qemu/softmmu/physmem.c
<<
>>
Prefs
   1/*
   2 * RAM allocation and memory access
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu-common.h"
  22#include "qapi/error.h"
  23
  24#include "qemu/cutils.h"
  25#include "qemu/cacheflush.h"
  26
  27#ifdef CONFIG_TCG
  28#include "hw/core/tcg-cpu-ops.h"
  29#endif /* CONFIG_TCG */
  30
  31#include "exec/exec-all.h"
  32#include "exec/target_page.h"
  33#include "hw/qdev-core.h"
  34#include "hw/qdev-properties.h"
  35#include "hw/boards.h"
  36#include "hw/xen/xen.h"
  37#include "sysemu/kvm.h"
  38#include "sysemu/tcg.h"
  39#include "sysemu/qtest.h"
  40#include "qemu/timer.h"
  41#include "qemu/config-file.h"
  42#include "qemu/error-report.h"
  43#include "qemu/qemu-print.h"
  44#include "exec/memory.h"
  45#include "exec/ioport.h"
  46#include "sysemu/dma.h"
  47#include "sysemu/hostmem.h"
  48#include "sysemu/hw_accel.h"
  49#include "sysemu/xen-mapcache.h"
  50#include "trace/trace-root.h"
  51
  52#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
  53#include <linux/falloc.h>
  54#endif
  55
  56#include "qemu/rcu_queue.h"
  57#include "qemu/main-loop.h"
  58#include "exec/translate-all.h"
  59#include "sysemu/replay.h"
  60
  61#include "exec/memory-internal.h"
  62#include "exec/ram_addr.h"
  63#include "exec/log.h"
  64
  65#include "qemu/pmem.h"
  66
  67#include "migration/vmstate.h"
  68
  69#include "qemu/range.h"
  70#ifndef _WIN32
  71#include "qemu/mmap-alloc.h"
  72#endif
  73
  74#include "monitor/monitor.h"
  75
  76#ifdef CONFIG_LIBDAXCTL
  77#include <daxctl/libdaxctl.h>
  78#endif
  79
  80//#define DEBUG_SUBPAGE
  81
  82/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
  83 * are protected by the ramlist lock.
  84 */
  85RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
  86
  87static MemoryRegion *system_memory;
  88static MemoryRegion *system_io;
  89
  90AddressSpace address_space_io;
  91AddressSpace address_space_memory;
  92
  93static MemoryRegion io_mem_unassigned;
  94
  95typedef struct PhysPageEntry PhysPageEntry;
  96
  97struct PhysPageEntry {
  98    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
  99    uint32_t skip : 6;
 100     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 101    uint32_t ptr : 26;
 102};
 103
 104#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 105
 106/* Size of the L2 (and L3, etc) page tables.  */
 107#define ADDR_SPACE_BITS 64
 108
 109#define P_L2_BITS 9
 110#define P_L2_SIZE (1 << P_L2_BITS)
 111
 112#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 113
 114typedef PhysPageEntry Node[P_L2_SIZE];
 115
 116typedef struct PhysPageMap {
 117    struct rcu_head rcu;
 118
 119    unsigned sections_nb;
 120    unsigned sections_nb_alloc;
 121    unsigned nodes_nb;
 122    unsigned nodes_nb_alloc;
 123    Node *nodes;
 124    MemoryRegionSection *sections;
 125} PhysPageMap;
 126
 127struct AddressSpaceDispatch {
 128    MemoryRegionSection *mru_section;
 129    /* This is a multi-level map on the physical address space.
 130     * The bottom level has pointers to MemoryRegionSections.
 131     */
 132    PhysPageEntry phys_map;
 133    PhysPageMap map;
 134};
 135
 136#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 137typedef struct subpage_t {
 138    MemoryRegion iomem;
 139    FlatView *fv;
 140    hwaddr base;
 141    uint16_t sub_section[];
 142} subpage_t;
 143
 144#define PHYS_SECTION_UNASSIGNED 0
 145
 146static void io_mem_init(void);
 147static void memory_map_init(void);
 148static void tcg_log_global_after_sync(MemoryListener *listener);
 149static void tcg_commit(MemoryListener *listener);
 150
 151/**
 152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 153 * @cpu: the CPU whose AddressSpace this is
 154 * @as: the AddressSpace itself
 155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 157 */
 158struct CPUAddressSpace {
 159    CPUState *cpu;
 160    AddressSpace *as;
 161    struct AddressSpaceDispatch *memory_dispatch;
 162    MemoryListener tcg_as_listener;
 163};
 164
 165struct DirtyBitmapSnapshot {
 166    ram_addr_t start;
 167    ram_addr_t end;
 168    unsigned long dirty[];
 169};
 170
 171static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 172{
 173    static unsigned alloc_hint = 16;
 174    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 175        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
 176        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 177        alloc_hint = map->nodes_nb_alloc;
 178    }
 179}
 180
 181static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 182{
 183    unsigned i;
 184    uint32_t ret;
 185    PhysPageEntry e;
 186    PhysPageEntry *p;
 187
 188    ret = map->nodes_nb++;
 189    p = map->nodes[ret];
 190    assert(ret != PHYS_MAP_NODE_NIL);
 191    assert(ret != map->nodes_nb_alloc);
 192
 193    e.skip = leaf ? 0 : 1;
 194    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 195    for (i = 0; i < P_L2_SIZE; ++i) {
 196        memcpy(&p[i], &e, sizeof(e));
 197    }
 198    return ret;
 199}
 200
 201static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 202                                hwaddr *index, uint64_t *nb, uint16_t leaf,
 203                                int level)
 204{
 205    PhysPageEntry *p;
 206    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 207
 208    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 209        lp->ptr = phys_map_node_alloc(map, level == 0);
 210    }
 211    p = map->nodes[lp->ptr];
 212    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 213
 214    while (*nb && lp < &p[P_L2_SIZE]) {
 215        if ((*index & (step - 1)) == 0 && *nb >= step) {
 216            lp->skip = 0;
 217            lp->ptr = leaf;
 218            *index += step;
 219            *nb -= step;
 220        } else {
 221            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 222        }
 223        ++lp;
 224    }
 225}
 226
 227static void phys_page_set(AddressSpaceDispatch *d,
 228                          hwaddr index, uint64_t nb,
 229                          uint16_t leaf)
 230{
 231    /* Wildly overreserve - it doesn't matter much. */
 232    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 233
 234    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 235}
 236
 237/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 238 * and update our entry so we can skip it and go directly to the destination.
 239 */
 240static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 241{
 242    unsigned valid_ptr = P_L2_SIZE;
 243    int valid = 0;
 244    PhysPageEntry *p;
 245    int i;
 246
 247    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 248        return;
 249    }
 250
 251    p = nodes[lp->ptr];
 252    for (i = 0; i < P_L2_SIZE; i++) {
 253        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 254            continue;
 255        }
 256
 257        valid_ptr = i;
 258        valid++;
 259        if (p[i].skip) {
 260            phys_page_compact(&p[i], nodes);
 261        }
 262    }
 263
 264    /* We can only compress if there's only one child. */
 265    if (valid != 1) {
 266        return;
 267    }
 268
 269    assert(valid_ptr < P_L2_SIZE);
 270
 271    /* Don't compress if it won't fit in the # of bits we have. */
 272    if (P_L2_LEVELS >= (1 << 6) &&
 273        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
 274        return;
 275    }
 276
 277    lp->ptr = p[valid_ptr].ptr;
 278    if (!p[valid_ptr].skip) {
 279        /* If our only child is a leaf, make this a leaf. */
 280        /* By design, we should have made this node a leaf to begin with so we
 281         * should never reach here.
 282         * But since it's so simple to handle this, let's do it just in case we
 283         * change this rule.
 284         */
 285        lp->skip = 0;
 286    } else {
 287        lp->skip += p[valid_ptr].skip;
 288    }
 289}
 290
 291void address_space_dispatch_compact(AddressSpaceDispatch *d)
 292{
 293    if (d->phys_map.skip) {
 294        phys_page_compact(&d->phys_map, d->map.nodes);
 295    }
 296}
 297
 298static inline bool section_covers_addr(const MemoryRegionSection *section,
 299                                       hwaddr addr)
 300{
 301    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 302     * the section must cover the entire address space.
 303     */
 304    return int128_gethi(section->size) ||
 305           range_covers_byte(section->offset_within_address_space,
 306                             int128_getlo(section->size), addr);
 307}
 308
 309static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 310{
 311    PhysPageEntry lp = d->phys_map, *p;
 312    Node *nodes = d->map.nodes;
 313    MemoryRegionSection *sections = d->map.sections;
 314    hwaddr index = addr >> TARGET_PAGE_BITS;
 315    int i;
 316
 317    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 318        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 319            return &sections[PHYS_SECTION_UNASSIGNED];
 320        }
 321        p = nodes[lp.ptr];
 322        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 323    }
 324
 325    if (section_covers_addr(&sections[lp.ptr], addr)) {
 326        return &sections[lp.ptr];
 327    } else {
 328        return &sections[PHYS_SECTION_UNASSIGNED];
 329    }
 330}
 331
 332/* Called from RCU critical section */
 333static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 334                                                        hwaddr addr,
 335                                                        bool resolve_subpage)
 336{
 337    MemoryRegionSection *section = qatomic_read(&d->mru_section);
 338    subpage_t *subpage;
 339
 340    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 341        !section_covers_addr(section, addr)) {
 342        section = phys_page_find(d, addr);
 343        qatomic_set(&d->mru_section, section);
 344    }
 345    if (resolve_subpage && section->mr->subpage) {
 346        subpage = container_of(section->mr, subpage_t, iomem);
 347        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 348    }
 349    return section;
 350}
 351
 352/* Called from RCU critical section */
 353static MemoryRegionSection *
 354address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 355                                 hwaddr *plen, bool resolve_subpage)
 356{
 357    MemoryRegionSection *section;
 358    MemoryRegion *mr;
 359    Int128 diff;
 360
 361    section = address_space_lookup_region(d, addr, resolve_subpage);
 362    /* Compute offset within MemoryRegionSection */
 363    addr -= section->offset_within_address_space;
 364
 365    /* Compute offset within MemoryRegion */
 366    *xlat = addr + section->offset_within_region;
 367
 368    mr = section->mr;
 369
 370    /* MMIO registers can be expected to perform full-width accesses based only
 371     * on their address, without considering adjacent registers that could
 372     * decode to completely different MemoryRegions.  When such registers
 373     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 374     * regions overlap wildly.  For this reason we cannot clamp the accesses
 375     * here.
 376     *
 377     * If the length is small (as is the case for address_space_ldl/stl),
 378     * everything works fine.  If the incoming length is large, however,
 379     * the caller really has to do the clamping through memory_access_size.
 380     */
 381    if (memory_region_is_ram(mr)) {
 382        diff = int128_sub(section->size, int128_make64(addr));
 383        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 384    }
 385    return section;
 386}
 387
 388/**
 389 * address_space_translate_iommu - translate an address through an IOMMU
 390 * memory region and then through the target address space.
 391 *
 392 * @iommu_mr: the IOMMU memory region that we start the translation from
 393 * @addr: the address to be translated through the MMU
 394 * @xlat: the translated address offset within the destination memory region.
 395 *        It cannot be %NULL.
 396 * @plen_out: valid read/write length of the translated address. It
 397 *            cannot be %NULL.
 398 * @page_mask_out: page mask for the translated address. This
 399 *            should only be meaningful for IOMMU translated
 400 *            addresses, since there may be huge pages that this bit
 401 *            would tell. It can be %NULL if we don't care about it.
 402 * @is_write: whether the translation operation is for write
 403 * @is_mmio: whether this can be MMIO, set true if it can
 404 * @target_as: the address space targeted by the IOMMU
 405 * @attrs: transaction attributes
 406 *
 407 * This function is called from RCU critical section.  It is the common
 408 * part of flatview_do_translate and address_space_translate_cached.
 409 */
 410static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
 411                                                         hwaddr *xlat,
 412                                                         hwaddr *plen_out,
 413                                                         hwaddr *page_mask_out,
 414                                                         bool is_write,
 415                                                         bool is_mmio,
 416                                                         AddressSpace **target_as,
 417                                                         MemTxAttrs attrs)
 418{
 419    MemoryRegionSection *section;
 420    hwaddr page_mask = (hwaddr)-1;
 421
 422    do {
 423        hwaddr addr = *xlat;
 424        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 425        int iommu_idx = 0;
 426        IOMMUTLBEntry iotlb;
 427
 428        if (imrc->attrs_to_index) {
 429            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 430        }
 431
 432        iotlb = imrc->translate(iommu_mr, addr, is_write ?
 433                                IOMMU_WO : IOMMU_RO, iommu_idx);
 434
 435        if (!(iotlb.perm & (1 << is_write))) {
 436            goto unassigned;
 437        }
 438
 439        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 440                | (addr & iotlb.addr_mask));
 441        page_mask &= iotlb.addr_mask;
 442        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
 443        *target_as = iotlb.target_as;
 444
 445        section = address_space_translate_internal(
 446                address_space_to_dispatch(iotlb.target_as), addr, xlat,
 447                plen_out, is_mmio);
 448
 449        iommu_mr = memory_region_get_iommu(section->mr);
 450    } while (unlikely(iommu_mr));
 451
 452    if (page_mask_out) {
 453        *page_mask_out = page_mask;
 454    }
 455    return *section;
 456
 457unassigned:
 458    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 459}
 460
 461/**
 462 * flatview_do_translate - translate an address in FlatView
 463 *
 464 * @fv: the flat view that we want to translate on
 465 * @addr: the address to be translated in above address space
 466 * @xlat: the translated address offset within memory region. It
 467 *        cannot be @NULL.
 468 * @plen_out: valid read/write length of the translated address. It
 469 *            can be @NULL when we don't care about it.
 470 * @page_mask_out: page mask for the translated address. This
 471 *            should only be meaningful for IOMMU translated
 472 *            addresses, since there may be huge pages that this bit
 473 *            would tell. It can be @NULL if we don't care about it.
 474 * @is_write: whether the translation operation is for write
 475 * @is_mmio: whether this can be MMIO, set true if it can
 476 * @target_as: the address space targeted by the IOMMU
 477 * @attrs: memory transaction attributes
 478 *
 479 * This function is called from RCU critical section
 480 */
 481static MemoryRegionSection flatview_do_translate(FlatView *fv,
 482                                                 hwaddr addr,
 483                                                 hwaddr *xlat,
 484                                                 hwaddr *plen_out,
 485                                                 hwaddr *page_mask_out,
 486                                                 bool is_write,
 487                                                 bool is_mmio,
 488                                                 AddressSpace **target_as,
 489                                                 MemTxAttrs attrs)
 490{
 491    MemoryRegionSection *section;
 492    IOMMUMemoryRegion *iommu_mr;
 493    hwaddr plen = (hwaddr)(-1);
 494
 495    if (!plen_out) {
 496        plen_out = &plen;
 497    }
 498
 499    section = address_space_translate_internal(
 500            flatview_to_dispatch(fv), addr, xlat,
 501            plen_out, is_mmio);
 502
 503    iommu_mr = memory_region_get_iommu(section->mr);
 504    if (unlikely(iommu_mr)) {
 505        return address_space_translate_iommu(iommu_mr, xlat,
 506                                             plen_out, page_mask_out,
 507                                             is_write, is_mmio,
 508                                             target_as, attrs);
 509    }
 510    if (page_mask_out) {
 511        /* Not behind an IOMMU, use default page size. */
 512        *page_mask_out = ~TARGET_PAGE_MASK;
 513    }
 514
 515    return *section;
 516}
 517
 518/* Called from RCU critical section */
 519IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 520                                            bool is_write, MemTxAttrs attrs)
 521{
 522    MemoryRegionSection section;
 523    hwaddr xlat, page_mask;
 524
 525    /*
 526     * This can never be MMIO, and we don't really care about plen,
 527     * but page mask.
 528     */
 529    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 530                                    NULL, &page_mask, is_write, false, &as,
 531                                    attrs);
 532
 533    /* Illegal translation */
 534    if (section.mr == &io_mem_unassigned) {
 535        goto iotlb_fail;
 536    }
 537
 538    /* Convert memory region offset into address space offset */
 539    xlat += section.offset_within_address_space -
 540        section.offset_within_region;
 541
 542    return (IOMMUTLBEntry) {
 543        .target_as = as,
 544        .iova = addr & ~page_mask,
 545        .translated_addr = xlat & ~page_mask,
 546        .addr_mask = page_mask,
 547        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 548        .perm = IOMMU_RW,
 549    };
 550
 551iotlb_fail:
 552    return (IOMMUTLBEntry) {0};
 553}
 554
 555/* Called from RCU critical section */
 556MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 557                                 hwaddr *plen, bool is_write,
 558                                 MemTxAttrs attrs)
 559{
 560    MemoryRegion *mr;
 561    MemoryRegionSection section;
 562    AddressSpace *as = NULL;
 563
 564    /* This can be MMIO, so setup MMIO bit. */
 565    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 566                                    is_write, true, &as, attrs);
 567    mr = section.mr;
 568
 569    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 570        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 571        *plen = MIN(page, *plen);
 572    }
 573
 574    return mr;
 575}
 576
 577typedef struct TCGIOMMUNotifier {
 578    IOMMUNotifier n;
 579    MemoryRegion *mr;
 580    CPUState *cpu;
 581    int iommu_idx;
 582    bool active;
 583} TCGIOMMUNotifier;
 584
 585static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
 586{
 587    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
 588
 589    if (!notifier->active) {
 590        return;
 591    }
 592    tlb_flush(notifier->cpu);
 593    notifier->active = false;
 594    /* We leave the notifier struct on the list to avoid reallocating it later.
 595     * Generally the number of IOMMUs a CPU deals with will be small.
 596     * In any case we can't unregister the iommu notifier from a notify
 597     * callback.
 598     */
 599}
 600
 601static void tcg_register_iommu_notifier(CPUState *cpu,
 602                                        IOMMUMemoryRegion *iommu_mr,
 603                                        int iommu_idx)
 604{
 605    /* Make sure this CPU has an IOMMU notifier registered for this
 606     * IOMMU/IOMMU index combination, so that we can flush its TLB
 607     * when the IOMMU tells us the mappings we've cached have changed.
 608     */
 609    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
 610    TCGIOMMUNotifier *notifier = NULL;
 611    int i;
 612
 613    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 614        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 615        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
 616            break;
 617        }
 618    }
 619    if (i == cpu->iommu_notifiers->len) {
 620        /* Not found, add a new entry at the end of the array */
 621        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
 622        notifier = g_new0(TCGIOMMUNotifier, 1);
 623        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
 624
 625        notifier->mr = mr;
 626        notifier->iommu_idx = iommu_idx;
 627        notifier->cpu = cpu;
 628        /* Rather than trying to register interest in the specific part
 629         * of the iommu's address space that we've accessed and then
 630         * expand it later as subsequent accesses touch more of it, we
 631         * just register interest in the whole thing, on the assumption
 632         * that iommu reconfiguration will be rare.
 633         */
 634        iommu_notifier_init(&notifier->n,
 635                            tcg_iommu_unmap_notify,
 636                            IOMMU_NOTIFIER_UNMAP,
 637                            0,
 638                            HWADDR_MAX,
 639                            iommu_idx);
 640        memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
 641                                              &error_fatal);
 642    }
 643
 644    if (!notifier->active) {
 645        notifier->active = true;
 646    }
 647}
 648
 649void tcg_iommu_free_notifier_list(CPUState *cpu)
 650{
 651    /* Destroy the CPU's notifier list */
 652    int i;
 653    TCGIOMMUNotifier *notifier;
 654
 655    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 656        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 657        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
 658        g_free(notifier);
 659    }
 660    g_array_free(cpu->iommu_notifiers, true);
 661}
 662
 663void tcg_iommu_init_notifier_list(CPUState *cpu)
 664{
 665    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
 666}
 667
 668/* Called from RCU critical section */
 669MemoryRegionSection *
 670address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 671                                  hwaddr *xlat, hwaddr *plen,
 672                                  MemTxAttrs attrs, int *prot)
 673{
 674    MemoryRegionSection *section;
 675    IOMMUMemoryRegion *iommu_mr;
 676    IOMMUMemoryRegionClass *imrc;
 677    IOMMUTLBEntry iotlb;
 678    int iommu_idx;
 679    AddressSpaceDispatch *d =
 680        qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 681
 682    for (;;) {
 683        section = address_space_translate_internal(d, addr, &addr, plen, false);
 684
 685        iommu_mr = memory_region_get_iommu(section->mr);
 686        if (!iommu_mr) {
 687            break;
 688        }
 689
 690        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 691
 692        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 693        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
 694        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
 695         * doesn't short-cut its translation table walk.
 696         */
 697        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
 698        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 699                | (addr & iotlb.addr_mask));
 700        /* Update the caller's prot bits to remove permissions the IOMMU
 701         * is giving us a failure response for. If we get down to no
 702         * permissions left at all we can give up now.
 703         */
 704        if (!(iotlb.perm & IOMMU_RO)) {
 705            *prot &= ~(PAGE_READ | PAGE_EXEC);
 706        }
 707        if (!(iotlb.perm & IOMMU_WO)) {
 708            *prot &= ~PAGE_WRITE;
 709        }
 710
 711        if (!*prot) {
 712            goto translate_fail;
 713        }
 714
 715        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
 716    }
 717
 718    assert(!memory_region_is_iommu(section->mr));
 719    *xlat = addr;
 720    return section;
 721
 722translate_fail:
 723    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
 724}
 725
 726void cpu_address_space_init(CPUState *cpu, int asidx,
 727                            const char *prefix, MemoryRegion *mr)
 728{
 729    CPUAddressSpace *newas;
 730    AddressSpace *as = g_new0(AddressSpace, 1);
 731    char *as_name;
 732
 733    assert(mr);
 734    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 735    address_space_init(as, mr, as_name);
 736    g_free(as_name);
 737
 738    /* Target code should have set num_ases before calling us */
 739    assert(asidx < cpu->num_ases);
 740
 741    if (asidx == 0) {
 742        /* address space 0 gets the convenience alias */
 743        cpu->as = as;
 744    }
 745
 746    /* KVM cannot currently support multiple address spaces. */
 747    assert(asidx == 0 || !kvm_enabled());
 748
 749    if (!cpu->cpu_ases) {
 750        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 751    }
 752
 753    newas = &cpu->cpu_ases[asidx];
 754    newas->cpu = cpu;
 755    newas->as = as;
 756    if (tcg_enabled()) {
 757        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
 758        newas->tcg_as_listener.commit = tcg_commit;
 759        memory_listener_register(&newas->tcg_as_listener, as);
 760    }
 761}
 762
 763AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 764{
 765    /* Return the AddressSpace corresponding to the specified index */
 766    return cpu->cpu_ases[asidx].as;
 767}
 768
 769/* Add a watchpoint.  */
 770int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
 771                          int flags, CPUWatchpoint **watchpoint)
 772{
 773    CPUWatchpoint *wp;
 774    vaddr in_page;
 775
 776    /* forbid ranges which are empty or run off the end of the address space */
 777    if (len == 0 || (addr + len - 1) < addr) {
 778        error_report("tried to set invalid watchpoint at %"
 779                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
 780        return -EINVAL;
 781    }
 782    wp = g_malloc(sizeof(*wp));
 783
 784    wp->vaddr = addr;
 785    wp->len = len;
 786    wp->flags = flags;
 787
 788    /* keep all GDB-injected watchpoints in front */
 789    if (flags & BP_GDB) {
 790        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
 791    } else {
 792        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
 793    }
 794
 795    in_page = -(addr | TARGET_PAGE_MASK);
 796    if (len <= in_page) {
 797        tlb_flush_page(cpu, addr);
 798    } else {
 799        tlb_flush(cpu);
 800    }
 801
 802    if (watchpoint)
 803        *watchpoint = wp;
 804    return 0;
 805}
 806
 807/* Remove a specific watchpoint.  */
 808int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
 809                          int flags)
 810{
 811    CPUWatchpoint *wp;
 812
 813    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 814        if (addr == wp->vaddr && len == wp->len
 815                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
 816            cpu_watchpoint_remove_by_ref(cpu, wp);
 817            return 0;
 818        }
 819    }
 820    return -ENOENT;
 821}
 822
 823/* Remove a specific watchpoint by reference.  */
 824void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
 825{
 826    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
 827
 828    tlb_flush_page(cpu, watchpoint->vaddr);
 829
 830    g_free(watchpoint);
 831}
 832
 833/* Remove all matching watchpoints.  */
 834void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
 835{
 836    CPUWatchpoint *wp, *next;
 837
 838    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
 839        if (wp->flags & mask) {
 840            cpu_watchpoint_remove_by_ref(cpu, wp);
 841        }
 842    }
 843}
 844
 845#ifdef CONFIG_TCG
 846/* Return true if this watchpoint address matches the specified
 847 * access (ie the address range covered by the watchpoint overlaps
 848 * partially or completely with the address range covered by the
 849 * access).
 850 */
 851static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
 852                                              vaddr addr, vaddr len)
 853{
 854    /* We know the lengths are non-zero, but a little caution is
 855     * required to avoid errors in the case where the range ends
 856     * exactly at the top of the address space and so addr + len
 857     * wraps round to zero.
 858     */
 859    vaddr wpend = wp->vaddr + wp->len - 1;
 860    vaddr addrend = addr + len - 1;
 861
 862    return !(addr > wpend || wp->vaddr > addrend);
 863}
 864
 865/* Return flags for watchpoints that match addr + prot.  */
 866int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
 867{
 868    CPUWatchpoint *wp;
 869    int ret = 0;
 870
 871    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 872        if (watchpoint_address_matches(wp, addr, len)) {
 873            ret |= wp->flags;
 874        }
 875    }
 876    return ret;
 877}
 878
 879/* Generate a debug exception if a watchpoint has been hit.  */
 880void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
 881                          MemTxAttrs attrs, int flags, uintptr_t ra)
 882{
 883    CPUClass *cc = CPU_GET_CLASS(cpu);
 884    CPUWatchpoint *wp;
 885
 886    assert(tcg_enabled());
 887    if (cpu->watchpoint_hit) {
 888        /*
 889         * We re-entered the check after replacing the TB.
 890         * Now raise the debug interrupt so that it will
 891         * trigger after the current instruction.
 892         */
 893        qemu_mutex_lock_iothread();
 894        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
 895        qemu_mutex_unlock_iothread();
 896        return;
 897    }
 898
 899    if (cc->tcg_ops->adjust_watchpoint_address) {
 900        /* this is currently used only by ARM BE32 */
 901        addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
 902    }
 903    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 904        if (watchpoint_address_matches(wp, addr, len)
 905            && (wp->flags & flags)) {
 906            if (replay_running_debug()) {
 907                /*
 908                 * replay_breakpoint reads icount.
 909                 * Force recompile to succeed, because icount may
 910                 * be read only at the end of the block.
 911                 */
 912                if (!cpu->can_do_io) {
 913                    /* Force execution of one insn next time.  */
 914                    cpu->cflags_next_tb = 1 | CF_LAST_IO | curr_cflags(cpu);
 915                    cpu_loop_exit_restore(cpu, ra);
 916                }
 917                /*
 918                 * Don't process the watchpoints when we are
 919                 * in a reverse debugging operation.
 920                 */
 921                replay_breakpoint();
 922                return;
 923            }
 924            if (flags == BP_MEM_READ) {
 925                wp->flags |= BP_WATCHPOINT_HIT_READ;
 926            } else {
 927                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
 928            }
 929            wp->hitaddr = MAX(addr, wp->vaddr);
 930            wp->hitattrs = attrs;
 931            if (!cpu->watchpoint_hit) {
 932                if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
 933                    !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
 934                    wp->flags &= ~BP_WATCHPOINT_HIT;
 935                    continue;
 936                }
 937                cpu->watchpoint_hit = wp;
 938
 939                mmap_lock();
 940                tb_check_watchpoint(cpu, ra);
 941                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
 942                    cpu->exception_index = EXCP_DEBUG;
 943                    mmap_unlock();
 944                    cpu_loop_exit_restore(cpu, ra);
 945                } else {
 946                    /* Force execution of one insn next time.  */
 947                    cpu->cflags_next_tb = 1 | curr_cflags(cpu);
 948                    mmap_unlock();
 949                    if (ra) {
 950                        cpu_restore_state(cpu, ra, true);
 951                    }
 952                    cpu_loop_exit_noexc(cpu);
 953                }
 954            }
 955        } else {
 956            wp->flags &= ~BP_WATCHPOINT_HIT;
 957        }
 958    }
 959}
 960
 961#endif /* CONFIG_TCG */
 962
 963/* Called from RCU critical section */
 964static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
 965{
 966    RAMBlock *block;
 967
 968    block = qatomic_rcu_read(&ram_list.mru_block);
 969    if (block && addr - block->offset < block->max_length) {
 970        return block;
 971    }
 972    RAMBLOCK_FOREACH(block) {
 973        if (addr - block->offset < block->max_length) {
 974            goto found;
 975        }
 976    }
 977
 978    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 979    abort();
 980
 981found:
 982    /* It is safe to write mru_block outside the iothread lock.  This
 983     * is what happens:
 984     *
 985     *     mru_block = xxx
 986     *     rcu_read_unlock()
 987     *                                        xxx removed from list
 988     *                  rcu_read_lock()
 989     *                  read mru_block
 990     *                                        mru_block = NULL;
 991     *                                        call_rcu(reclaim_ramblock, xxx);
 992     *                  rcu_read_unlock()
 993     *
 994     * qatomic_rcu_set is not needed here.  The block was already published
 995     * when it was placed into the list.  Here we're just making an extra
 996     * copy of the pointer.
 997     */
 998    ram_list.mru_block = block;
 999    return block;
1000}
1001
1002static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1003{
1004    CPUState *cpu;
1005    ram_addr_t start1;
1006    RAMBlock *block;
1007    ram_addr_t end;
1008
1009    assert(tcg_enabled());
1010    end = TARGET_PAGE_ALIGN(start + length);
1011    start &= TARGET_PAGE_MASK;
1012
1013    RCU_READ_LOCK_GUARD();
1014    block = qemu_get_ram_block(start);
1015    assert(block == qemu_get_ram_block(end - 1));
1016    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1017    CPU_FOREACH(cpu) {
1018        tlb_reset_dirty(cpu, start1, length);
1019    }
1020}
1021
1022/* Note: start and end must be within the same ram block.  */
1023bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1024                                              ram_addr_t length,
1025                                              unsigned client)
1026{
1027    DirtyMemoryBlocks *blocks;
1028    unsigned long end, page, start_page;
1029    bool dirty = false;
1030    RAMBlock *ramblock;
1031    uint64_t mr_offset, mr_size;
1032
1033    if (length == 0) {
1034        return false;
1035    }
1036
1037    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1038    start_page = start >> TARGET_PAGE_BITS;
1039    page = start_page;
1040
1041    WITH_RCU_READ_LOCK_GUARD() {
1042        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1043        ramblock = qemu_get_ram_block(start);
1044        /* Range sanity check on the ramblock */
1045        assert(start >= ramblock->offset &&
1046               start + length <= ramblock->offset + ramblock->used_length);
1047
1048        while (page < end) {
1049            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1050            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1051            unsigned long num = MIN(end - page,
1052                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1053
1054            dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1055                                                  offset, num);
1056            page += num;
1057        }
1058
1059        mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1060        mr_size = (end - start_page) << TARGET_PAGE_BITS;
1061        memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1062    }
1063
1064    if (dirty && tcg_enabled()) {
1065        tlb_reset_dirty_range_all(start, length);
1066    }
1067
1068    return dirty;
1069}
1070
1071DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1072    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1073{
1074    DirtyMemoryBlocks *blocks;
1075    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1076    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1077    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1078    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1079    DirtyBitmapSnapshot *snap;
1080    unsigned long page, end, dest;
1081
1082    snap = g_malloc0(sizeof(*snap) +
1083                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
1084    snap->start = first;
1085    snap->end   = last;
1086
1087    page = first >> TARGET_PAGE_BITS;
1088    end  = last  >> TARGET_PAGE_BITS;
1089    dest = 0;
1090
1091    WITH_RCU_READ_LOCK_GUARD() {
1092        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1093
1094        while (page < end) {
1095            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1096            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1097            unsigned long num = MIN(end - page,
1098                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1099
1100            assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1101            assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1102            offset >>= BITS_PER_LEVEL;
1103
1104            bitmap_copy_and_clear_atomic(snap->dirty + dest,
1105                                         blocks->blocks[idx] + offset,
1106                                         num);
1107            page += num;
1108            dest += num >> BITS_PER_LEVEL;
1109        }
1110    }
1111
1112    if (tcg_enabled()) {
1113        tlb_reset_dirty_range_all(start, length);
1114    }
1115
1116    memory_region_clear_dirty_bitmap(mr, offset, length);
1117
1118    return snap;
1119}
1120
1121bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1122                                            ram_addr_t start,
1123                                            ram_addr_t length)
1124{
1125    unsigned long page, end;
1126
1127    assert(start >= snap->start);
1128    assert(start + length <= snap->end);
1129
1130    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1131    page = (start - snap->start) >> TARGET_PAGE_BITS;
1132
1133    while (page < end) {
1134        if (test_bit(page, snap->dirty)) {
1135            return true;
1136        }
1137        page++;
1138    }
1139    return false;
1140}
1141
1142/* Called from RCU critical section */
1143hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1144                                       MemoryRegionSection *section)
1145{
1146    AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1147    return section - d->map.sections;
1148}
1149
1150static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1151                            uint16_t section);
1152static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1153
1154static uint16_t phys_section_add(PhysPageMap *map,
1155                                 MemoryRegionSection *section)
1156{
1157    /* The physical section number is ORed with a page-aligned
1158     * pointer to produce the iotlb entries.  Thus it should
1159     * never overflow into the page-aligned value.
1160     */
1161    assert(map->sections_nb < TARGET_PAGE_SIZE);
1162
1163    if (map->sections_nb == map->sections_nb_alloc) {
1164        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1165        map->sections = g_renew(MemoryRegionSection, map->sections,
1166                                map->sections_nb_alloc);
1167    }
1168    map->sections[map->sections_nb] = *section;
1169    memory_region_ref(section->mr);
1170    return map->sections_nb++;
1171}
1172
1173static void phys_section_destroy(MemoryRegion *mr)
1174{
1175    bool have_sub_page = mr->subpage;
1176
1177    memory_region_unref(mr);
1178
1179    if (have_sub_page) {
1180        subpage_t *subpage = container_of(mr, subpage_t, iomem);
1181        object_unref(OBJECT(&subpage->iomem));
1182        g_free(subpage);
1183    }
1184}
1185
1186static void phys_sections_free(PhysPageMap *map)
1187{
1188    while (map->sections_nb > 0) {
1189        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1190        phys_section_destroy(section->mr);
1191    }
1192    g_free(map->sections);
1193    g_free(map->nodes);
1194}
1195
1196static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1197{
1198    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1199    subpage_t *subpage;
1200    hwaddr base = section->offset_within_address_space
1201        & TARGET_PAGE_MASK;
1202    MemoryRegionSection *existing = phys_page_find(d, base);
1203    MemoryRegionSection subsection = {
1204        .offset_within_address_space = base,
1205        .size = int128_make64(TARGET_PAGE_SIZE),
1206    };
1207    hwaddr start, end;
1208
1209    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1210
1211    if (!(existing->mr->subpage)) {
1212        subpage = subpage_init(fv, base);
1213        subsection.fv = fv;
1214        subsection.mr = &subpage->iomem;
1215        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1216                      phys_section_add(&d->map, &subsection));
1217    } else {
1218        subpage = container_of(existing->mr, subpage_t, iomem);
1219    }
1220    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1221    end = start + int128_get64(section->size) - 1;
1222    subpage_register(subpage, start, end,
1223                     phys_section_add(&d->map, section));
1224}
1225
1226
1227static void register_multipage(FlatView *fv,
1228                               MemoryRegionSection *section)
1229{
1230    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1231    hwaddr start_addr = section->offset_within_address_space;
1232    uint16_t section_index = phys_section_add(&d->map, section);
1233    uint64_t num_pages = int128_get64(int128_rshift(section->size,
1234                                                    TARGET_PAGE_BITS));
1235
1236    assert(num_pages);
1237    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1238}
1239
1240/*
1241 * The range in *section* may look like this:
1242 *
1243 *      |s|PPPPPPP|s|
1244 *
1245 * where s stands for subpage and P for page.
1246 */
1247void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1248{
1249    MemoryRegionSection remain = *section;
1250    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1251
1252    /* register first subpage */
1253    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1254        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1255                        - remain.offset_within_address_space;
1256
1257        MemoryRegionSection now = remain;
1258        now.size = int128_min(int128_make64(left), now.size);
1259        register_subpage(fv, &now);
1260        if (int128_eq(remain.size, now.size)) {
1261            return;
1262        }
1263        remain.size = int128_sub(remain.size, now.size);
1264        remain.offset_within_address_space += int128_get64(now.size);
1265        remain.offset_within_region += int128_get64(now.size);
1266    }
1267
1268    /* register whole pages */
1269    if (int128_ge(remain.size, page_size)) {
1270        MemoryRegionSection now = remain;
1271        now.size = int128_and(now.size, int128_neg(page_size));
1272        register_multipage(fv, &now);
1273        if (int128_eq(remain.size, now.size)) {
1274            return;
1275        }
1276        remain.size = int128_sub(remain.size, now.size);
1277        remain.offset_within_address_space += int128_get64(now.size);
1278        remain.offset_within_region += int128_get64(now.size);
1279    }
1280
1281    /* register last subpage */
1282    register_subpage(fv, &remain);
1283}
1284
1285void qemu_flush_coalesced_mmio_buffer(void)
1286{
1287    if (kvm_enabled())
1288        kvm_flush_coalesced_mmio_buffer();
1289}
1290
1291void qemu_mutex_lock_ramlist(void)
1292{
1293    qemu_mutex_lock(&ram_list.mutex);
1294}
1295
1296void qemu_mutex_unlock_ramlist(void)
1297{
1298    qemu_mutex_unlock(&ram_list.mutex);
1299}
1300
1301void ram_block_dump(Monitor *mon)
1302{
1303    RAMBlock *block;
1304    char *psize;
1305
1306    RCU_READ_LOCK_GUARD();
1307    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
1308                   "Block Name", "PSize", "Offset", "Used", "Total");
1309    RAMBLOCK_FOREACH(block) {
1310        psize = size_to_str(block->page_size);
1311        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1312                       " 0x%016" PRIx64 "\n", block->idstr, psize,
1313                       (uint64_t)block->offset,
1314                       (uint64_t)block->used_length,
1315                       (uint64_t)block->max_length);
1316        g_free(psize);
1317    }
1318}
1319
1320#ifdef __linux__
1321/*
1322 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1323 * may or may not name the same files / on the same filesystem now as
1324 * when we actually open and map them.  Iterate over the file
1325 * descriptors instead, and use qemu_fd_getpagesize().
1326 */
1327static int find_min_backend_pagesize(Object *obj, void *opaque)
1328{
1329    long *hpsize_min = opaque;
1330
1331    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1332        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1333        long hpsize = host_memory_backend_pagesize(backend);
1334
1335        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1336            *hpsize_min = hpsize;
1337        }
1338    }
1339
1340    return 0;
1341}
1342
1343static int find_max_backend_pagesize(Object *obj, void *opaque)
1344{
1345    long *hpsize_max = opaque;
1346
1347    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1348        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1349        long hpsize = host_memory_backend_pagesize(backend);
1350
1351        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1352            *hpsize_max = hpsize;
1353        }
1354    }
1355
1356    return 0;
1357}
1358
1359/*
1360 * TODO: We assume right now that all mapped host memory backends are
1361 * used as RAM, however some might be used for different purposes.
1362 */
1363long qemu_minrampagesize(void)
1364{
1365    long hpsize = LONG_MAX;
1366    Object *memdev_root = object_resolve_path("/objects", NULL);
1367
1368    object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1369    return hpsize;
1370}
1371
1372long qemu_maxrampagesize(void)
1373{
1374    long pagesize = 0;
1375    Object *memdev_root = object_resolve_path("/objects", NULL);
1376
1377    object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1378    return pagesize;
1379}
1380#else
1381long qemu_minrampagesize(void)
1382{
1383    return qemu_real_host_page_size;
1384}
1385long qemu_maxrampagesize(void)
1386{
1387    return qemu_real_host_page_size;
1388}
1389#endif
1390
1391#ifdef CONFIG_POSIX
1392static int64_t get_file_size(int fd)
1393{
1394    int64_t size;
1395#if defined(__linux__)
1396    struct stat st;
1397
1398    if (fstat(fd, &st) < 0) {
1399        return -errno;
1400    }
1401
1402    /* Special handling for devdax character devices */
1403    if (S_ISCHR(st.st_mode)) {
1404        g_autofree char *subsystem_path = NULL;
1405        g_autofree char *subsystem = NULL;
1406
1407        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1408                                         major(st.st_rdev), minor(st.st_rdev));
1409        subsystem = g_file_read_link(subsystem_path, NULL);
1410
1411        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1412            g_autofree char *size_path = NULL;
1413            g_autofree char *size_str = NULL;
1414
1415            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1416                                    major(st.st_rdev), minor(st.st_rdev));
1417
1418            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1419                return g_ascii_strtoll(size_str, NULL, 0);
1420            }
1421        }
1422    }
1423#endif /* defined(__linux__) */
1424
1425    /* st.st_size may be zero for special files yet lseek(2) works */
1426    size = lseek(fd, 0, SEEK_END);
1427    if (size < 0) {
1428        return -errno;
1429    }
1430    return size;
1431}
1432
1433static int64_t get_file_align(int fd)
1434{
1435    int64_t align = -1;
1436#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1437    struct stat st;
1438
1439    if (fstat(fd, &st) < 0) {
1440        return -errno;
1441    }
1442
1443    /* Special handling for devdax character devices */
1444    if (S_ISCHR(st.st_mode)) {
1445        g_autofree char *path = NULL;
1446        g_autofree char *rpath = NULL;
1447        struct daxctl_ctx *ctx;
1448        struct daxctl_region *region;
1449        int rc = 0;
1450
1451        path = g_strdup_printf("/sys/dev/char/%d:%d",
1452                    major(st.st_rdev), minor(st.st_rdev));
1453        rpath = realpath(path, NULL);
1454
1455        rc = daxctl_new(&ctx);
1456        if (rc) {
1457            return -1;
1458        }
1459
1460        daxctl_region_foreach(ctx, region) {
1461            if (strstr(rpath, daxctl_region_get_path(region))) {
1462                align = daxctl_region_get_align(region);
1463                break;
1464            }
1465        }
1466        daxctl_unref(ctx);
1467    }
1468#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1469
1470    return align;
1471}
1472
1473static int file_ram_open(const char *path,
1474                         const char *region_name,
1475                         bool readonly,
1476                         bool *created,
1477                         Error **errp)
1478{
1479    char *filename;
1480    char *sanitized_name;
1481    char *c;
1482    int fd = -1;
1483
1484    *created = false;
1485    for (;;) {
1486        fd = open(path, readonly ? O_RDONLY : O_RDWR);
1487        if (fd >= 0) {
1488            /* @path names an existing file, use it */
1489            break;
1490        }
1491        if (errno == ENOENT) {
1492            /* @path names a file that doesn't exist, create it */
1493            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1494            if (fd >= 0) {
1495                *created = true;
1496                break;
1497            }
1498        } else if (errno == EISDIR) {
1499            /* @path names a directory, create a file there */
1500            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1501            sanitized_name = g_strdup(region_name);
1502            for (c = sanitized_name; *c != '\0'; c++) {
1503                if (*c == '/') {
1504                    *c = '_';
1505                }
1506            }
1507
1508            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1509                                       sanitized_name);
1510            g_free(sanitized_name);
1511
1512            fd = mkstemp(filename);
1513            if (fd >= 0) {
1514                unlink(filename);
1515                g_free(filename);
1516                break;
1517            }
1518            g_free(filename);
1519        }
1520        if (errno != EEXIST && errno != EINTR) {
1521            error_setg_errno(errp, errno,
1522                             "can't open backing store %s for guest RAM",
1523                             path);
1524            return -1;
1525        }
1526        /*
1527         * Try again on EINTR and EEXIST.  The latter happens when
1528         * something else creates the file between our two open().
1529         */
1530    }
1531
1532    return fd;
1533}
1534
1535static void *file_ram_alloc(RAMBlock *block,
1536                            ram_addr_t memory,
1537                            int fd,
1538                            bool readonly,
1539                            bool truncate,
1540                            off_t offset,
1541                            Error **errp)
1542{
1543    uint32_t qemu_map_flags;
1544    void *area;
1545
1546    block->page_size = qemu_fd_getpagesize(fd);
1547    if (block->mr->align % block->page_size) {
1548        error_setg(errp, "alignment 0x%" PRIx64
1549                   " must be multiples of page size 0x%zx",
1550                   block->mr->align, block->page_size);
1551        return NULL;
1552    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1553        error_setg(errp, "alignment 0x%" PRIx64
1554                   " must be a power of two", block->mr->align);
1555        return NULL;
1556    }
1557    block->mr->align = MAX(block->page_size, block->mr->align);
1558#if defined(__s390x__)
1559    if (kvm_enabled()) {
1560        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1561    }
1562#endif
1563
1564    if (memory < block->page_size) {
1565        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1566                   "or larger than page size 0x%zx",
1567                   memory, block->page_size);
1568        return NULL;
1569    }
1570
1571    memory = ROUND_UP(memory, block->page_size);
1572
1573    /*
1574     * ftruncate is not supported by hugetlbfs in older
1575     * hosts, so don't bother bailing out on errors.
1576     * If anything goes wrong with it under other filesystems,
1577     * mmap will fail.
1578     *
1579     * Do not truncate the non-empty backend file to avoid corrupting
1580     * the existing data in the file. Disabling shrinking is not
1581     * enough. For example, the current vNVDIMM implementation stores
1582     * the guest NVDIMM labels at the end of the backend file. If the
1583     * backend file is later extended, QEMU will not be able to find
1584     * those labels. Therefore, extending the non-empty backend file
1585     * is disabled as well.
1586     */
1587    if (truncate && ftruncate(fd, memory)) {
1588        perror("ftruncate");
1589    }
1590
1591    qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1592    qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1593    qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1594    qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1595    area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1596    if (area == MAP_FAILED) {
1597        error_setg_errno(errp, errno,
1598                         "unable to map backing store for guest RAM");
1599        return NULL;
1600    }
1601
1602    block->fd = fd;
1603    return area;
1604}
1605#endif
1606
1607/* Allocate space within the ram_addr_t space that governs the
1608 * dirty bitmaps.
1609 * Called with the ramlist lock held.
1610 */
1611static ram_addr_t find_ram_offset(ram_addr_t size)
1612{
1613    RAMBlock *block, *next_block;
1614    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1615
1616    assert(size != 0); /* it would hand out same offset multiple times */
1617
1618    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1619        return 0;
1620    }
1621
1622    RAMBLOCK_FOREACH(block) {
1623        ram_addr_t candidate, next = RAM_ADDR_MAX;
1624
1625        /* Align blocks to start on a 'long' in the bitmap
1626         * which makes the bitmap sync'ing take the fast path.
1627         */
1628        candidate = block->offset + block->max_length;
1629        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1630
1631        /* Search for the closest following block
1632         * and find the gap.
1633         */
1634        RAMBLOCK_FOREACH(next_block) {
1635            if (next_block->offset >= candidate) {
1636                next = MIN(next, next_block->offset);
1637            }
1638        }
1639
1640        /* If it fits remember our place and remember the size
1641         * of gap, but keep going so that we might find a smaller
1642         * gap to fill so avoiding fragmentation.
1643         */
1644        if (next - candidate >= size && next - candidate < mingap) {
1645            offset = candidate;
1646            mingap = next - candidate;
1647        }
1648
1649        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1650    }
1651
1652    if (offset == RAM_ADDR_MAX) {
1653        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1654                (uint64_t)size);
1655        abort();
1656    }
1657
1658    trace_find_ram_offset(size, offset);
1659
1660    return offset;
1661}
1662
1663static unsigned long last_ram_page(void)
1664{
1665    RAMBlock *block;
1666    ram_addr_t last = 0;
1667
1668    RCU_READ_LOCK_GUARD();
1669    RAMBLOCK_FOREACH(block) {
1670        last = MAX(last, block->offset + block->max_length);
1671    }
1672    return last >> TARGET_PAGE_BITS;
1673}
1674
1675static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1676{
1677    int ret;
1678
1679    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1680    if (!machine_dump_guest_core(current_machine)) {
1681        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1682        if (ret) {
1683            perror("qemu_madvise");
1684            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1685                            "but dump_guest_core=off specified\n");
1686        }
1687    }
1688}
1689
1690const char *qemu_ram_get_idstr(RAMBlock *rb)
1691{
1692    return rb->idstr;
1693}
1694
1695void *qemu_ram_get_host_addr(RAMBlock *rb)
1696{
1697    return rb->host;
1698}
1699
1700ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1701{
1702    return rb->offset;
1703}
1704
1705ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1706{
1707    return rb->used_length;
1708}
1709
1710ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1711{
1712    return rb->max_length;
1713}
1714
1715bool qemu_ram_is_shared(RAMBlock *rb)
1716{
1717    return rb->flags & RAM_SHARED;
1718}
1719
1720bool qemu_ram_is_noreserve(RAMBlock *rb)
1721{
1722    return rb->flags & RAM_NORESERVE;
1723}
1724
1725/* Note: Only set at the start of postcopy */
1726bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1727{
1728    return rb->flags & RAM_UF_ZEROPAGE;
1729}
1730
1731void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1732{
1733    rb->flags |= RAM_UF_ZEROPAGE;
1734}
1735
1736bool qemu_ram_is_migratable(RAMBlock *rb)
1737{
1738    return rb->flags & RAM_MIGRATABLE;
1739}
1740
1741void qemu_ram_set_migratable(RAMBlock *rb)
1742{
1743    rb->flags |= RAM_MIGRATABLE;
1744}
1745
1746void qemu_ram_unset_migratable(RAMBlock *rb)
1747{
1748    rb->flags &= ~RAM_MIGRATABLE;
1749}
1750
1751/* Called with iothread lock held.  */
1752void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1753{
1754    RAMBlock *block;
1755
1756    assert(new_block);
1757    assert(!new_block->idstr[0]);
1758
1759    if (dev) {
1760        char *id = qdev_get_dev_path(dev);
1761        if (id) {
1762            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1763            g_free(id);
1764        }
1765    }
1766    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1767
1768    RCU_READ_LOCK_GUARD();
1769    RAMBLOCK_FOREACH(block) {
1770        if (block != new_block &&
1771            !strcmp(block->idstr, new_block->idstr)) {
1772            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1773                    new_block->idstr);
1774            abort();
1775        }
1776    }
1777}
1778
1779/* Called with iothread lock held.  */
1780void qemu_ram_unset_idstr(RAMBlock *block)
1781{
1782    /* FIXME: arch_init.c assumes that this is not called throughout
1783     * migration.  Ignore the problem since hot-unplug during migration
1784     * does not work anyway.
1785     */
1786    if (block) {
1787        memset(block->idstr, 0, sizeof(block->idstr));
1788    }
1789}
1790
1791size_t qemu_ram_pagesize(RAMBlock *rb)
1792{
1793    return rb->page_size;
1794}
1795
1796/* Returns the largest size of page in use */
1797size_t qemu_ram_pagesize_largest(void)
1798{
1799    RAMBlock *block;
1800    size_t largest = 0;
1801
1802    RAMBLOCK_FOREACH(block) {
1803        largest = MAX(largest, qemu_ram_pagesize(block));
1804    }
1805
1806    return largest;
1807}
1808
1809static int memory_try_enable_merging(void *addr, size_t len)
1810{
1811    if (!machine_mem_merge(current_machine)) {
1812        /* disabled by the user */
1813        return 0;
1814    }
1815
1816    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1817}
1818
1819/*
1820 * Resizing RAM while migrating can result in the migration being canceled.
1821 * Care has to be taken if the guest might have already detected the memory.
1822 *
1823 * As memory core doesn't know how is memory accessed, it is up to
1824 * resize callback to update device state and/or add assertions to detect
1825 * misuse, if necessary.
1826 */
1827int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1828{
1829    const ram_addr_t oldsize = block->used_length;
1830    const ram_addr_t unaligned_size = newsize;
1831
1832    assert(block);
1833
1834    newsize = HOST_PAGE_ALIGN(newsize);
1835
1836    if (block->used_length == newsize) {
1837        /*
1838         * We don't have to resize the ram block (which only knows aligned
1839         * sizes), however, we have to notify if the unaligned size changed.
1840         */
1841        if (unaligned_size != memory_region_size(block->mr)) {
1842            memory_region_set_size(block->mr, unaligned_size);
1843            if (block->resized) {
1844                block->resized(block->idstr, unaligned_size, block->host);
1845            }
1846        }
1847        return 0;
1848    }
1849
1850    if (!(block->flags & RAM_RESIZEABLE)) {
1851        error_setg_errno(errp, EINVAL,
1852                         "Size mismatch: %s: 0x" RAM_ADDR_FMT
1853                         " != 0x" RAM_ADDR_FMT, block->idstr,
1854                         newsize, block->used_length);
1855        return -EINVAL;
1856    }
1857
1858    if (block->max_length < newsize) {
1859        error_setg_errno(errp, EINVAL,
1860                         "Size too large: %s: 0x" RAM_ADDR_FMT
1861                         " > 0x" RAM_ADDR_FMT, block->idstr,
1862                         newsize, block->max_length);
1863        return -EINVAL;
1864    }
1865
1866    /* Notify before modifying the ram block and touching the bitmaps. */
1867    if (block->host) {
1868        ram_block_notify_resize(block->host, oldsize, newsize);
1869    }
1870
1871    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1872    block->used_length = newsize;
1873    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1874                                        DIRTY_CLIENTS_ALL);
1875    memory_region_set_size(block->mr, unaligned_size);
1876    if (block->resized) {
1877        block->resized(block->idstr, unaligned_size, block->host);
1878    }
1879    return 0;
1880}
1881
1882/*
1883 * Trigger sync on the given ram block for range [start, start + length]
1884 * with the backing store if one is available.
1885 * Otherwise no-op.
1886 * @Note: this is supposed to be a synchronous op.
1887 */
1888void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1889{
1890    /* The requested range should fit in within the block range */
1891    g_assert((start + length) <= block->used_length);
1892
1893#ifdef CONFIG_LIBPMEM
1894    /* The lack of support for pmem should not block the sync */
1895    if (ramblock_is_pmem(block)) {
1896        void *addr = ramblock_ptr(block, start);
1897        pmem_persist(addr, length);
1898        return;
1899    }
1900#endif
1901    if (block->fd >= 0) {
1902        /**
1903         * Case there is no support for PMEM or the memory has not been
1904         * specified as persistent (or is not one) - use the msync.
1905         * Less optimal but still achieves the same goal
1906         */
1907        void *addr = ramblock_ptr(block, start);
1908        if (qemu_msync(addr, length, block->fd)) {
1909            warn_report("%s: failed to sync memory range: start: "
1910                    RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1911                    __func__, start, length);
1912        }
1913    }
1914}
1915
1916/* Called with ram_list.mutex held */
1917static void dirty_memory_extend(ram_addr_t old_ram_size,
1918                                ram_addr_t new_ram_size)
1919{
1920    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1921                                             DIRTY_MEMORY_BLOCK_SIZE);
1922    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1923                                             DIRTY_MEMORY_BLOCK_SIZE);
1924    int i;
1925
1926    /* Only need to extend if block count increased */
1927    if (new_num_blocks <= old_num_blocks) {
1928        return;
1929    }
1930
1931    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1932        DirtyMemoryBlocks *old_blocks;
1933        DirtyMemoryBlocks *new_blocks;
1934        int j;
1935
1936        old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1937        new_blocks = g_malloc(sizeof(*new_blocks) +
1938                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
1939
1940        if (old_num_blocks) {
1941            memcpy(new_blocks->blocks, old_blocks->blocks,
1942                   old_num_blocks * sizeof(old_blocks->blocks[0]));
1943        }
1944
1945        for (j = old_num_blocks; j < new_num_blocks; j++) {
1946            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1947        }
1948
1949        qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1950
1951        if (old_blocks) {
1952            g_free_rcu(old_blocks, rcu);
1953        }
1954    }
1955}
1956
1957static void ram_block_add(RAMBlock *new_block, Error **errp)
1958{
1959    const bool noreserve = qemu_ram_is_noreserve(new_block);
1960    const bool shared = qemu_ram_is_shared(new_block);
1961    RAMBlock *block;
1962    RAMBlock *last_block = NULL;
1963    ram_addr_t old_ram_size, new_ram_size;
1964    Error *err = NULL;
1965
1966    old_ram_size = last_ram_page();
1967
1968    qemu_mutex_lock_ramlist();
1969    new_block->offset = find_ram_offset(new_block->max_length);
1970
1971    if (!new_block->host) {
1972        if (xen_enabled()) {
1973            xen_ram_alloc(new_block->offset, new_block->max_length,
1974                          new_block->mr, &err);
1975            if (err) {
1976                error_propagate(errp, err);
1977                qemu_mutex_unlock_ramlist();
1978                return;
1979            }
1980        } else {
1981            new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1982                                                  &new_block->mr->align,
1983                                                  shared, noreserve);
1984            if (!new_block->host) {
1985                error_setg_errno(errp, errno,
1986                                 "cannot set up guest memory '%s'",
1987                                 memory_region_name(new_block->mr));
1988                qemu_mutex_unlock_ramlist();
1989                return;
1990            }
1991            memory_try_enable_merging(new_block->host, new_block->max_length);
1992        }
1993    }
1994
1995    new_ram_size = MAX(old_ram_size,
1996              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1997    if (new_ram_size > old_ram_size) {
1998        dirty_memory_extend(old_ram_size, new_ram_size);
1999    }
2000    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2001     * QLIST (which has an RCU-friendly variant) does not have insertion at
2002     * tail, so save the last element in last_block.
2003     */
2004    RAMBLOCK_FOREACH(block) {
2005        last_block = block;
2006        if (block->max_length < new_block->max_length) {
2007            break;
2008        }
2009    }
2010    if (block) {
2011        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2012    } else if (last_block) {
2013        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2014    } else { /* list is empty */
2015        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2016    }
2017    ram_list.mru_block = NULL;
2018
2019    /* Write list before version */
2020    smp_wmb();
2021    ram_list.version++;
2022    qemu_mutex_unlock_ramlist();
2023
2024    cpu_physical_memory_set_dirty_range(new_block->offset,
2025                                        new_block->used_length,
2026                                        DIRTY_CLIENTS_ALL);
2027
2028    if (new_block->host) {
2029        qemu_ram_setup_dump(new_block->host, new_block->max_length);
2030        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2031        /*
2032         * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2033         * Configure it unless the machine is a qtest server, in which case
2034         * KVM is not used and it may be forked (eg for fuzzing purposes).
2035         */
2036        if (!qtest_enabled()) {
2037            qemu_madvise(new_block->host, new_block->max_length,
2038                         QEMU_MADV_DONTFORK);
2039        }
2040        ram_block_notify_add(new_block->host, new_block->used_length,
2041                             new_block->max_length);
2042    }
2043}
2044
2045#ifdef CONFIG_POSIX
2046RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2047                                 uint32_t ram_flags, int fd, off_t offset,
2048                                 bool readonly, Error **errp)
2049{
2050    RAMBlock *new_block;
2051    Error *local_err = NULL;
2052    int64_t file_size, file_align;
2053
2054    /* Just support these ram flags by now. */
2055    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE)) == 0);
2056
2057    if (xen_enabled()) {
2058        error_setg(errp, "-mem-path not supported with Xen");
2059        return NULL;
2060    }
2061
2062    if (kvm_enabled() && !kvm_has_sync_mmu()) {
2063        error_setg(errp,
2064                   "host lacks kvm mmu notifiers, -mem-path unsupported");
2065        return NULL;
2066    }
2067
2068    size = HOST_PAGE_ALIGN(size);
2069    file_size = get_file_size(fd);
2070    if (file_size > 0 && file_size < size) {
2071        error_setg(errp, "backing store size 0x%" PRIx64
2072                   " does not match 'size' option 0x" RAM_ADDR_FMT,
2073                   file_size, size);
2074        return NULL;
2075    }
2076
2077    file_align = get_file_align(fd);
2078    if (file_align > 0 && mr && file_align > mr->align) {
2079        error_setg(errp, "backing store align 0x%" PRIx64
2080                   " is larger than 'align' option 0x%" PRIx64,
2081                   file_align, mr->align);
2082        return NULL;
2083    }
2084
2085    new_block = g_malloc0(sizeof(*new_block));
2086    new_block->mr = mr;
2087    new_block->used_length = size;
2088    new_block->max_length = size;
2089    new_block->flags = ram_flags;
2090    new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2091                                     !file_size, offset, errp);
2092    if (!new_block->host) {
2093        g_free(new_block);
2094        return NULL;
2095    }
2096
2097    ram_block_add(new_block, &local_err);
2098    if (local_err) {
2099        g_free(new_block);
2100        error_propagate(errp, local_err);
2101        return NULL;
2102    }
2103    return new_block;
2104
2105}
2106
2107
2108RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2109                                   uint32_t ram_flags, const char *mem_path,
2110                                   bool readonly, Error **errp)
2111{
2112    int fd;
2113    bool created;
2114    RAMBlock *block;
2115
2116    fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2117                       errp);
2118    if (fd < 0) {
2119        return NULL;
2120    }
2121
2122    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2123    if (!block) {
2124        if (created) {
2125            unlink(mem_path);
2126        }
2127        close(fd);
2128        return NULL;
2129    }
2130
2131    return block;
2132}
2133#endif
2134
2135static
2136RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2137                                  void (*resized)(const char*,
2138                                                  uint64_t length,
2139                                                  void *host),
2140                                  void *host, uint32_t ram_flags,
2141                                  MemoryRegion *mr, Error **errp)
2142{
2143    RAMBlock *new_block;
2144    Error *local_err = NULL;
2145
2146    assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2147                          RAM_NORESERVE)) == 0);
2148    assert(!host ^ (ram_flags & RAM_PREALLOC));
2149
2150    size = HOST_PAGE_ALIGN(size);
2151    max_size = HOST_PAGE_ALIGN(max_size);
2152    new_block = g_malloc0(sizeof(*new_block));
2153    new_block->mr = mr;
2154    new_block->resized = resized;
2155    new_block->used_length = size;
2156    new_block->max_length = max_size;
2157    assert(max_size >= size);
2158    new_block->fd = -1;
2159    new_block->page_size = qemu_real_host_page_size;
2160    new_block->host = host;
2161    new_block->flags = ram_flags;
2162    ram_block_add(new_block, &local_err);
2163    if (local_err) {
2164        g_free(new_block);
2165        error_propagate(errp, local_err);
2166        return NULL;
2167    }
2168    return new_block;
2169}
2170
2171RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2172                                   MemoryRegion *mr, Error **errp)
2173{
2174    return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2175                                   errp);
2176}
2177
2178RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2179                         MemoryRegion *mr, Error **errp)
2180{
2181    assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2182    return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2183}
2184
2185RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2186                                     void (*resized)(const char*,
2187                                                     uint64_t length,
2188                                                     void *host),
2189                                     MemoryRegion *mr, Error **errp)
2190{
2191    return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2192                                   RAM_RESIZEABLE, mr, errp);
2193}
2194
2195static void reclaim_ramblock(RAMBlock *block)
2196{
2197    if (block->flags & RAM_PREALLOC) {
2198        ;
2199    } else if (xen_enabled()) {
2200        xen_invalidate_map_cache_entry(block->host);
2201#ifndef _WIN32
2202    } else if (block->fd >= 0) {
2203        qemu_ram_munmap(block->fd, block->host, block->max_length);
2204        close(block->fd);
2205#endif
2206    } else {
2207        qemu_anon_ram_free(block->host, block->max_length);
2208    }
2209    g_free(block);
2210}
2211
2212void qemu_ram_free(RAMBlock *block)
2213{
2214    if (!block) {
2215        return;
2216    }
2217
2218    if (block->host) {
2219        ram_block_notify_remove(block->host, block->used_length,
2220                                block->max_length);
2221    }
2222
2223    qemu_mutex_lock_ramlist();
2224    QLIST_REMOVE_RCU(block, next);
2225    ram_list.mru_block = NULL;
2226    /* Write list before version */
2227    smp_wmb();
2228    ram_list.version++;
2229    call_rcu(block, reclaim_ramblock, rcu);
2230    qemu_mutex_unlock_ramlist();
2231}
2232
2233#ifndef _WIN32
2234void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2235{
2236    RAMBlock *block;
2237    ram_addr_t offset;
2238    int flags;
2239    void *area, *vaddr;
2240
2241    RAMBLOCK_FOREACH(block) {
2242        offset = addr - block->offset;
2243        if (offset < block->max_length) {
2244            vaddr = ramblock_ptr(block, offset);
2245            if (block->flags & RAM_PREALLOC) {
2246                ;
2247            } else if (xen_enabled()) {
2248                abort();
2249            } else {
2250                flags = MAP_FIXED;
2251                flags |= block->flags & RAM_SHARED ?
2252                         MAP_SHARED : MAP_PRIVATE;
2253                flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2254                if (block->fd >= 0) {
2255                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2256                                flags, block->fd, offset);
2257                } else {
2258                    flags |= MAP_ANONYMOUS;
2259                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2260                                flags, -1, 0);
2261                }
2262                if (area != vaddr) {
2263                    error_report("Could not remap addr: "
2264                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2265                                 length, addr);
2266                    exit(1);
2267                }
2268                memory_try_enable_merging(vaddr, length);
2269                qemu_ram_setup_dump(vaddr, length);
2270            }
2271        }
2272    }
2273}
2274#endif /* !_WIN32 */
2275
2276/* Return a host pointer to ram allocated with qemu_ram_alloc.
2277 * This should not be used for general purpose DMA.  Use address_space_map
2278 * or address_space_rw instead. For local memory (e.g. video ram) that the
2279 * device owns, use memory_region_get_ram_ptr.
2280 *
2281 * Called within RCU critical section.
2282 */
2283void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2284{
2285    RAMBlock *block = ram_block;
2286
2287    if (block == NULL) {
2288        block = qemu_get_ram_block(addr);
2289        addr -= block->offset;
2290    }
2291
2292    if (xen_enabled() && block->host == NULL) {
2293        /* We need to check if the requested address is in the RAM
2294         * because we don't want to map the entire memory in QEMU.
2295         * In that case just map until the end of the page.
2296         */
2297        if (block->offset == 0) {
2298            return xen_map_cache(addr, 0, 0, false);
2299        }
2300
2301        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2302    }
2303    return ramblock_ptr(block, addr);
2304}
2305
2306/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2307 * but takes a size argument.
2308 *
2309 * Called within RCU critical section.
2310 */
2311static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2312                                 hwaddr *size, bool lock)
2313{
2314    RAMBlock *block = ram_block;
2315    if (*size == 0) {
2316        return NULL;
2317    }
2318
2319    if (block == NULL) {
2320        block = qemu_get_ram_block(addr);
2321        addr -= block->offset;
2322    }
2323    *size = MIN(*size, block->max_length - addr);
2324
2325    if (xen_enabled() && block->host == NULL) {
2326        /* We need to check if the requested address is in the RAM
2327         * because we don't want to map the entire memory in QEMU.
2328         * In that case just map the requested area.
2329         */
2330        if (block->offset == 0) {
2331            return xen_map_cache(addr, *size, lock, lock);
2332        }
2333
2334        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2335    }
2336
2337    return ramblock_ptr(block, addr);
2338}
2339
2340/* Return the offset of a hostpointer within a ramblock */
2341ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2342{
2343    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2344    assert((uintptr_t)host >= (uintptr_t)rb->host);
2345    assert(res < rb->max_length);
2346
2347    return res;
2348}
2349
2350/*
2351 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2352 * in that RAMBlock.
2353 *
2354 * ptr: Host pointer to look up
2355 * round_offset: If true round the result offset down to a page boundary
2356 * *ram_addr: set to result ram_addr
2357 * *offset: set to result offset within the RAMBlock
2358 *
2359 * Returns: RAMBlock (or NULL if not found)
2360 *
2361 * By the time this function returns, the returned pointer is not protected
2362 * by RCU anymore.  If the caller is not within an RCU critical section and
2363 * does not hold the iothread lock, it must have other means of protecting the
2364 * pointer, such as a reference to the region that includes the incoming
2365 * ram_addr_t.
2366 */
2367RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2368                                   ram_addr_t *offset)
2369{
2370    RAMBlock *block;
2371    uint8_t *host = ptr;
2372
2373    if (xen_enabled()) {
2374        ram_addr_t ram_addr;
2375        RCU_READ_LOCK_GUARD();
2376        ram_addr = xen_ram_addr_from_mapcache(ptr);
2377        block = qemu_get_ram_block(ram_addr);
2378        if (block) {
2379            *offset = ram_addr - block->offset;
2380        }
2381        return block;
2382    }
2383
2384    RCU_READ_LOCK_GUARD();
2385    block = qatomic_rcu_read(&ram_list.mru_block);
2386    if (block && block->host && host - block->host < block->max_length) {
2387        goto found;
2388    }
2389
2390    RAMBLOCK_FOREACH(block) {
2391        /* This case append when the block is not mapped. */
2392        if (block->host == NULL) {
2393            continue;
2394        }
2395        if (host - block->host < block->max_length) {
2396            goto found;
2397        }
2398    }
2399
2400    return NULL;
2401
2402found:
2403    *offset = (host - block->host);
2404    if (round_offset) {
2405        *offset &= TARGET_PAGE_MASK;
2406    }
2407    return block;
2408}
2409
2410/*
2411 * Finds the named RAMBlock
2412 *
2413 * name: The name of RAMBlock to find
2414 *
2415 * Returns: RAMBlock (or NULL if not found)
2416 */
2417RAMBlock *qemu_ram_block_by_name(const char *name)
2418{
2419    RAMBlock *block;
2420
2421    RAMBLOCK_FOREACH(block) {
2422        if (!strcmp(name, block->idstr)) {
2423            return block;
2424        }
2425    }
2426
2427    return NULL;
2428}
2429
2430/* Some of the softmmu routines need to translate from a host pointer
2431   (typically a TLB entry) back to a ram offset.  */
2432ram_addr_t qemu_ram_addr_from_host(void *ptr)
2433{
2434    RAMBlock *block;
2435    ram_addr_t offset;
2436
2437    block = qemu_ram_block_from_host(ptr, false, &offset);
2438    if (!block) {
2439        return RAM_ADDR_INVALID;
2440    }
2441
2442    return block->offset + offset;
2443}
2444
2445static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2446                                 MemTxAttrs attrs, void *buf, hwaddr len);
2447static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2448                                  const void *buf, hwaddr len);
2449static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2450                                  bool is_write, MemTxAttrs attrs);
2451
2452static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2453                                unsigned len, MemTxAttrs attrs)
2454{
2455    subpage_t *subpage = opaque;
2456    uint8_t buf[8];
2457    MemTxResult res;
2458
2459#if defined(DEBUG_SUBPAGE)
2460    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2461           subpage, len, addr);
2462#endif
2463    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2464    if (res) {
2465        return res;
2466    }
2467    *data = ldn_p(buf, len);
2468    return MEMTX_OK;
2469}
2470
2471static MemTxResult subpage_write(void *opaque, hwaddr addr,
2472                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2473{
2474    subpage_t *subpage = opaque;
2475    uint8_t buf[8];
2476
2477#if defined(DEBUG_SUBPAGE)
2478    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2479           " value %"PRIx64"\n",
2480           __func__, subpage, len, addr, value);
2481#endif
2482    stn_p(buf, len, value);
2483    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2484}
2485
2486static bool subpage_accepts(void *opaque, hwaddr addr,
2487                            unsigned len, bool is_write,
2488                            MemTxAttrs attrs)
2489{
2490    subpage_t *subpage = opaque;
2491#if defined(DEBUG_SUBPAGE)
2492    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2493           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2494#endif
2495
2496    return flatview_access_valid(subpage->fv, addr + subpage->base,
2497                                 len, is_write, attrs);
2498}
2499
2500static const MemoryRegionOps subpage_ops = {
2501    .read_with_attrs = subpage_read,
2502    .write_with_attrs = subpage_write,
2503    .impl.min_access_size = 1,
2504    .impl.max_access_size = 8,
2505    .valid.min_access_size = 1,
2506    .valid.max_access_size = 8,
2507    .valid.accepts = subpage_accepts,
2508    .endianness = DEVICE_NATIVE_ENDIAN,
2509};
2510
2511static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2512                            uint16_t section)
2513{
2514    int idx, eidx;
2515
2516    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2517        return -1;
2518    idx = SUBPAGE_IDX(start);
2519    eidx = SUBPAGE_IDX(end);
2520#if defined(DEBUG_SUBPAGE)
2521    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2522           __func__, mmio, start, end, idx, eidx, section);
2523#endif
2524    for (; idx <= eidx; idx++) {
2525        mmio->sub_section[idx] = section;
2526    }
2527
2528    return 0;
2529}
2530
2531static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2532{
2533    subpage_t *mmio;
2534
2535    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2536    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2537    mmio->fv = fv;
2538    mmio->base = base;
2539    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2540                          NULL, TARGET_PAGE_SIZE);
2541    mmio->iomem.subpage = true;
2542#if defined(DEBUG_SUBPAGE)
2543    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2544           mmio, base, TARGET_PAGE_SIZE);
2545#endif
2546
2547    return mmio;
2548}
2549
2550static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2551{
2552    assert(fv);
2553    MemoryRegionSection section = {
2554        .fv = fv,
2555        .mr = mr,
2556        .offset_within_address_space = 0,
2557        .offset_within_region = 0,
2558        .size = int128_2_64(),
2559    };
2560
2561    return phys_section_add(map, &section);
2562}
2563
2564MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2565                                      hwaddr index, MemTxAttrs attrs)
2566{
2567    int asidx = cpu_asidx_from_attrs(cpu, attrs);
2568    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2569    AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2570    MemoryRegionSection *sections = d->map.sections;
2571
2572    return &sections[index & ~TARGET_PAGE_MASK];
2573}
2574
2575static void io_mem_init(void)
2576{
2577    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2578                          NULL, UINT64_MAX);
2579}
2580
2581AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2582{
2583    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2584    uint16_t n;
2585
2586    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2587    assert(n == PHYS_SECTION_UNASSIGNED);
2588
2589    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2590
2591    return d;
2592}
2593
2594void address_space_dispatch_free(AddressSpaceDispatch *d)
2595{
2596    phys_sections_free(&d->map);
2597    g_free(d);
2598}
2599
2600static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2601{
2602}
2603
2604static void tcg_log_global_after_sync(MemoryListener *listener)
2605{
2606    CPUAddressSpace *cpuas;
2607
2608    /* Wait for the CPU to end the current TB.  This avoids the following
2609     * incorrect race:
2610     *
2611     *      vCPU                         migration
2612     *      ----------------------       -------------------------
2613     *      TLB check -> slow path
2614     *        notdirty_mem_write
2615     *          write to RAM
2616     *          mark dirty
2617     *                                   clear dirty flag
2618     *      TLB check -> fast path
2619     *                                   read memory
2620     *        write to RAM
2621     *
2622     * by pushing the migration thread's memory read after the vCPU thread has
2623     * written the memory.
2624     */
2625    if (replay_mode == REPLAY_MODE_NONE) {
2626        /*
2627         * VGA can make calls to this function while updating the screen.
2628         * In record/replay mode this causes a deadlock, because
2629         * run_on_cpu waits for rr mutex. Therefore no races are possible
2630         * in this case and no need for making run_on_cpu when
2631         * record/replay is not enabled.
2632         */
2633        cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2634        run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2635    }
2636}
2637
2638static void tcg_commit(MemoryListener *listener)
2639{
2640    CPUAddressSpace *cpuas;
2641    AddressSpaceDispatch *d;
2642
2643    assert(tcg_enabled());
2644    /* since each CPU stores ram addresses in its TLB cache, we must
2645       reset the modified entries */
2646    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2647    cpu_reloading_memory_map();
2648    /* The CPU and TLB are protected by the iothread lock.
2649     * We reload the dispatch pointer now because cpu_reloading_memory_map()
2650     * may have split the RCU critical section.
2651     */
2652    d = address_space_to_dispatch(cpuas->as);
2653    qatomic_rcu_set(&cpuas->memory_dispatch, d);
2654    tlb_flush(cpuas->cpu);
2655}
2656
2657static void memory_map_init(void)
2658{
2659    system_memory = g_malloc(sizeof(*system_memory));
2660
2661    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2662    address_space_init(&address_space_memory, system_memory, "memory");
2663
2664    system_io = g_malloc(sizeof(*system_io));
2665    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2666                          65536);
2667    address_space_init(&address_space_io, system_io, "I/O");
2668}
2669
2670MemoryRegion *get_system_memory(void)
2671{
2672    return system_memory;
2673}
2674
2675MemoryRegion *get_system_io(void)
2676{
2677    return system_io;
2678}
2679
2680static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2681                                     hwaddr length)
2682{
2683    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2684    addr += memory_region_get_ram_addr(mr);
2685
2686    /* No early return if dirty_log_mask is or becomes 0, because
2687     * cpu_physical_memory_set_dirty_range will still call
2688     * xen_modified_memory.
2689     */
2690    if (dirty_log_mask) {
2691        dirty_log_mask =
2692            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2693    }
2694    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2695        assert(tcg_enabled());
2696        tb_invalidate_phys_range(addr, addr + length);
2697        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2698    }
2699    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2700}
2701
2702void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2703{
2704    /*
2705     * In principle this function would work on other memory region types too,
2706     * but the ROM device use case is the only one where this operation is
2707     * necessary.  Other memory regions should use the
2708     * address_space_read/write() APIs.
2709     */
2710    assert(memory_region_is_romd(mr));
2711
2712    invalidate_and_set_dirty(mr, addr, size);
2713}
2714
2715static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2716{
2717    unsigned access_size_max = mr->ops->valid.max_access_size;
2718
2719    /* Regions are assumed to support 1-4 byte accesses unless
2720       otherwise specified.  */
2721    if (access_size_max == 0) {
2722        access_size_max = 4;
2723    }
2724
2725    /* Bound the maximum access by the alignment of the address.  */
2726    if (!mr->ops->impl.unaligned) {
2727        unsigned align_size_max = addr & -addr;
2728        if (align_size_max != 0 && align_size_max < access_size_max) {
2729            access_size_max = align_size_max;
2730        }
2731    }
2732
2733    /* Don't attempt accesses larger than the maximum.  */
2734    if (l > access_size_max) {
2735        l = access_size_max;
2736    }
2737    l = pow2floor(l);
2738
2739    return l;
2740}
2741
2742static bool prepare_mmio_access(MemoryRegion *mr)
2743{
2744    bool release_lock = false;
2745
2746    if (!qemu_mutex_iothread_locked()) {
2747        qemu_mutex_lock_iothread();
2748        release_lock = true;
2749    }
2750    if (mr->flush_coalesced_mmio) {
2751        qemu_flush_coalesced_mmio_buffer();
2752    }
2753
2754    return release_lock;
2755}
2756
2757/* Called within RCU critical section.  */
2758static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2759                                           MemTxAttrs attrs,
2760                                           const void *ptr,
2761                                           hwaddr len, hwaddr addr1,
2762                                           hwaddr l, MemoryRegion *mr)
2763{
2764    uint8_t *ram_ptr;
2765    uint64_t val;
2766    MemTxResult result = MEMTX_OK;
2767    bool release_lock = false;
2768    const uint8_t *buf = ptr;
2769
2770    for (;;) {
2771        if (!memory_access_is_direct(mr, true)) {
2772            release_lock |= prepare_mmio_access(mr);
2773            l = memory_access_size(mr, l, addr1);
2774            /* XXX: could force current_cpu to NULL to avoid
2775               potential bugs */
2776            val = ldn_he_p(buf, l);
2777            result |= memory_region_dispatch_write(mr, addr1, val,
2778                                                   size_memop(l), attrs);
2779        } else {
2780            /* RAM case */
2781            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2782            memcpy(ram_ptr, buf, l);
2783            invalidate_and_set_dirty(mr, addr1, l);
2784        }
2785
2786        if (release_lock) {
2787            qemu_mutex_unlock_iothread();
2788            release_lock = false;
2789        }
2790
2791        len -= l;
2792        buf += l;
2793        addr += l;
2794
2795        if (!len) {
2796            break;
2797        }
2798
2799        l = len;
2800        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2801    }
2802
2803    return result;
2804}
2805
2806/* Called from RCU critical section.  */
2807static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2808                                  const void *buf, hwaddr len)
2809{
2810    hwaddr l;
2811    hwaddr addr1;
2812    MemoryRegion *mr;
2813    MemTxResult result = MEMTX_OK;
2814
2815    l = len;
2816    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2817    result = flatview_write_continue(fv, addr, attrs, buf, len,
2818                                     addr1, l, mr);
2819
2820    return result;
2821}
2822
2823/* Called within RCU critical section.  */
2824MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2825                                   MemTxAttrs attrs, void *ptr,
2826                                   hwaddr len, hwaddr addr1, hwaddr l,
2827                                   MemoryRegion *mr)
2828{
2829    uint8_t *ram_ptr;
2830    uint64_t val;
2831    MemTxResult result = MEMTX_OK;
2832    bool release_lock = false;
2833    uint8_t *buf = ptr;
2834
2835    fuzz_dma_read_cb(addr, len, mr);
2836    for (;;) {
2837        if (!memory_access_is_direct(mr, false)) {
2838            /* I/O case */
2839            release_lock |= prepare_mmio_access(mr);
2840            l = memory_access_size(mr, l, addr1);
2841            result |= memory_region_dispatch_read(mr, addr1, &val,
2842                                                  size_memop(l), attrs);
2843            stn_he_p(buf, l, val);
2844        } else {
2845            /* RAM case */
2846            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2847            memcpy(buf, ram_ptr, l);
2848        }
2849
2850        if (release_lock) {
2851            qemu_mutex_unlock_iothread();
2852            release_lock = false;
2853        }
2854
2855        len -= l;
2856        buf += l;
2857        addr += l;
2858
2859        if (!len) {
2860            break;
2861        }
2862
2863        l = len;
2864        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2865    }
2866
2867    return result;
2868}
2869
2870/* Called from RCU critical section.  */
2871static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2872                                 MemTxAttrs attrs, void *buf, hwaddr len)
2873{
2874    hwaddr l;
2875    hwaddr addr1;
2876    MemoryRegion *mr;
2877
2878    l = len;
2879    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2880    return flatview_read_continue(fv, addr, attrs, buf, len,
2881                                  addr1, l, mr);
2882}
2883
2884MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2885                                    MemTxAttrs attrs, void *buf, hwaddr len)
2886{
2887    MemTxResult result = MEMTX_OK;
2888    FlatView *fv;
2889
2890    if (len > 0) {
2891        RCU_READ_LOCK_GUARD();
2892        fv = address_space_to_flatview(as);
2893        result = flatview_read(fv, addr, attrs, buf, len);
2894    }
2895
2896    return result;
2897}
2898
2899MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2900                                MemTxAttrs attrs,
2901                                const void *buf, hwaddr len)
2902{
2903    MemTxResult result = MEMTX_OK;
2904    FlatView *fv;
2905
2906    if (len > 0) {
2907        RCU_READ_LOCK_GUARD();
2908        fv = address_space_to_flatview(as);
2909        result = flatview_write(fv, addr, attrs, buf, len);
2910    }
2911
2912    return result;
2913}
2914
2915MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2916                             void *buf, hwaddr len, bool is_write)
2917{
2918    if (is_write) {
2919        return address_space_write(as, addr, attrs, buf, len);
2920    } else {
2921        return address_space_read_full(as, addr, attrs, buf, len);
2922    }
2923}
2924
2925void cpu_physical_memory_rw(hwaddr addr, void *buf,
2926                            hwaddr len, bool is_write)
2927{
2928    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2929                     buf, len, is_write);
2930}
2931
2932enum write_rom_type {
2933    WRITE_DATA,
2934    FLUSH_CACHE,
2935};
2936
2937static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2938                                                           hwaddr addr,
2939                                                           MemTxAttrs attrs,
2940                                                           const void *ptr,
2941                                                           hwaddr len,
2942                                                           enum write_rom_type type)
2943{
2944    hwaddr l;
2945    uint8_t *ram_ptr;
2946    hwaddr addr1;
2947    MemoryRegion *mr;
2948    const uint8_t *buf = ptr;
2949
2950    RCU_READ_LOCK_GUARD();
2951    while (len > 0) {
2952        l = len;
2953        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2954
2955        if (!(memory_region_is_ram(mr) ||
2956              memory_region_is_romd(mr))) {
2957            l = memory_access_size(mr, l, addr1);
2958        } else {
2959            /* ROM/RAM case */
2960            ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2961            switch (type) {
2962            case WRITE_DATA:
2963                memcpy(ram_ptr, buf, l);
2964                invalidate_and_set_dirty(mr, addr1, l);
2965                break;
2966            case FLUSH_CACHE:
2967                flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2968                break;
2969            }
2970        }
2971        len -= l;
2972        buf += l;
2973        addr += l;
2974    }
2975    return MEMTX_OK;
2976}
2977
2978/* used for ROM loading : can write in RAM and ROM */
2979MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2980                                    MemTxAttrs attrs,
2981                                    const void *buf, hwaddr len)
2982{
2983    return address_space_write_rom_internal(as, addr, attrs,
2984                                            buf, len, WRITE_DATA);
2985}
2986
2987void cpu_flush_icache_range(hwaddr start, hwaddr len)
2988{
2989    /*
2990     * This function should do the same thing as an icache flush that was
2991     * triggered from within the guest. For TCG we are always cache coherent,
2992     * so there is no need to flush anything. For KVM / Xen we need to flush
2993     * the host's instruction cache at least.
2994     */
2995    if (tcg_enabled()) {
2996        return;
2997    }
2998
2999    address_space_write_rom_internal(&address_space_memory,
3000                                     start, MEMTXATTRS_UNSPECIFIED,
3001                                     NULL, len, FLUSH_CACHE);
3002}
3003
3004typedef struct {
3005    MemoryRegion *mr;
3006    void *buffer;
3007    hwaddr addr;
3008    hwaddr len;
3009    bool in_use;
3010} BounceBuffer;
3011
3012static BounceBuffer bounce;
3013
3014typedef struct MapClient {
3015    QEMUBH *bh;
3016    QLIST_ENTRY(MapClient) link;
3017} MapClient;
3018
3019QemuMutex map_client_list_lock;
3020static QLIST_HEAD(, MapClient) map_client_list
3021    = QLIST_HEAD_INITIALIZER(map_client_list);
3022
3023static void cpu_unregister_map_client_do(MapClient *client)
3024{
3025    QLIST_REMOVE(client, link);
3026    g_free(client);
3027}
3028
3029static void cpu_notify_map_clients_locked(void)
3030{
3031    MapClient *client;
3032
3033    while (!QLIST_EMPTY(&map_client_list)) {
3034        client = QLIST_FIRST(&map_client_list);
3035        qemu_bh_schedule(client->bh);
3036        cpu_unregister_map_client_do(client);
3037    }
3038}
3039
3040void cpu_register_map_client(QEMUBH *bh)
3041{
3042    MapClient *client = g_malloc(sizeof(*client));
3043
3044    qemu_mutex_lock(&map_client_list_lock);
3045    client->bh = bh;
3046    QLIST_INSERT_HEAD(&map_client_list, client, link);
3047    if (!qatomic_read(&bounce.in_use)) {
3048        cpu_notify_map_clients_locked();
3049    }
3050    qemu_mutex_unlock(&map_client_list_lock);
3051}
3052
3053void cpu_exec_init_all(void)
3054{
3055    qemu_mutex_init(&ram_list.mutex);
3056    /* The data structures we set up here depend on knowing the page size,
3057     * so no more changes can be made after this point.
3058     * In an ideal world, nothing we did before we had finished the
3059     * machine setup would care about the target page size, and we could
3060     * do this much later, rather than requiring board models to state
3061     * up front what their requirements are.
3062     */
3063    finalize_target_page_bits();
3064    io_mem_init();
3065    memory_map_init();
3066    qemu_mutex_init(&map_client_list_lock);
3067}
3068
3069void cpu_unregister_map_client(QEMUBH *bh)
3070{
3071    MapClient *client;
3072
3073    qemu_mutex_lock(&map_client_list_lock);
3074    QLIST_FOREACH(client, &map_client_list, link) {
3075        if (client->bh == bh) {
3076            cpu_unregister_map_client_do(client);
3077            break;
3078        }
3079    }
3080    qemu_mutex_unlock(&map_client_list_lock);
3081}
3082
3083static void cpu_notify_map_clients(void)
3084{
3085    qemu_mutex_lock(&map_client_list_lock);
3086    cpu_notify_map_clients_locked();
3087    qemu_mutex_unlock(&map_client_list_lock);
3088}
3089
3090static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3091                                  bool is_write, MemTxAttrs attrs)
3092{
3093    MemoryRegion *mr;
3094    hwaddr l, xlat;
3095
3096    while (len > 0) {
3097        l = len;
3098        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3099        if (!memory_access_is_direct(mr, is_write)) {
3100            l = memory_access_size(mr, l, addr);
3101            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3102                return false;
3103            }
3104        }
3105
3106        len -= l;
3107        addr += l;
3108    }
3109    return true;
3110}
3111
3112bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3113                                hwaddr len, bool is_write,
3114                                MemTxAttrs attrs)
3115{
3116    FlatView *fv;
3117    bool result;
3118
3119    RCU_READ_LOCK_GUARD();
3120    fv = address_space_to_flatview(as);
3121    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3122    return result;
3123}
3124
3125static hwaddr
3126flatview_extend_translation(FlatView *fv, hwaddr addr,
3127                            hwaddr target_len,
3128                            MemoryRegion *mr, hwaddr base, hwaddr len,
3129                            bool is_write, MemTxAttrs attrs)
3130{
3131    hwaddr done = 0;
3132    hwaddr xlat;
3133    MemoryRegion *this_mr;
3134
3135    for (;;) {
3136        target_len -= len;
3137        addr += len;
3138        done += len;
3139        if (target_len == 0) {
3140            return done;
3141        }
3142
3143        len = target_len;
3144        this_mr = flatview_translate(fv, addr, &xlat,
3145                                     &len, is_write, attrs);
3146        if (this_mr != mr || xlat != base + done) {
3147            return done;
3148        }
3149    }
3150}
3151
3152/* Map a physical memory region into a host virtual address.
3153 * May map a subset of the requested range, given by and returned in *plen.
3154 * May return NULL if resources needed to perform the mapping are exhausted.
3155 * Use only for reads OR writes - not for read-modify-write operations.
3156 * Use cpu_register_map_client() to know when retrying the map operation is
3157 * likely to succeed.
3158 */
3159void *address_space_map(AddressSpace *as,
3160                        hwaddr addr,
3161                        hwaddr *plen,
3162                        bool is_write,
3163                        MemTxAttrs attrs)
3164{
3165    hwaddr len = *plen;
3166    hwaddr l, xlat;
3167    MemoryRegion *mr;
3168    void *ptr;
3169    FlatView *fv;
3170
3171    if (len == 0) {
3172        return NULL;
3173    }
3174
3175    l = len;
3176    RCU_READ_LOCK_GUARD();
3177    fv = address_space_to_flatview(as);
3178    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3179
3180    if (!memory_access_is_direct(mr, is_write)) {
3181        if (qatomic_xchg(&bounce.in_use, true)) {
3182            *plen = 0;
3183            return NULL;
3184        }
3185        /* Avoid unbounded allocations */
3186        l = MIN(l, TARGET_PAGE_SIZE);
3187        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3188        bounce.addr = addr;
3189        bounce.len = l;
3190
3191        memory_region_ref(mr);
3192        bounce.mr = mr;
3193        if (!is_write) {
3194            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3195                               bounce.buffer, l);
3196        }
3197
3198        *plen = l;
3199        return bounce.buffer;
3200    }
3201
3202
3203    memory_region_ref(mr);
3204    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3205                                        l, is_write, attrs);
3206    fuzz_dma_read_cb(addr, *plen, mr);
3207    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3208
3209    return ptr;
3210}
3211
3212/* Unmaps a memory region previously mapped by address_space_map().
3213 * Will also mark the memory as dirty if is_write is true.  access_len gives
3214 * the amount of memory that was actually read or written by the caller.
3215 */
3216void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3217                         bool is_write, hwaddr access_len)
3218{
3219    if (buffer != bounce.buffer) {
3220        MemoryRegion *mr;
3221        ram_addr_t addr1;
3222
3223        mr = memory_region_from_host(buffer, &addr1);
3224        assert(mr != NULL);
3225        if (is_write) {
3226            invalidate_and_set_dirty(mr, addr1, access_len);
3227        }
3228        if (xen_enabled()) {
3229            xen_invalidate_map_cache_entry(buffer);
3230        }
3231        memory_region_unref(mr);
3232        return;
3233    }
3234    if (is_write) {
3235        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3236                            bounce.buffer, access_len);
3237    }
3238    qemu_vfree(bounce.buffer);
3239    bounce.buffer = NULL;
3240    memory_region_unref(bounce.mr);
3241    qatomic_mb_set(&bounce.in_use, false);
3242    cpu_notify_map_clients();
3243}
3244
3245void *cpu_physical_memory_map(hwaddr addr,
3246                              hwaddr *plen,
3247                              bool is_write)
3248{
3249    return address_space_map(&address_space_memory, addr, plen, is_write,
3250                             MEMTXATTRS_UNSPECIFIED);
3251}
3252
3253void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3254                               bool is_write, hwaddr access_len)
3255{
3256    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3257}
3258
3259#define ARG1_DECL                AddressSpace *as
3260#define ARG1                     as
3261#define SUFFIX
3262#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3263#define RCU_READ_LOCK(...)       rcu_read_lock()
3264#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3265#include "memory_ldst.c.inc"
3266
3267int64_t address_space_cache_init(MemoryRegionCache *cache,
3268                                 AddressSpace *as,
3269                                 hwaddr addr,
3270                                 hwaddr len,
3271                                 bool is_write)
3272{
3273    AddressSpaceDispatch *d;
3274    hwaddr l;
3275    MemoryRegion *mr;
3276    Int128 diff;
3277
3278    assert(len > 0);
3279
3280    l = len;
3281    cache->fv = address_space_get_flatview(as);
3282    d = flatview_to_dispatch(cache->fv);
3283    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3284
3285    /*
3286     * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3287     * Take that into account to compute how many bytes are there between
3288     * cache->xlat and the end of the section.
3289     */
3290    diff = int128_sub(cache->mrs.size,
3291                      int128_make64(cache->xlat - cache->mrs.offset_within_region));
3292    l = int128_get64(int128_min(diff, int128_make64(l)));
3293
3294    mr = cache->mrs.mr;
3295    memory_region_ref(mr);
3296    if (memory_access_is_direct(mr, is_write)) {
3297        /* We don't care about the memory attributes here as we're only
3298         * doing this if we found actual RAM, which behaves the same
3299         * regardless of attributes; so UNSPECIFIED is fine.
3300         */
3301        l = flatview_extend_translation(cache->fv, addr, len, mr,
3302                                        cache->xlat, l, is_write,
3303                                        MEMTXATTRS_UNSPECIFIED);
3304        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3305    } else {
3306        cache->ptr = NULL;
3307    }
3308
3309    cache->len = l;
3310    cache->is_write = is_write;
3311    return l;
3312}
3313
3314void address_space_cache_invalidate(MemoryRegionCache *cache,
3315                                    hwaddr addr,
3316                                    hwaddr access_len)
3317{
3318    assert(cache->is_write);
3319    if (likely(cache->ptr)) {
3320        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3321    }
3322}
3323
3324void address_space_cache_destroy(MemoryRegionCache *cache)
3325{
3326    if (!cache->mrs.mr) {
3327        return;
3328    }
3329
3330    if (xen_enabled()) {
3331        xen_invalidate_map_cache_entry(cache->ptr);
3332    }
3333    memory_region_unref(cache->mrs.mr);
3334    flatview_unref(cache->fv);
3335    cache->mrs.mr = NULL;
3336    cache->fv = NULL;
3337}
3338
3339/* Called from RCU critical section.  This function has the same
3340 * semantics as address_space_translate, but it only works on a
3341 * predefined range of a MemoryRegion that was mapped with
3342 * address_space_cache_init.
3343 */
3344static inline MemoryRegion *address_space_translate_cached(
3345    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3346    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3347{
3348    MemoryRegionSection section;
3349    MemoryRegion *mr;
3350    IOMMUMemoryRegion *iommu_mr;
3351    AddressSpace *target_as;
3352
3353    assert(!cache->ptr);
3354    *xlat = addr + cache->xlat;
3355
3356    mr = cache->mrs.mr;
3357    iommu_mr = memory_region_get_iommu(mr);
3358    if (!iommu_mr) {
3359        /* MMIO region.  */
3360        return mr;
3361    }
3362
3363    section = address_space_translate_iommu(iommu_mr, xlat, plen,
3364                                            NULL, is_write, true,
3365                                            &target_as, attrs);
3366    return section.mr;
3367}
3368
3369/* Called from RCU critical section. address_space_read_cached uses this
3370 * out of line function when the target is an MMIO or IOMMU region.
3371 */
3372MemTxResult
3373address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3374                                   void *buf, hwaddr len)
3375{
3376    hwaddr addr1, l;
3377    MemoryRegion *mr;
3378
3379    l = len;
3380    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3381                                        MEMTXATTRS_UNSPECIFIED);
3382    return flatview_read_continue(cache->fv,
3383                                  addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3384                                  addr1, l, mr);
3385}
3386
3387/* Called from RCU critical section. address_space_write_cached uses this
3388 * out of line function when the target is an MMIO or IOMMU region.
3389 */
3390MemTxResult
3391address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3392                                    const void *buf, hwaddr len)
3393{
3394    hwaddr addr1, l;
3395    MemoryRegion *mr;
3396
3397    l = len;
3398    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3399                                        MEMTXATTRS_UNSPECIFIED);
3400    return flatview_write_continue(cache->fv,
3401                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3402                                   addr1, l, mr);
3403}
3404
3405#define ARG1_DECL                MemoryRegionCache *cache
3406#define ARG1                     cache
3407#define SUFFIX                   _cached_slow
3408#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3409#define RCU_READ_LOCK()          ((void)0)
3410#define RCU_READ_UNLOCK()        ((void)0)
3411#include "memory_ldst.c.inc"
3412
3413/* virtual memory access for debug (includes writing to ROM) */
3414int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3415                        void *ptr, target_ulong len, bool is_write)
3416{
3417    hwaddr phys_addr;
3418    target_ulong l, page;
3419    uint8_t *buf = ptr;
3420
3421    cpu_synchronize_state(cpu);
3422    while (len > 0) {
3423        int asidx;
3424        MemTxAttrs attrs;
3425        MemTxResult res;
3426
3427        page = addr & TARGET_PAGE_MASK;
3428        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3429        asidx = cpu_asidx_from_attrs(cpu, attrs);
3430        /* if no physical page mapped, return an error */
3431        if (phys_addr == -1)
3432            return -1;
3433        l = (page + TARGET_PAGE_SIZE) - addr;
3434        if (l > len)
3435            l = len;
3436        phys_addr += (addr & ~TARGET_PAGE_MASK);
3437        if (is_write) {
3438            res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3439                                          attrs, buf, l);
3440        } else {
3441            res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3442                                     attrs, buf, l);
3443        }
3444        if (res != MEMTX_OK) {
3445            return -1;
3446        }
3447        len -= l;
3448        buf += l;
3449        addr += l;
3450    }
3451    return 0;
3452}
3453
3454/*
3455 * Allows code that needs to deal with migration bitmaps etc to still be built
3456 * target independent.
3457 */
3458size_t qemu_target_page_size(void)
3459{
3460    return TARGET_PAGE_SIZE;
3461}
3462
3463int qemu_target_page_bits(void)
3464{
3465    return TARGET_PAGE_BITS;
3466}
3467
3468int qemu_target_page_bits_min(void)
3469{
3470    return TARGET_PAGE_BITS_MIN;
3471}
3472
3473bool cpu_physical_memory_is_io(hwaddr phys_addr)
3474{
3475    MemoryRegion*mr;
3476    hwaddr l = 1;
3477    bool res;
3478
3479    RCU_READ_LOCK_GUARD();
3480    mr = address_space_translate(&address_space_memory,
3481                                 phys_addr, &phys_addr, &l, false,
3482                                 MEMTXATTRS_UNSPECIFIED);
3483
3484    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3485    return res;
3486}
3487
3488int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3489{
3490    RAMBlock *block;
3491    int ret = 0;
3492
3493    RCU_READ_LOCK_GUARD();
3494    RAMBLOCK_FOREACH(block) {
3495        ret = func(block, opaque);
3496        if (ret) {
3497            break;
3498        }
3499    }
3500    return ret;
3501}
3502
3503/*
3504 * Unmap pages of memory from start to start+length such that
3505 * they a) read as 0, b) Trigger whatever fault mechanism
3506 * the OS provides for postcopy.
3507 * The pages must be unmapped by the end of the function.
3508 * Returns: 0 on success, none-0 on failure
3509 *
3510 */
3511int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3512{
3513    int ret = -1;
3514
3515    uint8_t *host_startaddr = rb->host + start;
3516
3517    if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3518        error_report("ram_block_discard_range: Unaligned start address: %p",
3519                     host_startaddr);
3520        goto err;
3521    }
3522
3523    if ((start + length) <= rb->max_length) {
3524        bool need_madvise, need_fallocate;
3525        if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3526            error_report("ram_block_discard_range: Unaligned length: %zx",
3527                         length);
3528            goto err;
3529        }
3530
3531        errno = ENOTSUP; /* If we are missing MADVISE etc */
3532
3533        /* The logic here is messy;
3534         *    madvise DONTNEED fails for hugepages
3535         *    fallocate works on hugepages and shmem
3536         *    shared anonymous memory requires madvise REMOVE
3537         */
3538        need_madvise = (rb->page_size == qemu_host_page_size);
3539        need_fallocate = rb->fd != -1;
3540        if (need_fallocate) {
3541            /* For a file, this causes the area of the file to be zero'd
3542             * if read, and for hugetlbfs also causes it to be unmapped
3543             * so a userfault will trigger.
3544             */
3545#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3546            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3547                            start, length);
3548            if (ret) {
3549                ret = -errno;
3550                error_report("ram_block_discard_range: Failed to fallocate "
3551                             "%s:%" PRIx64 " +%zx (%d)",
3552                             rb->idstr, start, length, ret);
3553                goto err;
3554            }
3555#else
3556            ret = -ENOSYS;
3557            error_report("ram_block_discard_range: fallocate not available/file"
3558                         "%s:%" PRIx64 " +%zx (%d)",
3559                         rb->idstr, start, length, ret);
3560            goto err;
3561#endif
3562        }
3563        if (need_madvise) {
3564            /* For normal RAM this causes it to be unmapped,
3565             * for shared memory it causes the local mapping to disappear
3566             * and to fall back on the file contents (which we just
3567             * fallocate'd away).
3568             */
3569#if defined(CONFIG_MADVISE)
3570            if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3571                ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3572            } else {
3573                ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3574            }
3575            if (ret) {
3576                ret = -errno;
3577                error_report("ram_block_discard_range: Failed to discard range "
3578                             "%s:%" PRIx64 " +%zx (%d)",
3579                             rb->idstr, start, length, ret);
3580                goto err;
3581            }
3582#else
3583            ret = -ENOSYS;
3584            error_report("ram_block_discard_range: MADVISE not available"
3585                         "%s:%" PRIx64 " +%zx (%d)",
3586                         rb->idstr, start, length, ret);
3587            goto err;
3588#endif
3589        }
3590        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3591                                      need_madvise, need_fallocate, ret);
3592    } else {
3593        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3594                     "/%zx/" RAM_ADDR_FMT")",
3595                     rb->idstr, start, length, rb->max_length);
3596    }
3597
3598err:
3599    return ret;
3600}
3601
3602bool ramblock_is_pmem(RAMBlock *rb)
3603{
3604    return rb->flags & RAM_PMEM;
3605}
3606
3607static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3608{
3609    if (start == end - 1) {
3610        qemu_printf("\t%3d      ", start);
3611    } else {
3612        qemu_printf("\t%3d..%-3d ", start, end - 1);
3613    }
3614    qemu_printf(" skip=%d ", skip);
3615    if (ptr == PHYS_MAP_NODE_NIL) {
3616        qemu_printf(" ptr=NIL");
3617    } else if (!skip) {
3618        qemu_printf(" ptr=#%d", ptr);
3619    } else {
3620        qemu_printf(" ptr=[%d]", ptr);
3621    }
3622    qemu_printf("\n");
3623}
3624
3625#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3626                           int128_sub((size), int128_one())) : 0)
3627
3628void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3629{
3630    int i;
3631
3632    qemu_printf("  Dispatch\n");
3633    qemu_printf("    Physical sections\n");
3634
3635    for (i = 0; i < d->map.sections_nb; ++i) {
3636        MemoryRegionSection *s = d->map.sections + i;
3637        const char *names[] = { " [unassigned]", " [not dirty]",
3638                                " [ROM]", " [watch]" };
3639
3640        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3641                    " %s%s%s%s%s",
3642            i,
3643            s->offset_within_address_space,
3644            s->offset_within_address_space + MR_SIZE(s->mr->size),
3645            s->mr->name ? s->mr->name : "(noname)",
3646            i < ARRAY_SIZE(names) ? names[i] : "",
3647            s->mr == root ? " [ROOT]" : "",
3648            s == d->mru_section ? " [MRU]" : "",
3649            s->mr->is_iommu ? " [iommu]" : "");
3650
3651        if (s->mr->alias) {
3652            qemu_printf(" alias=%s", s->mr->alias->name ?
3653                    s->mr->alias->name : "noname");
3654        }
3655        qemu_printf("\n");
3656    }
3657
3658    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3659               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3660    for (i = 0; i < d->map.nodes_nb; ++i) {
3661        int j, jprev;
3662        PhysPageEntry prev;
3663        Node *n = d->map.nodes + i;
3664
3665        qemu_printf("      [%d]\n", i);
3666
3667        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3668            PhysPageEntry *pe = *n + j;
3669
3670            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3671                continue;
3672            }
3673
3674            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3675
3676            jprev = j;
3677            prev = *pe;
3678        }
3679
3680        if (jprev != ARRAY_SIZE(*n)) {
3681            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3682        }
3683    }
3684}
3685
3686/* Require any discards to work. */
3687static unsigned int ram_block_discard_required_cnt;
3688/* Require only coordinated discards to work. */
3689static unsigned int ram_block_coordinated_discard_required_cnt;
3690/* Disable any discards. */
3691static unsigned int ram_block_discard_disabled_cnt;
3692/* Disable only uncoordinated discards. */
3693static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3694static QemuMutex ram_block_discard_disable_mutex;
3695
3696static void ram_block_discard_disable_mutex_lock(void)
3697{
3698    static gsize initialized;
3699
3700    if (g_once_init_enter(&initialized)) {
3701        qemu_mutex_init(&ram_block_discard_disable_mutex);
3702        g_once_init_leave(&initialized, 1);
3703    }
3704    qemu_mutex_lock(&ram_block_discard_disable_mutex);
3705}
3706
3707static void ram_block_discard_disable_mutex_unlock(void)
3708{
3709    qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3710}
3711
3712int ram_block_discard_disable(bool state)
3713{
3714    int ret = 0;
3715
3716    ram_block_discard_disable_mutex_lock();
3717    if (!state) {
3718        ram_block_discard_disabled_cnt--;
3719    } else if (ram_block_discard_required_cnt ||
3720               ram_block_coordinated_discard_required_cnt) {
3721        ret = -EBUSY;
3722    } else {
3723        ram_block_discard_disabled_cnt++;
3724    }
3725    ram_block_discard_disable_mutex_unlock();
3726    return ret;
3727}
3728
3729int ram_block_uncoordinated_discard_disable(bool state)
3730{
3731    int ret = 0;
3732
3733    ram_block_discard_disable_mutex_lock();
3734    if (!state) {
3735        ram_block_uncoordinated_discard_disabled_cnt--;
3736    } else if (ram_block_discard_required_cnt) {
3737        ret = -EBUSY;
3738    } else {
3739        ram_block_uncoordinated_discard_disabled_cnt++;
3740    }
3741    ram_block_discard_disable_mutex_unlock();
3742    return ret;
3743}
3744
3745int ram_block_discard_require(bool state)
3746{
3747    int ret = 0;
3748
3749    ram_block_discard_disable_mutex_lock();
3750    if (!state) {
3751        ram_block_discard_required_cnt--;
3752    } else if (ram_block_discard_disabled_cnt ||
3753               ram_block_uncoordinated_discard_disabled_cnt) {
3754        ret = -EBUSY;
3755    } else {
3756        ram_block_discard_required_cnt++;
3757    }
3758    ram_block_discard_disable_mutex_unlock();
3759    return ret;
3760}
3761
3762int ram_block_coordinated_discard_require(bool state)
3763{
3764    int ret = 0;
3765
3766    ram_block_discard_disable_mutex_lock();
3767    if (!state) {
3768        ram_block_coordinated_discard_required_cnt--;
3769    } else if (ram_block_discard_disabled_cnt) {
3770        ret = -EBUSY;
3771    } else {
3772        ram_block_coordinated_discard_required_cnt++;
3773    }
3774    ram_block_discard_disable_mutex_unlock();
3775    return ret;
3776}
3777
3778bool ram_block_discard_is_disabled(void)
3779{
3780    return qatomic_read(&ram_block_discard_disabled_cnt) ||
3781           qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3782}
3783
3784bool ram_block_discard_is_required(void)
3785{
3786    return qatomic_read(&ram_block_discard_required_cnt) ||
3787           qatomic_read(&ram_block_coordinated_discard_required_cnt);
3788}
3789