qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu-common.h"
  24#include "target/arm/idau.h"
  25#include "qemu/module.h"
  26#include "qapi/error.h"
  27#include "qapi/visitor.h"
  28#include "cpu.h"
  29#ifdef CONFIG_TCG
  30#include "hw/core/tcg-cpu-ops.h"
  31#endif /* CONFIG_TCG */
  32#include "internals.h"
  33#include "exec/exec-all.h"
  34#include "hw/qdev-properties.h"
  35#if !defined(CONFIG_USER_ONLY)
  36#include "hw/loader.h"
  37#include "hw/boards.h"
  38#endif
  39#include "sysemu/tcg.h"
  40#include "sysemu/hw_accel.h"
  41#include "kvm_arm.h"
  42#include "disas/capstone.h"
  43#include "fpu/softfloat.h"
  44
  45static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  46{
  47    ARMCPU *cpu = ARM_CPU(cs);
  48    CPUARMState *env = &cpu->env;
  49
  50    if (is_a64(env)) {
  51        env->pc = value;
  52        env->thumb = 0;
  53    } else {
  54        env->regs[15] = value & ~1;
  55        env->thumb = value & 1;
  56    }
  57}
  58
  59#ifdef CONFIG_TCG
  60void arm_cpu_synchronize_from_tb(CPUState *cs,
  61                                 const TranslationBlock *tb)
  62{
  63    ARMCPU *cpu = ARM_CPU(cs);
  64    CPUARMState *env = &cpu->env;
  65
  66    /*
  67     * It's OK to look at env for the current mode here, because it's
  68     * never possible for an AArch64 TB to chain to an AArch32 TB.
  69     */
  70    if (is_a64(env)) {
  71        env->pc = tb->pc;
  72    } else {
  73        env->regs[15] = tb->pc;
  74    }
  75}
  76#endif /* CONFIG_TCG */
  77
  78static bool arm_cpu_has_work(CPUState *cs)
  79{
  80    ARMCPU *cpu = ARM_CPU(cs);
  81
  82    return (cpu->power_state != PSCI_OFF)
  83        && cs->interrupt_request &
  84        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  85         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  86         | CPU_INTERRUPT_EXITTB);
  87}
  88
  89void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  90                                 void *opaque)
  91{
  92    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  93
  94    entry->hook = hook;
  95    entry->opaque = opaque;
  96
  97    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  98}
  99
 100void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 101                                 void *opaque)
 102{
 103    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 104
 105    entry->hook = hook;
 106    entry->opaque = opaque;
 107
 108    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 109}
 110
 111static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 112{
 113    /* Reset a single ARMCPRegInfo register */
 114    ARMCPRegInfo *ri = value;
 115    ARMCPU *cpu = opaque;
 116
 117    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 118        return;
 119    }
 120
 121    if (ri->resetfn) {
 122        ri->resetfn(&cpu->env, ri);
 123        return;
 124    }
 125
 126    /* A zero offset is never possible as it would be regs[0]
 127     * so we use it to indicate that reset is being handled elsewhere.
 128     * This is basically only used for fields in non-core coprocessors
 129     * (like the pxa2xx ones).
 130     */
 131    if (!ri->fieldoffset) {
 132        return;
 133    }
 134
 135    if (cpreg_field_is_64bit(ri)) {
 136        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 137    } else {
 138        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 139    }
 140}
 141
 142static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 143{
 144    /* Purely an assertion check: we've already done reset once,
 145     * so now check that running the reset for the cpreg doesn't
 146     * change its value. This traps bugs where two different cpregs
 147     * both try to reset the same state field but to different values.
 148     */
 149    ARMCPRegInfo *ri = value;
 150    ARMCPU *cpu = opaque;
 151    uint64_t oldvalue, newvalue;
 152
 153    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 154        return;
 155    }
 156
 157    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 158    cp_reg_reset(key, value, opaque);
 159    newvalue = read_raw_cp_reg(&cpu->env, ri);
 160    assert(oldvalue == newvalue);
 161}
 162
 163static void arm_cpu_reset(DeviceState *dev)
 164{
 165    CPUState *s = CPU(dev);
 166    ARMCPU *cpu = ARM_CPU(s);
 167    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 168    CPUARMState *env = &cpu->env;
 169
 170    acc->parent_reset(dev);
 171
 172    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 173
 174    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 175    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 176
 177    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 178    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 179    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 180    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 181
 182    cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
 183
 184    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 185        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 186    }
 187
 188    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 189        /* 64 bit CPUs always start in 64 bit mode */
 190        env->aarch64 = 1;
 191#if defined(CONFIG_USER_ONLY)
 192        env->pstate = PSTATE_MODE_EL0t;
 193        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 194        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 195        /* Enable all PAC keys.  */
 196        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 197                                  SCTLR_EnDA | SCTLR_EnDB);
 198        /* and to the FP/Neon instructions */
 199        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 200        /* and to the SVE instructions */
 201        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 202        /* with reasonable vector length */
 203        if (cpu_isar_feature(aa64_sve, cpu)) {
 204            env->vfp.zcr_el[1] =
 205                aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
 206        }
 207        /*
 208         * Enable TBI0 but not TBI1.
 209         * Note that this must match useronly_clean_ptr.
 210         */
 211        env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
 212
 213        /* Enable MTE */
 214        if (cpu_isar_feature(aa64_mte, cpu)) {
 215            /* Enable tag access, but leave TCF0 as No Effect (0). */
 216            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 217            /*
 218             * Exclude all tags, so that tag 0 is always used.
 219             * This corresponds to Linux current->thread.gcr_incl = 0.
 220             *
 221             * Set RRND, so that helper_irg() will generate a seed later.
 222             * Here in cpu_reset(), the crypto subsystem has not yet been
 223             * initialized.
 224             */
 225            env->cp15.gcr_el1 = 0x1ffff;
 226        }
 227#else
 228        /* Reset into the highest available EL */
 229        if (arm_feature(env, ARM_FEATURE_EL3)) {
 230            env->pstate = PSTATE_MODE_EL3h;
 231        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 232            env->pstate = PSTATE_MODE_EL2h;
 233        } else {
 234            env->pstate = PSTATE_MODE_EL1h;
 235        }
 236        env->pc = cpu->rvbar;
 237#endif
 238    } else {
 239#if defined(CONFIG_USER_ONLY)
 240        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 241        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 242#endif
 243    }
 244
 245#if defined(CONFIG_USER_ONLY)
 246    env->uncached_cpsr = ARM_CPU_MODE_USR;
 247    /* For user mode we must enable access to coprocessors */
 248    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 249    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 250        env->cp15.c15_cpar = 3;
 251    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 252        env->cp15.c15_cpar = 1;
 253    }
 254#else
 255
 256    /*
 257     * If the highest available EL is EL2, AArch32 will start in Hyp
 258     * mode; otherwise it starts in SVC. Note that if we start in
 259     * AArch64 then these values in the uncached_cpsr will be ignored.
 260     */
 261    if (arm_feature(env, ARM_FEATURE_EL2) &&
 262        !arm_feature(env, ARM_FEATURE_EL3)) {
 263        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 264    } else {
 265        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 266    }
 267    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 268
 269    if (arm_feature(env, ARM_FEATURE_M)) {
 270        uint32_t initial_msp; /* Loaded from 0x0 */
 271        uint32_t initial_pc; /* Loaded from 0x4 */
 272        uint8_t *rom;
 273        uint32_t vecbase;
 274
 275        if (cpu_isar_feature(aa32_lob, cpu)) {
 276            /*
 277             * LTPSIZE is constant 4 if MVE not implemented, and resets
 278             * to an UNKNOWN value if MVE is implemented. We choose to
 279             * always reset to 4.
 280             */
 281            env->v7m.ltpsize = 4;
 282            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 283            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 284            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 285        }
 286
 287        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 288            env->v7m.secure = true;
 289        } else {
 290            /* This bit resets to 0 if security is supported, but 1 if
 291             * it is not. The bit is not present in v7M, but we set it
 292             * here so we can avoid having to make checks on it conditional
 293             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 294             */
 295            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 296            /*
 297             * Set NSACR to indicate "NS access permitted to everything";
 298             * this avoids having to have all the tests of it being
 299             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 300             * v8.1M the guest-visible value of NSACR in a CPU without the
 301             * Security Extension is 0xcff.
 302             */
 303            env->v7m.nsacr = 0xcff;
 304        }
 305
 306        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 307         * that it resets to 1, so QEMU always does that rather than making
 308         * it dependent on CPU model. In v8M it is RES1.
 309         */
 310        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 311        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 312        if (arm_feature(env, ARM_FEATURE_V8)) {
 313            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 314            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 315            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 316        }
 317        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 318            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 319            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 320        }
 321
 322        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 323            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 324            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 325                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 326        }
 327        /* Unlike A/R profile, M profile defines the reset LR value */
 328        env->regs[14] = 0xffffffff;
 329
 330        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 331        env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
 332
 333        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 334        vecbase = env->v7m.vecbase[env->v7m.secure];
 335        rom = rom_ptr_for_as(s->as, vecbase, 8);
 336        if (rom) {
 337            /* Address zero is covered by ROM which hasn't yet been
 338             * copied into physical memory.
 339             */
 340            initial_msp = ldl_p(rom);
 341            initial_pc = ldl_p(rom + 4);
 342        } else {
 343            /* Address zero not covered by a ROM blob, or the ROM blob
 344             * is in non-modifiable memory and this is a second reset after
 345             * it got copied into memory. In the latter case, rom_ptr
 346             * will return a NULL pointer and we should use ldl_phys instead.
 347             */
 348            initial_msp = ldl_phys(s->as, vecbase);
 349            initial_pc = ldl_phys(s->as, vecbase + 4);
 350        }
 351
 352        env->regs[13] = initial_msp & 0xFFFFFFFC;
 353        env->regs[15] = initial_pc & ~1;
 354        env->thumb = initial_pc & 1;
 355    }
 356
 357    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 358     * executing as AArch32 then check if highvecs are enabled and
 359     * adjust the PC accordingly.
 360     */
 361    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 362        env->regs[15] = 0xFFFF0000;
 363    }
 364
 365    /* M profile requires that reset clears the exclusive monitor;
 366     * A profile does not, but clearing it makes more sense than having it
 367     * set with an exclusive access on address zero.
 368     */
 369    arm_clear_exclusive(env);
 370
 371    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 372#endif
 373
 374    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 375        if (cpu->pmsav7_dregion > 0) {
 376            if (arm_feature(env, ARM_FEATURE_V8)) {
 377                memset(env->pmsav8.rbar[M_REG_NS], 0,
 378                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 379                       * cpu->pmsav7_dregion);
 380                memset(env->pmsav8.rlar[M_REG_NS], 0,
 381                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 382                       * cpu->pmsav7_dregion);
 383                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 384                    memset(env->pmsav8.rbar[M_REG_S], 0,
 385                           sizeof(*env->pmsav8.rbar[M_REG_S])
 386                           * cpu->pmsav7_dregion);
 387                    memset(env->pmsav8.rlar[M_REG_S], 0,
 388                           sizeof(*env->pmsav8.rlar[M_REG_S])
 389                           * cpu->pmsav7_dregion);
 390                }
 391            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 392                memset(env->pmsav7.drbar, 0,
 393                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 394                memset(env->pmsav7.drsr, 0,
 395                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 396                memset(env->pmsav7.dracr, 0,
 397                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 398            }
 399        }
 400        env->pmsav7.rnr[M_REG_NS] = 0;
 401        env->pmsav7.rnr[M_REG_S] = 0;
 402        env->pmsav8.mair0[M_REG_NS] = 0;
 403        env->pmsav8.mair0[M_REG_S] = 0;
 404        env->pmsav8.mair1[M_REG_NS] = 0;
 405        env->pmsav8.mair1[M_REG_S] = 0;
 406    }
 407
 408    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 409        if (cpu->sau_sregion > 0) {
 410            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 411            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 412        }
 413        env->sau.rnr = 0;
 414        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 415         * the Cortex-M33 does.
 416         */
 417        env->sau.ctrl = 0;
 418    }
 419
 420    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 421    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 422    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 423    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 424    set_float_detect_tininess(float_tininess_before_rounding,
 425                              &env->vfp.fp_status);
 426    set_float_detect_tininess(float_tininess_before_rounding,
 427                              &env->vfp.standard_fp_status);
 428    set_float_detect_tininess(float_tininess_before_rounding,
 429                              &env->vfp.fp_status_f16);
 430    set_float_detect_tininess(float_tininess_before_rounding,
 431                              &env->vfp.standard_fp_status_f16);
 432#ifndef CONFIG_USER_ONLY
 433    if (kvm_enabled()) {
 434        kvm_arm_reset_vcpu(cpu);
 435    }
 436#endif
 437
 438    hw_breakpoint_update_all(cpu);
 439    hw_watchpoint_update_all(cpu);
 440    arm_rebuild_hflags(env);
 441}
 442
 443static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 444                                     unsigned int target_el,
 445                                     unsigned int cur_el, bool secure,
 446                                     uint64_t hcr_el2)
 447{
 448    CPUARMState *env = cs->env_ptr;
 449    bool pstate_unmasked;
 450    bool unmasked = false;
 451
 452    /*
 453     * Don't take exceptions if they target a lower EL.
 454     * This check should catch any exceptions that would not be taken
 455     * but left pending.
 456     */
 457    if (cur_el > target_el) {
 458        return false;
 459    }
 460
 461    switch (excp_idx) {
 462    case EXCP_FIQ:
 463        pstate_unmasked = !(env->daif & PSTATE_F);
 464        break;
 465
 466    case EXCP_IRQ:
 467        pstate_unmasked = !(env->daif & PSTATE_I);
 468        break;
 469
 470    case EXCP_VFIQ:
 471        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 472            /* VFIQs are only taken when hypervized.  */
 473            return false;
 474        }
 475        return !(env->daif & PSTATE_F);
 476    case EXCP_VIRQ:
 477        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 478            /* VIRQs are only taken when hypervized.  */
 479            return false;
 480        }
 481        return !(env->daif & PSTATE_I);
 482    default:
 483        g_assert_not_reached();
 484    }
 485
 486    /*
 487     * Use the target EL, current execution state and SCR/HCR settings to
 488     * determine whether the corresponding CPSR bit is used to mask the
 489     * interrupt.
 490     */
 491    if ((target_el > cur_el) && (target_el != 1)) {
 492        /* Exceptions targeting a higher EL may not be maskable */
 493        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 494            /*
 495             * 64-bit masking rules are simple: exceptions to EL3
 496             * can't be masked, and exceptions to EL2 can only be
 497             * masked from Secure state. The HCR and SCR settings
 498             * don't affect the masking logic, only the interrupt routing.
 499             */
 500            if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
 501                unmasked = true;
 502            }
 503        } else {
 504            /*
 505             * The old 32-bit-only environment has a more complicated
 506             * masking setup. HCR and SCR bits not only affect interrupt
 507             * routing but also change the behaviour of masking.
 508             */
 509            bool hcr, scr;
 510
 511            switch (excp_idx) {
 512            case EXCP_FIQ:
 513                /*
 514                 * If FIQs are routed to EL3 or EL2 then there are cases where
 515                 * we override the CPSR.F in determining if the exception is
 516                 * masked or not. If neither of these are set then we fall back
 517                 * to the CPSR.F setting otherwise we further assess the state
 518                 * below.
 519                 */
 520                hcr = hcr_el2 & HCR_FMO;
 521                scr = (env->cp15.scr_el3 & SCR_FIQ);
 522
 523                /*
 524                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 525                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 526                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 527                 * when non-secure but only when FIQs are only routed to EL3.
 528                 */
 529                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 530                break;
 531            case EXCP_IRQ:
 532                /*
 533                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 534                 * we may override the CPSR.I masking when in non-secure state.
 535                 * The SCR.IRQ setting has already been taken into consideration
 536                 * when setting the target EL, so it does not have a further
 537                 * affect here.
 538                 */
 539                hcr = hcr_el2 & HCR_IMO;
 540                scr = false;
 541                break;
 542            default:
 543                g_assert_not_reached();
 544            }
 545
 546            if ((scr || hcr) && !secure) {
 547                unmasked = true;
 548            }
 549        }
 550    }
 551
 552    /*
 553     * The PSTATE bits only mask the interrupt if we have not overriden the
 554     * ability above.
 555     */
 556    return unmasked || pstate_unmasked;
 557}
 558
 559bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 560{
 561    CPUClass *cc = CPU_GET_CLASS(cs);
 562    CPUARMState *env = cs->env_ptr;
 563    uint32_t cur_el = arm_current_el(env);
 564    bool secure = arm_is_secure(env);
 565    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 566    uint32_t target_el;
 567    uint32_t excp_idx;
 568
 569    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 570
 571    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 572        excp_idx = EXCP_FIQ;
 573        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 574        if (arm_excp_unmasked(cs, excp_idx, target_el,
 575                              cur_el, secure, hcr_el2)) {
 576            goto found;
 577        }
 578    }
 579    if (interrupt_request & CPU_INTERRUPT_HARD) {
 580        excp_idx = EXCP_IRQ;
 581        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 582        if (arm_excp_unmasked(cs, excp_idx, target_el,
 583                              cur_el, secure, hcr_el2)) {
 584            goto found;
 585        }
 586    }
 587    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 588        excp_idx = EXCP_VIRQ;
 589        target_el = 1;
 590        if (arm_excp_unmasked(cs, excp_idx, target_el,
 591                              cur_el, secure, hcr_el2)) {
 592            goto found;
 593        }
 594    }
 595    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 596        excp_idx = EXCP_VFIQ;
 597        target_el = 1;
 598        if (arm_excp_unmasked(cs, excp_idx, target_el,
 599                              cur_el, secure, hcr_el2)) {
 600            goto found;
 601        }
 602    }
 603    return false;
 604
 605 found:
 606    cs->exception_index = excp_idx;
 607    env->exception.target_el = target_el;
 608    cc->tcg_ops->do_interrupt(cs);
 609    return true;
 610}
 611
 612void arm_cpu_update_virq(ARMCPU *cpu)
 613{
 614    /*
 615     * Update the interrupt level for VIRQ, which is the logical OR of
 616     * the HCR_EL2.VI bit and the input line level from the GIC.
 617     */
 618    CPUARMState *env = &cpu->env;
 619    CPUState *cs = CPU(cpu);
 620
 621    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 622        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 623
 624    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 625        if (new_state) {
 626            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 627        } else {
 628            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 629        }
 630    }
 631}
 632
 633void arm_cpu_update_vfiq(ARMCPU *cpu)
 634{
 635    /*
 636     * Update the interrupt level for VFIQ, which is the logical OR of
 637     * the HCR_EL2.VF bit and the input line level from the GIC.
 638     */
 639    CPUARMState *env = &cpu->env;
 640    CPUState *cs = CPU(cpu);
 641
 642    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 643        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 644
 645    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 646        if (new_state) {
 647            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 648        } else {
 649            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 650        }
 651    }
 652}
 653
 654#ifndef CONFIG_USER_ONLY
 655static void arm_cpu_set_irq(void *opaque, int irq, int level)
 656{
 657    ARMCPU *cpu = opaque;
 658    CPUARMState *env = &cpu->env;
 659    CPUState *cs = CPU(cpu);
 660    static const int mask[] = {
 661        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 662        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 663        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 664        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 665    };
 666
 667    if (level) {
 668        env->irq_line_state |= mask[irq];
 669    } else {
 670        env->irq_line_state &= ~mask[irq];
 671    }
 672
 673    switch (irq) {
 674    case ARM_CPU_VIRQ:
 675        assert(arm_feature(env, ARM_FEATURE_EL2));
 676        arm_cpu_update_virq(cpu);
 677        break;
 678    case ARM_CPU_VFIQ:
 679        assert(arm_feature(env, ARM_FEATURE_EL2));
 680        arm_cpu_update_vfiq(cpu);
 681        break;
 682    case ARM_CPU_IRQ:
 683    case ARM_CPU_FIQ:
 684        if (level) {
 685            cpu_interrupt(cs, mask[irq]);
 686        } else {
 687            cpu_reset_interrupt(cs, mask[irq]);
 688        }
 689        break;
 690    default:
 691        g_assert_not_reached();
 692    }
 693}
 694
 695static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 696{
 697#ifdef CONFIG_KVM
 698    ARMCPU *cpu = opaque;
 699    CPUARMState *env = &cpu->env;
 700    CPUState *cs = CPU(cpu);
 701    uint32_t linestate_bit;
 702    int irq_id;
 703
 704    switch (irq) {
 705    case ARM_CPU_IRQ:
 706        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 707        linestate_bit = CPU_INTERRUPT_HARD;
 708        break;
 709    case ARM_CPU_FIQ:
 710        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 711        linestate_bit = CPU_INTERRUPT_FIQ;
 712        break;
 713    default:
 714        g_assert_not_reached();
 715    }
 716
 717    if (level) {
 718        env->irq_line_state |= linestate_bit;
 719    } else {
 720        env->irq_line_state &= ~linestate_bit;
 721    }
 722    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 723#endif
 724}
 725
 726static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 727{
 728    ARMCPU *cpu = ARM_CPU(cs);
 729    CPUARMState *env = &cpu->env;
 730
 731    cpu_synchronize_state(cs);
 732    return arm_cpu_data_is_big_endian(env);
 733}
 734
 735#endif
 736
 737static int
 738print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 739{
 740  return print_insn_arm(pc | 1, info);
 741}
 742
 743static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 744{
 745    ARMCPU *ac = ARM_CPU(cpu);
 746    CPUARMState *env = &ac->env;
 747    bool sctlr_b;
 748
 749    if (is_a64(env)) {
 750        /* We might not be compiled with the A64 disassembler
 751         * because it needs a C++ compiler. Leave print_insn
 752         * unset in this case to use the caller default behaviour.
 753         */
 754#if defined(CONFIG_ARM_A64_DIS)
 755        info->print_insn = print_insn_arm_a64;
 756#endif
 757        info->cap_arch = CS_ARCH_ARM64;
 758        info->cap_insn_unit = 4;
 759        info->cap_insn_split = 4;
 760    } else {
 761        int cap_mode;
 762        if (env->thumb) {
 763            info->print_insn = print_insn_thumb1;
 764            info->cap_insn_unit = 2;
 765            info->cap_insn_split = 4;
 766            cap_mode = CS_MODE_THUMB;
 767        } else {
 768            info->print_insn = print_insn_arm;
 769            info->cap_insn_unit = 4;
 770            info->cap_insn_split = 4;
 771            cap_mode = CS_MODE_ARM;
 772        }
 773        if (arm_feature(env, ARM_FEATURE_V8)) {
 774            cap_mode |= CS_MODE_V8;
 775        }
 776        if (arm_feature(env, ARM_FEATURE_M)) {
 777            cap_mode |= CS_MODE_MCLASS;
 778        }
 779        info->cap_arch = CS_ARCH_ARM;
 780        info->cap_mode = cap_mode;
 781    }
 782
 783    sctlr_b = arm_sctlr_b(env);
 784    if (bswap_code(sctlr_b)) {
 785#ifdef TARGET_WORDS_BIGENDIAN
 786        info->endian = BFD_ENDIAN_LITTLE;
 787#else
 788        info->endian = BFD_ENDIAN_BIG;
 789#endif
 790    }
 791    info->flags &= ~INSN_ARM_BE32;
 792#ifndef CONFIG_USER_ONLY
 793    if (sctlr_b) {
 794        info->flags |= INSN_ARM_BE32;
 795    }
 796#endif
 797}
 798
 799#ifdef TARGET_AARCH64
 800
 801static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 802{
 803    ARMCPU *cpu = ARM_CPU(cs);
 804    CPUARMState *env = &cpu->env;
 805    uint32_t psr = pstate_read(env);
 806    int i;
 807    int el = arm_current_el(env);
 808    const char *ns_status;
 809
 810    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 811    for (i = 0; i < 32; i++) {
 812        if (i == 31) {
 813            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 814        } else {
 815            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 816                         (i + 2) % 3 ? " " : "\n");
 817        }
 818    }
 819
 820    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 821        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 822    } else {
 823        ns_status = "";
 824    }
 825    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 826                 psr,
 827                 psr & PSTATE_N ? 'N' : '-',
 828                 psr & PSTATE_Z ? 'Z' : '-',
 829                 psr & PSTATE_C ? 'C' : '-',
 830                 psr & PSTATE_V ? 'V' : '-',
 831                 ns_status,
 832                 el,
 833                 psr & PSTATE_SP ? 'h' : 't');
 834
 835    if (cpu_isar_feature(aa64_bti, cpu)) {
 836        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 837    }
 838    if (!(flags & CPU_DUMP_FPU)) {
 839        qemu_fprintf(f, "\n");
 840        return;
 841    }
 842    if (fp_exception_el(env, el) != 0) {
 843        qemu_fprintf(f, "    FPU disabled\n");
 844        return;
 845    }
 846    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 847                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 848
 849    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
 850        int j, zcr_len = sve_zcr_len_for_el(env, el);
 851
 852        for (i = 0; i <= FFR_PRED_NUM; i++) {
 853            bool eol;
 854            if (i == FFR_PRED_NUM) {
 855                qemu_fprintf(f, "FFR=");
 856                /* It's last, so end the line.  */
 857                eol = true;
 858            } else {
 859                qemu_fprintf(f, "P%02d=", i);
 860                switch (zcr_len) {
 861                case 0:
 862                    eol = i % 8 == 7;
 863                    break;
 864                case 1:
 865                    eol = i % 6 == 5;
 866                    break;
 867                case 2:
 868                case 3:
 869                    eol = i % 3 == 2;
 870                    break;
 871                default:
 872                    /* More than one quadword per predicate.  */
 873                    eol = true;
 874                    break;
 875                }
 876            }
 877            for (j = zcr_len / 4; j >= 0; j--) {
 878                int digits;
 879                if (j * 4 + 4 <= zcr_len + 1) {
 880                    digits = 16;
 881                } else {
 882                    digits = (zcr_len % 4 + 1) * 4;
 883                }
 884                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 885                             env->vfp.pregs[i].p[j],
 886                             j ? ":" : eol ? "\n" : " ");
 887            }
 888        }
 889
 890        for (i = 0; i < 32; i++) {
 891            if (zcr_len == 0) {
 892                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 893                             i, env->vfp.zregs[i].d[1],
 894                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 895            } else if (zcr_len == 1) {
 896                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 897                             ":%016" PRIx64 ":%016" PRIx64 "\n",
 898                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 899                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 900            } else {
 901                for (j = zcr_len; j >= 0; j--) {
 902                    bool odd = (zcr_len - j) % 2 != 0;
 903                    if (j == zcr_len) {
 904                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
 905                    } else if (!odd) {
 906                        if (j > 0) {
 907                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
 908                        } else {
 909                            qemu_fprintf(f, "     [%x]=", j);
 910                        }
 911                    }
 912                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
 913                                 env->vfp.zregs[i].d[j * 2 + 1],
 914                                 env->vfp.zregs[i].d[j * 2],
 915                                 odd || j == 0 ? "\n" : ":");
 916                }
 917            }
 918        }
 919    } else {
 920        for (i = 0; i < 32; i++) {
 921            uint64_t *q = aa64_vfp_qreg(env, i);
 922            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 923                         i, q[1], q[0], (i & 1 ? "\n" : " "));
 924        }
 925    }
 926}
 927
 928#else
 929
 930static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 931{
 932    g_assert_not_reached();
 933}
 934
 935#endif
 936
 937static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 938{
 939    ARMCPU *cpu = ARM_CPU(cs);
 940    CPUARMState *env = &cpu->env;
 941    int i;
 942
 943    if (is_a64(env)) {
 944        aarch64_cpu_dump_state(cs, f, flags);
 945        return;
 946    }
 947
 948    for (i = 0; i < 16; i++) {
 949        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
 950        if ((i % 4) == 3) {
 951            qemu_fprintf(f, "\n");
 952        } else {
 953            qemu_fprintf(f, " ");
 954        }
 955    }
 956
 957    if (arm_feature(env, ARM_FEATURE_M)) {
 958        uint32_t xpsr = xpsr_read(env);
 959        const char *mode;
 960        const char *ns_status = "";
 961
 962        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 963            ns_status = env->v7m.secure ? "S " : "NS ";
 964        }
 965
 966        if (xpsr & XPSR_EXCP) {
 967            mode = "handler";
 968        } else {
 969            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
 970                mode = "unpriv-thread";
 971            } else {
 972                mode = "priv-thread";
 973            }
 974        }
 975
 976        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
 977                     xpsr,
 978                     xpsr & XPSR_N ? 'N' : '-',
 979                     xpsr & XPSR_Z ? 'Z' : '-',
 980                     xpsr & XPSR_C ? 'C' : '-',
 981                     xpsr & XPSR_V ? 'V' : '-',
 982                     xpsr & XPSR_T ? 'T' : 'A',
 983                     ns_status,
 984                     mode);
 985    } else {
 986        uint32_t psr = cpsr_read(env);
 987        const char *ns_status = "";
 988
 989        if (arm_feature(env, ARM_FEATURE_EL3) &&
 990            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
 991            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 992        }
 993
 994        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
 995                     psr,
 996                     psr & CPSR_N ? 'N' : '-',
 997                     psr & CPSR_Z ? 'Z' : '-',
 998                     psr & CPSR_C ? 'C' : '-',
 999                     psr & CPSR_V ? 'V' : '-',
1000                     psr & CPSR_T ? 'T' : 'A',
1001                     ns_status,
1002                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1003    }
1004
1005    if (flags & CPU_DUMP_FPU) {
1006        int numvfpregs = 0;
1007        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1008            numvfpregs = 32;
1009        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1010            numvfpregs = 16;
1011        }
1012        for (i = 0; i < numvfpregs; i++) {
1013            uint64_t v = *aa32_vfp_dreg(env, i);
1014            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1015                         i * 2, (uint32_t)v,
1016                         i * 2 + 1, (uint32_t)(v >> 32),
1017                         i, v);
1018        }
1019        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1020    }
1021}
1022
1023uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1024{
1025    uint32_t Aff1 = idx / clustersz;
1026    uint32_t Aff0 = idx % clustersz;
1027    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1028}
1029
1030static void cpreg_hashtable_data_destroy(gpointer data)
1031{
1032    /*
1033     * Destroy function for cpu->cp_regs hashtable data entries.
1034     * We must free the name string because it was g_strdup()ed in
1035     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1036     * from r->name because we know we definitely allocated it.
1037     */
1038    ARMCPRegInfo *r = data;
1039
1040    g_free((void *)r->name);
1041    g_free(r);
1042}
1043
1044static void arm_cpu_initfn(Object *obj)
1045{
1046    ARMCPU *cpu = ARM_CPU(obj);
1047
1048    cpu_set_cpustate_pointers(cpu);
1049    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1050                                         g_free, cpreg_hashtable_data_destroy);
1051
1052    QLIST_INIT(&cpu->pre_el_change_hooks);
1053    QLIST_INIT(&cpu->el_change_hooks);
1054
1055#ifdef CONFIG_USER_ONLY
1056# ifdef TARGET_AARCH64
1057    /*
1058     * The linux kernel defaults to 512-bit vectors, when sve is supported.
1059     * See documentation for /proc/sys/abi/sve_default_vector_length, and
1060     * our corresponding sve-default-vector-length cpu property.
1061     */
1062    cpu->sve_default_vq = 4;
1063# endif
1064#else
1065    /* Our inbound IRQ and FIQ lines */
1066    if (kvm_enabled()) {
1067        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1068         * the same interface as non-KVM CPUs.
1069         */
1070        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1071    } else {
1072        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1073    }
1074
1075    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1076                       ARRAY_SIZE(cpu->gt_timer_outputs));
1077
1078    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1079                             "gicv3-maintenance-interrupt", 1);
1080    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1081                             "pmu-interrupt", 1);
1082#endif
1083
1084    /* DTB consumers generally don't in fact care what the 'compatible'
1085     * string is, so always provide some string and trust that a hypothetical
1086     * picky DTB consumer will also provide a helpful error message.
1087     */
1088    cpu->dtb_compatible = "qemu,unknown";
1089    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1090    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1091
1092    if (tcg_enabled()) {
1093        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1094    }
1095}
1096
1097static Property arm_cpu_gt_cntfrq_property =
1098            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1099                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1100
1101static Property arm_cpu_reset_cbar_property =
1102            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1103
1104static Property arm_cpu_reset_hivecs_property =
1105            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1106
1107static Property arm_cpu_rvbar_property =
1108            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1109
1110#ifndef CONFIG_USER_ONLY
1111static Property arm_cpu_has_el2_property =
1112            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1113
1114static Property arm_cpu_has_el3_property =
1115            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1116#endif
1117
1118static Property arm_cpu_cfgend_property =
1119            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1120
1121static Property arm_cpu_has_vfp_property =
1122            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1123
1124static Property arm_cpu_has_neon_property =
1125            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1126
1127static Property arm_cpu_has_dsp_property =
1128            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1129
1130static Property arm_cpu_has_mpu_property =
1131            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1132
1133/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1134 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1135 * the right value for that particular CPU type, and we don't want
1136 * to override that with an incorrect constant value.
1137 */
1138static Property arm_cpu_pmsav7_dregion_property =
1139            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1140                                           pmsav7_dregion,
1141                                           qdev_prop_uint32, uint32_t);
1142
1143static bool arm_get_pmu(Object *obj, Error **errp)
1144{
1145    ARMCPU *cpu = ARM_CPU(obj);
1146
1147    return cpu->has_pmu;
1148}
1149
1150static void arm_set_pmu(Object *obj, bool value, Error **errp)
1151{
1152    ARMCPU *cpu = ARM_CPU(obj);
1153
1154    if (value) {
1155        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1156            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1157            return;
1158        }
1159        set_feature(&cpu->env, ARM_FEATURE_PMU);
1160    } else {
1161        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1162    }
1163    cpu->has_pmu = value;
1164}
1165
1166unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1167{
1168    /*
1169     * The exact approach to calculating guest ticks is:
1170     *
1171     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1172     *              NANOSECONDS_PER_SECOND);
1173     *
1174     * We don't do that. Rather we intentionally use integer division
1175     * truncation below and in the caller for the conversion of host monotonic
1176     * time to guest ticks to provide the exact inverse for the semantics of
1177     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1178     * it loses precision when representing frequencies where
1179     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1180     * provide an exact inverse leads to scheduling timers with negative
1181     * periods, which in turn leads to sticky behaviour in the guest.
1182     *
1183     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1184     * cannot become zero.
1185     */
1186    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1187      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1188}
1189
1190void arm_cpu_post_init(Object *obj)
1191{
1192    ARMCPU *cpu = ARM_CPU(obj);
1193
1194    /* M profile implies PMSA. We have to do this here rather than
1195     * in realize with the other feature-implication checks because
1196     * we look at the PMSA bit to see if we should add some properties.
1197     */
1198    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1199        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1200    }
1201
1202    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1203        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1204        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1205    }
1206
1207    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1208        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1209    }
1210
1211    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1212        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1213    }
1214
1215#ifndef CONFIG_USER_ONLY
1216    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1217        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1218         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1219         */
1220        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1221
1222        object_property_add_link(obj, "secure-memory",
1223                                 TYPE_MEMORY_REGION,
1224                                 (Object **)&cpu->secure_memory,
1225                                 qdev_prop_allow_set_link_before_realize,
1226                                 OBJ_PROP_LINK_STRONG);
1227    }
1228
1229    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1230        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1231    }
1232#endif
1233
1234    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1235        cpu->has_pmu = true;
1236        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1237    }
1238
1239    /*
1240     * Allow user to turn off VFP and Neon support, but only for TCG --
1241     * KVM does not currently allow us to lie to the guest about its
1242     * ID/feature registers, so the guest always sees what the host has.
1243     */
1244    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1245        ? cpu_isar_feature(aa64_fp_simd, cpu)
1246        : cpu_isar_feature(aa32_vfp, cpu)) {
1247        cpu->has_vfp = true;
1248        if (!kvm_enabled()) {
1249            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1250        }
1251    }
1252
1253    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1254        cpu->has_neon = true;
1255        if (!kvm_enabled()) {
1256            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1257        }
1258    }
1259
1260    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1261        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1262        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1263    }
1264
1265    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1266        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1267        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1268            qdev_property_add_static(DEVICE(obj),
1269                                     &arm_cpu_pmsav7_dregion_property);
1270        }
1271    }
1272
1273    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1274        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1275                                 qdev_prop_allow_set_link_before_realize,
1276                                 OBJ_PROP_LINK_STRONG);
1277        /*
1278         * M profile: initial value of the Secure VTOR. We can't just use
1279         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1280         * the property to be set after realize.
1281         */
1282        object_property_add_uint32_ptr(obj, "init-svtor",
1283                                       &cpu->init_svtor,
1284                                       OBJ_PROP_FLAG_READWRITE);
1285    }
1286    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1287        /*
1288         * Initial value of the NS VTOR (for cores without the Security
1289         * extension, this is the only VTOR)
1290         */
1291        object_property_add_uint32_ptr(obj, "init-nsvtor",
1292                                       &cpu->init_nsvtor,
1293                                       OBJ_PROP_FLAG_READWRITE);
1294    }
1295
1296    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1297
1298    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1299        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1300    }
1301
1302    if (kvm_enabled()) {
1303        kvm_arm_add_vcpu_properties(obj);
1304    }
1305
1306#ifndef CONFIG_USER_ONLY
1307    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1308        cpu_isar_feature(aa64_mte, cpu)) {
1309        object_property_add_link(obj, "tag-memory",
1310                                 TYPE_MEMORY_REGION,
1311                                 (Object **)&cpu->tag_memory,
1312                                 qdev_prop_allow_set_link_before_realize,
1313                                 OBJ_PROP_LINK_STRONG);
1314
1315        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1316            object_property_add_link(obj, "secure-tag-memory",
1317                                     TYPE_MEMORY_REGION,
1318                                     (Object **)&cpu->secure_tag_memory,
1319                                     qdev_prop_allow_set_link_before_realize,
1320                                     OBJ_PROP_LINK_STRONG);
1321        }
1322    }
1323#endif
1324}
1325
1326static void arm_cpu_finalizefn(Object *obj)
1327{
1328    ARMCPU *cpu = ARM_CPU(obj);
1329    ARMELChangeHook *hook, *next;
1330
1331    g_hash_table_destroy(cpu->cp_regs);
1332
1333    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1334        QLIST_REMOVE(hook, node);
1335        g_free(hook);
1336    }
1337    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1338        QLIST_REMOVE(hook, node);
1339        g_free(hook);
1340    }
1341#ifndef CONFIG_USER_ONLY
1342    if (cpu->pmu_timer) {
1343        timer_free(cpu->pmu_timer);
1344    }
1345#endif
1346}
1347
1348void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1349{
1350    Error *local_err = NULL;
1351
1352    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1353        arm_cpu_sve_finalize(cpu, &local_err);
1354        if (local_err != NULL) {
1355            error_propagate(errp, local_err);
1356            return;
1357        }
1358
1359        /*
1360         * KVM does not support modifications to this feature.
1361         * We have not registered the cpu properties when KVM
1362         * is in use, so the user will not be able to set them.
1363         */
1364        if (!kvm_enabled()) {
1365            arm_cpu_pauth_finalize(cpu, &local_err);
1366            if (local_err != NULL) {
1367                error_propagate(errp, local_err);
1368                return;
1369            }
1370        }
1371    }
1372
1373    if (kvm_enabled()) {
1374        kvm_arm_steal_time_finalize(cpu, &local_err);
1375        if (local_err != NULL) {
1376            error_propagate(errp, local_err);
1377            return;
1378        }
1379    }
1380}
1381
1382static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1383{
1384    CPUState *cs = CPU(dev);
1385    ARMCPU *cpu = ARM_CPU(dev);
1386    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1387    CPUARMState *env = &cpu->env;
1388    int pagebits;
1389    Error *local_err = NULL;
1390    bool no_aa32 = false;
1391
1392    /* If we needed to query the host kernel for the CPU features
1393     * then it's possible that might have failed in the initfn, but
1394     * this is the first point where we can report it.
1395     */
1396    if (cpu->host_cpu_probe_failed) {
1397        if (!kvm_enabled()) {
1398            error_setg(errp, "The 'host' CPU type can only be used with KVM");
1399        } else {
1400            error_setg(errp, "Failed to retrieve host CPU features");
1401        }
1402        return;
1403    }
1404
1405#ifndef CONFIG_USER_ONLY
1406    /* The NVIC and M-profile CPU are two halves of a single piece of
1407     * hardware; trying to use one without the other is a command line
1408     * error and will result in segfaults if not caught here.
1409     */
1410    if (arm_feature(env, ARM_FEATURE_M)) {
1411        if (!env->nvic) {
1412            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1413            return;
1414        }
1415    } else {
1416        if (env->nvic) {
1417            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1418            return;
1419        }
1420    }
1421
1422    {
1423        uint64_t scale;
1424
1425        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1426            if (!cpu->gt_cntfrq_hz) {
1427                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1428                           cpu->gt_cntfrq_hz);
1429                return;
1430            }
1431            scale = gt_cntfrq_period_ns(cpu);
1432        } else {
1433            scale = GTIMER_SCALE;
1434        }
1435
1436        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1437                                               arm_gt_ptimer_cb, cpu);
1438        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1439                                               arm_gt_vtimer_cb, cpu);
1440        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1441                                              arm_gt_htimer_cb, cpu);
1442        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1443                                              arm_gt_stimer_cb, cpu);
1444        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1445                                                  arm_gt_hvtimer_cb, cpu);
1446    }
1447#endif
1448
1449    cpu_exec_realizefn(cs, &local_err);
1450    if (local_err != NULL) {
1451        error_propagate(errp, local_err);
1452        return;
1453    }
1454
1455    arm_cpu_finalize_features(cpu, &local_err);
1456    if (local_err != NULL) {
1457        error_propagate(errp, local_err);
1458        return;
1459    }
1460
1461    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1462        cpu->has_vfp != cpu->has_neon) {
1463        /*
1464         * This is an architectural requirement for AArch64; AArch32 is
1465         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1466         */
1467        error_setg(errp,
1468                   "AArch64 CPUs must have both VFP and Neon or neither");
1469        return;
1470    }
1471
1472    if (!cpu->has_vfp) {
1473        uint64_t t;
1474        uint32_t u;
1475
1476        t = cpu->isar.id_aa64isar1;
1477        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1478        cpu->isar.id_aa64isar1 = t;
1479
1480        t = cpu->isar.id_aa64pfr0;
1481        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1482        cpu->isar.id_aa64pfr0 = t;
1483
1484        u = cpu->isar.id_isar6;
1485        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1486        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1487        cpu->isar.id_isar6 = u;
1488
1489        u = cpu->isar.mvfr0;
1490        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1491        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1492        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1493        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1494        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1495        if (!arm_feature(env, ARM_FEATURE_M)) {
1496            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1497            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1498        }
1499        cpu->isar.mvfr0 = u;
1500
1501        u = cpu->isar.mvfr1;
1502        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1503        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1504        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1505        if (arm_feature(env, ARM_FEATURE_M)) {
1506            u = FIELD_DP32(u, MVFR1, FP16, 0);
1507        }
1508        cpu->isar.mvfr1 = u;
1509
1510        u = cpu->isar.mvfr2;
1511        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1512        cpu->isar.mvfr2 = u;
1513    }
1514
1515    if (!cpu->has_neon) {
1516        uint64_t t;
1517        uint32_t u;
1518
1519        unset_feature(env, ARM_FEATURE_NEON);
1520
1521        t = cpu->isar.id_aa64isar0;
1522        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1523        cpu->isar.id_aa64isar0 = t;
1524
1525        t = cpu->isar.id_aa64isar1;
1526        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1527        t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1528        t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1529        cpu->isar.id_aa64isar1 = t;
1530
1531        t = cpu->isar.id_aa64pfr0;
1532        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1533        cpu->isar.id_aa64pfr0 = t;
1534
1535        u = cpu->isar.id_isar5;
1536        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1537        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1538        cpu->isar.id_isar5 = u;
1539
1540        u = cpu->isar.id_isar6;
1541        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1542        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1543        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1544        u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1545        cpu->isar.id_isar6 = u;
1546
1547        if (!arm_feature(env, ARM_FEATURE_M)) {
1548            u = cpu->isar.mvfr1;
1549            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1550            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1551            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1552            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1553            cpu->isar.mvfr1 = u;
1554
1555            u = cpu->isar.mvfr2;
1556            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1557            cpu->isar.mvfr2 = u;
1558        }
1559    }
1560
1561    if (!cpu->has_neon && !cpu->has_vfp) {
1562        uint64_t t;
1563        uint32_t u;
1564
1565        t = cpu->isar.id_aa64isar0;
1566        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1567        cpu->isar.id_aa64isar0 = t;
1568
1569        t = cpu->isar.id_aa64isar1;
1570        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1571        cpu->isar.id_aa64isar1 = t;
1572
1573        u = cpu->isar.mvfr0;
1574        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1575        cpu->isar.mvfr0 = u;
1576
1577        /* Despite the name, this field covers both VFP and Neon */
1578        u = cpu->isar.mvfr1;
1579        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1580        cpu->isar.mvfr1 = u;
1581    }
1582
1583    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1584        uint32_t u;
1585
1586        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1587
1588        u = cpu->isar.id_isar1;
1589        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1590        cpu->isar.id_isar1 = u;
1591
1592        u = cpu->isar.id_isar2;
1593        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1594        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1595        cpu->isar.id_isar2 = u;
1596
1597        u = cpu->isar.id_isar3;
1598        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1599        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1600        cpu->isar.id_isar3 = u;
1601    }
1602
1603    /* Some features automatically imply others: */
1604    if (arm_feature(env, ARM_FEATURE_V8)) {
1605        if (arm_feature(env, ARM_FEATURE_M)) {
1606            set_feature(env, ARM_FEATURE_V7);
1607        } else {
1608            set_feature(env, ARM_FEATURE_V7VE);
1609        }
1610    }
1611
1612    /*
1613     * There exist AArch64 cpus without AArch32 support.  When KVM
1614     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1615     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1616     * As a general principle, we also do not make ID register
1617     * consistency checks anywhere unless using TCG, because only
1618     * for TCG would a consistency-check failure be a QEMU bug.
1619     */
1620    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1621        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1622    }
1623
1624    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1625        /* v7 Virtualization Extensions. In real hardware this implies
1626         * EL2 and also the presence of the Security Extensions.
1627         * For QEMU, for backwards-compatibility we implement some
1628         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1629         * include the various other features that V7VE implies.
1630         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1631         * Security Extensions is ARM_FEATURE_EL3.
1632         */
1633        assert(!tcg_enabled() || no_aa32 ||
1634               cpu_isar_feature(aa32_arm_div, cpu));
1635        set_feature(env, ARM_FEATURE_LPAE);
1636        set_feature(env, ARM_FEATURE_V7);
1637    }
1638    if (arm_feature(env, ARM_FEATURE_V7)) {
1639        set_feature(env, ARM_FEATURE_VAPA);
1640        set_feature(env, ARM_FEATURE_THUMB2);
1641        set_feature(env, ARM_FEATURE_MPIDR);
1642        if (!arm_feature(env, ARM_FEATURE_M)) {
1643            set_feature(env, ARM_FEATURE_V6K);
1644        } else {
1645            set_feature(env, ARM_FEATURE_V6);
1646        }
1647
1648        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1649         * non-EL3 configs. This is needed by some legacy boards.
1650         */
1651        set_feature(env, ARM_FEATURE_VBAR);
1652    }
1653    if (arm_feature(env, ARM_FEATURE_V6K)) {
1654        set_feature(env, ARM_FEATURE_V6);
1655        set_feature(env, ARM_FEATURE_MVFR);
1656    }
1657    if (arm_feature(env, ARM_FEATURE_V6)) {
1658        set_feature(env, ARM_FEATURE_V5);
1659        if (!arm_feature(env, ARM_FEATURE_M)) {
1660            assert(!tcg_enabled() || no_aa32 ||
1661                   cpu_isar_feature(aa32_jazelle, cpu));
1662            set_feature(env, ARM_FEATURE_AUXCR);
1663        }
1664    }
1665    if (arm_feature(env, ARM_FEATURE_V5)) {
1666        set_feature(env, ARM_FEATURE_V4T);
1667    }
1668    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1669        set_feature(env, ARM_FEATURE_V7MP);
1670    }
1671    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1672        set_feature(env, ARM_FEATURE_CBAR);
1673    }
1674    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1675        !arm_feature(env, ARM_FEATURE_M)) {
1676        set_feature(env, ARM_FEATURE_THUMB_DSP);
1677    }
1678
1679    /*
1680     * We rely on no XScale CPU having VFP so we can use the same bits in the
1681     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1682     */
1683    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1684           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1685           !arm_feature(env, ARM_FEATURE_XSCALE));
1686
1687    if (arm_feature(env, ARM_FEATURE_V7) &&
1688        !arm_feature(env, ARM_FEATURE_M) &&
1689        !arm_feature(env, ARM_FEATURE_PMSA)) {
1690        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1691         * can use 4K pages.
1692         */
1693        pagebits = 12;
1694    } else {
1695        /* For CPUs which might have tiny 1K pages, or which have an
1696         * MPU and might have small region sizes, stick with 1K pages.
1697         */
1698        pagebits = 10;
1699    }
1700    if (!set_preferred_target_page_bits(pagebits)) {
1701        /* This can only ever happen for hotplugging a CPU, or if
1702         * the board code incorrectly creates a CPU which it has
1703         * promised via minimum_page_size that it will not.
1704         */
1705        error_setg(errp, "This CPU requires a smaller page size than the "
1706                   "system is using");
1707        return;
1708    }
1709
1710    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1711     * We don't support setting cluster ID ([16..23]) (known as Aff2
1712     * in later ARM ARM versions), or any of the higher affinity level fields,
1713     * so these bits always RAZ.
1714     */
1715    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1716        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1717                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1718    }
1719
1720    if (cpu->reset_hivecs) {
1721            cpu->reset_sctlr |= (1 << 13);
1722    }
1723
1724    if (cpu->cfgend) {
1725        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1726            cpu->reset_sctlr |= SCTLR_EE;
1727        } else {
1728            cpu->reset_sctlr |= SCTLR_B;
1729        }
1730    }
1731
1732    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1733        /* If the has_el3 CPU property is disabled then we need to disable the
1734         * feature.
1735         */
1736        unset_feature(env, ARM_FEATURE_EL3);
1737
1738        /* Disable the security extension feature bits in the processor feature
1739         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1740         */
1741        cpu->isar.id_pfr1 &= ~0xf0;
1742        cpu->isar.id_aa64pfr0 &= ~0xf000;
1743    }
1744
1745    if (!cpu->has_el2) {
1746        unset_feature(env, ARM_FEATURE_EL2);
1747    }
1748
1749    if (!cpu->has_pmu) {
1750        unset_feature(env, ARM_FEATURE_PMU);
1751    }
1752    if (arm_feature(env, ARM_FEATURE_PMU)) {
1753        pmu_init(cpu);
1754
1755        if (!kvm_enabled()) {
1756            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1757            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1758        }
1759
1760#ifndef CONFIG_USER_ONLY
1761        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1762                cpu);
1763#endif
1764    } else {
1765        cpu->isar.id_aa64dfr0 =
1766            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1767        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1768        cpu->pmceid0 = 0;
1769        cpu->pmceid1 = 0;
1770    }
1771
1772    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1773        /* Disable the hypervisor feature bits in the processor feature
1774         * registers if we don't have EL2. These are id_pfr1[15:12] and
1775         * id_aa64pfr0_el1[11:8].
1776         */
1777        cpu->isar.id_aa64pfr0 &= ~0xf00;
1778        cpu->isar.id_pfr1 &= ~0xf000;
1779    }
1780
1781#ifndef CONFIG_USER_ONLY
1782    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1783        /*
1784         * Disable the MTE feature bits if we do not have tag-memory
1785         * provided by the machine.
1786         */
1787        cpu->isar.id_aa64pfr1 =
1788            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1789    }
1790#endif
1791
1792    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1793     * to false or by setting pmsav7-dregion to 0.
1794     */
1795    if (!cpu->has_mpu) {
1796        cpu->pmsav7_dregion = 0;
1797    }
1798    if (cpu->pmsav7_dregion == 0) {
1799        cpu->has_mpu = false;
1800    }
1801
1802    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1803        arm_feature(env, ARM_FEATURE_V7)) {
1804        uint32_t nr = cpu->pmsav7_dregion;
1805
1806        if (nr > 0xff) {
1807            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1808            return;
1809        }
1810
1811        if (nr) {
1812            if (arm_feature(env, ARM_FEATURE_V8)) {
1813                /* PMSAv8 */
1814                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1815                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1816                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1817                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1818                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1819                }
1820            } else {
1821                env->pmsav7.drbar = g_new0(uint32_t, nr);
1822                env->pmsav7.drsr = g_new0(uint32_t, nr);
1823                env->pmsav7.dracr = g_new0(uint32_t, nr);
1824            }
1825        }
1826    }
1827
1828    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1829        uint32_t nr = cpu->sau_sregion;
1830
1831        if (nr > 0xff) {
1832            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1833            return;
1834        }
1835
1836        if (nr) {
1837            env->sau.rbar = g_new0(uint32_t, nr);
1838            env->sau.rlar = g_new0(uint32_t, nr);
1839        }
1840    }
1841
1842    if (arm_feature(env, ARM_FEATURE_EL3)) {
1843        set_feature(env, ARM_FEATURE_VBAR);
1844    }
1845
1846    register_cp_regs_for_features(cpu);
1847    arm_cpu_register_gdb_regs_for_features(cpu);
1848
1849    init_cpreg_list(cpu);
1850
1851#ifndef CONFIG_USER_ONLY
1852    MachineState *ms = MACHINE(qdev_get_machine());
1853    unsigned int smp_cpus = ms->smp.cpus;
1854    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1855
1856    /*
1857     * We must set cs->num_ases to the final value before
1858     * the first call to cpu_address_space_init.
1859     */
1860    if (cpu->tag_memory != NULL) {
1861        cs->num_ases = 3 + has_secure;
1862    } else {
1863        cs->num_ases = 1 + has_secure;
1864    }
1865
1866    if (has_secure) {
1867        if (!cpu->secure_memory) {
1868            cpu->secure_memory = cs->memory;
1869        }
1870        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1871                               cpu->secure_memory);
1872    }
1873
1874    if (cpu->tag_memory != NULL) {
1875        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1876                               cpu->tag_memory);
1877        if (has_secure) {
1878            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1879                                   cpu->secure_tag_memory);
1880        }
1881    }
1882
1883    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1884
1885    /* No core_count specified, default to smp_cpus. */
1886    if (cpu->core_count == -1) {
1887        cpu->core_count = smp_cpus;
1888    }
1889#endif
1890
1891    if (tcg_enabled()) {
1892        int dcz_blocklen = 4 << cpu->dcz_blocksize;
1893
1894        /*
1895         * We only support DCZ blocklen that fits on one page.
1896         *
1897         * Architectually this is always true.  However TARGET_PAGE_SIZE
1898         * is variable and, for compatibility with -machine virt-2.7,
1899         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1900         * But even then, while the largest architectural DCZ blocklen
1901         * is 2KiB, no cpu actually uses such a large blocklen.
1902         */
1903        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1904
1905        /*
1906         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1907         * both nibbles of each byte storing tag data may be written at once.
1908         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1909         */
1910        if (cpu_isar_feature(aa64_mte, cpu)) {
1911            assert(dcz_blocklen >= 2 * TAG_GRANULE);
1912        }
1913    }
1914
1915    qemu_init_vcpu(cs);
1916    cpu_reset(cs);
1917
1918    acc->parent_realize(dev, errp);
1919}
1920
1921static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1922{
1923    ObjectClass *oc;
1924    char *typename;
1925    char **cpuname;
1926    const char *cpunamestr;
1927
1928    cpuname = g_strsplit(cpu_model, ",", 1);
1929    cpunamestr = cpuname[0];
1930#ifdef CONFIG_USER_ONLY
1931    /* For backwards compatibility usermode emulation allows "-cpu any",
1932     * which has the same semantics as "-cpu max".
1933     */
1934    if (!strcmp(cpunamestr, "any")) {
1935        cpunamestr = "max";
1936    }
1937#endif
1938    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1939    oc = object_class_by_name(typename);
1940    g_strfreev(cpuname);
1941    g_free(typename);
1942    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1943        object_class_is_abstract(oc)) {
1944        return NULL;
1945    }
1946    return oc;
1947}
1948
1949static Property arm_cpu_properties[] = {
1950    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1951    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1952    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1953                        mp_affinity, ARM64_AFFINITY_INVALID),
1954    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1955    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1956    DEFINE_PROP_END_OF_LIST()
1957};
1958
1959static gchar *arm_gdb_arch_name(CPUState *cs)
1960{
1961    ARMCPU *cpu = ARM_CPU(cs);
1962    CPUARMState *env = &cpu->env;
1963
1964    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1965        return g_strdup("iwmmxt");
1966    }
1967    return g_strdup("arm");
1968}
1969
1970#ifndef CONFIG_USER_ONLY
1971#include "hw/core/sysemu-cpu-ops.h"
1972
1973static const struct SysemuCPUOps arm_sysemu_ops = {
1974    .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
1975    .asidx_from_attrs = arm_asidx_from_attrs,
1976    .write_elf32_note = arm_cpu_write_elf32_note,
1977    .write_elf64_note = arm_cpu_write_elf64_note,
1978    .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
1979    .legacy_vmsd = &vmstate_arm_cpu,
1980};
1981#endif
1982
1983#ifdef CONFIG_TCG
1984static const struct TCGCPUOps arm_tcg_ops = {
1985    .initialize = arm_translate_init,
1986    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1987    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1988    .tlb_fill = arm_cpu_tlb_fill,
1989    .debug_excp_handler = arm_debug_excp_handler,
1990
1991#if !defined(CONFIG_USER_ONLY)
1992    .do_interrupt = arm_cpu_do_interrupt,
1993    .do_transaction_failed = arm_cpu_do_transaction_failed,
1994    .do_unaligned_access = arm_cpu_do_unaligned_access,
1995    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1996    .debug_check_watchpoint = arm_debug_check_watchpoint,
1997    .debug_check_breakpoint = arm_debug_check_breakpoint,
1998#endif /* !CONFIG_USER_ONLY */
1999};
2000#endif /* CONFIG_TCG */
2001
2002static void arm_cpu_class_init(ObjectClass *oc, void *data)
2003{
2004    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2005    CPUClass *cc = CPU_CLASS(acc);
2006    DeviceClass *dc = DEVICE_CLASS(oc);
2007
2008    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2009                                    &acc->parent_realize);
2010
2011    device_class_set_props(dc, arm_cpu_properties);
2012    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2013
2014    cc->class_by_name = arm_cpu_class_by_name;
2015    cc->has_work = arm_cpu_has_work;
2016    cc->dump_state = arm_cpu_dump_state;
2017    cc->set_pc = arm_cpu_set_pc;
2018    cc->gdb_read_register = arm_cpu_gdb_read_register;
2019    cc->gdb_write_register = arm_cpu_gdb_write_register;
2020#ifndef CONFIG_USER_ONLY
2021    cc->sysemu_ops = &arm_sysemu_ops;
2022#endif
2023    cc->gdb_num_core_regs = 26;
2024    cc->gdb_core_xml_file = "arm-core.xml";
2025    cc->gdb_arch_name = arm_gdb_arch_name;
2026    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2027    cc->gdb_stop_before_watchpoint = true;
2028    cc->disas_set_info = arm_disas_set_info;
2029
2030#ifdef CONFIG_TCG
2031    cc->tcg_ops = &arm_tcg_ops;
2032#endif /* CONFIG_TCG */
2033}
2034
2035#ifdef CONFIG_KVM
2036static void arm_host_initfn(Object *obj)
2037{
2038    ARMCPU *cpu = ARM_CPU(obj);
2039
2040    kvm_arm_set_cpu_features_from_host(cpu);
2041    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2042        aarch64_add_sve_properties(obj);
2043    }
2044    arm_cpu_post_init(obj);
2045}
2046
2047static const TypeInfo host_arm_cpu_type_info = {
2048    .name = TYPE_ARM_HOST_CPU,
2049    .parent = TYPE_AARCH64_CPU,
2050    .instance_init = arm_host_initfn,
2051};
2052
2053#endif
2054
2055static void arm_cpu_instance_init(Object *obj)
2056{
2057    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2058
2059    acc->info->initfn(obj);
2060    arm_cpu_post_init(obj);
2061}
2062
2063static void cpu_register_class_init(ObjectClass *oc, void *data)
2064{
2065    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2066
2067    acc->info = data;
2068}
2069
2070void arm_cpu_register(const ARMCPUInfo *info)
2071{
2072    TypeInfo type_info = {
2073        .parent = TYPE_ARM_CPU,
2074        .instance_size = sizeof(ARMCPU),
2075        .instance_align = __alignof__(ARMCPU),
2076        .instance_init = arm_cpu_instance_init,
2077        .class_size = sizeof(ARMCPUClass),
2078        .class_init = info->class_init ?: cpu_register_class_init,
2079        .class_data = (void *)info,
2080    };
2081
2082    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2083    type_register(&type_info);
2084    g_free((void *)type_info.name);
2085}
2086
2087static const TypeInfo arm_cpu_type_info = {
2088    .name = TYPE_ARM_CPU,
2089    .parent = TYPE_CPU,
2090    .instance_size = sizeof(ARMCPU),
2091    .instance_align = __alignof__(ARMCPU),
2092    .instance_init = arm_cpu_initfn,
2093    .instance_finalize = arm_cpu_finalizefn,
2094    .abstract = true,
2095    .class_size = sizeof(ARMCPUClass),
2096    .class_init = arm_cpu_class_init,
2097};
2098
2099static void arm_cpu_register_types(void)
2100{
2101    type_register_static(&arm_cpu_type_info);
2102
2103#ifdef CONFIG_KVM
2104    type_register_static(&host_arm_cpu_type_info);
2105#endif
2106}
2107
2108type_init(arm_cpu_register_types)
2109