qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "qemu/rcu.h"
  21#include "exec/target_page.h"
  22#include "migration.h"
  23#include "qemu-file.h"
  24#include "savevm.h"
  25#include "postcopy-ram.h"
  26#include "ram.h"
  27#include "qapi/error.h"
  28#include "qemu/notify.h"
  29#include "qemu/rcu.h"
  30#include "sysemu/sysemu.h"
  31#include "qemu/error-report.h"
  32#include "trace.h"
  33#include "hw/boards.h"
  34#include "exec/ramblock.h"
  35
  36/* Arbitrary limit on size of each discard command,
  37 * keeps them around ~200 bytes
  38 */
  39#define MAX_DISCARDS_PER_COMMAND 12
  40
  41struct PostcopyDiscardState {
  42    const char *ramblock_name;
  43    uint16_t cur_entry;
  44    /*
  45     * Start and length of a discard range (bytes)
  46     */
  47    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  48    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  49    unsigned int nsentwords;
  50    unsigned int nsentcmds;
  51};
  52
  53static NotifierWithReturnList postcopy_notifier_list;
  54
  55void postcopy_infrastructure_init(void)
  56{
  57    notifier_with_return_list_init(&postcopy_notifier_list);
  58}
  59
  60void postcopy_add_notifier(NotifierWithReturn *nn)
  61{
  62    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  63}
  64
  65void postcopy_remove_notifier(NotifierWithReturn *n)
  66{
  67    notifier_with_return_remove(n);
  68}
  69
  70int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  71{
  72    struct PostcopyNotifyData pnd;
  73    pnd.reason = reason;
  74    pnd.errp = errp;
  75
  76    return notifier_with_return_list_notify(&postcopy_notifier_list,
  77                                            &pnd);
  78}
  79
  80/* Postcopy needs to detect accesses to pages that haven't yet been copied
  81 * across, and efficiently map new pages in, the techniques for doing this
  82 * are target OS specific.
  83 */
  84#if defined(__linux__)
  85
  86#include <poll.h>
  87#include <sys/ioctl.h>
  88#include <sys/syscall.h>
  89#include <asm/types.h> /* for __u64 */
  90#endif
  91
  92#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
  93#include <sys/eventfd.h>
  94#include <linux/userfaultfd.h>
  95
  96typedef struct PostcopyBlocktimeContext {
  97    /* time when page fault initiated per vCPU */
  98    uint32_t *page_fault_vcpu_time;
  99    /* page address per vCPU */
 100    uintptr_t *vcpu_addr;
 101    uint32_t total_blocktime;
 102    /* blocktime per vCPU */
 103    uint32_t *vcpu_blocktime;
 104    /* point in time when last page fault was initiated */
 105    uint32_t last_begin;
 106    /* number of vCPU are suspended */
 107    int smp_cpus_down;
 108    uint64_t start_time;
 109
 110    /*
 111     * Handler for exit event, necessary for
 112     * releasing whole blocktime_ctx
 113     */
 114    Notifier exit_notifier;
 115} PostcopyBlocktimeContext;
 116
 117static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 118{
 119    g_free(ctx->page_fault_vcpu_time);
 120    g_free(ctx->vcpu_addr);
 121    g_free(ctx->vcpu_blocktime);
 122    g_free(ctx);
 123}
 124
 125static void migration_exit_cb(Notifier *n, void *data)
 126{
 127    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 128                                                 exit_notifier);
 129    destroy_blocktime_context(ctx);
 130}
 131
 132static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 133{
 134    MachineState *ms = MACHINE(qdev_get_machine());
 135    unsigned int smp_cpus = ms->smp.cpus;
 136    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 137    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 138    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 139    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 140
 141    ctx->exit_notifier.notify = migration_exit_cb;
 142    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 143    qemu_add_exit_notifier(&ctx->exit_notifier);
 144    return ctx;
 145}
 146
 147static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 148{
 149    MachineState *ms = MACHINE(qdev_get_machine());
 150    uint32List *list = NULL;
 151    int i;
 152
 153    for (i = ms->smp.cpus - 1; i >= 0; i--) {
 154        QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
 155    }
 156
 157    return list;
 158}
 159
 160/*
 161 * This function just populates MigrationInfo from postcopy's
 162 * blocktime context. It will not populate MigrationInfo,
 163 * unless postcopy-blocktime capability was set.
 164 *
 165 * @info: pointer to MigrationInfo to populate
 166 */
 167void fill_destination_postcopy_migration_info(MigrationInfo *info)
 168{
 169    MigrationIncomingState *mis = migration_incoming_get_current();
 170    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 171
 172    if (!bc) {
 173        return;
 174    }
 175
 176    info->has_postcopy_blocktime = true;
 177    info->postcopy_blocktime = bc->total_blocktime;
 178    info->has_postcopy_vcpu_blocktime = true;
 179    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 180}
 181
 182static uint32_t get_postcopy_total_blocktime(void)
 183{
 184    MigrationIncomingState *mis = migration_incoming_get_current();
 185    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 186
 187    if (!bc) {
 188        return 0;
 189    }
 190
 191    return bc->total_blocktime;
 192}
 193
 194/**
 195 * receive_ufd_features: check userfault fd features, to request only supported
 196 * features in the future.
 197 *
 198 * Returns: true on success
 199 *
 200 * __NR_userfaultfd - should be checked before
 201 *  @features: out parameter will contain uffdio_api.features provided by kernel
 202 *              in case of success
 203 */
 204static bool receive_ufd_features(uint64_t *features)
 205{
 206    struct uffdio_api api_struct = {0};
 207    int ufd;
 208    bool ret = true;
 209
 210    /* if we are here __NR_userfaultfd should exists */
 211    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 212    if (ufd == -1) {
 213        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
 214                     strerror(errno));
 215        return false;
 216    }
 217
 218    /* ask features */
 219    api_struct.api = UFFD_API;
 220    api_struct.features = 0;
 221    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 222        error_report("%s: UFFDIO_API failed: %s", __func__,
 223                     strerror(errno));
 224        ret = false;
 225        goto release_ufd;
 226    }
 227
 228    *features = api_struct.features;
 229
 230release_ufd:
 231    close(ufd);
 232    return ret;
 233}
 234
 235/**
 236 * request_ufd_features: this function should be called only once on a newly
 237 * opened ufd, subsequent calls will lead to error.
 238 *
 239 * Returns: true on success
 240 *
 241 * @ufd: fd obtained from userfaultfd syscall
 242 * @features: bit mask see UFFD_API_FEATURES
 243 */
 244static bool request_ufd_features(int ufd, uint64_t features)
 245{
 246    struct uffdio_api api_struct = {0};
 247    uint64_t ioctl_mask;
 248
 249    api_struct.api = UFFD_API;
 250    api_struct.features = features;
 251    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 252        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 253                     strerror(errno));
 254        return false;
 255    }
 256
 257    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 258                 (__u64)1 << _UFFDIO_UNREGISTER;
 259    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 260        error_report("Missing userfault features: %" PRIx64,
 261                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 262        return false;
 263    }
 264
 265    return true;
 266}
 267
 268static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
 269{
 270    uint64_t asked_features = 0;
 271    static uint64_t supported_features;
 272
 273    /*
 274     * it's not possible to
 275     * request UFFD_API twice per one fd
 276     * userfault fd features is persistent
 277     */
 278    if (!supported_features) {
 279        if (!receive_ufd_features(&supported_features)) {
 280            error_report("%s failed", __func__);
 281            return false;
 282        }
 283    }
 284
 285#ifdef UFFD_FEATURE_THREAD_ID
 286    if (migrate_postcopy_blocktime() && mis &&
 287        UFFD_FEATURE_THREAD_ID & supported_features) {
 288        /* kernel supports that feature */
 289        /* don't create blocktime_context if it exists */
 290        if (!mis->blocktime_ctx) {
 291            mis->blocktime_ctx = blocktime_context_new();
 292        }
 293
 294        asked_features |= UFFD_FEATURE_THREAD_ID;
 295    }
 296#endif
 297
 298    /*
 299     * request features, even if asked_features is 0, due to
 300     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 301     * userfault file descriptor
 302     */
 303    if (!request_ufd_features(ufd, asked_features)) {
 304        error_report("%s failed: features %" PRIu64, __func__,
 305                     asked_features);
 306        return false;
 307    }
 308
 309    if (qemu_real_host_page_size != ram_pagesize_summary()) {
 310        bool have_hp = false;
 311        /* We've got a huge page */
 312#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 313        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 314#endif
 315        if (!have_hp) {
 316            error_report("Userfault on this host does not support huge pages");
 317            return false;
 318        }
 319    }
 320    return true;
 321}
 322
 323/* Callback from postcopy_ram_supported_by_host block iterator.
 324 */
 325static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
 326{
 327    const char *block_name = qemu_ram_get_idstr(rb);
 328    ram_addr_t length = qemu_ram_get_used_length(rb);
 329    size_t pagesize = qemu_ram_pagesize(rb);
 330
 331    if (length % pagesize) {
 332        error_report("Postcopy requires RAM blocks to be a page size multiple,"
 333                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 334                     "page size of 0x%zx", block_name, length, pagesize);
 335        return 1;
 336    }
 337    return 0;
 338}
 339
 340/*
 341 * Note: This has the side effect of munlock'ing all of RAM, that's
 342 * normally fine since if the postcopy succeeds it gets turned back on at the
 343 * end.
 344 */
 345bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
 346{
 347    long pagesize = qemu_real_host_page_size;
 348    int ufd = -1;
 349    bool ret = false; /* Error unless we change it */
 350    void *testarea = NULL;
 351    struct uffdio_register reg_struct;
 352    struct uffdio_range range_struct;
 353    uint64_t feature_mask;
 354    Error *local_err = NULL;
 355
 356    if (qemu_target_page_size() > pagesize) {
 357        error_report("Target page size bigger than host page size");
 358        goto out;
 359    }
 360
 361    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 362    if (ufd == -1) {
 363        error_report("%s: userfaultfd not available: %s", __func__,
 364                     strerror(errno));
 365        goto out;
 366    }
 367
 368    /* Give devices a chance to object */
 369    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
 370        error_report_err(local_err);
 371        goto out;
 372    }
 373
 374    /* Version and features check */
 375    if (!ufd_check_and_apply(ufd, mis)) {
 376        goto out;
 377    }
 378
 379    /* We don't support postcopy with shared RAM yet */
 380    if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
 381        goto out;
 382    }
 383
 384    /*
 385     * userfault and mlock don't go together; we'll put it back later if
 386     * it was enabled.
 387     */
 388    if (munlockall()) {
 389        error_report("%s: munlockall: %s", __func__,  strerror(errno));
 390        goto out;
 391    }
 392
 393    /*
 394     *  We need to check that the ops we need are supported on anon memory
 395     *  To do that we need to register a chunk and see the flags that
 396     *  are returned.
 397     */
 398    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 399                                    MAP_ANONYMOUS, -1, 0);
 400    if (testarea == MAP_FAILED) {
 401        error_report("%s: Failed to map test area: %s", __func__,
 402                     strerror(errno));
 403        goto out;
 404    }
 405    g_assert(((size_t)testarea & (pagesize - 1)) == 0);
 406
 407    reg_struct.range.start = (uintptr_t)testarea;
 408    reg_struct.range.len = pagesize;
 409    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 410
 411    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 412        error_report("%s userfault register: %s", __func__, strerror(errno));
 413        goto out;
 414    }
 415
 416    range_struct.start = (uintptr_t)testarea;
 417    range_struct.len = pagesize;
 418    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 419        error_report("%s userfault unregister: %s", __func__, strerror(errno));
 420        goto out;
 421    }
 422
 423    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 424                   (__u64)1 << _UFFDIO_COPY |
 425                   (__u64)1 << _UFFDIO_ZEROPAGE;
 426    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 427        error_report("Missing userfault map features: %" PRIx64,
 428                     (uint64_t)(~reg_struct.ioctls & feature_mask));
 429        goto out;
 430    }
 431
 432    /* Success! */
 433    ret = true;
 434out:
 435    if (testarea) {
 436        munmap(testarea, pagesize);
 437    }
 438    if (ufd != -1) {
 439        close(ufd);
 440    }
 441    return ret;
 442}
 443
 444/*
 445 * Setup an area of RAM so that it *can* be used for postcopy later; this
 446 * must be done right at the start prior to pre-copy.
 447 * opaque should be the MIS.
 448 */
 449static int init_range(RAMBlock *rb, void *opaque)
 450{
 451    const char *block_name = qemu_ram_get_idstr(rb);
 452    void *host_addr = qemu_ram_get_host_addr(rb);
 453    ram_addr_t offset = qemu_ram_get_offset(rb);
 454    ram_addr_t length = qemu_ram_get_used_length(rb);
 455    trace_postcopy_init_range(block_name, host_addr, offset, length);
 456
 457    /*
 458     * Save the used_length before running the guest. In case we have to
 459     * resize RAM blocks when syncing RAM block sizes from the source during
 460     * precopy, we'll update it manually via the ram block notifier.
 461     */
 462    rb->postcopy_length = length;
 463
 464    /*
 465     * We need the whole of RAM to be truly empty for postcopy, so things
 466     * like ROMs and any data tables built during init must be zero'd
 467     * - we're going to get the copy from the source anyway.
 468     * (Precopy will just overwrite this data, so doesn't need the discard)
 469     */
 470    if (ram_discard_range(block_name, 0, length)) {
 471        return -1;
 472    }
 473
 474    return 0;
 475}
 476
 477/*
 478 * At the end of migration, undo the effects of init_range
 479 * opaque should be the MIS.
 480 */
 481static int cleanup_range(RAMBlock *rb, void *opaque)
 482{
 483    const char *block_name = qemu_ram_get_idstr(rb);
 484    void *host_addr = qemu_ram_get_host_addr(rb);
 485    ram_addr_t offset = qemu_ram_get_offset(rb);
 486    ram_addr_t length = rb->postcopy_length;
 487    MigrationIncomingState *mis = opaque;
 488    struct uffdio_range range_struct;
 489    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 490
 491    /*
 492     * We turned off hugepage for the precopy stage with postcopy enabled
 493     * we can turn it back on now.
 494     */
 495    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 496
 497    /*
 498     * We can also turn off userfault now since we should have all the
 499     * pages.   It can be useful to leave it on to debug postcopy
 500     * if you're not sure it's always getting every page.
 501     */
 502    range_struct.start = (uintptr_t)host_addr;
 503    range_struct.len = length;
 504
 505    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 506        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 507
 508        return -1;
 509    }
 510
 511    return 0;
 512}
 513
 514/*
 515 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 516 * postcopy later; must be called prior to any precopy.
 517 * called from arch_init's similarly named ram_postcopy_incoming_init
 518 */
 519int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 520{
 521    if (foreach_not_ignored_block(init_range, NULL)) {
 522        return -1;
 523    }
 524
 525    return 0;
 526}
 527
 528/*
 529 * At the end of a migration where postcopy_ram_incoming_init was called.
 530 */
 531int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 532{
 533    trace_postcopy_ram_incoming_cleanup_entry();
 534
 535    if (mis->have_fault_thread) {
 536        Error *local_err = NULL;
 537
 538        /* Let the fault thread quit */
 539        qatomic_set(&mis->fault_thread_quit, 1);
 540        postcopy_fault_thread_notify(mis);
 541        trace_postcopy_ram_incoming_cleanup_join();
 542        qemu_thread_join(&mis->fault_thread);
 543
 544        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 545            error_report_err(local_err);
 546            return -1;
 547        }
 548
 549        if (foreach_not_ignored_block(cleanup_range, mis)) {
 550            return -1;
 551        }
 552
 553        trace_postcopy_ram_incoming_cleanup_closeuf();
 554        close(mis->userfault_fd);
 555        close(mis->userfault_event_fd);
 556        mis->have_fault_thread = false;
 557    }
 558
 559    if (enable_mlock) {
 560        if (os_mlock() < 0) {
 561            error_report("mlock: %s", strerror(errno));
 562            /*
 563             * It doesn't feel right to fail at this point, we have a valid
 564             * VM state.
 565             */
 566        }
 567    }
 568
 569    if (mis->postcopy_tmp_page) {
 570        munmap(mis->postcopy_tmp_page, mis->largest_page_size);
 571        mis->postcopy_tmp_page = NULL;
 572    }
 573    if (mis->postcopy_tmp_zero_page) {
 574        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 575        mis->postcopy_tmp_zero_page = NULL;
 576    }
 577    trace_postcopy_ram_incoming_cleanup_blocktime(
 578            get_postcopy_total_blocktime());
 579
 580    trace_postcopy_ram_incoming_cleanup_exit();
 581    return 0;
 582}
 583
 584/*
 585 * Disable huge pages on an area
 586 */
 587static int nhp_range(RAMBlock *rb, void *opaque)
 588{
 589    const char *block_name = qemu_ram_get_idstr(rb);
 590    void *host_addr = qemu_ram_get_host_addr(rb);
 591    ram_addr_t offset = qemu_ram_get_offset(rb);
 592    ram_addr_t length = rb->postcopy_length;
 593    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 594
 595    /*
 596     * Before we do discards we need to ensure those discards really
 597     * do delete areas of the page, even if THP thinks a hugepage would
 598     * be a good idea, so force hugepages off.
 599     */
 600    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 601
 602    return 0;
 603}
 604
 605/*
 606 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 607 * however leaving it until after precopy means that most of the precopy
 608 * data is still THPd
 609 */
 610int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 611{
 612    if (foreach_not_ignored_block(nhp_range, mis)) {
 613        return -1;
 614    }
 615
 616    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 617
 618    return 0;
 619}
 620
 621/*
 622 * Mark the given area of RAM as requiring notification to unwritten areas
 623 * Used as a  callback on foreach_not_ignored_block.
 624 *   host_addr: Base of area to mark
 625 *   offset: Offset in the whole ram arena
 626 *   length: Length of the section
 627 *   opaque: MigrationIncomingState pointer
 628 * Returns 0 on success
 629 */
 630static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
 631{
 632    MigrationIncomingState *mis = opaque;
 633    struct uffdio_register reg_struct;
 634
 635    reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
 636    reg_struct.range.len = rb->postcopy_length;
 637    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 638
 639    /* Now tell our userfault_fd that it's responsible for this area */
 640    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 641        error_report("%s userfault register: %s", __func__, strerror(errno));
 642        return -1;
 643    }
 644    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 645        error_report("%s userfault: Region doesn't support COPY", __func__);
 646        return -1;
 647    }
 648    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 649        qemu_ram_set_uf_zeroable(rb);
 650    }
 651
 652    return 0;
 653}
 654
 655int postcopy_wake_shared(struct PostCopyFD *pcfd,
 656                         uint64_t client_addr,
 657                         RAMBlock *rb)
 658{
 659    size_t pagesize = qemu_ram_pagesize(rb);
 660    struct uffdio_range range;
 661    int ret;
 662    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 663    range.start = client_addr & ~(pagesize - 1);
 664    range.len = pagesize;
 665    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 666    if (ret) {
 667        error_report("%s: Failed to wake: %zx in %s (%s)",
 668                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 669                     strerror(errno));
 670    }
 671    return ret;
 672}
 673
 674/*
 675 * Callback from shared fault handlers to ask for a page,
 676 * the page must be specified by a RAMBlock and an offset in that rb
 677 * Note: Only for use by shared fault handlers (in fault thread)
 678 */
 679int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 680                                 uint64_t client_addr, uint64_t rb_offset)
 681{
 682    size_t pagesize = qemu_ram_pagesize(rb);
 683    uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
 684    MigrationIncomingState *mis = migration_incoming_get_current();
 685
 686    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 687                                       rb_offset);
 688    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 689        trace_postcopy_request_shared_page_present(pcfd->idstr,
 690                                        qemu_ram_get_idstr(rb), rb_offset);
 691        return postcopy_wake_shared(pcfd, client_addr, rb);
 692    }
 693    migrate_send_rp_req_pages(mis, rb, aligned_rbo, client_addr);
 694    return 0;
 695}
 696
 697static int get_mem_fault_cpu_index(uint32_t pid)
 698{
 699    CPUState *cpu_iter;
 700
 701    CPU_FOREACH(cpu_iter) {
 702        if (cpu_iter->thread_id == pid) {
 703            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 704            return cpu_iter->cpu_index;
 705        }
 706    }
 707    trace_get_mem_fault_cpu_index(-1, pid);
 708    return -1;
 709}
 710
 711static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 712{
 713    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 714                                    dc->start_time;
 715    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 716}
 717
 718/*
 719 * This function is being called when pagefault occurs. It
 720 * tracks down vCPU blocking time.
 721 *
 722 * @addr: faulted host virtual address
 723 * @ptid: faulted process thread id
 724 * @rb: ramblock appropriate to addr
 725 */
 726static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 727                                          RAMBlock *rb)
 728{
 729    int cpu, already_received;
 730    MigrationIncomingState *mis = migration_incoming_get_current();
 731    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 732    uint32_t low_time_offset;
 733
 734    if (!dc || ptid == 0) {
 735        return;
 736    }
 737    cpu = get_mem_fault_cpu_index(ptid);
 738    if (cpu < 0) {
 739        return;
 740    }
 741
 742    low_time_offset = get_low_time_offset(dc);
 743    if (dc->vcpu_addr[cpu] == 0) {
 744        qatomic_inc(&dc->smp_cpus_down);
 745    }
 746
 747    qatomic_xchg(&dc->last_begin, low_time_offset);
 748    qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 749    qatomic_xchg(&dc->vcpu_addr[cpu], addr);
 750
 751    /*
 752     * check it here, not at the beginning of the function,
 753     * due to, check could occur early than bitmap_set in
 754     * qemu_ufd_copy_ioctl
 755     */
 756    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 757    if (already_received) {
 758        qatomic_xchg(&dc->vcpu_addr[cpu], 0);
 759        qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 760        qatomic_dec(&dc->smp_cpus_down);
 761    }
 762    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 763                                        cpu, already_received);
 764}
 765
 766/*
 767 *  This function just provide calculated blocktime per cpu and trace it.
 768 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 769 *
 770 *
 771 * Assume we have 3 CPU
 772 *
 773 *      S1        E1           S1               E1
 774 * -----***********------------xxx***************------------------------> CPU1
 775 *
 776 *             S2                E2
 777 * ------------****************xxx---------------------------------------> CPU2
 778 *
 779 *                         S3            E3
 780 * ------------------------****xxx********-------------------------------> CPU3
 781 *
 782 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 783 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 784 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 785 *            it's a part of total blocktime.
 786 * S1 - here is last_begin
 787 * Legend of the picture is following:
 788 *              * - means blocktime per vCPU
 789 *              x - means overlapped blocktime (total blocktime)
 790 *
 791 * @addr: host virtual address
 792 */
 793static void mark_postcopy_blocktime_end(uintptr_t addr)
 794{
 795    MigrationIncomingState *mis = migration_incoming_get_current();
 796    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 797    MachineState *ms = MACHINE(qdev_get_machine());
 798    unsigned int smp_cpus = ms->smp.cpus;
 799    int i, affected_cpu = 0;
 800    bool vcpu_total_blocktime = false;
 801    uint32_t read_vcpu_time, low_time_offset;
 802
 803    if (!dc) {
 804        return;
 805    }
 806
 807    low_time_offset = get_low_time_offset(dc);
 808    /* lookup cpu, to clear it,
 809     * that algorithm looks straightforward, but it's not
 810     * optimal, more optimal algorithm is keeping tree or hash
 811     * where key is address value is a list of  */
 812    for (i = 0; i < smp_cpus; i++) {
 813        uint32_t vcpu_blocktime = 0;
 814
 815        read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 816        if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 817            read_vcpu_time == 0) {
 818            continue;
 819        }
 820        qatomic_xchg(&dc->vcpu_addr[i], 0);
 821        vcpu_blocktime = low_time_offset - read_vcpu_time;
 822        affected_cpu += 1;
 823        /* we need to know is that mark_postcopy_end was due to
 824         * faulted page, another possible case it's prefetched
 825         * page and in that case we shouldn't be here */
 826        if (!vcpu_total_blocktime &&
 827            qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 828            vcpu_total_blocktime = true;
 829        }
 830        /* continue cycle, due to one page could affect several vCPUs */
 831        dc->vcpu_blocktime[i] += vcpu_blocktime;
 832    }
 833
 834    qatomic_sub(&dc->smp_cpus_down, affected_cpu);
 835    if (vcpu_total_blocktime) {
 836        dc->total_blocktime += low_time_offset - qatomic_fetch_add(
 837                &dc->last_begin, 0);
 838    }
 839    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 840                                      affected_cpu);
 841}
 842
 843static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
 844{
 845    trace_postcopy_pause_fault_thread();
 846
 847    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 848
 849    trace_postcopy_pause_fault_thread_continued();
 850
 851    return true;
 852}
 853
 854/*
 855 * Handle faults detected by the USERFAULT markings
 856 */
 857static void *postcopy_ram_fault_thread(void *opaque)
 858{
 859    MigrationIncomingState *mis = opaque;
 860    struct uffd_msg msg;
 861    int ret;
 862    size_t index;
 863    RAMBlock *rb = NULL;
 864
 865    trace_postcopy_ram_fault_thread_entry();
 866    rcu_register_thread();
 867    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 868    qemu_sem_post(&mis->fault_thread_sem);
 869
 870    struct pollfd *pfd;
 871    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 872
 873    pfd = g_new0(struct pollfd, pfd_len);
 874
 875    pfd[0].fd = mis->userfault_fd;
 876    pfd[0].events = POLLIN;
 877    pfd[1].fd = mis->userfault_event_fd;
 878    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 879    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 880    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 881        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 882                                                 struct PostCopyFD, index);
 883        pfd[2 + index].fd = pcfd->fd;
 884        pfd[2 + index].events = POLLIN;
 885        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 886                                                  pcfd->fd);
 887    }
 888
 889    while (true) {
 890        ram_addr_t rb_offset;
 891        int poll_result;
 892
 893        /*
 894         * We're mainly waiting for the kernel to give us a faulting HVA,
 895         * however we can be told to quit via userfault_quit_fd which is
 896         * an eventfd
 897         */
 898
 899        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 900        if (poll_result == -1) {
 901            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 902            break;
 903        }
 904
 905        if (!mis->to_src_file) {
 906            /*
 907             * Possibly someone tells us that the return path is
 908             * broken already using the event. We should hold until
 909             * the channel is rebuilt.
 910             */
 911            if (postcopy_pause_fault_thread(mis)) {
 912                /* Continue to read the userfaultfd */
 913            } else {
 914                error_report("%s: paused but don't allow to continue",
 915                             __func__);
 916                break;
 917            }
 918        }
 919
 920        if (pfd[1].revents) {
 921            uint64_t tmp64 = 0;
 922
 923            /* Consume the signal */
 924            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
 925                /* Nothing obviously nicer than posting this error. */
 926                error_report("%s: read() failed", __func__);
 927            }
 928
 929            if (qatomic_read(&mis->fault_thread_quit)) {
 930                trace_postcopy_ram_fault_thread_quit();
 931                break;
 932            }
 933        }
 934
 935        if (pfd[0].revents) {
 936            poll_result--;
 937            ret = read(mis->userfault_fd, &msg, sizeof(msg));
 938            if (ret != sizeof(msg)) {
 939                if (errno == EAGAIN) {
 940                    /*
 941                     * if a wake up happens on the other thread just after
 942                     * the poll, there is nothing to read.
 943                     */
 944                    continue;
 945                }
 946                if (ret < 0) {
 947                    error_report("%s: Failed to read full userfault "
 948                                 "message: %s",
 949                                 __func__, strerror(errno));
 950                    break;
 951                } else {
 952                    error_report("%s: Read %d bytes from userfaultfd "
 953                                 "expected %zd",
 954                                 __func__, ret, sizeof(msg));
 955                    break; /* Lost alignment, don't know what we'd read next */
 956                }
 957            }
 958            if (msg.event != UFFD_EVENT_PAGEFAULT) {
 959                error_report("%s: Read unexpected event %ud from userfaultfd",
 960                             __func__, msg.event);
 961                continue; /* It's not a page fault, shouldn't happen */
 962            }
 963
 964            rb = qemu_ram_block_from_host(
 965                     (void *)(uintptr_t)msg.arg.pagefault.address,
 966                     true, &rb_offset);
 967            if (!rb) {
 968                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
 969                             PRIx64, (uint64_t)msg.arg.pagefault.address);
 970                break;
 971            }
 972
 973            rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
 974            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
 975                                                qemu_ram_get_idstr(rb),
 976                                                rb_offset,
 977                                                msg.arg.pagefault.feat.ptid);
 978            mark_postcopy_blocktime_begin(
 979                    (uintptr_t)(msg.arg.pagefault.address),
 980                                msg.arg.pagefault.feat.ptid, rb);
 981
 982retry:
 983            /*
 984             * Send the request to the source - we want to request one
 985             * of our host page sizes (which is >= TPS)
 986             */
 987            ret = migrate_send_rp_req_pages(mis, rb, rb_offset,
 988                                            msg.arg.pagefault.address);
 989            if (ret) {
 990                /* May be network failure, try to wait for recovery */
 991                if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
 992                    /* We got reconnected somehow, try to continue */
 993                    goto retry;
 994                } else {
 995                    /* This is a unavoidable fault */
 996                    error_report("%s: migrate_send_rp_req_pages() get %d",
 997                                 __func__, ret);
 998                    break;
 999                }
1000            }
1001        }
1002
1003        /* Now handle any requests from external processes on shared memory */
1004        /* TODO: May need to handle devices deregistering during postcopy */
1005        for (index = 2; index < pfd_len && poll_result; index++) {
1006            if (pfd[index].revents) {
1007                struct PostCopyFD *pcfd =
1008                    &g_array_index(mis->postcopy_remote_fds,
1009                                   struct PostCopyFD, index - 2);
1010
1011                poll_result--;
1012                if (pfd[index].revents & POLLERR) {
1013                    error_report("%s: POLLERR on poll %zd fd=%d",
1014                                 __func__, index, pcfd->fd);
1015                    pfd[index].events = 0;
1016                    continue;
1017                }
1018
1019                ret = read(pcfd->fd, &msg, sizeof(msg));
1020                if (ret != sizeof(msg)) {
1021                    if (errno == EAGAIN) {
1022                        /*
1023                         * if a wake up happens on the other thread just after
1024                         * the poll, there is nothing to read.
1025                         */
1026                        continue;
1027                    }
1028                    if (ret < 0) {
1029                        error_report("%s: Failed to read full userfault "
1030                                     "message: %s (shared) revents=%d",
1031                                     __func__, strerror(errno),
1032                                     pfd[index].revents);
1033                        /*TODO: Could just disable this sharer */
1034                        break;
1035                    } else {
1036                        error_report("%s: Read %d bytes from userfaultfd "
1037                                     "expected %zd (shared)",
1038                                     __func__, ret, sizeof(msg));
1039                        /*TODO: Could just disable this sharer */
1040                        break; /*Lost alignment,don't know what we'd read next*/
1041                    }
1042                }
1043                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1044                    error_report("%s: Read unexpected event %ud "
1045                                 "from userfaultfd (shared)",
1046                                 __func__, msg.event);
1047                    continue; /* It's not a page fault, shouldn't happen */
1048                }
1049                /* Call the device handler registered with us */
1050                ret = pcfd->handler(pcfd, &msg);
1051                if (ret) {
1052                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1053                                 __func__, index, pcfd->idstr);
1054                    /* TODO: Fail? Disable this sharer? */
1055                }
1056            }
1057        }
1058    }
1059    rcu_unregister_thread();
1060    trace_postcopy_ram_fault_thread_exit();
1061    g_free(pfd);
1062    return NULL;
1063}
1064
1065int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1066{
1067    /* Open the fd for the kernel to give us userfaults */
1068    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1069    if (mis->userfault_fd == -1) {
1070        error_report("%s: Failed to open userfault fd: %s", __func__,
1071                     strerror(errno));
1072        return -1;
1073    }
1074
1075    /*
1076     * Although the host check already tested the API, we need to
1077     * do the check again as an ABI handshake on the new fd.
1078     */
1079    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1080        return -1;
1081    }
1082
1083    /* Now an eventfd we use to tell the fault-thread to quit */
1084    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1085    if (mis->userfault_event_fd == -1) {
1086        error_report("%s: Opening userfault_event_fd: %s", __func__,
1087                     strerror(errno));
1088        close(mis->userfault_fd);
1089        return -1;
1090    }
1091
1092    qemu_sem_init(&mis->fault_thread_sem, 0);
1093    qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1094                       postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1095    qemu_sem_wait(&mis->fault_thread_sem);
1096    qemu_sem_destroy(&mis->fault_thread_sem);
1097    mis->have_fault_thread = true;
1098
1099    /* Mark so that we get notified of accesses to unwritten areas */
1100    if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1101        error_report("ram_block_enable_notify failed");
1102        return -1;
1103    }
1104
1105    mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1106                                  PROT_READ | PROT_WRITE, MAP_PRIVATE |
1107                                  MAP_ANONYMOUS, -1, 0);
1108    if (mis->postcopy_tmp_page == MAP_FAILED) {
1109        mis->postcopy_tmp_page = NULL;
1110        error_report("%s: Failed to map postcopy_tmp_page %s",
1111                     __func__, strerror(errno));
1112        return -1;
1113    }
1114
1115    /*
1116     * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1117     */
1118    mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1119                                       PROT_READ | PROT_WRITE,
1120                                       MAP_PRIVATE | MAP_ANONYMOUS,
1121                                       -1, 0);
1122    if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1123        int e = errno;
1124        mis->postcopy_tmp_zero_page = NULL;
1125        error_report("%s: Failed to map large zero page %s",
1126                     __func__, strerror(e));
1127        return -e;
1128    }
1129    memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1130
1131    trace_postcopy_ram_enable_notify();
1132
1133    return 0;
1134}
1135
1136static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1137                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1138{
1139    int userfault_fd = mis->userfault_fd;
1140    int ret;
1141
1142    if (from_addr) {
1143        struct uffdio_copy copy_struct;
1144        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1145        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1146        copy_struct.len = pagesize;
1147        copy_struct.mode = 0;
1148        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1149    } else {
1150        struct uffdio_zeropage zero_struct;
1151        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1152        zero_struct.range.len = pagesize;
1153        zero_struct.mode = 0;
1154        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1155    }
1156    if (!ret) {
1157        qemu_mutex_lock(&mis->page_request_mutex);
1158        ramblock_recv_bitmap_set_range(rb, host_addr,
1159                                       pagesize / qemu_target_page_size());
1160        /*
1161         * If this page resolves a page fault for a previous recorded faulted
1162         * address, take a special note to maintain the requested page list.
1163         */
1164        if (g_tree_lookup(mis->page_requested, host_addr)) {
1165            g_tree_remove(mis->page_requested, host_addr);
1166            mis->page_requested_count--;
1167            trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1168        }
1169        qemu_mutex_unlock(&mis->page_request_mutex);
1170        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1171    }
1172    return ret;
1173}
1174
1175int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1176{
1177    int i;
1178    MigrationIncomingState *mis = migration_incoming_get_current();
1179    GArray *pcrfds = mis->postcopy_remote_fds;
1180
1181    for (i = 0; i < pcrfds->len; i++) {
1182        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1183        int ret = cur->waker(cur, rb, offset);
1184        if (ret) {
1185            return ret;
1186        }
1187    }
1188    return 0;
1189}
1190
1191/*
1192 * Place a host page (from) at (host) atomically
1193 * returns 0 on success
1194 */
1195int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1196                        RAMBlock *rb)
1197{
1198    size_t pagesize = qemu_ram_pagesize(rb);
1199
1200    /* copy also acks to the kernel waking the stalled thread up
1201     * TODO: We can inhibit that ack and only do it if it was requested
1202     * which would be slightly cheaper, but we'd have to be careful
1203     * of the order of updating our page state.
1204     */
1205    if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1206        int e = errno;
1207        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1208                     __func__, strerror(e), host, from, pagesize);
1209
1210        return -e;
1211    }
1212
1213    trace_postcopy_place_page(host);
1214    return postcopy_notify_shared_wake(rb,
1215                                       qemu_ram_block_host_offset(rb, host));
1216}
1217
1218/*
1219 * Place a zero page at (host) atomically
1220 * returns 0 on success
1221 */
1222int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1223                             RAMBlock *rb)
1224{
1225    size_t pagesize = qemu_ram_pagesize(rb);
1226    trace_postcopy_place_page_zero(host);
1227
1228    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1229     * but it's not available for everything (e.g. hugetlbpages)
1230     */
1231    if (qemu_ram_is_uf_zeroable(rb)) {
1232        if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1233            int e = errno;
1234            error_report("%s: %s zero host: %p",
1235                         __func__, strerror(e), host);
1236
1237            return -e;
1238        }
1239        return postcopy_notify_shared_wake(rb,
1240                                           qemu_ram_block_host_offset(rb,
1241                                                                      host));
1242    } else {
1243        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1244    }
1245}
1246
1247#else
1248/* No target OS support, stubs just fail */
1249void fill_destination_postcopy_migration_info(MigrationInfo *info)
1250{
1251}
1252
1253bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1254{
1255    error_report("%s: No OS support", __func__);
1256    return false;
1257}
1258
1259int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1260{
1261    error_report("postcopy_ram_incoming_init: No OS support");
1262    return -1;
1263}
1264
1265int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1266{
1267    assert(0);
1268    return -1;
1269}
1270
1271int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1272{
1273    assert(0);
1274    return -1;
1275}
1276
1277int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1278                                 uint64_t client_addr, uint64_t rb_offset)
1279{
1280    assert(0);
1281    return -1;
1282}
1283
1284int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1285{
1286    assert(0);
1287    return -1;
1288}
1289
1290int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1291                        RAMBlock *rb)
1292{
1293    assert(0);
1294    return -1;
1295}
1296
1297int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1298                        RAMBlock *rb)
1299{
1300    assert(0);
1301    return -1;
1302}
1303
1304int postcopy_wake_shared(struct PostCopyFD *pcfd,
1305                         uint64_t client_addr,
1306                         RAMBlock *rb)
1307{
1308    assert(0);
1309    return -1;
1310}
1311#endif
1312
1313/* ------------------------------------------------------------------------- */
1314
1315void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1316{
1317    uint64_t tmp64 = 1;
1318
1319    /*
1320     * Wakeup the fault_thread.  It's an eventfd that should currently
1321     * be at 0, we're going to increment it to 1
1322     */
1323    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1324        /* Not much we can do here, but may as well report it */
1325        error_report("%s: incrementing failed: %s", __func__,
1326                     strerror(errno));
1327    }
1328}
1329
1330/**
1331 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1332 *   asking to discard individual ranges.
1333 *
1334 * @ms: The current migration state.
1335 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1336 * @name: RAMBlock that discards will operate on.
1337 */
1338static PostcopyDiscardState pds = {0};
1339void postcopy_discard_send_init(MigrationState *ms, const char *name)
1340{
1341    pds.ramblock_name = name;
1342    pds.cur_entry = 0;
1343    pds.nsentwords = 0;
1344    pds.nsentcmds = 0;
1345}
1346
1347/**
1348 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1349 *   discard. May send a discard message, may just leave it queued to
1350 *   be sent later.
1351 *
1352 * @ms: Current migration state.
1353 * @start,@length: a range of pages in the migration bitmap in the
1354 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1355 */
1356void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1357                                 unsigned long length)
1358{
1359    size_t tp_size = qemu_target_page_size();
1360    /* Convert to byte offsets within the RAM block */
1361    pds.start_list[pds.cur_entry] = start  * tp_size;
1362    pds.length_list[pds.cur_entry] = length * tp_size;
1363    trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1364    pds.cur_entry++;
1365    pds.nsentwords++;
1366
1367    if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1368        /* Full set, ship it! */
1369        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1370                                              pds.ramblock_name,
1371                                              pds.cur_entry,
1372                                              pds.start_list,
1373                                              pds.length_list);
1374        pds.nsentcmds++;
1375        pds.cur_entry = 0;
1376    }
1377}
1378
1379/**
1380 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1381 * bitmap code. Sends any outstanding discard messages, frees the PDS
1382 *
1383 * @ms: Current migration state.
1384 */
1385void postcopy_discard_send_finish(MigrationState *ms)
1386{
1387    /* Anything unsent? */
1388    if (pds.cur_entry) {
1389        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1390                                              pds.ramblock_name,
1391                                              pds.cur_entry,
1392                                              pds.start_list,
1393                                              pds.length_list);
1394        pds.nsentcmds++;
1395    }
1396
1397    trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1398                                       pds.nsentcmds);
1399}
1400
1401/*
1402 * Current state of incoming postcopy; note this is not part of
1403 * MigrationIncomingState since it's state is used during cleanup
1404 * at the end as MIS is being freed.
1405 */
1406static PostcopyState incoming_postcopy_state;
1407
1408PostcopyState  postcopy_state_get(void)
1409{
1410    return qatomic_mb_read(&incoming_postcopy_state);
1411}
1412
1413/* Set the state and return the old state */
1414PostcopyState postcopy_state_set(PostcopyState new_state)
1415{
1416    return qatomic_xchg(&incoming_postcopy_state, new_state);
1417}
1418
1419/* Register a handler for external shared memory postcopy
1420 * called on the destination.
1421 */
1422void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1423{
1424    MigrationIncomingState *mis = migration_incoming_get_current();
1425
1426    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1427                                                  *pcfd);
1428}
1429
1430/* Unregister a handler for external shared memory postcopy
1431 */
1432void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1433{
1434    guint i;
1435    MigrationIncomingState *mis = migration_incoming_get_current();
1436    GArray *pcrfds = mis->postcopy_remote_fds;
1437
1438    for (i = 0; i < pcrfds->len; i++) {
1439        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1440        if (cur->fd == pcfd->fd) {
1441            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1442            return;
1443        }
1444    }
1445}
1446