(rw->slba);
1841    nlb = le16_to_cpu(rw->nlb) + 1;
1842    zone = nvme_get_zone_by_slba(ns, slba);
1843    assert(zone);
1844
1845    nvme_advance_zone_wp(ns, zone, nlb);
1846}
1847
1848static inline bool nvme_is_write(NvmeRequest *req)
1849{
1850    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1851
1852    return rw->opcode == NVME_CMD_WRITE ||
1853           rw->opcode == NVME_CMD_ZONE_APPEND ||
1854           rw->opcode == NVME_CMD_WRITE_ZEROES;
1855}
1856
1857static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1858{
1859    return qemu_get_aio_context();
1860}
1861
1862static void nvme_misc_cb(void *opaque, int ret)
1863{
1864    NvmeRequest *req = opaque;
1865
1866    trace_pci_nvme_misc_cb(nvme_cid(req));
1867
1868    if (ret) {
1869        nvme_aio_err(req, ret);
1870    }
1871
1872    nvme_enqueue_req_completion(nvme_cq(req), req);
1873}
1874
1875void nvme_rw_complete_cb(void *opaque, int ret)
1876{
1877    NvmeRequest *req = opaque;
1878    NvmeNamespace *ns = req->ns;
1879    BlockBackend *blk = ns->blkconf.blk;
1880    BlockAcctCookie *acct = &req->acct;
1881    BlockAcctStats *stats = blk_get_stats(blk);
1882
1883    trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
1884
1885    if (ret) {
1886        block_acct_failed(stats, acct);
1887        nvme_aio_err(req, ret);
1888    } else {
1889        block_acct_done(stats, acct);
1890    }
1891
1892    if (ns->params.zoned && nvme_is_write(req)) {
1893        nvme_finalize_zoned_write(ns, req);
1894    }
1895
1896    nvme_enqueue_req_completion(nvme_cq(req), req);
1897}
1898
1899static void nvme_rw_cb(void *opaque, int ret)
1900{
1901    NvmeRequest *req = opaque;
1902    NvmeNamespace *ns = req->ns;
1903
1904    BlockBackend *blk = ns->blkconf.blk;
1905
1906    trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
1907
1908    if (ret) {
1909        goto out;
1910    }
1911
1912    if (ns->lbaf.ms) {
1913        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1914        uint64_t slba = le64_to_cpu(rw->slba);
1915        uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
1916        uint64_t offset = nvme_moff(ns, slba);
1917
1918        if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
1919            size_t mlen = nvme_m2b(ns, nlb);
1920
1921            req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
1922                                               BDRV_REQ_MAY_UNMAP,
1923                                               nvme_rw_complete_cb, req);
1924            return;
1925        }
1926
1927        if (nvme_ns_ext(ns) || req->cmd.mptr) {
1928            uint16_t status;
1929
1930            nvme_sg_unmap(&req->sg);
1931            status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
1932            if (status) {
1933                ret = -EFAULT;
1934                goto out;
1935            }
1936
1937            if (req->cmd.opcode == NVME_CMD_READ) {
1938                return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
1939            }
1940
1941            return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
1942        }
1943    }
1944
1945out:
1946    nvme_rw_complete_cb(req, ret);
1947}
1948
1949static void nvme_verify_cb(void *opaque, int ret)
1950{
1951    NvmeBounceContext *ctx = opaque;
1952    NvmeRequest *req = ctx->req;
1953    NvmeNamespace *ns = req->ns;
1954    BlockBackend *blk = ns->blkconf.blk;
1955    BlockAcctCookie *acct = &req->acct;
1956    BlockAcctStats *stats = blk_get_stats(blk);
1957    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1958    uint64_t slba = le64_to_cpu(rw->slba);
1959    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
1960    uint16_t apptag = le16_to_cpu(rw->apptag);
1961    uint16_t appmask = le16_to_cpu(rw->appmask);
1962    uint32_t reftag = le32_to_cpu(rw->reftag);
1963    uint16_t status;
1964
1965    trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
1966
1967    if (ret) {
1968        block_acct_failed(stats, acct);
1969        nvme_aio_err(req, ret);
1970        goto out;
1971    }
1972
1973    block_acct_done(stats, acct);
1974
1975    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
1976        status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
1977                                       ctx->mdata.iov.size, slba);
1978        if (status) {
1979            req->status = status;
1980            goto out;
1981        }
1982
1983        req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
1984                                     ctx->mdata.bounce, ctx->mdata.iov.size,
1985                                     prinfo, slba, apptag, appmask, &reftag);
1986    }
1987
1988out:
1989    qemu_iovec_destroy(&ctx->data.iov);
1990    g_free(ctx->data.bounce);
1991
1992    qemu_iovec_destroy(&ctx->mdata.iov);
1993    g_free(ctx->mdata.bounce);
1994
1995    g_free(ctx);
1996
1997    nvme_enqueue_req_completion(nvme_cq(req), req);
1998}
1999
2000
2001static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2002{
2003    NvmeBounceContext *ctx = opaque;
2004    NvmeRequest *req = ctx->req;
2005    NvmeNamespace *ns = req->ns;
2006    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2007    uint64_t slba = le64_to_cpu(rw->slba);
2008    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2009    size_t mlen = nvme_m2b(ns, nlb);
2010    uint64_t offset = nvme_moff(ns, slba);
2011    BlockBackend *blk = ns->blkconf.blk;
2012
2013    trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2014
2015    if (ret) {
2016        goto out;
2017    }
2018
2019    ctx->mdata.bounce = g_malloc(mlen);
2020
2021    qemu_iovec_reset(&ctx->mdata.iov);
2022    qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2023
2024    req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2025                                nvme_verify_cb, ctx);
2026    return;
2027
2028out:
2029    nvme_verify_cb(ctx, ret);
2030}
2031
2032struct nvme_compare_ctx {
2033    struct {
2034        QEMUIOVector iov;
2035        uint8_t *bounce;
2036    } data;
2037
2038    struct {
2039        QEMUIOVector iov;
2040        uint8_t *bounce;
2041    } mdata;
2042};
2043
2044static void nvme_compare_mdata_cb(void *opaque, int ret)
2045{
2046    NvmeRequest *req = opaque;
2047    NvmeNamespace *ns = req->ns;
2048    NvmeCtrl *n = nvme_ctrl(req);
2049    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2050    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2051    uint16_t apptag = le16_to_cpu(rw->apptag);
2052    uint16_t appmask = le16_to_cpu(rw->appmask);
2053    uint32_t reftag = le32_to_cpu(rw->reftag);
2054    struct nvme_compare_ctx *ctx = req->opaque;
2055    g_autofree uint8_t *buf = NULL;
2056    BlockBackend *blk = ns->blkconf.blk;
2057    BlockAcctCookie *acct = &req->acct;
2058    BlockAcctStats *stats = blk_get_stats(blk);
2059    uint16_t status = NVME_SUCCESS;
2060
2061    trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2062
2063    if (ret) {
2064        block_acct_failed(stats, acct);
2065        nvme_aio_err(req, ret);
2066        goto out;
2067    }
2068
2069    buf = g_malloc(ctx->mdata.iov.size);
2070
2071    status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2072                               NVME_TX_DIRECTION_TO_DEVICE, req);
2073    if (status) {
2074        req->status = status;
2075        goto out;
2076    }
2077
2078    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2079        uint64_t slba = le64_to_cpu(rw->slba);
2080        uint8_t *bufp;
2081        uint8_t *mbufp = ctx->mdata.bounce;
2082        uint8_t *end = mbufp + ctx->mdata.iov.size;
2083        int16_t pil = 0;
2084
2085        status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2086                                ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2087                                slba, apptag, appmask, &reftag);
2088        if (status) {
2089            req->status = status;
2090            goto out;
2091        }
2092
2093        /*
2094         * When formatted with protection information, do not compare the DIF
2095         * tuple.
2096         */
2097        if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2098            pil = ns->lbaf.ms - sizeof(NvmeDifTuple);
2099        }
2100
2101        for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2102            if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2103                req->status = NVME_CMP_FAILURE;
2104                goto out;
2105            }
2106        }
2107
2108        goto out;
2109    }
2110
2111    if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2112        req->status = NVME_CMP_FAILURE;
2113        goto out;
2114    }
2115
2116    block_acct_done(stats, acct);
2117
2118out:
2119    qemu_iovec_destroy(&ctx->data.iov);
2120    g_free(ctx->data.bounce);
2121
2122    qemu_iovec_destroy(&ctx->mdata.iov);
2123    g_free(ctx->mdata.bounce);
2124
2125    g_free(ctx);
2126
2127    nvme_enqueue_req_completion(nvme_cq(req), req);
2128}
2129
2130static void nvme_compare_data_cb(void *opaque, int ret)
2131{
2132    NvmeRequest *req = opaque;
2133    NvmeCtrl *n = nvme_ctrl(req);
2134    NvmeNamespace *ns = req->ns;
2135    BlockBackend *blk = ns->blkconf.blk;
2136    BlockAcctCookie *acct = &req->acct;
2137    BlockAcctStats *stats = blk_get_stats(blk);
2138
2139    struct nvme_compare_ctx *ctx = req->opaque;
2140    g_autofree uint8_t *buf = NULL;
2141    uint16_t status;
2142
2143    trace_pci_nvme_compare_data_cb(nvme_cid(req));
2144
2145    if (ret) {
2146        block_acct_failed(stats, acct);
2147        nvme_aio_err(req, ret);
2148        goto out;
2149    }
2150
2151    buf = g_malloc(ctx->data.iov.size);
2152
2153    status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2154                              NVME_TX_DIRECTION_TO_DEVICE, req);
2155    if (status) {
2156        req->status = status;
2157        goto out;
2158    }
2159
2160    if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2161        req->status = NVME_CMP_FAILURE;
2162        goto out;
2163    }
2164
2165    if (ns->lbaf.ms) {
2166        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2167        uint64_t slba = le64_to_cpu(rw->slba);
2168        uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2169        size_t mlen = nvme_m2b(ns, nlb);
2170        uint64_t offset = nvme_moff(ns, slba);
2171
2172        ctx->mdata.bounce = g_malloc(mlen);
2173
2174        qemu_iovec_init(&ctx->mdata.iov, 1);
2175        qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2176
2177        req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2178                                    nvme_compare_mdata_cb, req);
2179        return;
2180    }
2181
2182    block_acct_done(stats, acct);
2183
2184out:
2185    qemu_iovec_destroy(&ctx->data.iov);
2186    g_free(ctx->data.bounce);
2187    g_free(ctx);
2188
2189    nvme_enqueue_req_completion(nvme_cq(req), req);
2190}
2191
2192typedef struct NvmeDSMAIOCB {
2193    BlockAIOCB common;
2194    BlockAIOCB *aiocb;
2195    NvmeRequest *req;
2196    QEMUBH *bh;
2197    int ret;
2198
2199    NvmeDsmRange *range;
2200    unsigned int nr;
2201    unsigned int idx;
2202} NvmeDSMAIOCB;
2203
2204static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2205{
2206    NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2207
2208    /* break nvme_dsm_cb loop */
2209    iocb->idx = iocb->nr;
2210    iocb->ret = -ECANCELED;
2211
2212    if (iocb->aiocb) {
2213        blk_aio_cancel_async(iocb->aiocb);
2214        iocb->aiocb = NULL;
2215    } else {
2216        /*
2217         * We only reach this if nvme_dsm_cancel() has already been called or
2218         * the command ran to completion and nvme_dsm_bh is scheduled to run.
2219         */
2220        assert(iocb->idx == iocb->nr);
2221    }
2222}
2223
2224static const AIOCBInfo nvme_dsm_aiocb_info = {
2225    .aiocb_size   = sizeof(NvmeDSMAIOCB),
2226    .cancel_async = nvme_dsm_cancel,
2227};
2228
2229static void nvme_dsm_bh(void *opaque)
2230{
2231    NvmeDSMAIOCB *iocb = opaque;
2232
2233    iocb->common.cb(iocb->common.opaque, iocb->ret);
2234
2235    qemu_bh_delete(iocb->bh);
2236    iocb->bh = NULL;
2237    qemu_aio_unref(iocb);
2238}
2239
2240static void nvme_dsm_cb(void *opaque, int ret);
2241
2242static void nvme_dsm_md_cb(void *opaque, int ret)
2243{
2244    NvmeDSMAIOCB *iocb = opaque;
2245    NvmeRequest *req = iocb->req;
2246    NvmeNamespace *ns = req->ns;
2247    NvmeDsmRange *range;
2248    uint64_t slba;
2249    uint32_t nlb;
2250
2251    if (ret < 0) {
2252        iocb->ret = ret;
2253        goto done;
2254    }
2255
2256    if (!ns->lbaf.ms) {
2257        nvme_dsm_cb(iocb, 0);
2258        return;
2259    }
2260
2261    range = &iocb->range[iocb->idx - 1];
2262    slba = le64_to_cpu(range->slba);
2263    nlb = le32_to_cpu(range->nlb);
2264
2265    /*
2266     * Check that all block were discarded (zeroed); otherwise we do not zero
2267     * the metadata.
2268     */
2269
2270    ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2271    if (ret) {
2272        if (ret < 0) {
2273            iocb->ret = ret;
2274            goto done;
2275        }
2276
2277        nvme_dsm_cb(iocb, 0);
2278    }
2279
2280    iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2281                                        nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2282                                        nvme_dsm_cb, iocb);
2283    return;
2284
2285done:
2286    iocb->aiocb = NULL;
2287    qemu_bh_schedule(iocb->bh);
2288}
2289
2290static void nvme_dsm_cb(void *opaque, int ret)
2291{
2292    NvmeDSMAIOCB *iocb = opaque;
2293    NvmeRequest *req = iocb->req;
2294    NvmeCtrl *n = nvme_ctrl(req);
2295    NvmeNamespace *ns = req->ns;
2296    NvmeDsmRange *range;
2297    uint64_t slba;
2298    uint32_t nlb;
2299
2300    if (ret < 0) {
2301        iocb->ret = ret;
2302        goto done;
2303    }
2304
2305next:
2306    if (iocb->idx == iocb->nr) {
2307        goto done;
2308    }
2309
2310    range = &iocb->range[iocb->idx++];
2311    slba = le64_to_cpu(range->slba);
2312    nlb = le32_to_cpu(range->nlb);
2313
2314    trace_pci_nvme_dsm_deallocate(slba, nlb);
2315
2316    if (nlb > n->dmrsl) {
2317        trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2318        goto next;
2319    }
2320
2321    if (nvme_check_bounds(ns, slba, nlb)) {
2322        trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2323                                             ns->id_ns.nsze);
2324        goto next;
2325    }
2326
2327    iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2328                                   nvme_l2b(ns, nlb),
2329                                   nvme_dsm_md_cb, iocb);
2330    return;
2331
2332done:
2333    iocb->aiocb = NULL;
2334    qemu_bh_schedule(iocb->bh);
2335}
2336
2337static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2338{
2339    NvmeNamespace *ns = req->ns;
2340    NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2341    uint32_t attr = le32_to_cpu(dsm->attributes);
2342    uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2343    uint16_t status = NVME_SUCCESS;
2344
2345    trace_pci_nvme_dsm(nr, attr);
2346
2347    if (attr & NVME_DSMGMT_AD) {
2348        NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2349                                         nvme_misc_cb, req);
2350
2351        iocb->req = req;
2352        iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
2353        iocb->ret = 0;
2354        iocb->range = g_new(NvmeDsmRange, nr);
2355        iocb->nr = nr;
2356        iocb->idx = 0;
2357
2358        status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2359                          req);
2360        if (status) {
2361            return status;
2362        }
2363
2364        req->aiocb = &iocb->common;
2365        nvme_dsm_cb(iocb, 0);
2366
2367        return NVME_NO_COMPLETE;
2368    }
2369
2370    return status;
2371}
2372
2373static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2374{
2375    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2376    NvmeNamespace *ns = req->ns;
2377    BlockBackend *blk = ns->blkconf.blk;
2378    uint64_t slba = le64_to_cpu(rw->slba);
2379    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2380    size_t len = nvme_l2b(ns, nlb);
2381    int64_t offset = nvme_l2b(ns, slba);
2382    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2383    uint32_t reftag = le32_to_cpu(rw->reftag);
2384    NvmeBounceContext *ctx = NULL;
2385    uint16_t status;
2386
2387    trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2388
2389    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2390        status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2391        if (status) {
2392            return status;
2393        }
2394
2395        if (prinfo & NVME_PRINFO_PRACT) {
2396            return NVME_INVALID_PROT_INFO | NVME_DNR;
2397        }
2398    }
2399
2400    if (len > n->page_size << n->params.vsl) {
2401        return NVME_INVALID_FIELD | NVME_DNR;
2402    }
2403
2404    status = nvme_check_bounds(ns, slba, nlb);
2405    if (status) {
2406        return status;
2407    }
2408
2409    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2410        status = nvme_check_dulbe(ns, slba, nlb);
2411        if (status) {
2412            return status;
2413        }
2414    }
2415
2416    ctx = g_new0(NvmeBounceContext, 1);
2417    ctx->req = req;
2418
2419    ctx->data.bounce = g_malloc(len);
2420
2421    qemu_iovec_init(&ctx->data.iov, 1);
2422    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2423
2424    block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2425                     BLOCK_ACCT_READ);
2426
2427    req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2428                                nvme_verify_mdata_in_cb, ctx);
2429    return NVME_NO_COMPLETE;
2430}
2431
2432typedef struct NvmeCopyAIOCB {
2433    BlockAIOCB common;
2434    BlockAIOCB *aiocb;
2435    NvmeRequest *req;
2436    QEMUBH *bh;
2437    int ret;
2438
2439    NvmeCopySourceRange *ranges;
2440    int nr;
2441    int idx;
2442
2443    uint8_t *bounce;
2444    QEMUIOVector iov;
2445    struct {
2446        BlockAcctCookie read;
2447        BlockAcctCookie write;
2448    } acct;
2449
2450    uint32_t reftag;
2451    uint64_t slba;
2452
2453    NvmeZone *zone;
2454} NvmeCopyAIOCB;
2455
2456static void nvme_copy_cancel(BlockAIOCB *aiocb)
2457{
2458    NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2459
2460    iocb->ret = -ECANCELED;
2461
2462    if (iocb->aiocb) {
2463        blk_aio_cancel_async(iocb->aiocb);
2464        iocb->aiocb = NULL;
2465    }
2466}
2467
2468static const AIOCBInfo nvme_copy_aiocb_info = {
2469    .aiocb_size   = sizeof(NvmeCopyAIOCB),
2470    .cancel_async = nvme_copy_cancel,
2471};
2472
2473static void nvme_copy_bh(void *opaque)
2474{
2475    NvmeCopyAIOCB *iocb = opaque;
2476    NvmeRequest *req = iocb->req;
2477    NvmeNamespace *ns = req->ns;
2478    BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2479
2480    if (iocb->idx != iocb->nr) {
2481        req->cqe.result = cpu_to_le32(iocb->idx);
2482    }
2483
2484    qemu_iovec_destroy(&iocb->iov);
2485    g_free(iocb->bounce);
2486
2487    qemu_bh_delete(iocb->bh);
2488    iocb->bh = NULL;
2489
2490    if (iocb->ret < 0) {
2491        block_acct_failed(stats, &iocb->acct.read);
2492        block_acct_failed(stats, &iocb->acct.write);
2493    } else {
2494        block_acct_done(stats, &iocb->acct.read);
2495        block_acct_done(stats, &iocb->acct.write);
2496    }
2497
2498    iocb->common.cb(iocb->common.opaque, iocb->ret);
2499    qemu_aio_unref(iocb);
2500}
2501
2502static void nvme_copy_cb(void *opaque, int ret);
2503
2504static void nvme_copy_out_completed_cb(void *opaque, int ret)
2505{
2506    NvmeCopyAIOCB *iocb = opaque;
2507    NvmeRequest *req = iocb->req;
2508    NvmeNamespace *ns = req->ns;
2509    NvmeCopySourceRange *range = &iocb->ranges[iocb->idx];
2510    uint32_t nlb = le32_to_cpu(range->nlb) + 1;
2511
2512    if (ret < 0) {
2513        iocb->ret = ret;
2514        goto out;
2515    } else if (iocb->ret < 0) {
2516        goto out;
2517    }
2518
2519    if (ns->params.zoned) {
2520        nvme_advance_zone_wp(ns, iocb->zone, nlb);
2521    }
2522
2523    iocb->idx++;
2524    iocb->slba += nlb;
2525out:
2526    nvme_copy_cb(iocb, iocb->ret);
2527}
2528
2529static void nvme_copy_out_cb(void *opaque, int ret)
2530{
2531    NvmeCopyAIOCB *iocb = opaque;
2532    NvmeRequest *req = iocb->req;
2533    NvmeNamespace *ns = req->ns;
2534    NvmeCopySourceRange *range;
2535    uint32_t nlb;
2536    size_t mlen;
2537    uint8_t *mbounce;
2538
2539    if (ret < 0) {
2540        iocb->ret = ret;
2541        goto out;
2542    } else if (iocb->ret < 0) {
2543        goto out;
2544    }
2545
2546    if (!ns->lbaf.ms) {
2547        nvme_copy_out_completed_cb(iocb, 0);
2548        return;
2549    }
2550
2551    range = &iocb->ranges[iocb->idx];
2552    nlb = le32_to_cpu(range->nlb) + 1;
2553
2554    mlen = nvme_m2b(ns, nlb);
2555    mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2556
2557    qemu_iovec_reset(&iocb->iov);
2558    qemu_iovec_add(&iocb->iov, mbounce, mlen);
2559
2560    iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2561                                  &iocb->iov, 0, nvme_copy_out_completed_cb,
2562                                  iocb);
2563
2564    return;
2565
2566out:
2567    nvme_copy_cb(iocb, ret);
2568}
2569
2570static void nvme_copy_in_completed_cb(void *opaque, int ret)
2571{
2572    NvmeCopyAIOCB *iocb = opaque;
2573    NvmeRequest *req = iocb->req;
2574    NvmeNamespace *ns = req->ns;
2575    NvmeCopySourceRange *range;
2576    uint32_t nlb;
2577    size_t len;
2578    uint16_t status;
2579
2580    if (ret < 0) {
2581        iocb->ret = ret;
2582        goto out;
2583    } else if (iocb->ret < 0) {
2584        goto out;
2585    }
2586
2587    range = &iocb->ranges[iocb->idx];
2588    nlb = le32_to_cpu(range->nlb) + 1;
2589    len = nvme_l2b(ns, nlb);
2590
2591    trace_pci_nvme_copy_out(iocb->slba, nlb);
2592
2593    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2594        NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2595
2596        uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2597        uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2598
2599        uint16_t apptag = le16_to_cpu(range->apptag);
2600        uint16_t appmask = le16_to_cpu(range->appmask);
2601        uint32_t reftag = le32_to_cpu(range->reftag);
2602
2603        uint64_t slba = le64_to_cpu(range->slba);
2604        size_t mlen = nvme_m2b(ns, nlb);
2605        uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2606
2607        status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2608                                slba, apptag, appmask, &reftag);
2609        if (status) {
2610            goto invalid;
2611        }
2612
2613        apptag = le16_to_cpu(copy->apptag);
2614        appmask = le16_to_cpu(copy->appmask);
2615
2616        if (prinfow & NVME_PRINFO_PRACT) {
2617            status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2618            if (status) {
2619                goto invalid;
2620            }
2621
2622            nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2623                                        apptag, &iocb->reftag);
2624        } else {
2625            status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2626                                    prinfow, iocb->slba, apptag, appmask,
2627                                    &iocb->reftag);
2628            if (status) {
2629                goto invalid;
2630            }
2631        }
2632    }
2633
2634    status = nvme_check_bounds(ns, iocb->slba, nlb);
2635    if (status) {
2636        goto invalid;
2637    }
2638
2639    if (ns->params.zoned) {
2640        status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2641        if (status) {
2642            goto invalid;
2643        }
2644
2645        iocb->zone->w_ptr += nlb;
2646    }
2647
2648    qemu_iovec_reset(&iocb->iov);
2649    qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2650
2651    iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2652                                  &iocb->iov, 0, nvme_copy_out_cb, iocb);
2653
2654    return;
2655
2656invalid:
2657    req->status = status;
2658    iocb->aiocb = NULL;
2659    if (iocb->bh) {
2660        qemu_bh_schedule(iocb->bh);
2661    }
2662
2663    return;
2664
2665out:
2666    nvme_copy_cb(iocb, ret);
2667}
2668
2669static void nvme_copy_in_cb(void *opaque, int ret)
2670{
2671    NvmeCopyAIOCB *iocb = opaque;
2672    NvmeRequest *req = iocb->req;
2673    NvmeNamespace *ns = req->ns;
2674    NvmeCopySourceRange *range;
2675    uint64_t slba;
2676    uint32_t nlb;
2677
2678    if (ret < 0) {
2679        iocb->ret = ret;
2680        goto out;
2681    } else if (iocb->ret < 0) {
2682        goto out;
2683    }
2684
2685    if (!ns->lbaf.ms) {
2686        nvme_copy_in_completed_cb(iocb, 0);
2687        return;
2688    }
2689
2690    range = &iocb->ranges[iocb->idx];
2691    slba = le64_to_cpu(range->slba);
2692    nlb = le32_to_cpu(range->nlb) + 1;
2693
2694    qemu_iovec_reset(&iocb->iov);
2695    qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2696                   nvme_m2b(ns, nlb));
2697
2698    iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2699                                 &iocb->iov, 0, nvme_copy_in_completed_cb,
2700                                 iocb);
2701    return;
2702
2703out:
2704    nvme_copy_cb(iocb, iocb->ret);
2705}
2706
2707static void nvme_copy_cb(void *opaque, int ret)
2708{
2709    NvmeCopyAIOCB *iocb = opaque;
2710    NvmeRequest *req = iocb->req;
2711    NvmeNamespace *ns = req->ns;
2712    NvmeCopySourceRange *range;
2713    uint64_t slba;
2714    uint32_t nlb;
2715    size_t len;
2716    uint16_t status;
2717
2718    if (ret < 0) {
2719        iocb->ret = ret;
2720        goto done;
2721    } else if (iocb->ret < 0) {
2722        goto done;
2723    }
2724
2725    if (iocb->idx == iocb->nr) {
2726        goto done;
2727    }
2728
2729    range = &iocb->ranges[iocb->idx];
2730    slba = le64_to_cpu(range->slba);
2731    nlb = le32_to_cpu(range->nlb) + 1;
2732    len = nvme_l2b(ns, nlb);
2733
2734    trace_pci_nvme_copy_source_range(slba, nlb);
2735
2736    if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2737        status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2738        goto invalid;
2739    }
2740
2741    status = nvme_check_bounds(ns, slba, nlb);
2742    if (status) {
2743        goto invalid;
2744    }
2745
2746    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2747        status = nvme_check_dulbe(ns, slba, nlb);
2748        if (status) {
2749            goto invalid;
2750        }
2751    }
2752
2753    if (ns->params.zoned) {
2754        status = nvme_check_zone_read(ns, slba, nlb);
2755        if (status) {
2756            goto invalid;
2757        }
2758    }
2759
2760    qemu_iovec_reset(&iocb->iov);
2761    qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2762
2763    iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2764                                 &iocb->iov, 0, nvme_copy_in_cb, iocb);
2765    return;
2766
2767invalid:
2768    req->status = status;
2769done:
2770    iocb->aiocb = NULL;
2771    if (iocb->bh) {
2772        qemu_bh_schedule(iocb->bh);
2773    }
2774}
2775
2776
2777static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2778{
2779    NvmeNamespace *ns = req->ns;
2780    NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2781    NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
2782                                      nvme_misc_cb, req);
2783    uint16_t nr = copy->nr + 1;
2784    uint8_t format = copy->control[0] & 0xf;
2785    uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2786    uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2787
2788    uint16_t status;
2789
2790    trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2791
2792    iocb->ranges = NULL;
2793    iocb->zone = NULL;
2794
2795    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2796        ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
2797        status = NVME_INVALID_FIELD | NVME_DNR;
2798        goto invalid;
2799    }
2800
2801    if (!(n->id_ctrl.ocfs & (1 << format))) {
2802        trace_pci_nvme_err_copy_invalid_format(format);
2803        status = NVME_INVALID_FIELD | NVME_DNR;
2804        goto invalid;
2805    }
2806
2807    if (nr > ns->id_ns.msrc + 1) {
2808        status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2809        goto invalid;
2810    }
2811
2812    iocb->ranges = g_new(NvmeCopySourceRange, nr);
2813
2814    status = nvme_h2c(n, (uint8_t *)iocb->ranges,
2815                      sizeof(NvmeCopySourceRange) * nr, req);
2816    if (status) {
2817        goto invalid;
2818    }
2819
2820    iocb->slba = le64_to_cpu(copy->sdlba);
2821
2822    if (ns->params.zoned) {
2823        iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
2824        if (!iocb->zone) {
2825            status = NVME_LBA_RANGE | NVME_DNR;
2826            goto invalid;
2827        }
2828
2829        status = nvme_zrm_auto(n, ns, iocb->zone);
2830        if (status) {
2831            goto invalid;
2832        }
2833    }
2834
2835    iocb->req = req;
2836    iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
2837    iocb->ret = 0;
2838    iocb->nr = nr;
2839    iocb->idx = 0;
2840    iocb->reftag = le32_to_cpu(copy->reftag);
2841    iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
2842                              ns->lbasz + ns->lbaf.ms);
2843
2844    qemu_iovec_init(&iocb->iov, 1);
2845
2846    block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
2847                     BLOCK_ACCT_READ);
2848    block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
2849                     BLOCK_ACCT_WRITE);
2850
2851    req->aiocb = &iocb->common;
2852    nvme_copy_cb(iocb, 0);
2853
2854    return NVME_NO_COMPLETE;
2855
2856invalid:
2857    g_free(iocb->ranges);
2858    qemu_aio_unref(iocb);
2859    return status;
2860}
2861
2862static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
2863{
2864    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2865    NvmeNamespace *ns = req->ns;
2866    BlockBackend *blk = ns->blkconf.blk;
2867    uint64_t slba = le64_to_cpu(rw->slba);
2868    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2869    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2870    size_t data_len = nvme_l2b(ns, nlb);
2871    size_t len = data_len;
2872    int64_t offset = nvme_l2b(ns, slba);
2873    struct nvme_compare_ctx *ctx = NULL;
2874    uint16_t status;
2875
2876    trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2877
2878    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
2879        return NVME_INVALID_PROT_INFO | NVME_DNR;
2880    }
2881
2882    if (nvme_ns_ext(ns)) {
2883        len += nvme_m2b(ns, nlb);
2884    }
2885
2886    status = nvme_check_mdts(n, len);
2887    if (status) {
2888        return status;
2889    }
2890
2891    status = nvme_check_bounds(ns, slba, nlb);
2892    if (status) {
2893        return status;
2894    }
2895
2896    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2897        status = nvme_check_dulbe(ns, slba, nlb);
2898        if (status) {
2899            return status;
2900        }
2901    }
2902
2903    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
2904    if (status) {
2905        return status;
2906    }
2907
2908    ctx = g_new(struct nvme_compare_ctx, 1);
2909    ctx->data.bounce = g_malloc(data_len);
2910
2911    req->opaque = ctx;
2912
2913    qemu_iovec_init(&ctx->data.iov, 1);
2914    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
2915
2916    block_acct_start(blk_get_stats(blk), &req->acct, data_len,
2917                     BLOCK_ACCT_READ);
2918    req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
2919                                nvme_compare_data_cb, req);
2920
2921    return NVME_NO_COMPLETE;
2922}
2923
2924typedef struct NvmeFlushAIOCB {
2925    BlockAIOCB common;
2926    BlockAIOCB *aiocb;
2927    NvmeRequest *req;
2928    QEMUBH *bh;
2929    int ret;
2930
2931    NvmeNamespace *ns;
2932    uint32_t nsid;
2933    bool broadcast;
2934} NvmeFlushAIOCB;
2935
2936static void nvme_flush_cancel(BlockAIOCB *acb)
2937{
2938    NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
2939
2940    iocb->ret = -ECANCELED;
2941
2942    if (iocb->aiocb) {
2943        blk_aio_cancel_async(iocb->aiocb);
2944    }
2945}
2946
2947static const AIOCBInfo nvme_flush_aiocb_info = {
2948    .aiocb_size = sizeof(NvmeFlushAIOCB),
2949    .cancel_async = nvme_flush_cancel,
2950    .get_aio_context = nvme_get_aio_context,
2951};
2952
2953static void nvme_flush_ns_cb(void *opaque, int ret)
2954{
2955    NvmeFlushAIOCB *iocb = opaque;
2956    NvmeNamespace *ns = iocb->ns;
2957
2958    if (ret < 0) {
2959        iocb->ret = ret;
2960        goto out;
2961    } else if (iocb->ret < 0) {
2962        goto out;
2963    }
2964
2965    if (ns) {
2966        trace_pci_nvme_flush_ns(iocb->nsid);
2967
2968        iocb->ns = NULL;
2969        iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
2970        return;
2971    }
2972
2973out:
2974    iocb->aiocb = NULL;
2975    qemu_bh_schedule(iocb->bh);
2976}
2977
2978static void nvme_flush_bh(void *opaque)
2979{
2980    NvmeFlushAIOCB *iocb = opaque;
2981    NvmeRequest *req = iocb->req;
2982    NvmeCtrl *n = nvme_ctrl(req);
2983    int i;
2984
2985    if (iocb->ret < 0) {
2986        goto done;
2987    }
2988
2989    if (iocb->broadcast) {
2990        for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
2991            iocb->ns = nvme_ns(n, i);
2992            if (iocb->ns) {
2993                iocb->nsid = i;
2994                break;
2995            }
2996        }
2997    }
2998
2999    if (!iocb->ns) {
3000        goto done;
3001    }
3002
3003    nvme_flush_ns_cb(iocb, 0);
3004    return;
3005
3006done:
3007    qemu_bh_delete(iocb->bh);
3008    iocb->bh = NULL;
3009
3010    iocb->common.cb(iocb->common.opaque, iocb->ret);
3011
3012    qemu_aio_unref(iocb);
3013
3014    return;
3015}
3016
3017static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3018{
3019    NvmeFlushAIOCB *iocb;
3020    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3021    uint16_t status;
3022
3023    iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3024
3025    iocb->req = req;
3026    iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
3027    iocb->ret = 0;
3028    iocb->ns = NULL;
3029    iocb->nsid = 0;
3030    iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3031
3032    if (!iocb->broadcast) {
3033        if (!nvme_nsid_valid(n, nsid)) {
3034            status = NVME_INVALID_NSID | NVME_DNR;
3035            goto out;
3036        }
3037
3038        iocb->ns = nvme_ns(n, nsid);
3039        if (!iocb->ns) {
3040            status = NVME_INVALID_FIELD | NVME_DNR;
3041            goto out;
3042        }
3043
3044        iocb->nsid = nsid;
3045    }
3046
3047    req->aiocb = &iocb->common;
3048    qemu_bh_schedule(iocb->bh);
3049
3050    return NVME_NO_COMPLETE;
3051
3052out:
3053    qemu_bh_delete(iocb->bh);
3054    iocb->bh = NULL;
3055    qemu_aio_unref(iocb);
3056
3057    return status;
3058}
3059
3060static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3061{
3062    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3063    NvmeNamespace *ns = req->ns;
3064    uint64_t slba = le64_to_cpu(rw->slba);
3065    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3066    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3067    uint64_t data_size = nvme_l2b(ns, nlb);
3068    uint64_t mapped_size = data_size;
3069    uint64_t data_offset;
3070    BlockBackend *blk = ns->blkconf.blk;
3071    uint16_t status;
3072
3073    if (nvme_ns_ext(ns)) {
3074        mapped_size += nvme_m2b(ns, nlb);
3075
3076        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3077            bool pract = prinfo & NVME_PRINFO_PRACT;
3078
3079            if (pract && ns->lbaf.ms == 8) {
3080                mapped_size = data_size;
3081            }
3082        }
3083    }
3084
3085    trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3086
3087    status = nvme_check_mdts(n, mapped_size);
3088    if (status) {
3089        goto invalid;
3090    }
3091
3092    status = nvme_check_bounds(ns, slba, nlb);
3093    if (status) {
3094        goto invalid;
3095    }
3096
3097    if (ns->params.zoned) {
3098        status = nvme_check_zone_read(ns, slba, nlb);
3099        if (status) {
3100            trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3101            goto invalid;
3102        }
3103    }
3104
3105    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3106        status = nvme_check_dulbe(ns, slba, nlb);
3107        if (status) {
3108            goto invalid;
3109        }
3110    }
3111
3112    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3113        return nvme_dif_rw(n, req);
3114    }
3115
3116    status = nvme_map_data(n, nlb, req);
3117    if (status) {
3118        goto invalid;
3119    }
3120
3121    data_offset = nvme_l2b(ns, slba);
3122
3123    block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3124                     BLOCK_ACCT_READ);
3125    nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3126    return NVME_NO_COMPLETE;
3127
3128invalid:
3129    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3130    return status | NVME_DNR;
3131}
3132
3133static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3134                              bool wrz)
3135{
3136    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3137    NvmeNamespace *ns = req->ns;
3138    uint64_t slba = le64_to_cpu(rw->slba);
3139    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3140    uint16_t ctrl = le16_to_cpu(rw->control);
3141    uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3142    uint64_t data_size = nvme_l2b(ns, nlb);
3143    uint64_t mapped_size = data_size;
3144    uint64_t data_offset;
3145    NvmeZone *zone;
3146    NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3147    BlockBackend *blk = ns->blkconf.blk;
3148    uint16_t status;
3149
3150    if (nvme_ns_ext(ns)) {
3151        mapped_size += nvme_m2b(ns, nlb);
3152
3153        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3154            bool pract = prinfo & NVME_PRINFO_PRACT;
3155
3156            if (pract && ns->lbaf.ms == 8) {
3157                mapped_size -= nvme_m2b(ns, nlb);
3158            }
3159        }
3160    }
3161
3162    trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3163                         nvme_nsid(ns), nlb, mapped_size, slba);
3164
3165    if (!wrz) {
3166        status = nvme_check_mdts(n, mapped_size);
3167        if (status) {
3168            goto invalid;
3169        }
3170    }
3171
3172    status = nvme_check_bounds(ns, slba, nlb);
3173    if (status) {
3174        goto invalid;
3175    }
3176
3177    if (ns->params.zoned) {
3178        zone = nvme_get_zone_by_slba(ns, slba);
3179        assert(zone);
3180
3181        if (append) {
3182            bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3183
3184            if (unlikely(slba != zone->d.zslba)) {
3185                trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3186                status = NVME_INVALID_FIELD;
3187                goto invalid;
3188            }
3189
3190            if (n->params.zasl &&
3191                data_size > (uint64_t)n->page_size << n->params.zasl) {
3192                trace_pci_nvme_err_zasl(data_size);
3193                return NVME_INVALID_FIELD | NVME_DNR;
3194            }
3195
3196            slba = zone->w_ptr;
3197            rw->slba = cpu_to_le64(slba);
3198            res->slba = cpu_to_le64(slba);
3199
3200            switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3201            case NVME_ID_NS_DPS_TYPE_1:
3202                if (!piremap) {
3203                    return NVME_INVALID_PROT_INFO | NVME_DNR;
3204                }
3205
3206                /* fallthrough */
3207
3208            case NVME_ID_NS_DPS_TYPE_2:
3209                if (piremap) {
3210                    uint32_t reftag = le32_to_cpu(rw->reftag);
3211                    rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3212                }
3213
3214                break;
3215
3216            case NVME_ID_NS_DPS_TYPE_3:
3217                if (piremap) {
3218                    return NVME_INVALID_PROT_INFO | NVME_DNR;
3219                }
3220
3221                break;
3222            }
3223        }
3224
3225        status = nvme_check_zone_write(ns, zone, slba, nlb);
3226        if (status) {
3227            goto invalid;
3228        }
3229
3230        status = nvme_zrm_auto(n, ns, zone);
3231        if (status) {
3232            goto invalid;
3233        }
3234
3235        zone->w_ptr += nlb;
3236    }
3237
3238    data_offset = nvme_l2b(ns, slba);
3239
3240    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3241        return nvme_dif_rw(n, req);
3242    }
3243
3244    if (!wrz) {
3245        status = nvme_map_data(n, nlb, req);
3246        if (status) {
3247            goto invalid;
3248        }
3249
3250        block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3251                         BLOCK_ACCT_WRITE);
3252        nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3253    } else {
3254        req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3255                                           BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3256                                           req);
3257    }
3258
3259    return NVME_NO_COMPLETE;
3260
3261invalid:
3262    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3263    return status | NVME_DNR;
3264}
3265
3266static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3267{
3268    return nvme_do_write(n, req, false, false);
3269}
3270
3271static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3272{
3273    return nvme_do_write(n, req, false, true);
3274}
3275
3276static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3277{
3278    return nvme_do_write(n, req, true, false);
3279}
3280
3281static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3282                                            uint64_t *slba, uint32_t *zone_idx)
3283{
3284    uint32_t dw10 = le32_to_cpu(c->cdw10);
3285    uint32_t dw11 = le32_to_cpu(c->cdw11);
3286
3287    if (!ns->params.zoned) {
3288        trace_pci_nvme_err_invalid_opc(c->opcode);
3289        return NVME_INVALID_OPCODE | NVME_DNR;
3290    }
3291
3292    *slba = ((uint64_t)dw11) << 32 | dw10;
3293    if (unlikely(*slba >= ns->id_ns.nsze)) {
3294        trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3295        *slba = 0;
3296        return NVME_LBA_RANGE | NVME_DNR;
3297    }
3298
3299    *zone_idx = nvme_zone_idx(ns, *slba);
3300    assert(*zone_idx < ns->num_zones);
3301
3302    return NVME_SUCCESS;
3303}
3304
3305typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3306                                 NvmeRequest *);
3307
3308enum NvmeZoneProcessingMask {
3309    NVME_PROC_CURRENT_ZONE    = 0,
3310    NVME_PROC_OPENED_ZONES    = 1 << 0,
3311    NVME_PROC_CLOSED_ZONES    = 1 << 1,
3312    NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3313    NVME_PROC_FULL_ZONES      = 1 << 3,
3314};
3315
3316static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3317                               NvmeZoneState state, NvmeRequest *req)
3318{
3319    return nvme_zrm_open(nvme_ctrl(req), ns, zone);
3320}
3321
3322static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3323                                NvmeZoneState state, NvmeRequest *req)
3324{
3325    return nvme_zrm_close(ns, zone);
3326}
3327
3328static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3329                                 NvmeZoneState state, NvmeRequest *req)
3330{
3331    return nvme_zrm_finish(ns, zone);
3332}
3333
3334static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3335                                  NvmeZoneState state, NvmeRequest *req)
3336{
3337    switch (state) {
3338    case NVME_ZONE_STATE_READ_ONLY:
3339        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3340        /* fall through */
3341    case NVME_ZONE_STATE_OFFLINE:
3342        return NVME_SUCCESS;
3343    default:
3344        return NVME_ZONE_INVAL_TRANSITION;
3345    }
3346}
3347
3348static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3349{
3350    uint16_t status;
3351    uint8_t state = nvme_get_zone_state(zone);
3352
3353    if (state == NVME_ZONE_STATE_EMPTY) {
3354        status = nvme_aor_check(ns, 1, 0);
3355        if (status) {
3356            return status;
3357        }
3358        nvme_aor_inc_active(ns);
3359        zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3360        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3361        return NVME_SUCCESS;
3362    }
3363
3364    return NVME_ZONE_INVAL_TRANSITION;
3365}
3366
3367static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3368                                    enum NvmeZoneProcessingMask proc_mask,
3369                                    op_handler_t op_hndlr, NvmeRequest *req)
3370{
3371    uint16_t status = NVME_SUCCESS;
3372    NvmeZoneState zs = nvme_get_zone_state(zone);
3373    bool proc_zone;
3374
3375    switch (zs) {
3376    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3377    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3378        proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3379        break;
3380    case NVME_ZONE_STATE_CLOSED:
3381        proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3382        break;
3383    case NVME_ZONE_STATE_READ_ONLY:
3384        proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3385        break;
3386    case NVME_ZONE_STATE_FULL:
3387        proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3388        break;
3389    default:
3390        proc_zone = false;
3391    }
3392
3393    if (proc_zone) {
3394        status = op_hndlr(ns, zone, zs, req);
3395    }
3396
3397    return status;
3398}
3399
3400static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3401                                enum NvmeZoneProcessingMask proc_mask,
3402                                op_handler_t op_hndlr, NvmeRequest *req)
3403{
3404    NvmeZone *next;
3405    uint16_t status = NVME_SUCCESS;
3406    int i;
3407
3408    if (!proc_mask) {
3409        status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3410    } else {
3411        if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3412            QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3413                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3414                                             req);
3415                if (status && status != NVME_NO_COMPLETE) {
3416                    goto out;
3417                }
3418            }
3419        }
3420        if (proc_mask & NVME_PROC_OPENED_ZONES) {
3421            QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3422                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3423                                             req);
3424                if (status && status != NVME_NO_COMPLETE) {
3425                    goto out;
3426                }
3427            }
3428
3429            QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3430                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3431                                             req);
3432                if (status && status != NVME_NO_COMPLETE) {
3433                    goto out;
3434                }
3435            }
3436        }
3437        if (proc_mask & NVME_PROC_FULL_ZONES) {
3438            QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3439                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3440                                             req);
3441                if (status && status != NVME_NO_COMPLETE) {
3442                    goto out;
3443                }
3444            }
3445        }
3446
3447        if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3448            for (i = 0; i < ns->num_zones; i++, zone++) {
3449                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3450                                             req);
3451                if (status && status != NVME_NO_COMPLETE) {
3452                    goto out;
3453                }
3454            }
3455        }
3456    }
3457
3458out:
3459    return status;
3460}
3461
3462typedef struct NvmeZoneResetAIOCB {
3463    BlockAIOCB common;
3464    BlockAIOCB *aiocb;
3465    NvmeRequest *req;
3466    QEMUBH *bh;
3467    int ret;
3468
3469    bool all;
3470    int idx;
3471    NvmeZone *zone;
3472} NvmeZoneResetAIOCB;
3473
3474static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3475{
3476    NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3477    NvmeRequest *req = iocb->req;
3478    NvmeNamespace *ns = req->ns;
3479
3480    iocb->idx = ns->num_zones;
3481
3482    iocb->ret = -ECANCELED;
3483
3484    if (iocb->aiocb) {
3485        blk_aio_cancel_async(iocb->aiocb);
3486        iocb->aiocb = NULL;
3487    }
3488}
3489
3490static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3491    .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3492    .cancel_async = nvme_zone_reset_cancel,
3493};
3494
3495static void nvme_zone_reset_bh(void *opaque)
3496{
3497    NvmeZoneResetAIOCB *iocb = opaque;
3498
3499    iocb->common.cb(iocb->common.opaque, iocb->ret);
3500
3501    qemu_bh_delete(iocb->bh);
3502    iocb->bh = NULL;
3503    qemu_aio_unref(iocb);
3504}
3505
3506static void nvme_zone_reset_cb(void *opaque, int ret);
3507
3508static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3509{
3510    NvmeZoneResetAIOCB *iocb = opaque;
3511    NvmeRequest *req = iocb->req;
3512    NvmeNamespace *ns = req->ns;
3513    int64_t moff;
3514    int count;
3515
3516    if (ret < 0) {
3517        nvme_zone_reset_cb(iocb, ret);
3518        return;
3519    }
3520
3521    if (!ns->lbaf.ms) {
3522        nvme_zone_reset_cb(iocb, 0);
3523        return;
3524    }
3525
3526    moff = nvme_moff(ns, iocb->zone->d.zslba);
3527    count = nvme_m2b(ns, ns->zone_size);
3528
3529    iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3530                                        BDRV_REQ_MAY_UNMAP,
3531                                        nvme_zone_reset_cb, iocb);
3532    return;
3533}
3534
3535static void nvme_zone_reset_cb(void *opaque, int ret)
3536{
3537    NvmeZoneResetAIOCB *iocb = opaque;
3538    NvmeRequest *req = iocb->req;
3539    NvmeNamespace *ns = req->ns;
3540
3541    if (ret < 0) {
3542        iocb->ret = ret;
3543        goto done;
3544    }
3545
3546    if (iocb->zone) {
3547        nvme_zrm_reset(ns, iocb->zone);
3548
3549        if (!iocb->all) {
3550            goto done;
3551        }
3552    }
3553
3554    while (iocb->idx < ns->num_zones) {
3555        NvmeZone *zone = &ns->zone_array[iocb->idx++];
3556
3557        switch (nvme_get_zone_state(zone)) {
3558        case NVME_ZONE_STATE_EMPTY:
3559            if (!iocb->all) {
3560                goto done;
3561            }
3562
3563            continue;
3564
3565        case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3566        case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3567        case NVME_ZONE_STATE_CLOSED:
3568        case NVME_ZONE_STATE_FULL:
3569            iocb->zone = zone;
3570            break;
3571
3572        default:
3573            continue;
3574        }
3575
3576        trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3577
3578        iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3579                                            nvme_l2b(ns, zone->d.zslba),
3580                                            nvme_l2b(ns, ns->zone_size),
3581                                            BDRV_REQ_MAY_UNMAP,
3582                                            nvme_zone_reset_epilogue_cb,
3583                                            iocb);
3584        return;
3585    }
3586
3587done:
3588    iocb->aiocb = NULL;
3589    if (iocb->bh) {
3590        qemu_bh_schedule(iocb->bh);
3591    }
3592}
3593
3594static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3595{
3596    NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3597    NvmeNamespace *ns = req->ns;
3598    NvmeZone *zone;
3599    NvmeZoneResetAIOCB *iocb;
3600    uint8_t *zd_ext;
3601    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3602    uint64_t slba = 0;
3603    uint32_t zone_idx = 0;
3604    uint16_t status;
3605    uint8_t action;
3606    bool all;
3607    enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3608
3609    action = dw13 & 0xff;
3610    all = !!(dw13 & 0x100);
3611
3612    req->status = NVME_SUCCESS;
3613
3614    if (!all) {
3615        status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3616        if (status) {
3617            return status;
3618        }
3619    }
3620
3621    zone = &ns->zone_array[zone_idx];
3622    if (slba != zone->d.zslba) {
3623        trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3624        return NVME_INVALID_FIELD | NVME_DNR;
3625    }
3626
3627    switch (action) {
3628
3629    case NVME_ZONE_ACTION_OPEN:
3630        if (all) {
3631            proc_mask = NVME_PROC_CLOSED_ZONES;
3632        }
3633        trace_pci_nvme_open_zone(slba, zone_idx, all);
3634        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3635        break;
3636
3637    case NVME_ZONE_ACTION_CLOSE:
3638        if (all) {
3639            proc_mask = NVME_PROC_OPENED_ZONES;
3640        }
3641        trace_pci_nvme_close_zone(slba, zone_idx, all);
3642        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3643        break;
3644
3645    case NVME_ZONE_ACTION_FINISH:
3646        if (all) {
3647            proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3648        }
3649        trace_pci_nvme_finish_zone(slba, zone_idx, all);
3650        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3651        break;
3652
3653    case NVME_ZONE_ACTION_RESET:
3654        trace_pci_nvme_reset_zone(slba, zone_idx, all);
3655
3656        iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3657                           nvme_misc_cb, req);
3658
3659        iocb->req = req;
3660        iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
3661        iocb->ret = 0;
3662        iocb->all = all;
3663        iocb->idx = zone_idx;
3664        iocb->zone = NULL;
3665
3666        req->aiocb = &iocb->common;
3667        nvme_zone_reset_cb(iocb, 0);
3668
3669        return NVME_NO_COMPLETE;
3670
3671    case NVME_ZONE_ACTION_OFFLINE:
3672        if (all) {
3673            proc_mask = NVME_PROC_READ_ONLY_ZONES;
3674        }
3675        trace_pci_nvme_offline_zone(slba, zone_idx, all);
3676        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3677        break;
3678
3679    case NVME_ZONE_ACTION_SET_ZD_EXT:
3680        trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3681        if (all || !ns->params.zd_extension_size) {
3682            return NVME_INVALID_FIELD | NVME_DNR;
3683        }
3684        zd_ext = nvme_get_zd_extension(ns, zone_idx);
3685        status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3686        if (status) {
3687            trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3688            return status;
3689        }
3690
3691        status = nvme_set_zd_ext(ns, zone);
3692        if (status == NVME_SUCCESS) {
3693            trace_pci_nvme_zd_extension_set(zone_idx);
3694            return status;
3695        }
3696        break;
3697
3698    default:
3699        trace_pci_nvme_err_invalid_mgmt_action(action);
3700        status = NVME_INVALID_FIELD;
3701    }
3702
3703    if (status == NVME_ZONE_INVAL_TRANSITION) {
3704        trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3705                                                         zone->d.za);
3706    }
3707    if (status) {
3708        status |= NVME_DNR;
3709    }
3710
3711    return status;
3712}
3713
3714static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3715{
3716    NvmeZoneState zs = nvme_get_zone_state(zl);
3717
3718    switch (zafs) {
3719    case NVME_ZONE_REPORT_ALL:
3720        return true;
3721    case NVME_ZONE_REPORT_EMPTY:
3722        return zs == NVME_ZONE_STATE_EMPTY;
3723    case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3724        return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3725    case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3726        return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3727    case NVME_ZONE_REPORT_CLOSED:
3728        return zs == NVME_ZONE_STATE_CLOSED;
3729    case NVME_ZONE_REPORT_FULL:
3730        return zs == NVME_ZONE_STATE_FULL;
3731    case NVME_ZONE_REPORT_READ_ONLY:
3732        return zs == NVME_ZONE_STATE_READ_ONLY;
3733    case NVME_ZONE_REPORT_OFFLINE:
3734        return zs == NVME_ZONE_STATE_OFFLINE;
3735    default:
3736        return false;
3737    }
3738}
3739
3740static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3741{
3742    NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3743    NvmeNamespace *ns = req->ns;
3744    /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3745    uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
3746    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3747    uint32_t zone_idx, zra, zrasf, partial;
3748    uint64_t max_zones, nr_zones = 0;
3749    uint16_t status;
3750    uint64_t slba;
3751    NvmeZoneDescr *z;
3752    NvmeZone *zone;
3753    NvmeZoneReportHeader *header;
3754    void *buf, *buf_p;
3755    size_t zone_entry_sz;
3756    int i;
3757
3758    req->status = NVME_SUCCESS;
3759
3760    status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3761    if (status) {
3762        return status;
3763    }
3764
3765    zra = dw13 & 0xff;
3766    if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
3767        return NVME_INVALID_FIELD | NVME_DNR;
3768    }
3769    if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
3770        return NVME_INVALID_FIELD | NVME_DNR;
3771    }
3772
3773    zrasf = (dw13 >> 8) & 0xff;
3774    if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
3775        return NVME_INVALID_FIELD | NVME_DNR;
3776    }
3777
3778    if (data_size < sizeof(NvmeZoneReportHeader)) {
3779        return NVME_INVALID_FIELD | NVME_DNR;
3780    }
3781
3782    status = nvme_check_mdts(n, data_size);
3783    if (status) {
3784        return status;
3785    }
3786
3787    partial = (dw13 >> 16) & 0x01;
3788
3789    zone_entry_sz = sizeof(NvmeZoneDescr);
3790    if (zra == NVME_ZONE_REPORT_EXTENDED) {
3791        zone_entry_sz += ns->params.zd_extension_size;
3792    }
3793
3794    max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
3795    buf = g_malloc0(data_size);
3796
3797    zone = &ns->zone_array[zone_idx];
3798    for (i = zone_idx; i < ns->num_zones; i++) {
3799        if (partial && nr_zones >= max_zones) {
3800            break;
3801        }
3802        if (nvme_zone_matches_filter(zrasf, zone++)) {
3803            nr_zones++;
3804        }
3805    }
3806    header = (NvmeZoneReportHeader *)buf;
3807    header->nr_zones = cpu_to_le64(nr_zones);
3808
3809    buf_p = buf + sizeof(NvmeZoneReportHeader);
3810    for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
3811        zone = &ns->zone_array[zone_idx];
3812        if (nvme_zone_matches_filter(zrasf, zone)) {
3813            z = (NvmeZoneDescr *)buf_p;
3814            buf_p += sizeof(NvmeZoneDescr);
3815
3816            z->zt = zone->d.zt;
3817            z->zs = zone->d.zs;
3818            z->zcap = cpu_to_le64(zone->d.zcap);
3819            z->zslba = cpu_to_le64(zone->d.zslba);
3820            z->za = zone->d.za;
3821
3822            if (nvme_wp_is_valid(zone)) {
3823                z->wp = cpu_to_le64(zone->d.wp);
3824            } else {
3825                z->wp = cpu_to_le64(~0ULL);
3826            }
3827
3828            if (zra == NVME_ZONE_REPORT_EXTENDED) {
3829                if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
3830                    memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
3831                           ns->params.zd_extension_size);
3832                }
3833                buf_p += ns->params.zd_extension_size;
3834            }
3835
3836            max_zones--;
3837        }
3838    }
3839
3840    status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
3841
3842    g_free(buf);
3843
3844    return status;
3845}
3846
3847static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
3848{
3849    NvmeNamespace *ns;
3850    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3851
3852    trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
3853                          req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
3854
3855    if (!nvme_nsid_valid(n, nsid)) {
3856        return NVME_INVALID_NSID | NVME_DNR;
3857    }
3858
3859    /*
3860     * In the base NVM command set, Flush may apply to all namespaces
3861     * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
3862     * along with TP 4056 (Namespace Types), it may be pretty screwed up.
3863     *
3864     * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
3865     * opcode with a specific command since we cannot determine a unique I/O
3866     * command set. Opcode 0h could have any other meaning than something
3867     * equivalent to flushing and say it DOES have completely different
3868     * semantics in some other command set - does an NSID of FFFFFFFFh then
3869     * mean "for all namespaces, apply whatever command set specific command
3870     * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
3871     * whatever command that uses the 0h opcode if, and only if, it allows NSID
3872     * to be FFFFFFFFh"?
3873     *
3874     * Anyway (and luckily), for now, we do not care about this since the
3875     * device only supports namespace types that includes the NVM Flush command
3876     * (NVM and Zoned), so always do an NVM Flush.
3877     */
3878    if (req->cmd.opcode == NVME_CMD_FLUSH) {
3879        return nvme_flush(n, req);
3880    }
3881
3882    ns = nvme_ns(n, nsid);
3883    if (unlikely(!ns)) {
3884        return NVME_INVALID_FIELD | NVME_DNR;
3885    }
3886
3887    if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
3888        trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
3889        return NVME_INVALID_OPCODE | NVME_DNR;
3890    }
3891
3892    if (ns->status) {
3893        return ns->status;
3894    }
3895
3896    req->ns = ns;
3897
3898    switch (req->cmd.opcode) {
3899    case NVME_CMD_WRITE_ZEROES:
3900        return nvme_write_zeroes(n, req);
3901    case NVME_CMD_ZONE_APPEND:
3902        return nvme_zone_append(n, req);
3903    case NVME_CMD_WRITE:
3904        return nvme_write(n, req);
3905    case NVME_CMD_READ:
3906        return nvme_read(n, req);
3907    case NVME_CMD_COMPARE:
3908        return nvme_compare(n, req);
3909    case NVME_CMD_DSM:
3910        return nvme_dsm(n, req);
3911    case NVME_CMD_VERIFY:
3912        return nvme_verify(n, req);
3913    case NVME_CMD_COPY:
3914        return nvme_copy(n, req);
3915    case NVME_CMD_ZONE_MGMT_SEND:
3916        return nvme_zone_mgmt_send(n, req);
3917    case NVME_CMD_ZONE_MGMT_RECV:
3918        return nvme_zone_mgmt_recv(n, req);
3919    default:
3920        assert(false);
3921    }
3922
3923    return NVME_INVALID_OPCODE | NVME_DNR;
3924}
3925
3926static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
3927{
3928    n->sq[sq->sqid] = NULL;
3929    timer_free(sq->timer);
3930    g_free(sq->io_req);
3931    if (sq->sqid) {
3932        g_free(sq);
3933    }
3934}
3935
3936static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
3937{
3938    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
3939    NvmeRequest *r, *next;
3940    NvmeSQueue *sq;
3941    NvmeCQueue *cq;
3942    uint16_t qid = le16_to_cpu(c->qid);
3943
3944    if (unlikely(!qid || nvme_check_sqid(n, qid))) {
3945        trace_pci_nvme_err_invalid_del_sq(qid);
3946        return NVME_INVALID_QID | NVME_DNR;
3947    }
3948
3949    trace_pci_nvme_del_sq(qid);
3950
3951    sq = n->sq[qid];
3952    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
3953        r = QTAILQ_FIRST(&sq->out_req_list);
3954        assert(r->aiocb);
3955        blk_aio_cancel(r->aiocb);
3956    }
3957
3958    assert(QTAILQ_EMPTY(&sq->out_req_list));
3959
3960    if (!nvme_check_cqid(n, sq->cqid)) {
3961        cq = n->cq[sq->cqid];
3962        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
3963
3964        nvme_post_cqes(cq);
3965        QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
3966            if (r->sq == sq) {
3967                QTAILQ_REMOVE(&cq->req_list, r, entry);
3968                QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
3969            }
3970        }
3971    }
3972
3973    nvme_free_sq(sq, n);
3974    return NVME_SUCCESS;
3975}
3976
3977static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
3978                         uint16_t sqid, uint16_t cqid, uint16_t size)
3979{
3980    int i;
3981    NvmeCQueue *cq;
3982
3983    sq->ctrl = n;
3984    sq->dma_addr = dma_addr;
3985    sq->sqid = sqid;
3986    sq->size = size;
3987    sq->cqid = cqid;
3988    sq->head = sq->tail = 0;
3989    sq->io_req = g_new0(NvmeRequest, sq->size);
3990
3991    QTAILQ_INIT(&sq->req_list);
3992    QTAILQ_INIT(&sq->out_req_list);
3993    for (i = 0; i < sq->size; i++) {
3994        sq->io_req[i].sq = sq;
3995        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
3996    }
3997    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
3998
3999    assert(n->cq[cqid]);
4000    cq = n->cq[cqid];
4001    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4002    n->sq[sqid] = sq;
4003}
4004
4005static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4006{
4007    NvmeSQueue *sq;
4008    NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4009
4010    uint16_t cqid = le16_to_cpu(c->cqid);
4011    uint16_t sqid = le16_to_cpu(c->sqid);
4012    uint16_t qsize = le16_to_cpu(c->qsize);
4013    uint16_t qflags = le16_to_cpu(c->sq_flags);
4014    uint64_t prp1 = le64_to_cpu(c->prp1);
4015
4016    trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4017
4018    if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4019        trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4020        return NVME_INVALID_CQID | NVME_DNR;
4021    }
4022    if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
4023        n->sq[sqid] != NULL)) {
4024        trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4025        return NVME_INVALID_QID | NVME_DNR;
4026    }
4027    if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4028        trace_pci_nvme_err_invalid_create_sq_size(qsize);
4029        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4030    }
4031    if (unlikely(prp1 & (n->page_size - 1))) {
4032        trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4033        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4034    }
4035    if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4036        trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4037        return NVME_INVALID_FIELD | NVME_DNR;
4038    }
4039    sq = g_malloc0(sizeof(*sq));
4040    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4041    return NVME_SUCCESS;
4042}
4043
4044struct nvme_stats {
4045    uint64_t units_read;
4046    uint64_t units_written;
4047    uint64_t read_commands;
4048    uint64_t write_commands;
4049};
4050
4051static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4052{
4053    BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4054
4055    stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4056    stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4057    stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4058    stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4059}
4060
4061static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4062                                uint64_t off, NvmeRequest *req)
4063{
4064    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4065    struct nvme_stats stats = { 0 };
4066    NvmeSmartLog smart = { 0 };
4067    uint32_t trans_len;
4068    NvmeNamespace *ns;
4069    time_t current_ms;
4070
4071    if (off >= sizeof(smart)) {
4072        return NVME_INVALID_FIELD | NVME_DNR;
4073    }
4074
4075    if (nsid != 0xffffffff) {
4076        ns = nvme_ns(n, nsid);
4077        if (!ns) {
4078            return NVME_INVALID_NSID | NVME_DNR;
4079        }
4080        nvme_set_blk_stats(ns, &stats);
4081    } else {
4082        int i;
4083
4084        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4085            ns = nvme_ns(n, i);
4086            if (!ns) {
4087                continue;
4088            }
4089            nvme_set_blk_stats(ns, &stats);
4090        }
4091    }
4092
4093    trans_len = MIN(sizeof(smart) - off, buf_len);
4094    smart.critical_warning = n->smart_critical_warning;
4095
4096    smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4097                                                        1000));
4098    smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4099                                                           1000));
4100    smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4101    smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4102
4103    smart.temperature = cpu_to_le16(n->temperature);
4104
4105    if ((n->temperature >= n->features.temp_thresh_hi) ||
4106        (n->temperature <= n->features.temp_thresh_low)) {
4107        smart.critical_warning |= NVME_SMART_TEMPERATURE;
4108    }
4109
4110    current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4111    smart.power_on_hours[0] =
4112        cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4113
4114    if (!rae) {
4115        nvme_clear_events(n, NVME_AER_TYPE_SMART);
4116    }
4117
4118    return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4119}
4120
4121static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4122                                 NvmeRequest *req)
4123{
4124    uint32_t trans_len;
4125    NvmeFwSlotInfoLog fw_log = {
4126        .afi = 0x1,
4127    };
4128
4129    if (off >= sizeof(fw_log)) {
4130        return NVME_INVALID_FIELD | NVME_DNR;
4131    }
4132
4133    strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4134    trans_len = MIN(sizeof(fw_log) - off, buf_len);
4135
4136    return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4137}
4138
4139static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4140                                uint64_t off, NvmeRequest *req)
4141{
4142    uint32_t trans_len;
4143    NvmeErrorLog errlog;
4144
4145    if (off >= sizeof(errlog)) {
4146        return NVME_INVALID_FIELD | NVME_DNR;
4147    }
4148
4149    if (!rae) {
4150        nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4151    }
4152
4153    memset(&errlog, 0x0, sizeof(errlog));
4154    trans_len = MIN(sizeof(errlog) - off, buf_len);
4155
4156    return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4157}
4158
4159static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4160                                    uint64_t off, NvmeRequest *req)
4161{
4162    uint32_t nslist[1024];
4163    uint32_t trans_len;
4164    int i = 0;
4165    uint32_t nsid;
4166
4167    memset(nslist, 0x0, sizeof(nslist));
4168    trans_len = MIN(sizeof(nslist) - off, buf_len);
4169
4170    while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4171            NVME_CHANGED_NSID_SIZE) {
4172        /*
4173         * If more than 1024 namespaces, the first entry in the log page should
4174         * be set to FFFFFFFFh and the others to 0 as spec.
4175         */
4176        if (i == ARRAY_SIZE(nslist)) {
4177            memset(nslist, 0x0, sizeof(nslist));
4178            nslist[0] = 0xffffffff;
4179            break;
4180        }
4181
4182        nslist[i++] = nsid;
4183        clear_bit(nsid, n->changed_nsids);
4184    }
4185
4186    /*
4187     * Remove all the remaining list entries in case returns directly due to
4188     * more than 1024 namespaces.
4189     */
4190    if (nslist[0] == 0xffffffff) {
4191        bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4192    }
4193
4194    if (!rae) {
4195        nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4196    }
4197
4198    return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4199}
4200
4201static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4202                                 uint64_t off, NvmeRequest *req)
4203{
4204    NvmeEffectsLog log = {};
4205    const uint32_t *src_iocs = NULL;
4206    uint32_t trans_len;
4207
4208    if (off >= sizeof(log)) {
4209        trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4210        return NVME_INVALID_FIELD | NVME_DNR;
4211    }
4212
4213    switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4214    case NVME_CC_CSS_NVM:
4215        src_iocs = nvme_cse_iocs_nvm;
4216        /* fall through */
4217    case NVME_CC_CSS_ADMIN_ONLY:
4218        break;
4219    case NVME_CC_CSS_CSI:
4220        switch (csi) {
4221        case NVME_CSI_NVM:
4222            src_iocs = nvme_cse_iocs_nvm;
4223            break;
4224        case NVME_CSI_ZONED:
4225            src_iocs = nvme_cse_iocs_zoned;
4226            break;
4227        }
4228    }
4229
4230    memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4231
4232    if (src_iocs) {
4233        memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4234    }
4235
4236    trans_len = MIN(sizeof(log) - off, buf_len);
4237
4238    return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4239}
4240
4241static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4242{
4243    NvmeCmd *cmd = &req->cmd;
4244
4245    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4246    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4247    uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4248    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4249    uint8_t  lid = dw10 & 0xff;
4250    uint8_t  lsp = (dw10 >> 8) & 0xf;
4251    uint8_t  rae = (dw10 >> 15) & 0x1;
4252    uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
4253    uint32_t numdl, numdu;
4254    uint64_t off, lpol, lpou;
4255    size_t   len;
4256    uint16_t status;
4257
4258    numdl = (dw10 >> 16);
4259    numdu = (dw11 & 0xffff);
4260    lpol = dw12;
4261    lpou = dw13;
4262
4263    len = (((numdu << 16) | numdl) + 1) << 2;
4264    off = (lpou << 32ULL) | lpol;
4265
4266    if (off & 0x3) {
4267        return NVME_INVALID_FIELD | NVME_DNR;
4268    }
4269
4270    trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4271
4272    status = nvme_check_mdts(n, len);
4273    if (status) {
4274        return status;
4275    }
4276
4277    switch (lid) {
4278    case NVME_LOG_ERROR_INFO:
4279        return nvme_error_info(n, rae, len, off, req);
4280    case NVME_LOG_SMART_INFO:
4281        return nvme_smart_info(n, rae, len, off, req);
4282    case NVME_LOG_FW_SLOT_INFO:
4283        return nvme_fw_log_info(n, len, off, req);
4284    case NVME_LOG_CHANGED_NSLIST:
4285        return nvme_changed_nslist(n, rae, len, off, req);
4286    case NVME_LOG_CMD_EFFECTS:
4287        return nvme_cmd_effects(n, csi, len, off, req);
4288    default:
4289        trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4290        return NVME_INVALID_FIELD | NVME_DNR;
4291    }
4292}
4293
4294static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4295{
4296    n->cq[cq->cqid] = NULL;
4297    timer_free(cq->timer);
4298    if (msix_enabled(&n->parent_obj)) {
4299        msix_vector_unuse(&n->parent_obj, cq->vector);
4300    }
4301    if (cq->cqid) {
4302        g_free(cq);
4303    }
4304}
4305
4306static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4307{
4308    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4309    NvmeCQueue *cq;
4310    uint16_t qid = le16_to_cpu(c->qid);
4311
4312    if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4313        trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4314        return NVME_INVALID_CQID | NVME_DNR;
4315    }
4316
4317    cq = n->cq[qid];
4318    if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4319        trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4320        return NVME_INVALID_QUEUE_DEL;
4321    }
4322
4323    if (cq->irq_enabled && cq->tail != cq->head) {
4324        n->cq_pending--;
4325    }
4326
4327    nvme_irq_deassert(n, cq);
4328    trace_pci_nvme_del_cq(qid);
4329    nvme_free_cq(cq, n);
4330    return NVME_SUCCESS;
4331}
4332
4333static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4334                         uint16_t cqid, uint16_t vector, uint16_t size,
4335                         uint16_t irq_enabled)
4336{
4337    int ret;
4338
4339    if (msix_enabled(&n->parent_obj)) {
4340        ret = msix_vector_use(&n->parent_obj, vector);
4341        assert(ret == 0);
4342    }
4343    cq->ctrl = n;
4344    cq->cqid = cqid;
4345    cq->size = size;
4346    cq->dma_addr = dma_addr;
4347    cq->phase = 1;
4348    cq->irq_enabled = irq_enabled;
4349    cq->vector = vector;
4350    cq->head = cq->tail = 0;
4351    QTAILQ_INIT(&cq->req_list);
4352    QTAILQ_INIT(&cq->sq_list);
4353    n->cq[cqid] = cq;
4354    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4355}
4356
4357static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4358{
4359    NvmeCQueue *cq;
4360    NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4361    uint16_t cqid = le16_to_cpu(c->cqid);
4362    uint16_t vector = le16_to_cpu(c->irq_vector);
4363    uint16_t qsize = le16_to_cpu(c->qsize);
4364    uint16_t qflags = le16_to_cpu(c->cq_flags);
4365    uint64_t prp1 = le64_to_cpu(c->prp1);
4366
4367    trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4368                             NVME_CQ_FLAGS_IEN(qflags) != 0);
4369
4370    if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
4371        n->cq[cqid] != NULL)) {
4372        trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4373        return NVME_INVALID_QID | NVME_DNR;
4374    }
4375    if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4376        trace_pci_nvme_err_invalid_create_cq_size(qsize);
4377        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4378    }
4379    if (unlikely(prp1 & (n->page_size - 1))) {
4380        trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4381        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4382    }
4383    if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4384        trace_pci_nvme_err_invalid_create_cq_vector(vector);
4385        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4386    }
4387    if (unlikely(vector >= n->params.msix_qsize)) {
4388        trace_pci_nvme_err_invalid_create_cq_vector(vector);
4389        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4390    }
4391    if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4392        trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4393        return NVME_INVALID_FIELD | NVME_DNR;
4394    }
4395
4396    cq = g_malloc0(sizeof(*cq));
4397    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4398                 NVME_CQ_FLAGS_IEN(qflags));
4399
4400    /*
4401     * It is only required to set qs_created when creating a completion queue;
4402     * creating a submission queue without a matching completion queue will
4403     * fail.
4404     */
4405    n->qs_created = true;
4406    return NVME_SUCCESS;
4407}
4408
4409static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4410{
4411    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4412
4413    return nvme_c2h(n, id, sizeof(id), req);
4414}
4415
4416static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4417{
4418    trace_pci_nvme_identify_ctrl();
4419
4420    return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4421}
4422
4423static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4424{
4425    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4426    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4427    NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4428
4429    trace_pci_nvme_identify_ctrl_csi(c->csi);
4430
4431    switch (c->csi) {
4432    case NVME_CSI_NVM:
4433        id_nvm->vsl = n->params.vsl;
4434        id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4435        break;
4436
4437    case NVME_CSI_ZONED:
4438        ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4439        break;
4440
4441    default:
4442        return NVME_INVALID_FIELD | NVME_DNR;
4443    }
4444
4445    return nvme_c2h(n, id, sizeof(id), req);
4446}
4447
4448static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4449{
4450    NvmeNamespace *ns;
4451    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4452    uint32_t nsid = le32_to_cpu(c->nsid);
4453
4454    trace_pci_nvme_identify_ns(nsid);
4455
4456    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4457        return NVME_INVALID_NSID | NVME_DNR;
4458    }
4459
4460    ns = nvme_ns(n, nsid);
4461    if (unlikely(!ns)) {
4462        if (!active) {
4463            ns = nvme_subsys_ns(n->subsys, nsid);
4464            if (!ns) {
4465                return nvme_rpt_empty_id_struct(n, req);
4466            }
4467        } else {
4468            return nvme_rpt_empty_id_struct(n, req);
4469        }
4470    }
4471
4472    if (active || ns->csi == NVME_CSI_NVM) {
4473        return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4474    }
4475
4476    return NVME_INVALID_CMD_SET | NVME_DNR;
4477}
4478
4479static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4480                                        bool attached)
4481{
4482    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4483    uint32_t nsid = le32_to_cpu(c->nsid);
4484    uint16_t min_id = le16_to_cpu(c->ctrlid);
4485    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4486    uint16_t *ids = &list[1];
4487    NvmeNamespace *ns;
4488    NvmeCtrl *ctrl;
4489    int cntlid, nr_ids = 0;
4490
4491    trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4492
4493    if (!n->subsys) {
4494        return NVME_INVALID_FIELD | NVME_DNR;
4495    }
4496
4497    if (attached) {
4498        if (nsid == NVME_NSID_BROADCAST) {
4499            return NVME_INVALID_FIELD | NVME_DNR;
4500        }
4501
4502        ns = nvme_subsys_ns(n->subsys, nsid);
4503        if (!ns) {
4504            return NVME_INVALID_FIELD | NVME_DNR;
4505        }
4506    }
4507
4508    for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4509        ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4510        if (!ctrl) {
4511            continue;
4512        }
4513
4514        if (attached && !nvme_ns(ctrl, nsid)) {
4515            continue;
4516        }
4517
4518        ids[nr_ids++] = cntlid;
4519    }
4520
4521    list[0] = nr_ids;
4522
4523    return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4524}
4525
4526static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4527                                     bool active)
4528{
4529    NvmeNamespace *ns;
4530    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4531    uint32_t nsid = le32_to_cpu(c->nsid);
4532
4533    trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4534
4535    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4536        return NVME_INVALID_NSID | NVME_DNR;
4537    }
4538
4539    ns = nvme_ns(n, nsid);
4540    if (unlikely(!ns)) {
4541        if (!active) {
4542            ns = nvme_subsys_ns(n->subsys, nsid);
4543            if (!ns) {
4544                return nvme_rpt_empty_id_struct(n, req);
4545            }
4546        } else {
4547            return nvme_rpt_empty_id_struct(n, req);
4548        }
4549    }
4550
4551    if (c->csi == NVME_CSI_NVM) {
4552        return nvme_rpt_empty_id_struct(n, req);
4553    } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4554        return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4555                        req);
4556    }
4557
4558    return NVME_INVALID_FIELD | NVME_DNR;
4559}
4560
4561static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4562                                     bool active)
4563{
4564    NvmeNamespace *ns;
4565    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4566    uint32_t min_nsid = le32_to_cpu(c->nsid);
4567    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4568    static const int data_len = sizeof(list);
4569    uint32_t *list_ptr = (uint32_t *)list;
4570    int i, j = 0;
4571
4572    trace_pci_nvme_identify_nslist(min_nsid);
4573
4574    /*
4575     * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4576     * since the Active Namespace ID List should return namespaces with ids
4577     * *higher* than the NSID specified in the command. This is also specified
4578     * in the spec (NVM Express v1.3d, Section 5.15.4).
4579     */
4580    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4581        return NVME_INVALID_NSID | NVME_DNR;
4582    }
4583
4584    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4585        ns = nvme_ns(n, i);
4586        if (!ns) {
4587            if (!active) {
4588                ns = nvme_subsys_ns(n->subsys, i);
4589                if (!ns) {
4590                    continue;
4591                }
4592            } else {
4593                continue;
4594            }
4595        }
4596        if (ns->params.nsid <= min_nsid) {
4597            continue;
4598        }
4599        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4600        if (j == data_len / sizeof(uint32_t)) {
4601            break;
4602        }
4603    }
4604
4605    return nvme_c2h(n, list, data_len, req);
4606}
4607
4608static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4609                                         bool active)
4610{
4611    NvmeNamespace *ns;
4612    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4613    uint32_t min_nsid = le32_to_cpu(c->nsid);
4614    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4615    static const int data_len = sizeof(list);
4616    uint32_t *list_ptr = (uint32_t *)list;
4617    int i, j = 0;
4618
4619    trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
4620
4621    /*
4622     * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4623     */
4624    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4625        return NVME_INVALID_NSID | NVME_DNR;
4626    }
4627
4628    if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
4629        return NVME_INVALID_FIELD | NVME_DNR;
4630    }
4631
4632    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4633        ns = nvme_ns(n, i);
4634        if (!ns) {
4635            if (!active) {
4636                ns = nvme_subsys_ns(n->subsys, i);
4637                if (!ns) {
4638                    continue;
4639                }
4640            } else {
4641                continue;
4642            }
4643        }
4644        if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
4645            continue;
4646        }
4647        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4648        if (j == data_len / sizeof(uint32_t)) {
4649            break;
4650        }
4651    }
4652
4653    return nvme_c2h(n, list, data_len, req);
4654}
4655
4656static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
4657{
4658    NvmeNamespace *ns;
4659    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4660    uint32_t nsid = le32_to_cpu(c->nsid);
4661    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4662    uint8_t *pos = list;
4663    struct {
4664        NvmeIdNsDescr hdr;
4665        uint8_t v[NVME_NIDL_UUID];
4666    } QEMU_PACKED uuid = {};
4667    struct {
4668        NvmeIdNsDescr hdr;
4669        uint64_t v;
4670    } QEMU_PACKED eui64 = {};
4671    struct {
4672        NvmeIdNsDescr hdr;
4673        uint8_t v;
4674    } QEMU_PACKED csi = {};
4675
4676    trace_pci_nvme_identify_ns_descr_list(nsid);
4677
4678    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4679        return NVME_INVALID_NSID | NVME_DNR;
4680    }
4681
4682    ns = nvme_ns(n, nsid);
4683    if (unlikely(!ns)) {
4684        return NVME_INVALID_FIELD | NVME_DNR;
4685    }
4686
4687    /*
4688     * If the EUI-64 field is 0 and the NGUID field is 0, the namespace must
4689     * provide a valid Namespace UUID in the Namespace Identification Descriptor
4690     * data structure. QEMU does not yet support setting NGUID.
4691     */
4692    uuid.hdr.nidt = NVME_NIDT_UUID;
4693    uuid.hdr.nidl = NVME_NIDL_UUID;
4694    memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
4695    memcpy(pos, &uuid, sizeof(uuid));
4696    pos += sizeof(uuid);
4697
4698    if (ns->params.eui64) {
4699        eui64.hdr.nidt = NVME_NIDT_EUI64;
4700        eui64.hdr.nidl = NVME_NIDL_EUI64;
4701        eui64.v = cpu_to_be64(ns->params.eui64);
4702        memcpy(pos, &eui64, sizeof(eui64));
4703        pos += sizeof(eui64);
4704    }
4705
4706    csi.hdr.nidt = NVME_NIDT_CSI;
4707    csi.hdr.nidl = NVME_NIDL_CSI;
4708    csi.v = ns->csi;
4709    memcpy(pos, &csi, sizeof(csi));
4710    pos += sizeof(csi);
4711
4712    return nvme_c2h(n, list, sizeof(list), req);
4713}
4714
4715static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
4716{
4717    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4718    static const int data_len = sizeof(list);
4719
4720    trace_pci_nvme_identify_cmd_set();
4721
4722    NVME_SET_CSI(*list, NVME_CSI_NVM);
4723    NVME_SET_CSI(*list, NVME_CSI_ZONED);
4724
4725    return nvme_c2h(n, list, data_len, req);
4726}
4727
4728static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
4729{
4730    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4731
4732    trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
4733                            c->csi);
4734
4735    switch (c->cns) {
4736    case NVME_ID_CNS_NS:
4737        return nvme_identify_ns(n, req, true);
4738    case NVME_ID_CNS_NS_PRESENT:
4739        return nvme_identify_ns(n, req, false);
4740    case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
4741        return nvme_identify_ctrl_list(n, req, true);
4742    case NVME_ID_CNS_CTRL_LIST:
4743        return nvme_identify_ctrl_list(n, req, false);
4744    case NVME_ID_CNS_CS_NS:
4745        return nvme_identify_ns_csi(n, req, true);
4746    case NVME_ID_CNS_CS_NS_PRESENT:
4747        return nvme_identify_ns_csi(n, req, false);
4748    case NVME_ID_CNS_CTRL:
4749        return nvme_identify_ctrl(n, req);
4750    case NVME_ID_CNS_CS_CTRL:
4751        return nvme_identify_ctrl_csi(n, req);
4752    case NVME_ID_CNS_NS_ACTIVE_LIST:
4753        return nvme_identify_nslist(n, req, true);
4754    case NVME_ID_CNS_NS_PRESENT_LIST:
4755        return nvme_identify_nslist(n, req, false);
4756    case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
4757        return nvme_identify_nslist_csi(n, req, true);
4758    case NVME_ID_CNS_CS_NS_PRESENT_LIST:
4759        return nvme_identify_nslist_csi(n, req, false);
4760    case NVME_ID_CNS_NS_DESCR_LIST:
4761        return nvme_identify_ns_descr_list(n, req);
4762    case NVME_ID_CNS_IO_COMMAND_SET:
4763        return nvme_identify_cmd_set(n, req);
4764    default:
4765        trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
4766        return NVME_INVALID_FIELD | NVME_DNR;
4767    }
4768}
4769
4770static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
4771{
4772    uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
4773
4774    req->cqe.result = 1;
4775    if (nvme_check_sqid(n, sqid)) {
4776        return NVME_INVALID_FIELD | NVME_DNR;
4777    }
4778
4779    return NVME_SUCCESS;
4780}
4781
4782static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
4783{
4784    trace_pci_nvme_setfeat_timestamp(ts);
4785
4786    n->host_timestamp = le64_to_cpu(ts);
4787    n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4788}
4789
4790static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
4791{
4792    uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4793    uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
4794
4795    union nvme_timestamp {
4796        struct {
4797            uint64_t timestamp:48;
4798            uint64_t sync:1;
4799            uint64_t origin:3;
4800            uint64_t rsvd1:12;
4801        };
4802        uint64_t all;
4803    };
4804
4805    union nvme_timestamp ts;
4806    ts.all = 0;
4807    ts.timestamp = n->host_timestamp + elapsed_time;
4808
4809    /* If the host timestamp is non-zero, set the timestamp origin */
4810    ts.origin = n->host_timestamp ? 0x01 : 0x00;
4811
4812    trace_pci_nvme_getfeat_timestamp(ts.all);
4813
4814    return cpu_to_le64(ts.all);
4815}
4816
4817static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
4818{
4819    uint64_t timestamp = nvme_get_timestamp(n);
4820
4821    return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
4822}
4823
4824static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
4825{
4826    NvmeCmd *cmd = &req->cmd;
4827    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4828    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4829    uint32_t nsid = le32_to_cpu(cmd->nsid);
4830    uint32_t result;
4831    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
4832    NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
4833    uint16_t iv;
4834    NvmeNamespace *ns;
4835    int i;
4836
4837    static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
4838        [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
4839    };
4840
4841    trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
4842
4843    if (!nvme_feature_support[fid]) {
4844        return NVME_INVALID_FIELD | NVME_DNR;
4845    }
4846
4847    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
4848        if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4849            /*
4850             * The Reservation Notification Mask and Reservation Persistence
4851             * features require a status code of Invalid Field in Command when
4852             * NSID is FFFFFFFFh. Since the device does not support those
4853             * features we can always return Invalid Namespace or Format as we
4854             * should do for all other features.
4855             */
4856            return NVME_INVALID_NSID | NVME_DNR;
4857        }
4858
4859        if (!nvme_ns(n, nsid)) {
4860            return NVME_INVALID_FIELD | NVME_DNR;
4861        }
4862    }
4863
4864    switch (sel) {
4865    case NVME_GETFEAT_SELECT_CURRENT:
4866        break;
4867    case NVME_GETFEAT_SELECT_SAVED:
4868        /* no features are saveable by the controller; fallthrough */
4869    case NVME_GETFEAT_SELECT_DEFAULT:
4870        goto defaults;
4871    case NVME_GETFEAT_SELECT_CAP:
4872        result = nvme_feature_cap[fid];
4873        goto out;
4874    }
4875
4876    switch (fid) {
4877    case NVME_TEMPERATURE_THRESHOLD:
4878        result = 0;
4879
4880        /*
4881         * The controller only implements the Composite Temperature sensor, so
4882         * return 0 for all other sensors.
4883         */
4884        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4885            goto out;
4886        }
4887
4888        switch (NVME_TEMP_THSEL(dw11)) {
4889        case NVME_TEMP_THSEL_OVER:
4890            result = n->features.temp_thresh_hi;
4891            goto out;
4892        case NVME_TEMP_THSEL_UNDER:
4893            result = n->features.temp_thresh_low;
4894            goto out;
4895        }
4896
4897        return NVME_INVALID_FIELD | NVME_DNR;
4898    case NVME_ERROR_RECOVERY:
4899        if (!nvme_nsid_valid(n, nsid)) {
4900            return NVME_INVALID_NSID | NVME_DNR;
4901        }
4902
4903        ns = nvme_ns(n, nsid);
4904        if (unlikely(!ns)) {
4905            return NVME_INVALID_FIELD | NVME_DNR;
4906        }
4907
4908        result = ns->features.err_rec;
4909        goto out;
4910    case NVME_VOLATILE_WRITE_CACHE:
4911        result = 0;
4912        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4913            ns = nvme_ns(n, i);
4914            if (!ns) {
4915                continue;
4916            }
4917
4918            result = blk_enable_write_cache(ns->blkconf.blk);
4919            if (result) {
4920                break;
4921            }
4922        }
4923        trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
4924        goto out;
4925    case NVME_ASYNCHRONOUS_EVENT_CONF:
4926        result = n->features.async_config;
4927        goto out;
4928    case NVME_TIMESTAMP:
4929        return nvme_get_feature_timestamp(n, req);
4930    default:
4931        break;
4932    }
4933
4934defaults:
4935    switch (fid) {
4936    case NVME_TEMPERATURE_THRESHOLD:
4937        result = 0;
4938
4939        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4940            break;
4941        }
4942
4943        if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
4944            result = NVME_TEMPERATURE_WARNING;
4945        }
4946
4947        break;
4948    case NVME_NUMBER_OF_QUEUES:
4949        result = (n->params.max_ioqpairs - 1) |
4950            ((n->params.max_ioqpairs - 1) << 16);
4951        trace_pci_nvme_getfeat_numq(result);
4952        break;
4953    case NVME_INTERRUPT_VECTOR_CONF:
4954        iv = dw11 & 0xffff;
4955        if (iv >= n->params.max_ioqpairs + 1) {
4956            return NVME_INVALID_FIELD | NVME_DNR;
4957        }
4958
4959        result = iv;
4960        if (iv == n->admin_cq.vector) {
4961            result |= NVME_INTVC_NOCOALESCING;
4962        }
4963        break;
4964    default:
4965        result = nvme_feature_default[fid];
4966        break;
4967    }
4968
4969out:
4970    req->cqe.result = cpu_to_le32(result);
4971    return NVME_SUCCESS;
4972}
4973
4974static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
4975{
4976    uint16_t ret;
4977    uint64_t timestamp;
4978
4979    ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
4980    if (ret) {
4981        return ret;
4982    }
4983
4984    nvme_set_timestamp(n, timestamp);
4985
4986    return NVME_SUCCESS;
4987}
4988
4989static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
4990{
4991    NvmeNamespace *ns = NULL;
4992
4993    NvmeCmd *cmd = &req->cmd;
4994    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4995    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4996    uint32_t nsid = le32_to_cpu(cmd->nsid);
4997    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
4998    uint8_t save = NVME_SETFEAT_SAVE(dw10);
4999    int i;
5000
5001    trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5002
5003    if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5004        return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5005    }
5006
5007    if (!nvme_feature_support[fid]) {
5008        return NVME_INVALID_FIELD | NVME_DNR;
5009    }
5010
5011    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5012        if (nsid != NVME_NSID_BROADCAST) {
5013            if (!nvme_nsid_valid(n, nsid)) {
5014                return NVME_INVALID_NSID | NVME_DNR;
5015            }
5016
5017            ns = nvme_ns(n, nsid);
5018            if (unlikely(!ns)) {
5019                return NVME_INVALID_FIELD | NVME_DNR;
5020            }
5021        }
5022    } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5023        if (!nvme_nsid_valid(n, nsid)) {
5024            return NVME_INVALID_NSID | NVME_DNR;
5025        }
5026
5027        return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5028    }
5029
5030    if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5031        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5032    }
5033
5034    switch (fid) {
5035    case NVME_TEMPERATURE_THRESHOLD:
5036        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5037            break;
5038        }
5039
5040        switch (NVME_TEMP_THSEL(dw11)) {
5041        case NVME_TEMP_THSEL_OVER:
5042            n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5043            break;
5044        case NVME_TEMP_THSEL_UNDER:
5045            n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5046            break;
5047        default:
5048            return NVME_INVALID_FIELD | NVME_DNR;
5049        }
5050
5051        if ((n->temperature >= n->features.temp_thresh_hi) ||
5052            (n->temperature <= n->features.temp_thresh_low)) {
5053            nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
5054        }
5055
5056        break;
5057    case NVME_ERROR_RECOVERY:
5058        if (nsid == NVME_NSID_BROADCAST) {
5059            for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5060                ns = nvme_ns(n, i);
5061
5062                if (!ns) {
5063                    continue;
5064                }
5065
5066                if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5067                    ns->features.err_rec = dw11;
5068                }
5069            }
5070
5071            break;
5072        }
5073
5074        assert(ns);
5075        if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
5076            ns->features.err_rec = dw11;
5077        }
5078        break;
5079    case NVME_VOLATILE_WRITE_CACHE:
5080        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5081            ns = nvme_ns(n, i);
5082            if (!ns) {
5083                continue;
5084            }
5085
5086            if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5087                blk_flush(ns->blkconf.blk);
5088            }
5089
5090            blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5091        }
5092
5093        break;
5094
5095    case NVME_NUMBER_OF_QUEUES:
5096        if (n->qs_created) {
5097            return NVME_CMD_SEQ_ERROR | NVME_DNR;
5098        }
5099
5100        /*
5101         * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5102         * and NSQR.
5103         */
5104        if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5105            return NVME_INVALID_FIELD | NVME_DNR;
5106        }
5107
5108        trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5109                                    ((dw11 >> 16) & 0xffff) + 1,
5110                                    n->params.max_ioqpairs,
5111                                    n->params.max_ioqpairs);
5112        req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
5113                                      ((n->params.max_ioqpairs - 1) << 16));
5114        break;
5115    case NVME_ASYNCHRONOUS_EVENT_CONF:
5116        n->features.async_config = dw11;
5117        break;
5118    case NVME_TIMESTAMP:
5119        return nvme_set_feature_timestamp(n, req);
5120    case NVME_COMMAND_SET_PROFILE:
5121        if (dw11 & 0x1ff) {
5122            trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5123            return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5124        }
5125        break;
5126    default:
5127        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5128    }
5129    return NVME_SUCCESS;
5130}
5131
5132static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5133{
5134    trace_pci_nvme_aer(nvme_cid(req));
5135
5136    if (n->outstanding_aers > n->params.aerl) {
5137        trace_pci_nvme_aer_aerl_exceeded();
5138        return NVME_AER_LIMIT_EXCEEDED;
5139    }
5140
5141    n->aer_reqs[n->outstanding_aers] = req;
5142    n->outstanding_aers++;
5143
5144    if (!QTAILQ_EMPTY(&n->aer_queue)) {
5145        nvme_process_aers(n);
5146    }
5147
5148    return NVME_NO_COMPLETE;
5149}
5150
5151static void nvme_update_dmrsl(NvmeCtrl *n)
5152{
5153    int nsid;
5154
5155    for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5156        NvmeNamespace *ns = nvme_ns(n, nsid);
5157        if (!ns) {
5158            continue;
5159        }
5160
5161        n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5162                                BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5163    }
5164}
5165
5166static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5167{
5168    uint32_t cc = ldl_le_p(&n->bar.cc);
5169
5170    ns->iocs = nvme_cse_iocs_none;
5171    switch (ns->csi) {
5172    case NVME_CSI_NVM:
5173        if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5174            ns->iocs = nvme_cse_iocs_nvm;
5175        }
5176        break;
5177    case NVME_CSI_ZONED:
5178        if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5179            ns->iocs = nvme_cse_iocs_zoned;
5180        } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5181            ns->iocs = nvme_cse_iocs_nvm;
5182        }
5183        break;
5184    }
5185}
5186
5187static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5188{
5189    NvmeNamespace *ns;
5190    NvmeCtrl *ctrl;
5191    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5192    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5193    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5194    bool attach = !(dw10 & 0xf);
5195    uint16_t *nr_ids = &list[0];
5196    uint16_t *ids = &list[1];
5197    uint16_t ret;
5198    int i;
5199
5200    trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5201
5202    if (!nvme_nsid_valid(n, nsid)) {
5203        return NVME_INVALID_NSID | NVME_DNR;
5204    }
5205
5206    ns = nvme_subsys_ns(n->subsys, nsid);
5207    if (!ns) {
5208        return NVME_INVALID_FIELD | NVME_DNR;
5209    }
5210
5211    ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5212    if (ret) {
5213        return ret;
5214    }
5215
5216    if (!*nr_ids) {
5217        return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5218    }
5219
5220    *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5221    for (i = 0; i < *nr_ids; i++) {
5222        ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5223        if (!ctrl) {
5224            return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5225        }
5226
5227        if (attach) {
5228            if (nvme_ns(ctrl, nsid)) {
5229                return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5230            }
5231
5232            if (ns->attached && !ns->params.shared) {
5233                return NVME_NS_PRIVATE | NVME_DNR;
5234            }
5235
5236            nvme_attach_ns(ctrl, ns);
5237            nvme_select_iocs_ns(ctrl, ns);
5238        } else {
5239            if (!nvme_ns(ctrl, nsid)) {
5240                return NVME_NS_NOT_ATTACHED | NVME_DNR;
5241            }
5242
5243            ctrl->namespaces[nsid] = NULL;
5244            ns->attached--;
5245
5246            nvme_update_dmrsl(ctrl);
5247        }
5248
5249        /*
5250         * Add namespace id to the changed namespace id list for event clearing
5251         * via Get Log Page command.
5252         */
5253        if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5254            nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5255                               NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5256                               NVME_LOG_CHANGED_NSLIST);
5257        }
5258    }
5259
5260    return NVME_SUCCESS;
5261}
5262
5263typedef struct NvmeFormatAIOCB {
5264    BlockAIOCB common;
5265    BlockAIOCB *aiocb;
5266    QEMUBH *bh;
5267    NvmeRequest *req;
5268    int ret;
5269
5270    NvmeNamespace *ns;
5271    uint32_t nsid;
5272    bool broadcast;
5273    int64_t offset;
5274} NvmeFormatAIOCB;
5275
5276static void nvme_format_bh(void *opaque);
5277
5278static void nvme_format_cancel(BlockAIOCB *aiocb)
5279{
5280    NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5281
5282    if (iocb->aiocb) {
5283        blk_aio_cancel_async(iocb->aiocb);
5284    }
5285}
5286
5287static const AIOCBInfo nvme_format_aiocb_info = {
5288    .aiocb_size = sizeof(NvmeFormatAIOCB),
5289    .cancel_async = nvme_format_cancel,
5290    .get_aio_context = nvme_get_aio_context,
5291};
5292
5293static void nvme_format_set(NvmeNamespace *ns, NvmeCmd *cmd)
5294{
5295    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5296    uint8_t lbaf = dw10 & 0xf;
5297    uint8_t pi = (dw10 >> 5) & 0x7;
5298    uint8_t mset = (dw10 >> 4) & 0x1;
5299    uint8_t pil = (dw10 >> 8) & 0x1;
5300
5301    trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5302
5303    ns->id_ns.dps = (pil << 3) | pi;
5304    ns->id_ns.flbas = lbaf | (mset << 4);
5305
5306    nvme_ns_init_format(ns);
5307}
5308
5309static void nvme_format_ns_cb(void *opaque, int ret)
5310{
5311    NvmeFormatAIOCB *iocb = opaque;
5312    NvmeRequest *req = iocb->req;
5313    NvmeNamespace *ns = iocb->ns;
5314    int bytes;
5315
5316    if (ret < 0) {
5317        iocb->ret = ret;
5318        goto done;
5319    }
5320
5321    assert(ns);
5322
5323    if (iocb->offset < ns->size) {
5324        bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5325
5326        iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5327                                            bytes, BDRV_REQ_MAY_UNMAP,
5328                                            nvme_format_ns_cb, iocb);
5329
5330        iocb->offset += bytes;
5331        return;
5332    }
5333
5334    nvme_format_set(ns, &req->cmd);
5335    ns->status = 0x0;
5336    iocb->ns = NULL;
5337    iocb->offset = 0;
5338
5339done:
5340    iocb->aiocb = NULL;
5341    qemu_bh_schedule(iocb->bh);
5342}
5343
5344static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5345{
5346    if (ns->params.zoned) {
5347        return NVME_INVALID_FORMAT | NVME_DNR;
5348    }
5349
5350    if (lbaf > ns->id_ns.nlbaf) {
5351        return NVME_INVALID_FORMAT | NVME_DNR;
5352    }
5353
5354    if (pi && (ns->id_ns.lbaf[lbaf].ms < sizeof(NvmeDifTuple))) {
5355        return NVME_INVALID_FORMAT | NVME_DNR;
5356    }
5357
5358    if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5359        return NVME_INVALID_FIELD | NVME_DNR;
5360    }
5361
5362    return NVME_SUCCESS;
5363}
5364
5365static void nvme_format_bh(void *opaque)
5366{
5367    NvmeFormatAIOCB *iocb = opaque;
5368    NvmeRequest *req = iocb->req;
5369    NvmeCtrl *n = nvme_ctrl(req);
5370    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5371    uint8_t lbaf = dw10 & 0xf;
5372    uint8_t pi = (dw10 >> 5) & 0x7;
5373    uint16_t status;
5374    int i;
5375
5376    if (iocb->ret < 0) {
5377        goto done;
5378    }
5379
5380    if (iocb->broadcast) {
5381        for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5382            iocb->ns = nvme_ns(n, i);
5383            if (iocb->ns) {
5384                iocb->nsid = i;
5385                break;
5386            }
5387        }
5388    }
5389
5390    if (!iocb->ns) {
5391        goto done;
5392    }
5393
5394    status = nvme_format_check(iocb->ns, lbaf, pi);
5395    if (status) {
5396        req->status = status;
5397        goto done;
5398    }
5399
5400    iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5401    nvme_format_ns_cb(iocb, 0);
5402    return;
5403
5404done:
5405    qemu_bh_delete(iocb->bh);
5406    iocb->bh = NULL;
5407
5408    iocb->common.cb(iocb->common.opaque, iocb->ret);
5409
5410    qemu_aio_unref(iocb);
5411}
5412
5413static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5414{
5415    NvmeFormatAIOCB *iocb;
5416    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5417    uint16_t status;
5418
5419    iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5420
5421    iocb->req = req;
5422    iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
5423    iocb->ret = 0;
5424    iocb->ns = NULL;
5425    iocb->nsid = 0;
5426    iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5427    iocb->offset = 0;
5428
5429    if (!iocb->broadcast) {
5430        if (!nvme_nsid_valid(n, nsid)) {
5431            status = NVME_INVALID_NSID | NVME_DNR;
5432            goto out;
5433        }
5434
5435        iocb->ns = nvme_ns(n, nsid);
5436        if (!iocb->ns) {
5437            status = NVME_INVALID_FIELD | NVME_DNR;
5438            goto out;
5439        }
5440    }
5441
5442    req->aiocb = &iocb->common;
5443    qemu_bh_schedule(iocb->bh);
5444
5445    return NVME_NO_COMPLETE;
5446
5447out:
5448    qemu_bh_delete(iocb->bh);
5449    iocb->bh = NULL;
5450    qemu_aio_unref(iocb);
5451    return status;
5452}
5453
5454static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
5455{
5456    trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
5457                             nvme_adm_opc_str(req->cmd.opcode));
5458
5459    if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
5460        trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
5461        return NVME_INVALID_OPCODE | NVME_DNR;
5462    }
5463
5464    /* SGLs shall not be used for Admin commands in NVMe over PCIe */
5465    if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
5466        return NVME_INVALID_FIELD | NVME_DNR;
5467    }
5468
5469    switch (req->cmd.opcode) {
5470    case NVME_ADM_CMD_DELETE_SQ:
5471        return nvme_del_sq(n, req);
5472    case NVME_ADM_CMD_CREATE_SQ:
5473        return nvme_create_sq(n, req);
5474    case NVME_ADM_CMD_GET_LOG_PAGE:
5475        return nvme_get_log(n, req);
5476    case NVME_ADM_CMD_DELETE_CQ:
5477        return nvme_del_cq(n, req);
5478    case NVME_ADM_CMD_CREATE_CQ:
5479        return nvme_create_cq(n, req);
5480    case NVME_ADM_CMD_IDENTIFY:
5481        return nvme_identify(n, req);
5482    case NVME_ADM_CMD_ABORT:
5483        return nvme_abort(n, req);
5484    case NVME_ADM_CMD_SET_FEATURES:
5485        return nvme_set_feature(n, req);
5486    case NVME_ADM_CMD_GET_FEATURES:
5487        return nvme_get_feature(n, req);
5488    case NVME_ADM_CMD_ASYNC_EV_REQ:
5489        return nvme_aer(n, req);
5490    case NVME_ADM_CMD_NS_ATTACHMENT:
5491        return nvme_ns_attachment(n, req);
5492    case NVME_ADM_CMD_FORMAT_NVM:
5493        return nvme_format(n, req);
5494    default:
5495        assert(false);
5496    }
5497
5498    return NVME_INVALID_OPCODE | NVME_DNR;
5499}
5500
5501static void nvme_process_sq(void *opaque)
5502{
5503    NvmeSQueue *sq = opaque;
5504    NvmeCtrl *n = sq->ctrl;
5505    NvmeCQueue *cq = n->cq[sq->cqid];
5506
5507    uint16_t status;
5508    hwaddr addr;
5509    NvmeCmd cmd;
5510    NvmeRequest *req;
5511
5512    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
5513        addr = sq->dma_addr + sq->head * n->sqe_size;
5514        if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
5515            trace_pci_nvme_err_addr_read(addr);
5516            trace_pci_nvme_err_cfs();
5517            stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
5518            break;
5519        }
5520        nvme_inc_sq_head(sq);
5521
5522        req = QTAILQ_FIRST(&sq->req_list);
5523        QTAILQ_REMOVE(&sq->req_list, req, entry);
5524        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
5525        nvme_req_clear(req);
5526        req->cqe.cid = cmd.cid;
5527        memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
5528
5529        status = sq->sqid ? nvme_io_cmd(n, req) :
5530            nvme_admin_cmd(n, req);
5531        if (status != NVME_NO_COMPLETE) {
5532            req->status = status;
5533            nvme_enqueue_req_completion(cq, req);
5534        }
5535    }
5536}
5537
5538static void nvme_ctrl_reset(NvmeCtrl *n)
5539{
5540    NvmeNamespace *ns;
5541    int i;
5542
5543    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5544        ns = nvme_ns(n, i);
5545        if (!ns) {
5546            continue;
5547        }
5548
5549        nvme_ns_drain(ns);
5550    }
5551
5552    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5553        if (n->sq[i] != NULL) {
5554            nvme_free_sq(n->sq[i], n);
5555        }
5556    }
5557    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5558        if (n->cq[i] != NULL) {
5559            nvme_free_cq(n->cq[i], n);
5560        }
5561    }
5562
5563    while (!QTAILQ_EMPTY(&n->aer_queue)) {
5564        NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
5565        QTAILQ_REMOVE(&n->aer_queue, event, entry);
5566        g_free(event);
5567    }
5568
5569    n->aer_queued = 0;
5570    n->outstanding_aers = 0;
5571    n->qs_created = false;
5572}
5573
5574static void nvme_ctrl_shutdown(NvmeCtrl *n)
5575{
5576    NvmeNamespace *ns;
5577    int i;
5578
5579    if (n->pmr.dev) {
5580        memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
5581    }
5582
5583    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5584        ns = nvme_ns(n, i);
5585        if (!ns) {
5586            continue;
5587        }
5588
5589        nvme_ns_shutdown(ns);
5590    }
5591}
5592
5593static void nvme_select_iocs(NvmeCtrl *n)
5594{
5595    NvmeNamespace *ns;
5596    int i;
5597
5598    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5599        ns = nvme_ns(n, i);
5600        if (!ns) {
5601            continue;
5602        }
5603
5604        nvme_select_iocs_ns(n, ns);
5605    }
5606}
5607
5608static int nvme_start_ctrl(NvmeCtrl *n)
5609{
5610    uint64_t cap = ldq_le_p(&n->bar.cap);
5611    uint32_t cc = ldl_le_p(&n->bar.cc);
5612    uint32_t aqa = ldl_le_p(&n->bar.aqa);
5613    uint64_t asq = ldq_le_p(&n->bar.asq);
5614    uint64_t acq = ldq_le_p(&n->bar.acq);
5615    uint32_t page_bits = NVME_CC_MPS(cc) + 12;
5616    uint32_t page_size = 1 << page_bits;
5617
5618    if (unlikely(n->cq[0])) {
5619        trace_pci_nvme_err_startfail_cq();
5620        return -1;
5621    }
5622    if (unlikely(n->sq[0])) {
5623        trace_pci_nvme_err_startfail_sq();
5624        return -1;
5625    }
5626    if (unlikely(!asq)) {
5627        trace_pci_nvme_err_startfail_nbarasq();
5628        return -1;
5629    }
5630    if (unlikely(!acq)) {
5631        trace_pci_nvme_err_startfail_nbaracq();
5632        return -1;
5633    }
5634    if (unlikely(asq & (page_size - 1))) {
5635        trace_pci_nvme_err_startfail_asq_misaligned(asq);
5636        return -1;
5637    }
5638    if (unlikely(acq & (page_size - 1))) {
5639        trace_pci_nvme_err_startfail_acq_misaligned(acq);
5640        return -1;
5641    }
5642    if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
5643        trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
5644        return -1;
5645    }
5646    if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
5647        trace_pci_nvme_err_startfail_page_too_small(
5648                    NVME_CC_MPS(cc),
5649                    NVME_CAP_MPSMIN(cap));
5650        return -1;
5651    }
5652    if (unlikely(NVME_CC_MPS(cc) >
5653                 NVME_CAP_MPSMAX(cap))) {
5654        trace_pci_nvme_err_startfail_page_too_large(
5655                    NVME_CC_MPS(cc),
5656                    NVME_CAP_MPSMAX(cap));
5657        return -1;
5658    }
5659    if (unlikely(NVME_CC_IOCQES(cc) <
5660                 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
5661        trace_pci_nvme_err_startfail_cqent_too_small(
5662                    NVME_CC_IOCQES(cc),
5663                    NVME_CTRL_CQES_MIN(cap));
5664        return -1;
5665    }
5666    if (unlikely(NVME_CC_IOCQES(cc) >
5667                 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
5668        trace_pci_nvme_err_startfail_cqent_too_large(
5669                    NVME_CC_IOCQES(cc),
5670                    NVME_CTRL_CQES_MAX(cap));
5671        return -1;
5672    }
5673    if (unlikely(NVME_CC_IOSQES(cc) <
5674                 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
5675        trace_pci_nvme_err_startfail_sqent_too_small(
5676                    NVME_CC_IOSQES(cc),
5677                    NVME_CTRL_SQES_MIN(cap));
5678        return -1;
5679    }
5680    if (unlikely(NVME_CC_IOSQES(cc) >
5681                 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
5682        trace_pci_nvme_err_startfail_sqent_too_large(
5683                    NVME_CC_IOSQES(cc),
5684                    NVME_CTRL_SQES_MAX(cap));
5685        return -1;
5686    }
5687    if (unlikely(!NVME_AQA_ASQS(aqa))) {
5688        trace_pci_nvme_err_startfail_asqent_sz_zero();
5689        return -1;
5690    }
5691    if (unlikely(!NVME_AQA_ACQS(aqa))) {
5692        trace_pci_nvme_err_startfail_acqent_sz_zero();
5693        return -1;
5694    }
5695
5696    n->page_bits = page_bits;
5697    n->page_size = page_size;
5698    n->max_prp_ents = n->page_size / sizeof(uint64_t);
5699    n->cqe_size = 1 << NVME_CC_IOCQES(cc);
5700    n->sqe_size = 1 << NVME_CC_IOSQES(cc);
5701    nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
5702    nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
5703
5704    nvme_set_timestamp(n, 0ULL);
5705
5706    QTAILQ_INIT(&n->aer_queue);
5707
5708    nvme_select_iocs(n);
5709
5710    return 0;
5711}
5712
5713static void nvme_cmb_enable_regs(NvmeCtrl *n)
5714{
5715    uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
5716    uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
5717
5718    NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
5719    NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
5720    NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
5721    stl_le_p(&n->bar.cmbloc, cmbloc);
5722
5723    NVME_CMBSZ_SET_SQS(cmbsz, 1);
5724    NVME_CMBSZ_SET_CQS(cmbsz, 0);
5725    NVME_CMBSZ_SET_LISTS(cmbsz, 1);
5726    NVME_CMBSZ_SET_RDS(cmbsz, 1);
5727    NVME_CMBSZ_SET_WDS(cmbsz, 1);
5728    NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
5729    NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
5730    stl_le_p(&n->bar.cmbsz, cmbsz);
5731}
5732
5733static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
5734                           unsigned size)
5735{
5736    uint64_t cap = ldq_le_p(&n->bar.cap);
5737    uint32_t cc = ldl_le_p(&n->bar.cc);
5738    uint32_t intms = ldl_le_p(&n->bar.intms);
5739    uint32_t csts = ldl_le_p(&n->bar.csts);
5740    uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
5741
5742    if (unlikely(offset & (sizeof(uint32_t) - 1))) {
5743        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
5744                       "MMIO write not 32-bit aligned,"
5745                       " offset=0x%"PRIx64"", offset);
5746        /* should be ignored, fall through for now */
5747    }
5748
5749    if (unlikely(size < sizeof(uint32_t))) {
5750        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
5751                       "MMIO write smaller than 32-bits,"
5752                       " offset=0x%"PRIx64", size=%u",
5753                       offset, size);
5754        /* should be ignored, fall through for now */
5755    }
5756
5757    switch (offset) {
5758    case NVME_REG_INTMS:
5759        if (unlikely(msix_enabled(&(n->parent_obj)))) {
5760            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
5761                           "undefined access to interrupt mask set"
5762                           " when MSI-X is enabled");
5763            /* should be ignored, fall through for now */
5764        }
5765        intms |= data;
5766        stl_le_p(&n->bar.intms, intms);
5767        n->bar.intmc = n->bar.intms;
5768        trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
5769        nvme_irq_check(n);
5770        break;
5771    case NVME_REG_INTMC:
5772        if (unlikely(msix_enabled(&(n->parent_obj)))) {
5773            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
5774                           "undefined access to interrupt mask clr"
5775                           " when MSI-X is enabled");
5776            /* should be ignored, fall through for now */
5777        }
5778        intms &= ~data;
5779        stl_le_p(&n->bar.intms, intms);
5780        n->bar.intmc = n->bar.intms;
5781        trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
5782        nvme_irq_check(n);
5783        break;
5784    case NVME_REG_CC:
5785        trace_pci_nvme_mmio_cfg(data & 0xffffffff);
5786
5787        /* Windows first sends data, then sends enable bit */
5788        if (!NVME_CC_EN(data) && !NVME_CC_EN(cc) &&
5789            !NVME_CC_SHN(data) && !NVME_CC_SHN(cc))
5790        {
5791            cc = data;
5792        }
5793
5794        if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
5795            cc = data;
5796
5797            /* flush CC since nvme_start_ctrl() needs the value */
5798            stl_le_p(&n->bar.cc, cc);
5799            if (unlikely(nvme_start_ctrl(n))) {
5800                trace_pci_nvme_err_startfail();
5801                csts = NVME_CSTS_FAILED;
5802            } else {
5803                trace_pci_nvme_mmio_start_success();
5804                csts = NVME_CSTS_READY;
5805            }
5806        } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
5807            trace_pci_nvme_mmio_stopped();
5808            nvme_ctrl_reset(n);
5809            cc = 0;
5810            csts &= ~NVME_CSTS_READY;
5811        }
5812
5813        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
5814            trace_pci_nvme_mmio_shutdown_set();
5815            nvme_ctrl_shutdown(n);
5816            cc = data;
5817            csts |= NVME_CSTS_SHST_COMPLETE;
5818        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
5819            trace_pci_nvme_mmio_shutdown_cleared();
5820            csts &= ~NVME_CSTS_SHST_COMPLETE;
5821            cc = data;
5822        }
5823
5824        stl_le_p(&n->bar.cc, cc);
5825        stl_le_p(&n->bar.csts, csts);
5826
5827        break;
5828    case NVME_REG_CSTS:
5829        if (data & (1 << 4)) {
5830            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
5831                           "attempted to W1C CSTS.NSSRO"
5832                           " but CAP.NSSRS is zero (not supported)");
5833        } else if (data != 0) {
5834            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
5835                           "attempted to set a read only bit"
5836                           " of controller status");
5837        }
5838        break;
5839    case NVME_REG_NSSR:
5840        if (data == 0x4e564d65) {
5841            trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
5842        } else {
5843            /* The spec says that writes of other values have no effect */
5844            return;
5845        }
5846        break;
5847    case NVME_REG_AQA:
5848        stl_le_p(&n->bar.aqa, data);
5849        trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
5850        break;
5851    case NVME_REG_ASQ:
5852        stn_le_p(&n->bar.asq, size, data);
5853        trace_pci_nvme_mmio_asqaddr(data);
5854        break;
5855    case NVME_REG_ASQ + 4:
5856        stl_le_p((uint8_t *)&n->bar.asq + 4, data);
5857        trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
5858        break;
5859    case NVME_REG_ACQ:
5860        trace_pci_nvme_mmio_acqaddr(data);
5861        stn_le_p(&n->bar.acq, size, data);
5862        break;
5863    case NVME_REG_ACQ + 4:
5864        stl_le_p((uint8_t *)&n->bar.acq + 4, data);
5865        trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
5866        break;
5867    case NVME_REG_CMBLOC:
5868        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
5869                       "invalid write to reserved CMBLOC"
5870                       " when CMBSZ is zero, ignored");
5871        return;
5872    case NVME_REG_CMBSZ:
5873        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
5874                       "invalid write to read only CMBSZ, ignored");
5875        return;
5876    case NVME_REG_CMBMSC:
5877        if (!NVME_CAP_CMBS(cap)) {
5878            return;
5879        }
5880
5881        stn_le_p(&n->bar.cmbmsc, size, data);
5882        n->cmb.cmse = false;
5883
5884        if (NVME_CMBMSC_CRE(data)) {
5885            nvme_cmb_enable_regs(n);
5886
5887            if (NVME_CMBMSC_CMSE(data)) {
5888                uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
5889                hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
5890                if (cba + int128_get64(n->cmb.mem.size) < cba) {
5891                    uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
5892                    NVME_CMBSTS_SET_CBAI(cmbsts, 1);
5893                    stl_le_p(&n->bar.cmbsts, cmbsts);
5894                    return;
5895                }
5896
5897                n->cmb.cba = cba;
5898                n->cmb.cmse = true;
5899            }
5900        } else {
5901            n->bar.cmbsz = 0;
5902            n->bar.cmbloc = 0;
5903        }
5904
5905        return;
5906    case NVME_REG_CMBMSC + 4:
5907        stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
5908        return;
5909
5910    case NVME_REG_PMRCAP:
5911        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
5912                       "invalid write to PMRCAP register, ignored");
5913        return;
5914    case NVME_REG_PMRCTL:
5915        if (!NVME_CAP_PMRS(cap)) {
5916            return;
5917        }
5918
5919        stl_le_p(&n->bar.pmrctl, data);
5920        if (NVME_PMRCTL_EN(data)) {
5921            memory_region_set_enabled(&n->pmr.dev->mr, true);
5922            pmrsts = 0;
5923        } else {
5924            memory_region_set_enabled(&n->pmr.dev->mr, false);
5925            NVME_PMRSTS_SET_NRDY(pmrsts, 1);
5926            n->pmr.cmse = false;
5927        }
5928        stl_le_p(&n->bar.pmrsts, pmrsts);
5929        return;
5930    case NVME_REG_PMRSTS:
5931        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
5932                       "invalid write to PMRSTS register, ignored");
5933        return;
5934    case NVME_REG_PMREBS:
5935        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
5936                       "invalid write to PMREBS register, ignored");
5937        return;
5938    case NVME_REG_PMRSWTP:
5939        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
5940                       "invalid write to PMRSWTP register, ignored");
5941        return;
5942    case NVME_REG_PMRMSCL:
5943        if (!NVME_CAP_PMRS(cap)) {
5944            return;
5945        }
5946
5947        stl_le_p(&n->bar.pmrmscl, data);
5948        n->pmr.cmse = false;
5949
5950        if (NVME_PMRMSCL_CMSE(data)) {
5951            uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
5952            hwaddr cba = pmrmscu << 32 |
5953                (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
5954            if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
5955                NVME_PMRSTS_SET_CBAI(pmrsts, 1);
5956                stl_le_p(&n->bar.pmrsts, pmrsts);
5957                return;
5958            }
5959
5960            n->pmr.cmse = true;
5961            n->pmr.cba = cba;
5962        }
5963
5964        return;
5965    case NVME_REG_PMRMSCU:
5966        if (!NVME_CAP_PMRS(cap)) {
5967            return;
5968        }
5969
5970        stl_le_p(&n->bar.pmrmscu, data);
5971        return;
5972    default:
5973        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
5974                       "invalid MMIO write,"
5975                       " offset=0x%"PRIx64", data=%"PRIx64"",
5976                       offset, data);
5977        break;
5978    }
5979}
5980
5981static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
5982{
5983    NvmeCtrl *n = (NvmeCtrl *)opaque;
5984    uint8_t *ptr = (uint8_t *)&n->bar;
5985
5986    trace_pci_nvme_mmio_read(addr, size);
5987
5988    if (unlikely(addr & (sizeof(uint32_t) - 1))) {
5989        NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
5990                       "MMIO read not 32-bit aligned,"
5991                       " offset=0x%"PRIx64"", addr);
5992        /* should RAZ, fall through for now */
5993    } else if (unlikely(size < sizeof(uint32_t))) {
5994        NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
5995                       "MMIO read smaller than 32-bits,"
5996                       " offset=0x%"PRIx64"", addr);
5997        /* should RAZ, fall through for now */
5998    }
5999
6000    if (addr > sizeof(n->bar) - size) {
6001        NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6002                       "MMIO read beyond last register,"
6003                       " offset=0x%"PRIx64", returning 0", addr);
6004
6005        return 0;
6006    }
6007
6008    /*
6009     * When PMRWBM bit 1 is set then read from
6010     * from PMRSTS should ensure prior writes
6011     * made it to persistent media
6012     */
6013    if (addr == NVME_REG_PMRSTS &&
6014        (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6015        memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6016    }
6017
6018    return ldn_le_p(ptr + addr, size);
6019}
6020
6021static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6022{
6023    uint32_t qid;
6024
6025    if (unlikely(addr & ((1 << 2) - 1))) {
6026        NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6027                       "doorbell write not 32-bit aligned,"
6028                       " offset=0x%"PRIx64", ignoring", addr);
6029        return;
6030    }
6031
6032    if (((addr - 0x1000) >> 2) & 1) {
6033        /* Completion queue doorbell write */
6034
6035        uint16_t new_head = val & 0xffff;
6036        int start_sqs;
6037        NvmeCQueue *cq;
6038
6039        qid = (addr - (0x1000 + (1 << 2))) >> 3;
6040        if (unlikely(nvme_check_cqid(n, qid))) {
6041            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6042                           "completion queue doorbell write"
6043                           " for nonexistent queue,"
6044                           " sqid=%"PRIu32", ignoring", qid);
6045
6046            /*
6047             * NVM Express v1.3d, Section 4.1 state: "If host software writes
6048             * an invalid value to the Submission Queue Tail Doorbell or
6049             * Completion Queue Head Doorbell regiter and an Asynchronous Event
6050             * Request command is outstanding, then an asynchronous event is
6051             * posted to the Admin Completion Queue with a status code of
6052             * Invalid Doorbell Write Value."
6053             *
6054             * Also note that the spec includes the "Invalid Doorbell Register"
6055             * status code, but nowhere does it specify when to use it.
6056             * However, it seems reasonable to use it here in a similar
6057             * fashion.
6058             */
6059            if (n->outstanding_aers) {
6060                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6061                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6062                                   NVME_LOG_ERROR_INFO);
6063            }
6064
6065            return;
6066        }
6067
6068        cq = n->cq[qid];
6069        if (unlikely(new_head >= cq->size)) {
6070            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6071                           "completion queue doorbell write value"
6072                           " beyond queue size, sqid=%"PRIu32","
6073                           " new_head=%"PRIu16", ignoring",
6074                           qid, new_head);
6075
6076            if (n->outstanding_aers) {
6077                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6078                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6079                                   NVME_LOG_ERROR_INFO);
6080            }
6081
6082            return;
6083        }
6084
6085        trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6086
6087        start_sqs = nvme_cq_full(cq) ? 1 : 0;
6088        cq->head = new_head;
6089        if (start_sqs) {
6090            NvmeSQueue *sq;
6091            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6092                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6093            }
6094            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6095        }
6096
6097        if (cq->tail == cq->head) {
6098            if (cq->irq_enabled) {
6099                n->cq_pending--;
6100            }
6101
6102            nvme_irq_deassert(n, cq);
6103        }
6104    } else {
6105        /* Submission queue doorbell write */
6106
6107        uint16_t new_tail = val & 0xffff;
6108        NvmeSQueue *sq;
6109
6110        qid = (addr - 0x1000) >> 3;
6111        if (unlikely(nvme_check_sqid(n, qid))) {
6112            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6113                           "submission queue doorbell write"
6114                           " for nonexistent queue,"
6115                           " sqid=%"PRIu32", ignoring", qid);
6116
6117            if (n->outstanding_aers) {
6118                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6119                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6120                                   NVME_LOG_ERROR_INFO);
6121            }
6122
6123            return;
6124        }
6125
6126        sq = n->sq[qid];
6127        if (unlikely(new_tail >= sq->size)) {
6128            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6129                           "submission queue doorbell write value"
6130                           " beyond queue size, sqid=%"PRIu32","
6131                           " new_tail=%"PRIu16", ignoring",
6132                           qid, new_tail);
6133
6134            if (n->outstanding_aers) {
6135                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6136                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6137                                   NVME_LOG_ERROR_INFO);
6138            }
6139
6140            return;
6141        }
6142
6143        trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6144
6145        sq->tail = new_tail;
6146        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6147    }
6148}
6149
6150static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6151                            unsigned size)
6152{
6153    NvmeCtrl *n = (NvmeCtrl *)opaque;
6154
6155    trace_pci_nvme_mmio_write(addr, data, size);
6156
6157    if (addr < sizeof(n->bar)) {
6158        nvme_write_bar(n, addr, data, size);
6159    } else {
6160        nvme_process_db(n, addr, data);
6161    }
6162}
6163
6164static const MemoryRegionOps nvme_mmio_ops = {
6165    .read = nvme_mmio_read,
6166    .write = nvme_mmio_write,
6167    .endianness = DEVICE_LITTLE_ENDIAN,
6168    .impl = {
6169        .min_access_size = 2,
6170        .max_access_size = 8,
6171    },
6172};
6173
6174static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
6175                           unsigned size)
6176{
6177    NvmeCtrl *n = (NvmeCtrl *)opaque;
6178    stn_le_p(&n->cmb.buf[addr], size, data);
6179}
6180
6181static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
6182{
6183    NvmeCtrl *n = (NvmeCtrl *)opaque;
6184    return ldn_le_p(&n->cmb.buf[addr], size);
6185}
6186
6187static const MemoryRegionOps nvme_cmb_ops = {
6188    .read = nvme_cmb_read,
6189    .write = nvme_cmb_write,
6190    .endianness = DEVICE_LITTLE_ENDIAN,
6191    .impl = {
6192        .min_access_size = 1,
6193        .max_access_size = 8,
6194    },
6195};
6196
6197static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
6198{
6199    NvmeParams *params = &n->params;
6200
6201    if (params->num_queues) {
6202        warn_report("num_queues is deprecated; please use max_ioqpairs "
6203                    "instead");
6204
6205        params->max_ioqpairs = params->num_queues - 1;
6206    }
6207
6208    if (n->namespace.blkconf.blk && n->subsys) {
6209        error_setg(errp, "subsystem support is unavailable with legacy "
6210                   "namespace ('drive' property)");
6211        return;
6212    }
6213
6214    if (params->max_ioqpairs < 1 ||
6215        params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
6216        error_setg(errp, "max_ioqpairs must be between 1 and %d",
6217                   NVME_MAX_IOQPAIRS);
6218        return;
6219    }
6220
6221    if (params->msix_qsize < 1 ||
6222        params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
6223        error_setg(errp, "msix_qsize must be between 1 and %d",
6224                   PCI_MSIX_FLAGS_QSIZE + 1);
6225        return;
6226    }
6227
6228    if (!params->serial) {
6229        error_setg(errp, "serial property not set");
6230        return;
6231    }
6232
6233    if (n->pmr.dev) {
6234        if (host_memory_backend_is_mapped(n->pmr.dev)) {
6235            error_setg(errp, "can't use already busy memdev: %s",
6236                       object_get_canonical_path_component(OBJECT(n->pmr.dev)));
6237            return;
6238        }
6239
6240        if (!is_power_of_2(n->pmr.dev->size)) {
6241            error_setg(errp, "pmr backend size needs to be power of 2 in size");
6242            return;
6243        }
6244
6245        host_memory_backend_set_mapped(n->pmr.dev, true);
6246    }
6247
6248    if (n->params.zasl > n->params.mdts) {
6249        error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
6250                   "than or equal to mdts (Maximum Data Transfer Size)");
6251        return;
6252    }
6253
6254    if (!n->params.vsl) {
6255        error_setg(errp, "vsl must be non-zero");
6256        return;
6257    }
6258}
6259
6260static void nvme_init_state(NvmeCtrl *n)
6261{
6262    /* add one to max_ioqpairs to account for the admin queue pair */
6263    n->reg_size = pow2ceil(sizeof(NvmeBar) +
6264                           2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
6265    n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
6266    n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
6267    n->temperature = NVME_TEMPERATURE;
6268    n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
6269    n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
6270    n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
6271}
6272
6273static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
6274{
6275    uint64_t cmb_size = n->params.cmb_size_mb * MiB;
6276    uint64_t cap = ldq_le_p(&n->bar.cap);
6277
6278    n->cmb.buf = g_malloc0(cmb_size);
6279    memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
6280                          "nvme-cmb", cmb_size);
6281    pci_register_bar(pci_dev, NVME_CMB_BIR,
6282                     PCI_BASE_ADDRESS_SPACE_MEMORY |
6283                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
6284                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
6285
6286    NVME_CAP_SET_CMBS(cap, 1);
6287    stq_le_p(&n->bar.cap, cap);
6288
6289    if (n->params.legacy_cmb) {
6290        nvme_cmb_enable_regs(n);
6291        n->cmb.cmse = true;
6292    }
6293}
6294
6295static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
6296{
6297    uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
6298
6299    NVME_PMRCAP_SET_RDS(pmrcap, 1);
6300    NVME_PMRCAP_SET_WDS(pmrcap, 1);
6301    NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
6302    /* Turn on bit 1 support */
6303    NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
6304    NVME_PMRCAP_SET_CMSS(pmrcap, 1);
6305    stl_le_p(&n->bar.pmrcap, pmrcap);
6306
6307    pci_register_bar(pci_dev, NVME_PMR_BIR,
6308                     PCI_BASE_ADDRESS_SPACE_MEMORY |
6309                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
6310                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
6311
6312    memory_region_set_enabled(&n->pmr.dev->mr, false);
6313}
6314
6315static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
6316{
6317    uint8_t *pci_conf = pci_dev->config;
6318    uint64_t bar_size, msix_table_size, msix_pba_size;
6319    unsigned msix_table_offset, msix_pba_offset;
6320    int ret;
6321
6322    Error *err = NULL;
6323
6324    pci_conf[PCI_INTERRUPT_PIN] = 1;
6325    pci_config_set_prog_interface(pci_conf, 0x2);
6326
6327    if (n->params.use_intel_id) {
6328        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
6329        pci_config_set_device_id(pci_conf, 0x5845);
6330    } else {
6331        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
6332        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
6333    }
6334
6335    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
6336    pcie_endpoint_cap_init(pci_dev, 0x80);
6337
6338    bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
6339    msix_table_offset = bar_size;
6340    msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
6341
6342    bar_size += msix_table_size;
6343    bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
6344    msix_pba_offset = bar_size;
6345    msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
6346
6347    bar_size += msix_pba_size;
6348    bar_size = pow2ceil(bar_size);
6349
6350    memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
6351    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
6352                          n->reg_size);
6353    memory_region_add_subregion(&n->bar0, 0, &n->iomem);
6354
6355    pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
6356                     PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
6357    ret = msix_init(pci_dev, n->params.msix_qsize,
6358                    &n->bar0, 0, msix_table_offset,
6359                    &n->bar0, 0, msix_pba_offset, 0, &err);
6360    if (ret < 0) {
6361        if (ret == -ENOTSUP) {
6362            warn_report_err(err);
6363        } else {
6364            error_propagate(errp, err);
6365            return ret;
6366        }
6367    }
6368
6369    if (n->params.cmb_size_mb) {
6370        nvme_init_cmb(n, pci_dev);
6371    }
6372
6373    if (n->pmr.dev) {
6374        nvme_init_pmr(n, pci_dev);
6375    }
6376
6377    return 0;
6378}
6379
6380static void nvme_init_subnqn(NvmeCtrl *n)
6381{
6382    NvmeSubsystem *subsys = n->subsys;
6383    NvmeIdCtrl *id = &n->id_ctrl;
6384
6385    if (!subsys) {
6386        snprintf((char *)id->subnqn, sizeof(id->subnqn),
6387                 "nqn.2019-08.org.qemu:%s", n->params.serial);
6388    } else {
6389        pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
6390    }
6391}
6392
6393static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
6394{
6395    NvmeIdCtrl *id = &n->id_ctrl;
6396    uint8_t *pci_conf = pci_dev->config;
6397    uint64_t cap = ldq_le_p(&n->bar.cap);
6398
6399    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
6400    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
6401    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
6402    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
6403    strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
6404
6405    id->cntlid = cpu_to_le16(n->cntlid);
6406
6407    id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
6408
6409    id->rab = 6;
6410
6411    if (n->params.use_intel_id) {
6412        id->ieee[0] = 0xb3;
6413        id->ieee[1] = 0x02;
6414        id->ieee[2] = 0x00;
6415    } else {
6416        id->ieee[0] = 0x00;
6417        id->ieee[1] = 0x54;
6418        id->ieee[2] = 0x52;
6419    }
6420
6421    id->mdts = n->params.mdts;
6422    id->ver = cpu_to_le32(NVME_SPEC_VER);
6423    id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT);
6424    id->cntrltype = 0x1;
6425
6426    /*
6427     * Because the controller always completes the Abort command immediately,
6428     * there can never be more than one concurrently executing Abort command,
6429     * so this value is never used for anything. Note that there can easily be
6430     * many Abort commands in the queues, but they are not considered
6431     * "executing" until processed by nvme_abort.
6432     *
6433     * The specification recommends a value of 3 for Abort Command Limit (four
6434     * concurrently outstanding Abort commands), so lets use that though it is
6435     * inconsequential.
6436     */
6437    id->acl = 3;
6438    id->aerl = n->params.aerl;
6439    id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
6440    id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
6441
6442    /* recommended default value (~70 C) */
6443    id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
6444    id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
6445
6446    id->sqes = (0x6 << 4) | 0x6;
6447    id->cqes = (0x4 << 4) | 0x4;
6448    id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
6449    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
6450                           NVME_ONCS_FEATURES | NVME_ONCS_DSM |
6451                           NVME_ONCS_COMPARE | NVME_ONCS_COPY);
6452
6453    /*
6454     * NOTE: If this device ever supports a command set that does NOT use 0x0
6455     * as a Flush-equivalent operation, support for the broadcast NSID in Flush
6456     * should probably be removed.
6457     *
6458     * See comment in nvme_io_cmd.
6459     */
6460    id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
6461
6462    id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0);
6463    id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
6464                           NVME_CTRL_SGLS_BITBUCKET);
6465
6466    nvme_init_subnqn(n);
6467
6468    id->psd[0].mp = cpu_to_le16(0x9c4);
6469    id->psd[0].enlat = cpu_to_le32(0x10);
6470    id->psd[0].exlat = cpu_to_le32(0x4);
6471
6472    if (n->subsys) {
6473        id->cmic |= NVME_CMIC_MULTI_CTRL;
6474    }
6475
6476    NVME_CAP_SET_MQES(cap, 0x7ff);
6477    NVME_CAP_SET_CQR(cap, 1);
6478    NVME_CAP_SET_TO(cap, 0xf);
6479    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
6480    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
6481    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
6482    NVME_CAP_SET_MPSMAX(cap, 4);
6483    NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
6484    NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
6485    stq_le_p(&n->bar.cap, cap);
6486
6487    stl_le_p(&n->bar.vs, NVME_SPEC_VER);
6488    n->bar.intmc = n->bar.intms = 0;
6489}
6490
6491static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
6492{
6493    int cntlid;
6494
6495    if (!n->subsys) {
6496        return 0;
6497    }
6498
6499    cntlid = nvme_subsys_register_ctrl(n, errp);
6500    if (cntlid < 0) {
6501        return -1;
6502    }
6503
6504    n->cntlid = cntlid;
6505
6506    return 0;
6507}
6508
6509void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
6510{
6511    uint32_t nsid = ns->params.nsid;
6512    assert(nsid && nsid <= NVME_MAX_NAMESPACES);
6513
6514    n->namespaces[nsid] = ns;
6515    ns->attached++;
6516
6517    n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6518                            BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6519}
6520
6521static void nvme_realize(PCIDevice *pci_dev, Error **errp)
6522{
6523    NvmeCtrl *n = NVME(pci_dev);
6524    NvmeNamespace *ns;
6525    Error *local_err = NULL;
6526
6527    nvme_check_constraints(n, &local_err);
6528    if (local_err) {
6529        error_propagate(errp, local_err);
6530        return;
6531    }
6532
6533    qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
6534                        &pci_dev->qdev, n->parent_obj.qdev.id);
6535
6536    nvme_init_state(n);
6537    if (nvme_init_pci(n, pci_dev, errp)) {
6538        return;
6539    }
6540
6541    if (nvme_init_subsys(n, errp)) {
6542        error_propagate(errp, local_err);
6543        return;
6544    }
6545    nvme_init_ctrl(n, pci_dev);
6546
6547    /* setup a namespace if the controller drive property was given */
6548    if (n->namespace.blkconf.blk) {
6549        ns = &n->namespace;
6550        ns->params.nsid = 1;
6551
6552        if (nvme_ns_setup(ns, errp)) {
6553            return;
6554        }
6555
6556        nvme_attach_ns(n, ns);
6557    }
6558}
6559
6560static void nvme_exit(PCIDevice *pci_dev)
6561{
6562    NvmeCtrl *n = NVME(pci_dev);
6563    NvmeNamespace *ns;
6564    int i;
6565
6566    nvme_ctrl_reset(n);
6567
6568    if (n->subsys) {
6569        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6570            ns = nvme_ns(n, i);
6571            if (ns) {
6572                ns->attached--;
6573            }
6574        }
6575
6576        nvme_subsys_unregister_ctrl(n->subsys, n);
6577    }
6578
6579    g_free(n->cq);
6580    g_free(n->sq);
6581    g_free(n->aer_reqs);
6582
6583    if (n->params.cmb_size_mb) {
6584        g_free(n->cmb.buf);
6585    }
6586
6587    if (n->pmr.dev) {
6588        host_memory_backend_set_mapped(n->pmr.dev, false);
6589    }
6590    msix_uninit(pci_dev, &n->bar0, &n->bar0);
6591    memory_region_del_subregion(&n->bar0, &n->iomem);
6592}
6593
6594static Property nvme_props[] = {
6595    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
6596    DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
6597                     HostMemoryBackend *),
6598    DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
6599                     NvmeSubsystem *),
6600    DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
6601    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
6602    DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
6603    DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
6604    DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
6605    DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
6606    DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
6607    DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
6608    DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
6609    DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
6610    DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
6611    DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
6612    DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
6613                     params.auto_transition_zones, true),
6614    DEFINE_PROP_END_OF_LIST(),
6615};
6616
6617static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
6618                                   void *opaque, Error **errp)
6619{
6620    NvmeCtrl *n = NVME(obj);
6621    uint8_t value = n->smart_critical_warning;
6622
6623    visit_type_uint8(v, name, &value, errp);
6624}
6625
6626static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
6627                                   void *opaque, Error **errp)
6628{
6629    NvmeCtrl *n = NVME(obj);
6630    uint8_t value, old_value, cap = 0, index, event;
6631
6632    if (!visit_type_uint8(v, name, &value, errp)) {
6633        return;
6634    }
6635
6636    cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
6637          | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
6638    if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
6639        cap |= NVME_SMART_PMR_UNRELIABLE;
6640    }
6641
6642    if ((value & cap) != value) {
6643        error_setg(errp, "unsupported smart critical warning bits: 0x%x",
6644                   value & ~cap);
6645        return;
6646    }
6647
6648    old_value = n->smart_critical_warning;
6649    n->smart_critical_warning = value;
6650
6651    /* only inject new bits of smart critical warning */
6652    for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
6653        event = 1 << index;
6654        if (value & ~old_value & event)
6655            nvme_smart_event(n, event);
6656    }
6657}
6658
6659static const VMStateDescription nvme_vmstate = {
6660    .name = "nvme",
6661    .unmigratable = 1,
6662};
6663
6664static void nvme_class_init(ObjectClass *oc, void *data)
6665{
6666    DeviceClass *dc = DEVICE_CLASS(oc);
6667    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
6668
6669    pc->realize = nvme_realize;
6670    pc->exit = nvme_exit;
6671    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
6672    pc->revision = 2;
6673
6674    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
6675    dc->desc = "Non-Volatile Memory Express";
6676    device_class_set_props(dc, nvme_props);
6677    dc->vmsd = &nvme_vmstate;
6678}
6679
6680static void nvme_instance_init(Object *obj)
6681{
6682    NvmeCtrl *n = NVME(obj);
6683
6684    device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
6685                                  "bootindex", "/namespace@1,0",
6686                                  DEVICE(obj));
6687
6688    object_property_add(obj, "smart_critical_warning", "uint8",
6689                        nvme_get_smart_warning,
6690                        nvme_set_smart_warning, NULL, NULL);
6691}
6692
6693static const TypeInfo nvme_info = {
6694    .name          = TYPE_NVME,
6695    .parent        = TYPE_PCI_DEVICE,
6696    .instance_size = sizeof(NvmeCtrl),
6697    .instance_init = nvme_instance_init,
6698    .class_init    = nvme_class_init,
6699    .interfaces = (InterfaceInfo[]) {
6700        { INTERFACE_PCIE_DEVICE },
6701        { }
6702    },
6703};
6704
6705static const TypeInfo nvme_bus_info = {
6706    .name = TYPE_NVME_BUS,
6707    .parent = TYPE_BUS,
6708    .instance_size = sizeof(NvmeBus),
6709};
6710
6711static void nvme_register_types(void)
6712{
6713    type_register_static(&nvme_info);
6714    type_register_static(&nvme_bus_info);
6715}
6716
6717type_init(nvme_register_types)
6718