qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25#include "cpu-qom.h"
  26#include "exec/cpu-defs.h"
  27#include "qapi/qapi-types-common.h"
  28
  29/* ARM processors have a weak memory model */
  30#define TCG_GUEST_DEFAULT_MO      (0)
  31
  32#ifdef TARGET_AARCH64
  33#define KVM_HAVE_MCE_INJECTION 1
  34#endif
  35
  36#define EXCP_UDEF            1   /* undefined instruction */
  37#define EXCP_SWI             2   /* software interrupt */
  38#define EXCP_PREFETCH_ABORT  3
  39#define EXCP_DATA_ABORT      4
  40#define EXCP_IRQ             5
  41#define EXCP_FIQ             6
  42#define EXCP_BKPT            7
  43#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  44#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  45#define EXCP_HVC            11   /* HyperVisor Call */
  46#define EXCP_HYP_TRAP       12
  47#define EXCP_SMC            13   /* Secure Monitor Call */
  48#define EXCP_VIRQ           14
  49#define EXCP_VFIQ           15
  50#define EXCP_SEMIHOST       16   /* semihosting call */
  51#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  52#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  53#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
  54#define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
  55#define EXCP_LSERR          21   /* v8M LSERR SecureFault */
  56#define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
  57/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  58
  59#define ARMV7M_EXCP_RESET   1
  60#define ARMV7M_EXCP_NMI     2
  61#define ARMV7M_EXCP_HARD    3
  62#define ARMV7M_EXCP_MEM     4
  63#define ARMV7M_EXCP_BUS     5
  64#define ARMV7M_EXCP_USAGE   6
  65#define ARMV7M_EXCP_SECURE  7
  66#define ARMV7M_EXCP_SVC     11
  67#define ARMV7M_EXCP_DEBUG   12
  68#define ARMV7M_EXCP_PENDSV  14
  69#define ARMV7M_EXCP_SYSTICK 15
  70
  71/* For M profile, some registers are banked secure vs non-secure;
  72 * these are represented as a 2-element array where the first element
  73 * is the non-secure copy and the second is the secure copy.
  74 * When the CPU does not have implement the security extension then
  75 * only the first element is used.
  76 * This means that the copy for the current security state can be
  77 * accessed via env->registerfield[env->v7m.secure] (whether the security
  78 * extension is implemented or not).
  79 */
  80enum {
  81    M_REG_NS = 0,
  82    M_REG_S = 1,
  83    M_REG_NUM_BANKS = 2,
  84};
  85
  86/* ARM-specific interrupt pending bits.  */
  87#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  88#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  89#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  90
  91/* The usual mapping for an AArch64 system register to its AArch32
  92 * counterpart is for the 32 bit world to have access to the lower
  93 * half only (with writes leaving the upper half untouched). It's
  94 * therefore useful to be able to pass TCG the offset of the least
  95 * significant half of a uint64_t struct member.
  96 */
  97#ifdef HOST_WORDS_BIGENDIAN
  98#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  99#define offsetofhigh32(S, M) offsetof(S, M)
 100#else
 101#define offsetoflow32(S, M) offsetof(S, M)
 102#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 103#endif
 104
 105/* Meanings of the ARMCPU object's four inbound GPIO lines */
 106#define ARM_CPU_IRQ 0
 107#define ARM_CPU_FIQ 1
 108#define ARM_CPU_VIRQ 2
 109#define ARM_CPU_VFIQ 3
 110
 111/* ARM-specific extra insn start words:
 112 * 1: Conditional execution bits
 113 * 2: Partial exception syndrome for data aborts
 114 */
 115#define TARGET_INSN_START_EXTRA_WORDS 2
 116
 117/* The 2nd extra word holding syndrome info for data aborts does not use
 118 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 119 * help the sleb128 encoder do a better job.
 120 * When restoring the CPU state, we shift it back up.
 121 */
 122#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 123#define ARM_INSN_START_WORD2_SHIFT 14
 124
 125/* We currently assume float and double are IEEE single and double
 126   precision respectively.
 127   Doing runtime conversions is tricky because VFP registers may contain
 128   integer values (eg. as the result of a FTOSI instruction).
 129   s<2n> maps to the least significant half of d<n>
 130   s<2n+1> maps to the most significant half of d<n>
 131 */
 132
 133/**
 134 * DynamicGDBXMLInfo:
 135 * @desc: Contains the XML descriptions.
 136 * @num: Number of the registers in this XML seen by GDB.
 137 * @data: A union with data specific to the set of registers
 138 *    @cpregs_keys: Array that contains the corresponding Key of
 139 *                  a given cpreg with the same order of the cpreg
 140 *                  in the XML description.
 141 */
 142typedef struct DynamicGDBXMLInfo {
 143    char *desc;
 144    int num;
 145    union {
 146        struct {
 147            uint32_t *keys;
 148        } cpregs;
 149    } data;
 150} DynamicGDBXMLInfo;
 151
 152/* CPU state for each instance of a generic timer (in cp15 c14) */
 153typedef struct ARMGenericTimer {
 154    uint64_t cval; /* Timer CompareValue register */
 155    uint64_t ctl; /* Timer Control register */
 156} ARMGenericTimer;
 157
 158#define GTIMER_PHYS     0
 159#define GTIMER_VIRT     1
 160#define GTIMER_HYP      2
 161#define GTIMER_SEC      3
 162#define GTIMER_HYPVIRT  4
 163#define NUM_GTIMERS     5
 164
 165typedef struct {
 166    uint64_t raw_tcr;
 167    uint32_t mask;
 168    uint32_t base_mask;
 169} TCR;
 170
 171#define VTCR_NSW (1u << 29)
 172#define VTCR_NSA (1u << 30)
 173#define VSTCR_SW VTCR_NSW
 174#define VSTCR_SA VTCR_NSA
 175
 176/* Define a maximum sized vector register.
 177 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 178 * For 64-bit, this is a 2048-bit SVE register.
 179 *
 180 * Note that the mapping between S, D, and Q views of the register bank
 181 * differs between AArch64 and AArch32.
 182 * In AArch32:
 183 *  Qn = regs[n].d[1]:regs[n].d[0]
 184 *  Dn = regs[n / 2].d[n & 1]
 185 *  Sn = regs[n / 4].d[n % 4 / 2],
 186 *       bits 31..0 for even n, and bits 63..32 for odd n
 187 *       (and regs[16] to regs[31] are inaccessible)
 188 * In AArch64:
 189 *  Zn = regs[n].d[*]
 190 *  Qn = regs[n].d[1]:regs[n].d[0]
 191 *  Dn = regs[n].d[0]
 192 *  Sn = regs[n].d[0] bits 31..0
 193 *  Hn = regs[n].d[0] bits 15..0
 194 *
 195 * This corresponds to the architecturally defined mapping between
 196 * the two execution states, and means we do not need to explicitly
 197 * map these registers when changing states.
 198 *
 199 * Align the data for use with TCG host vector operations.
 200 */
 201
 202#ifdef TARGET_AARCH64
 203# define ARM_MAX_VQ    16
 204void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
 205void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
 206#else
 207# define ARM_MAX_VQ    1
 208static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
 209static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
 210#endif
 211
 212typedef struct ARMVectorReg {
 213    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 214} ARMVectorReg;
 215
 216#ifdef TARGET_AARCH64
 217/* In AArch32 mode, predicate registers do not exist at all.  */
 218typedef struct ARMPredicateReg {
 219    uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
 220} ARMPredicateReg;
 221
 222/* In AArch32 mode, PAC keys do not exist at all.  */
 223typedef struct ARMPACKey {
 224    uint64_t lo, hi;
 225} ARMPACKey;
 226#endif
 227
 228/* See the commentary above the TBFLAG field definitions.  */
 229typedef struct CPUARMTBFlags {
 230    uint32_t flags;
 231    target_ulong flags2;
 232} CPUARMTBFlags;
 233
 234typedef struct CPUARMState {
 235    /* Regs for current mode.  */
 236    uint32_t regs[16];
 237
 238    /* 32/64 switch only happens when taking and returning from
 239     * exceptions so the overlap semantics are taken care of then
 240     * instead of having a complicated union.
 241     */
 242    /* Regs for A64 mode.  */
 243    uint64_t xregs[32];
 244    uint64_t pc;
 245    /* PSTATE isn't an architectural register for ARMv8. However, it is
 246     * convenient for us to assemble the underlying state into a 32 bit format
 247     * identical to the architectural format used for the SPSR. (This is also
 248     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 249     * 'pstate' register are.) Of the PSTATE bits:
 250     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 251     *    semantics as for AArch32, as described in the comments on each field)
 252     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 253     *  DAIF (exception masks) are kept in env->daif
 254     *  BTYPE is kept in env->btype
 255     *  all other bits are stored in their correct places in env->pstate
 256     */
 257    uint32_t pstate;
 258    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 259
 260    /* Cached TBFLAGS state.  See below for which bits are included.  */
 261    CPUARMTBFlags hflags;
 262
 263    /* Frequently accessed CPSR bits are stored separately for efficiency.
 264       This contains all the other bits.  Use cpsr_{read,write} to access
 265       the whole CPSR.  */
 266    uint32_t uncached_cpsr;
 267    uint32_t spsr;
 268
 269    /* Banked registers.  */
 270    uint64_t banked_spsr[8];
 271    uint32_t banked_r13[8];
 272    uint32_t banked_r14[8];
 273
 274    /* These hold r8-r12.  */
 275    uint32_t usr_regs[5];
 276    uint32_t fiq_regs[5];
 277
 278    /* cpsr flag cache for faster execution */
 279    uint32_t CF; /* 0 or 1 */
 280    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 281    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 282    uint32_t ZF; /* Z set if zero.  */
 283    uint32_t QF; /* 0 or 1 */
 284    uint32_t GE; /* cpsr[19:16] */
 285    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 286    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 287    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
 288    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 289
 290    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 291    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 292
 293    /* System control coprocessor (cp15) */
 294    struct {
 295        uint32_t c0_cpuid;
 296        union { /* Cache size selection */
 297            struct {
 298                uint64_t _unused_csselr0;
 299                uint64_t csselr_ns;
 300                uint64_t _unused_csselr1;
 301                uint64_t csselr_s;
 302            };
 303            uint64_t csselr_el[4];
 304        };
 305        union { /* System control register. */
 306            struct {
 307                uint64_t _unused_sctlr;
 308                uint64_t sctlr_ns;
 309                uint64_t hsctlr;
 310                uint64_t sctlr_s;
 311            };
 312            uint64_t sctlr_el[4];
 313        };
 314        uint64_t cpacr_el1; /* Architectural feature access control register */
 315        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 316        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 317        uint64_t sder; /* Secure debug enable register. */
 318        uint32_t nsacr; /* Non-secure access control register. */
 319        union { /* MMU translation table base 0. */
 320            struct {
 321                uint64_t _unused_ttbr0_0;
 322                uint64_t ttbr0_ns;
 323                uint64_t _unused_ttbr0_1;
 324                uint64_t ttbr0_s;
 325            };
 326            uint64_t ttbr0_el[4];
 327        };
 328        union { /* MMU translation table base 1. */
 329            struct {
 330                uint64_t _unused_ttbr1_0;
 331                uint64_t ttbr1_ns;
 332                uint64_t _unused_ttbr1_1;
 333                uint64_t ttbr1_s;
 334            };
 335            uint64_t ttbr1_el[4];
 336        };
 337        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 338        uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
 339        /* MMU translation table base control. */
 340        TCR tcr_el[4];
 341        TCR vtcr_el2; /* Virtualization Translation Control.  */
 342        TCR vstcr_el2; /* Secure Virtualization Translation Control. */
 343        uint32_t c2_data; /* MPU data cacheable bits.  */
 344        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 345        union { /* MMU domain access control register
 346                 * MPU write buffer control.
 347                 */
 348            struct {
 349                uint64_t dacr_ns;
 350                uint64_t dacr_s;
 351            };
 352            struct {
 353                uint64_t dacr32_el2;
 354            };
 355        };
 356        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 357        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 358        uint64_t hcr_el2; /* Hypervisor configuration register */
 359        uint64_t scr_el3; /* Secure configuration register.  */
 360        union { /* Fault status registers.  */
 361            struct {
 362                uint64_t ifsr_ns;
 363                uint64_t ifsr_s;
 364            };
 365            struct {
 366                uint64_t ifsr32_el2;
 367            };
 368        };
 369        union {
 370            struct {
 371                uint64_t _unused_dfsr;
 372                uint64_t dfsr_ns;
 373                uint64_t hsr;
 374                uint64_t dfsr_s;
 375            };
 376            uint64_t esr_el[4];
 377        };
 378        uint32_t c6_region[8]; /* MPU base/size registers.  */
 379        union { /* Fault address registers. */
 380            struct {
 381                uint64_t _unused_far0;
 382#ifdef HOST_WORDS_BIGENDIAN
 383                uint32_t ifar_ns;
 384                uint32_t dfar_ns;
 385                uint32_t ifar_s;
 386                uint32_t dfar_s;
 387#else
 388                uint32_t dfar_ns;
 389                uint32_t ifar_ns;
 390                uint32_t dfar_s;
 391                uint32_t ifar_s;
 392#endif
 393                uint64_t _unused_far3;
 394            };
 395            uint64_t far_el[4];
 396        };
 397        uint64_t hpfar_el2;
 398        uint64_t hstr_el2;
 399        union { /* Translation result. */
 400            struct {
 401                uint64_t _unused_par_0;
 402                uint64_t par_ns;
 403                uint64_t _unused_par_1;
 404                uint64_t par_s;
 405            };
 406            uint64_t par_el[4];
 407        };
 408
 409        uint32_t c9_insn; /* Cache lockdown registers.  */
 410        uint32_t c9_data;
 411        uint64_t c9_pmcr; /* performance monitor control register */
 412        uint64_t c9_pmcnten; /* perf monitor counter enables */
 413        uint64_t c9_pmovsr; /* perf monitor overflow status */
 414        uint64_t c9_pmuserenr; /* perf monitor user enable */
 415        uint64_t c9_pmselr; /* perf monitor counter selection register */
 416        uint64_t c9_pminten; /* perf monitor interrupt enables */
 417        union { /* Memory attribute redirection */
 418            struct {
 419#ifdef HOST_WORDS_BIGENDIAN
 420                uint64_t _unused_mair_0;
 421                uint32_t mair1_ns;
 422                uint32_t mair0_ns;
 423                uint64_t _unused_mair_1;
 424                uint32_t mair1_s;
 425                uint32_t mair0_s;
 426#else
 427                uint64_t _unused_mair_0;
 428                uint32_t mair0_ns;
 429                uint32_t mair1_ns;
 430                uint64_t _unused_mair_1;
 431                uint32_t mair0_s;
 432                uint32_t mair1_s;
 433#endif
 434            };
 435            uint64_t mair_el[4];
 436        };
 437        union { /* vector base address register */
 438            struct {
 439                uint64_t _unused_vbar;
 440                uint64_t vbar_ns;
 441                uint64_t hvbar;
 442                uint64_t vbar_s;
 443            };
 444            uint64_t vbar_el[4];
 445        };
 446        uint32_t mvbar; /* (monitor) vector base address register */
 447        struct { /* FCSE PID. */
 448            uint32_t fcseidr_ns;
 449            uint32_t fcseidr_s;
 450        };
 451        union { /* Context ID. */
 452            struct {
 453                uint64_t _unused_contextidr_0;
 454                uint64_t contextidr_ns;
 455                uint64_t _unused_contextidr_1;
 456                uint64_t contextidr_s;
 457            };
 458            uint64_t contextidr_el[4];
 459        };
 460        union { /* User RW Thread register. */
 461            struct {
 462                uint64_t tpidrurw_ns;
 463                uint64_t tpidrprw_ns;
 464                uint64_t htpidr;
 465                uint64_t _tpidr_el3;
 466            };
 467            uint64_t tpidr_el[4];
 468        };
 469        /* The secure banks of these registers don't map anywhere */
 470        uint64_t tpidrurw_s;
 471        uint64_t tpidrprw_s;
 472        uint64_t tpidruro_s;
 473
 474        union { /* User RO Thread register. */
 475            uint64_t tpidruro_ns;
 476            uint64_t tpidrro_el[1];
 477        };
 478        uint64_t c14_cntfrq; /* Counter Frequency register */
 479        uint64_t c14_cntkctl; /* Timer Control register */
 480        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 481        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 482        ARMGenericTimer c14_timer[NUM_GTIMERS];
 483        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 484        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 485        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 486        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 487        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 488        uint32_t c15_config_base_address; /* SCU base address.  */
 489        uint32_t c15_diagnostic; /* diagnostic register */
 490        uint32_t c15_power_diagnostic;
 491        uint32_t c15_power_control; /* power control */
 492        uint64_t dbgbvr[16]; /* breakpoint value registers */
 493        uint64_t dbgbcr[16]; /* breakpoint control registers */
 494        uint64_t dbgwvr[16]; /* watchpoint value registers */
 495        uint64_t dbgwcr[16]; /* watchpoint control registers */
 496        uint64_t mdscr_el1;
 497        uint64_t oslsr_el1; /* OS Lock Status */
 498        uint64_t mdcr_el2;
 499        uint64_t mdcr_el3;
 500        /* Stores the architectural value of the counter *the last time it was
 501         * updated* by pmccntr_op_start. Accesses should always be surrounded
 502         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
 503         * architecturally-correct value is being read/set.
 504         */
 505        uint64_t c15_ccnt;
 506        /* Stores the delta between the architectural value and the underlying
 507         * cycle count during normal operation. It is used to update c15_ccnt
 508         * to be the correct architectural value before accesses. During
 509         * accesses, c15_ccnt_delta contains the underlying count being used
 510         * for the access, after which it reverts to the delta value in
 511         * pmccntr_op_finish.
 512         */
 513        uint64_t c15_ccnt_delta;
 514        uint64_t c14_pmevcntr[31];
 515        uint64_t c14_pmevcntr_delta[31];
 516        uint64_t c14_pmevtyper[31];
 517        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 518        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 519        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 520        uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
 521        uint64_t gcr_el1;
 522        uint64_t rgsr_el1;
 523    } cp15;
 524
 525    struct {
 526        /* M profile has up to 4 stack pointers:
 527         * a Main Stack Pointer and a Process Stack Pointer for each
 528         * of the Secure and Non-Secure states. (If the CPU doesn't support
 529         * the security extension then it has only two SPs.)
 530         * In QEMU we always store the currently active SP in regs[13],
 531         * and the non-active SP for the current security state in
 532         * v7m.other_sp. The stack pointers for the inactive security state
 533         * are stored in other_ss_msp and other_ss_psp.
 534         * switch_v7m_security_state() is responsible for rearranging them
 535         * when we change security state.
 536         */
 537        uint32_t other_sp;
 538        uint32_t other_ss_msp;
 539        uint32_t other_ss_psp;
 540        uint32_t vecbase[M_REG_NUM_BANKS];
 541        uint32_t basepri[M_REG_NUM_BANKS];
 542        uint32_t control[M_REG_NUM_BANKS];
 543        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 544        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 545        uint32_t hfsr; /* HardFault Status */
 546        uint32_t dfsr; /* Debug Fault Status Register */
 547        uint32_t sfsr; /* Secure Fault Status Register */
 548        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 549        uint32_t bfar; /* BusFault Address */
 550        uint32_t sfar; /* Secure Fault Address Register */
 551        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 552        int exception;
 553        uint32_t primask[M_REG_NUM_BANKS];
 554        uint32_t faultmask[M_REG_NUM_BANKS];
 555        uint32_t aircr; /* only holds r/w state if security extn implemented */
 556        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 557        uint32_t csselr[M_REG_NUM_BANKS];
 558        uint32_t scr[M_REG_NUM_BANKS];
 559        uint32_t msplim[M_REG_NUM_BANKS];
 560        uint32_t psplim[M_REG_NUM_BANKS];
 561        uint32_t fpcar[M_REG_NUM_BANKS];
 562        uint32_t fpccr[M_REG_NUM_BANKS];
 563        uint32_t fpdscr[M_REG_NUM_BANKS];
 564        uint32_t cpacr[M_REG_NUM_BANKS];
 565        uint32_t nsacr;
 566        uint32_t ltpsize;
 567        uint32_t vpr;
 568    } v7m;
 569
 570    /* Information associated with an exception about to be taken:
 571     * code which raises an exception must set cs->exception_index and
 572     * the relevant parts of this structure; the cpu_do_interrupt function
 573     * will then set the guest-visible registers as part of the exception
 574     * entry process.
 575     */
 576    struct {
 577        uint32_t syndrome; /* AArch64 format syndrome register */
 578        uint32_t fsr; /* AArch32 format fault status register info */
 579        uint64_t vaddress; /* virtual addr associated with exception, if any */
 580        uint32_t target_el; /* EL the exception should be targeted for */
 581        /* If we implement EL2 we will also need to store information
 582         * about the intermediate physical address for stage 2 faults.
 583         */
 584    } exception;
 585
 586    /* Information associated with an SError */
 587    struct {
 588        uint8_t pending;
 589        uint8_t has_esr;
 590        uint64_t esr;
 591    } serror;
 592
 593    uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
 594
 595    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
 596    uint32_t irq_line_state;
 597
 598    /* Thumb-2 EE state.  */
 599    uint32_t teecr;
 600    uint32_t teehbr;
 601
 602    /* VFP coprocessor state.  */
 603    struct {
 604        ARMVectorReg zregs[32];
 605
 606#ifdef TARGET_AARCH64
 607        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 608#define FFR_PRED_NUM 16
 609        ARMPredicateReg pregs[17];
 610        /* Scratch space for aa64 sve predicate temporary.  */
 611        ARMPredicateReg preg_tmp;
 612#endif
 613
 614        /* We store these fpcsr fields separately for convenience.  */
 615        uint32_t qc[4] QEMU_ALIGNED(16);
 616        int vec_len;
 617        int vec_stride;
 618
 619        uint32_t xregs[16];
 620
 621        /* Scratch space for aa32 neon expansion.  */
 622        uint32_t scratch[8];
 623
 624        /* There are a number of distinct float control structures:
 625         *
 626         *  fp_status: is the "normal" fp status.
 627         *  fp_status_fp16: used for half-precision calculations
 628         *  standard_fp_status : the ARM "Standard FPSCR Value"
 629         *  standard_fp_status_fp16 : used for half-precision
 630         *       calculations with the ARM "Standard FPSCR Value"
 631         *
 632         * Half-precision operations are governed by a separate
 633         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 634         * status structure to control this.
 635         *
 636         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 637         * round-to-nearest and is used by any operations (generally
 638         * Neon) which the architecture defines as controlled by the
 639         * standard FPSCR value rather than the FPSCR.
 640         *
 641         * The "standard FPSCR but for fp16 ops" is needed because
 642         * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
 643         * using a fixed value for it.
 644         *
 645         * To avoid having to transfer exception bits around, we simply
 646         * say that the FPSCR cumulative exception flags are the logical
 647         * OR of the flags in the four fp statuses. This relies on the
 648         * only thing which needs to read the exception flags being
 649         * an explicit FPSCR read.
 650         */
 651        float_status fp_status;
 652        float_status fp_status_f16;
 653        float_status standard_fp_status;
 654        float_status standard_fp_status_f16;
 655
 656        /* ZCR_EL[1-3] */
 657        uint64_t zcr_el[4];
 658    } vfp;
 659    uint64_t exclusive_addr;
 660    uint64_t exclusive_val;
 661    uint64_t exclusive_high;
 662
 663    /* iwMMXt coprocessor state.  */
 664    struct {
 665        uint64_t regs[16];
 666        uint64_t val;
 667
 668        uint32_t cregs[16];
 669    } iwmmxt;
 670
 671#ifdef TARGET_AARCH64
 672    struct {
 673        ARMPACKey apia;
 674        ARMPACKey apib;
 675        ARMPACKey apda;
 676        ARMPACKey apdb;
 677        ARMPACKey apga;
 678    } keys;
 679#endif
 680
 681#if defined(CONFIG_USER_ONLY)
 682    /* For usermode syscall translation.  */
 683    int eabi;
 684#endif
 685
 686    struct CPUBreakpoint *cpu_breakpoint[16];
 687    struct CPUWatchpoint *cpu_watchpoint[16];
 688
 689    /* Fields up to this point are cleared by a CPU reset */
 690    struct {} end_reset_fields;
 691
 692    /* Fields after this point are preserved across CPU reset. */
 693
 694    /* Internal CPU feature flags.  */
 695    uint64_t features;
 696
 697    /* PMSAv7 MPU */
 698    struct {
 699        uint32_t *drbar;
 700        uint32_t *drsr;
 701        uint32_t *dracr;
 702        uint32_t rnr[M_REG_NUM_BANKS];
 703    } pmsav7;
 704
 705    /* PMSAv8 MPU */
 706    struct {
 707        /* The PMSAv8 implementation also shares some PMSAv7 config
 708         * and state:
 709         *  pmsav7.rnr (region number register)
 710         *  pmsav7_dregion (number of configured regions)
 711         */
 712        uint32_t *rbar[M_REG_NUM_BANKS];
 713        uint32_t *rlar[M_REG_NUM_BANKS];
 714        uint32_t mair0[M_REG_NUM_BANKS];
 715        uint32_t mair1[M_REG_NUM_BANKS];
 716    } pmsav8;
 717
 718    /* v8M SAU */
 719    struct {
 720        uint32_t *rbar;
 721        uint32_t *rlar;
 722        uint32_t rnr;
 723        uint32_t ctrl;
 724    } sau;
 725
 726    void *nvic;
 727    const struct arm_boot_info *boot_info;
 728    /* Store GICv3CPUState to access from this struct */
 729    void *gicv3state;
 730
 731#ifdef TARGET_TAGGED_ADDRESSES
 732    /* Linux syscall tagged address support */
 733    bool tagged_addr_enable;
 734#endif
 735} CPUARMState;
 736
 737static inline void set_feature(CPUARMState *env, int feature)
 738{
 739    env->features |= 1ULL << feature;
 740}
 741
 742static inline void unset_feature(CPUARMState *env, int feature)
 743{
 744    env->features &= ~(1ULL << feature);
 745}
 746
 747/**
 748 * ARMELChangeHookFn:
 749 * type of a function which can be registered via arm_register_el_change_hook()
 750 * to get callbacks when the CPU changes its exception level or mode.
 751 */
 752typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 753typedef struct ARMELChangeHook ARMELChangeHook;
 754struct ARMELChangeHook {
 755    ARMELChangeHookFn *hook;
 756    void *opaque;
 757    QLIST_ENTRY(ARMELChangeHook) node;
 758};
 759
 760/* These values map onto the return values for
 761 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 762typedef enum ARMPSCIState {
 763    PSCI_ON = 0,
 764    PSCI_OFF = 1,
 765    PSCI_ON_PENDING = 2
 766} ARMPSCIState;
 767
 768typedef struct ARMISARegisters ARMISARegisters;
 769
 770/**
 771 * ARMCPU:
 772 * @env: #CPUARMState
 773 *
 774 * An ARM CPU core.
 775 */
 776struct ARMCPU {
 777    /*< private >*/
 778    CPUState parent_obj;
 779    /*< public >*/
 780
 781    CPUNegativeOffsetState neg;
 782    CPUARMState env;
 783
 784    /* Coprocessor information */
 785    GHashTable *cp_regs;
 786    /* For marshalling (mostly coprocessor) register state between the
 787     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 788     * we use these arrays.
 789     */
 790    /* List of register indexes managed via these arrays; (full KVM style
 791     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 792     */
 793    uint64_t *cpreg_indexes;
 794    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 795    uint64_t *cpreg_values;
 796    /* Length of the indexes, values, reset_values arrays */
 797    int32_t cpreg_array_len;
 798    /* These are used only for migration: incoming data arrives in
 799     * these fields and is sanity checked in post_load before copying
 800     * to the working data structures above.
 801     */
 802    uint64_t *cpreg_vmstate_indexes;
 803    uint64_t *cpreg_vmstate_values;
 804    int32_t cpreg_vmstate_array_len;
 805
 806    DynamicGDBXMLInfo dyn_sysreg_xml;
 807    DynamicGDBXMLInfo dyn_svereg_xml;
 808
 809    /* Timers used by the generic (architected) timer */
 810    QEMUTimer *gt_timer[NUM_GTIMERS];
 811    /*
 812     * Timer used by the PMU. Its state is restored after migration by
 813     * pmu_op_finish() - it does not need other handling during migration
 814     */
 815    QEMUTimer *pmu_timer;
 816    /* GPIO outputs for generic timer */
 817    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 818    /* GPIO output for GICv3 maintenance interrupt signal */
 819    qemu_irq gicv3_maintenance_interrupt;
 820    /* GPIO output for the PMU interrupt */
 821    qemu_irq pmu_interrupt;
 822
 823    /* MemoryRegion to use for secure physical accesses */
 824    MemoryRegion *secure_memory;
 825
 826    /* MemoryRegion to use for allocation tag accesses */
 827    MemoryRegion *tag_memory;
 828    MemoryRegion *secure_tag_memory;
 829
 830    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 831    Object *idau;
 832
 833    /* 'compatible' string for this CPU for Linux device trees */
 834    const char *dtb_compatible;
 835
 836    /* PSCI version for this CPU
 837     * Bits[31:16] = Major Version
 838     * Bits[15:0] = Minor Version
 839     */
 840    uint32_t psci_version;
 841
 842    /* Current power state, access guarded by BQL */
 843    ARMPSCIState power_state;
 844
 845    /* CPU has virtualization extension */
 846    bool has_el2;
 847    /* CPU has security extension */
 848    bool has_el3;
 849    /* CPU has PMU (Performance Monitor Unit) */
 850    bool has_pmu;
 851    /* CPU has VFP */
 852    bool has_vfp;
 853    /* CPU has Neon */
 854    bool has_neon;
 855    /* CPU has M-profile DSP extension */
 856    bool has_dsp;
 857
 858    /* CPU has memory protection unit */
 859    bool has_mpu;
 860    /* PMSAv7 MPU number of supported regions */
 861    uint32_t pmsav7_dregion;
 862    /* v8M SAU number of supported regions */
 863    uint32_t sau_sregion;
 864
 865    /* PSCI conduit used to invoke PSCI methods
 866     * 0 - disabled, 1 - smc, 2 - hvc
 867     */
 868    uint32_t psci_conduit;
 869
 870    /* For v8M, initial value of the Secure VTOR */
 871    uint32_t init_svtor;
 872    /* For v8M, initial value of the Non-secure VTOR */
 873    uint32_t init_nsvtor;
 874
 875    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 876     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 877     */
 878    uint32_t kvm_target;
 879
 880    /* KVM init features for this CPU */
 881    uint32_t kvm_init_features[7];
 882
 883    /* KVM CPU state */
 884
 885    /* KVM virtual time adjustment */
 886    bool kvm_adjvtime;
 887    bool kvm_vtime_dirty;
 888    uint64_t kvm_vtime;
 889
 890    /* KVM steal time */
 891    OnOffAuto kvm_steal_time;
 892
 893    /* Uniprocessor system with MP extensions */
 894    bool mp_is_up;
 895
 896    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 897     * and the probe failed (so we need to report the error in realize)
 898     */
 899    bool host_cpu_probe_failed;
 900
 901    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 902     * register.
 903     */
 904    int32_t core_count;
 905
 906    /* The instance init functions for implementation-specific subclasses
 907     * set these fields to specify the implementation-dependent values of
 908     * various constant registers and reset values of non-constant
 909     * registers.
 910     * Some of these might become QOM properties eventually.
 911     * Field names match the official register names as defined in the
 912     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 913     * is used for reset values of non-constant registers; no reset_
 914     * prefix means a constant register.
 915     * Some of these registers are split out into a substructure that
 916     * is shared with the translators to control the ISA.
 917     *
 918     * Note that if you add an ID register to the ARMISARegisters struct
 919     * you need to also update the 32-bit and 64-bit versions of the
 920     * kvm_arm_get_host_cpu_features() function to correctly populate the
 921     * field by reading the value from the KVM vCPU.
 922     */
 923    struct ARMISARegisters {
 924        uint32_t id_isar0;
 925        uint32_t id_isar1;
 926        uint32_t id_isar2;
 927        uint32_t id_isar3;
 928        uint32_t id_isar4;
 929        uint32_t id_isar5;
 930        uint32_t id_isar6;
 931        uint32_t id_mmfr0;
 932        uint32_t id_mmfr1;
 933        uint32_t id_mmfr2;
 934        uint32_t id_mmfr3;
 935        uint32_t id_mmfr4;
 936        uint32_t id_pfr0;
 937        uint32_t id_pfr1;
 938        uint32_t id_pfr2;
 939        uint32_t mvfr0;
 940        uint32_t mvfr1;
 941        uint32_t mvfr2;
 942        uint32_t id_dfr0;
 943        uint32_t dbgdidr;
 944        uint64_t id_aa64isar0;
 945        uint64_t id_aa64isar1;
 946        uint64_t id_aa64pfr0;
 947        uint64_t id_aa64pfr1;
 948        uint64_t id_aa64mmfr0;
 949        uint64_t id_aa64mmfr1;
 950        uint64_t id_aa64mmfr2;
 951        uint64_t id_aa64dfr0;
 952        uint64_t id_aa64dfr1;
 953        uint64_t id_aa64zfr0;
 954    } isar;
 955    uint64_t midr;
 956    uint32_t revidr;
 957    uint32_t reset_fpsid;
 958    uint64_t ctr;
 959    uint32_t reset_sctlr;
 960    uint64_t pmceid0;
 961    uint64_t pmceid1;
 962    uint32_t id_afr0;
 963    uint64_t id_aa64afr0;
 964    uint64_t id_aa64afr1;
 965    uint64_t clidr;
 966    uint64_t mp_affinity; /* MP ID without feature bits */
 967    /* The elements of this array are the CCSIDR values for each cache,
 968     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 969     */
 970    uint64_t ccsidr[16];
 971    uint64_t reset_cbar;
 972    uint32_t reset_auxcr;
 973    bool reset_hivecs;
 974
 975    /*
 976     * Intermediate values used during property parsing.
 977     * Once finalized, the values should be read from ID_AA64ISAR1.
 978     */
 979    bool prop_pauth;
 980    bool prop_pauth_impdef;
 981
 982    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 983    uint32_t dcz_blocksize;
 984    uint64_t rvbar;
 985
 986    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 987    int gic_num_lrs; /* number of list registers */
 988    int gic_vpribits; /* number of virtual priority bits */
 989    int gic_vprebits; /* number of virtual preemption bits */
 990
 991    /* Whether the cfgend input is high (i.e. this CPU should reset into
 992     * big-endian mode).  This setting isn't used directly: instead it modifies
 993     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 994     * architecture version.
 995     */
 996    bool cfgend;
 997
 998    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
 999    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1000
1001    int32_t node_id; /* NUMA node this CPU belongs to */
1002
1003    /* Used to synchronize KVM and QEMU in-kernel device levels */
1004    uint8_t device_irq_level;
1005
1006    /* Used to set the maximum vector length the cpu will support.  */
1007    uint32_t sve_max_vq;
1008
1009#ifdef CONFIG_USER_ONLY
1010    /* Used to set the default vector length at process start. */
1011    uint32_t sve_default_vq;
1012#endif
1013
1014    /*
1015     * In sve_vq_map each set bit is a supported vector length of
1016     * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1017     * length in quadwords.
1018     *
1019     * While processing properties during initialization, corresponding
1020     * sve_vq_init bits are set for bits in sve_vq_map that have been
1021     * set by properties.
1022     */
1023    DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1024    DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1025
1026    /* Generic timer counter frequency, in Hz */
1027    uint64_t gt_cntfrq_hz;
1028};
1029
1030unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1031
1032void arm_cpu_post_init(Object *obj);
1033
1034uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1035
1036#ifndef CONFIG_USER_ONLY
1037extern const VMStateDescription vmstate_arm_cpu;
1038#endif
1039
1040void arm_cpu_do_interrupt(CPUState *cpu);
1041void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1042bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1043
1044hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1045                                         MemTxAttrs *attrs);
1046
1047int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1048int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1049
1050/*
1051 * Helpers to dynamically generates XML descriptions of the sysregs
1052 * and SVE registers. Returns the number of registers in each set.
1053 */
1054int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1055int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1056
1057/* Returns the dynamically generated XML for the gdb stub.
1058 * Returns a pointer to the XML contents for the specified XML file or NULL
1059 * if the XML name doesn't match the predefined one.
1060 */
1061const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1062
1063int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1064                             int cpuid, void *opaque);
1065int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1066                             int cpuid, void *opaque);
1067
1068#ifdef TARGET_AARCH64
1069int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1070int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1071void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1072void aarch64_sve_change_el(CPUARMState *env, int old_el,
1073                           int new_el, bool el0_a64);
1074void aarch64_add_sve_properties(Object *obj);
1075
1076/*
1077 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1078 * The byte at offset i from the start of the in-memory representation contains
1079 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1080 * lowest offsets are stored in the lowest memory addresses, then that nearly
1081 * matches QEMU's representation, which is to use an array of host-endian
1082 * uint64_t's, where the lower offsets are at the lower indices. To complete
1083 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1084 */
1085static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1086{
1087#ifdef HOST_WORDS_BIGENDIAN
1088    int i;
1089
1090    for (i = 0; i < nr; ++i) {
1091        dst[i] = bswap64(src[i]);
1092    }
1093
1094    return dst;
1095#else
1096    return src;
1097#endif
1098}
1099
1100#else
1101static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1102static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1103                                         int n, bool a)
1104{ }
1105static inline void aarch64_add_sve_properties(Object *obj) { }
1106#endif
1107
1108void aarch64_sync_32_to_64(CPUARMState *env);
1109void aarch64_sync_64_to_32(CPUARMState *env);
1110
1111int fp_exception_el(CPUARMState *env, int cur_el);
1112int sve_exception_el(CPUARMState *env, int cur_el);
1113uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1114
1115static inline bool is_a64(CPUARMState *env)
1116{
1117    return env->aarch64;
1118}
1119
1120/* you can call this signal handler from your SIGBUS and SIGSEGV
1121   signal handlers to inform the virtual CPU of exceptions. non zero
1122   is returned if the signal was handled by the virtual CPU.  */
1123int cpu_arm_signal_handler(int host_signum, void *pinfo,
1124                           void *puc);
1125
1126/**
1127 * pmu_op_start/finish
1128 * @env: CPUARMState
1129 *
1130 * Convert all PMU counters between their delta form (the typical mode when
1131 * they are enabled) and the guest-visible values. These two calls must
1132 * surround any action which might affect the counters.
1133 */
1134void pmu_op_start(CPUARMState *env);
1135void pmu_op_finish(CPUARMState *env);
1136
1137/*
1138 * Called when a PMU counter is due to overflow
1139 */
1140void arm_pmu_timer_cb(void *opaque);
1141
1142/**
1143 * Functions to register as EL change hooks for PMU mode filtering
1144 */
1145void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1146void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1147
1148/*
1149 * pmu_init
1150 * @cpu: ARMCPU
1151 *
1152 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1153 * for the current configuration
1154 */
1155void pmu_init(ARMCPU *cpu);
1156
1157/* SCTLR bit meanings. Several bits have been reused in newer
1158 * versions of the architecture; in that case we define constants
1159 * for both old and new bit meanings. Code which tests against those
1160 * bits should probably check or otherwise arrange that the CPU
1161 * is the architectural version it expects.
1162 */
1163#define SCTLR_M       (1U << 0)
1164#define SCTLR_A       (1U << 1)
1165#define SCTLR_C       (1U << 2)
1166#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1167#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1168#define SCTLR_SA      (1U << 3) /* AArch64 only */
1169#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1170#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1171#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1172#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1173#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1174#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1175#define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1176#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1177#define SCTLR_ITD     (1U << 7) /* v8 onward */
1178#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1179#define SCTLR_SED     (1U << 8) /* v8 onward */
1180#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1181#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1182#define SCTLR_F       (1U << 10) /* up to v6 */
1183#define SCTLR_SW      (1U << 10) /* v7 */
1184#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1185#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1186#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1187#define SCTLR_I       (1U << 12)
1188#define SCTLR_V       (1U << 13) /* AArch32 only */
1189#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1190#define SCTLR_RR      (1U << 14) /* up to v7 */
1191#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1192#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1193#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1194#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1195#define SCTLR_nTWI    (1U << 16) /* v8 onward */
1196#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1197#define SCTLR_BR      (1U << 17) /* PMSA only */
1198#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1199#define SCTLR_nTWE    (1U << 18) /* v8 onward */
1200#define SCTLR_WXN     (1U << 19)
1201#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1202#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1203#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1204#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1205#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1206#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1207#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1208#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1209#define SCTLR_VE      (1U << 24) /* up to v7 */
1210#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1211#define SCTLR_EE      (1U << 25)
1212#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1213#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1214#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1215#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1216#define SCTLR_TRE     (1U << 28) /* AArch32 only */
1217#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1218#define SCTLR_AFE     (1U << 29) /* AArch32 only */
1219#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1220#define SCTLR_TE      (1U << 30) /* AArch32 only */
1221#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1222#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1223#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1224#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1225#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1226#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1227#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1228#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1229#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1230#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1231#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1232
1233#define CPTR_TCPAC    (1U << 31)
1234#define CPTR_TTA      (1U << 20)
1235#define CPTR_TFP      (1U << 10)
1236#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1237#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1238
1239#define MDCR_EPMAD    (1U << 21)
1240#define MDCR_EDAD     (1U << 20)
1241#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1242#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1243#define MDCR_SDD      (1U << 16)
1244#define MDCR_SPD      (3U << 14)
1245#define MDCR_TDRA     (1U << 11)
1246#define MDCR_TDOSA    (1U << 10)
1247#define MDCR_TDA      (1U << 9)
1248#define MDCR_TDE      (1U << 8)
1249#define MDCR_HPME     (1U << 7)
1250#define MDCR_TPM      (1U << 6)
1251#define MDCR_TPMCR    (1U << 5)
1252#define MDCR_HPMN     (0x1fU)
1253
1254/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1255#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1256
1257#define CPSR_M (0x1fU)
1258#define CPSR_T (1U << 5)
1259#define CPSR_F (1U << 6)
1260#define CPSR_I (1U << 7)
1261#define CPSR_A (1U << 8)
1262#define CPSR_E (1U << 9)
1263#define CPSR_IT_2_7 (0xfc00U)
1264#define CPSR_GE (0xfU << 16)
1265#define CPSR_IL (1U << 20)
1266#define CPSR_DIT (1U << 21)
1267#define CPSR_PAN (1U << 22)
1268#define CPSR_SSBS (1U << 23)
1269#define CPSR_J (1U << 24)
1270#define CPSR_IT_0_1 (3U << 25)
1271#define CPSR_Q (1U << 27)
1272#define CPSR_V (1U << 28)
1273#define CPSR_C (1U << 29)
1274#define CPSR_Z (1U << 30)
1275#define CPSR_N (1U << 31)
1276#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1277#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1278
1279#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1280#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1281    | CPSR_NZCV)
1282/* Bits writable in user mode.  */
1283#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1284/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1285#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1286
1287/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1288#define XPSR_EXCP 0x1ffU
1289#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1290#define XPSR_IT_2_7 CPSR_IT_2_7
1291#define XPSR_GE CPSR_GE
1292#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1293#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1294#define XPSR_IT_0_1 CPSR_IT_0_1
1295#define XPSR_Q CPSR_Q
1296#define XPSR_V CPSR_V
1297#define XPSR_C CPSR_C
1298#define XPSR_Z CPSR_Z
1299#define XPSR_N CPSR_N
1300#define XPSR_NZCV CPSR_NZCV
1301#define XPSR_IT CPSR_IT
1302
1303#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1304#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1305#define TTBCR_PD0    (1U << 4)
1306#define TTBCR_PD1    (1U << 5)
1307#define TTBCR_EPD0   (1U << 7)
1308#define TTBCR_IRGN0  (3U << 8)
1309#define TTBCR_ORGN0  (3U << 10)
1310#define TTBCR_SH0    (3U << 12)
1311#define TTBCR_T1SZ   (3U << 16)
1312#define TTBCR_A1     (1U << 22)
1313#define TTBCR_EPD1   (1U << 23)
1314#define TTBCR_IRGN1  (3U << 24)
1315#define TTBCR_ORGN1  (3U << 26)
1316#define TTBCR_SH1    (1U << 28)
1317#define TTBCR_EAE    (1U << 31)
1318
1319/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1320 * Only these are valid when in AArch64 mode; in
1321 * AArch32 mode SPSRs are basically CPSR-format.
1322 */
1323#define PSTATE_SP (1U)
1324#define PSTATE_M (0xFU)
1325#define PSTATE_nRW (1U << 4)
1326#define PSTATE_F (1U << 6)
1327#define PSTATE_I (1U << 7)
1328#define PSTATE_A (1U << 8)
1329#define PSTATE_D (1U << 9)
1330#define PSTATE_BTYPE (3U << 10)
1331#define PSTATE_SSBS (1U << 12)
1332#define PSTATE_IL (1U << 20)
1333#define PSTATE_SS (1U << 21)
1334#define PSTATE_PAN (1U << 22)
1335#define PSTATE_UAO (1U << 23)
1336#define PSTATE_DIT (1U << 24)
1337#define PSTATE_TCO (1U << 25)
1338#define PSTATE_V (1U << 28)
1339#define PSTATE_C (1U << 29)
1340#define PSTATE_Z (1U << 30)
1341#define PSTATE_N (1U << 31)
1342#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1343#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1344#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1345/* Mode values for AArch64 */
1346#define PSTATE_MODE_EL3h 13
1347#define PSTATE_MODE_EL3t 12
1348#define PSTATE_MODE_EL2h 9
1349#define PSTATE_MODE_EL2t 8
1350#define PSTATE_MODE_EL1h 5
1351#define PSTATE_MODE_EL1t 4
1352#define PSTATE_MODE_EL0t 0
1353
1354/* Write a new value to v7m.exception, thus transitioning into or out
1355 * of Handler mode; this may result in a change of active stack pointer.
1356 */
1357void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1358
1359/* Map EL and handler into a PSTATE_MODE.  */
1360static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1361{
1362    return (el << 2) | handler;
1363}
1364
1365/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1366 * interprocessing, so we don't attempt to sync with the cpsr state used by
1367 * the 32 bit decoder.
1368 */
1369static inline uint32_t pstate_read(CPUARMState *env)
1370{
1371    int ZF;
1372
1373    ZF = (env->ZF == 0);
1374    return (env->NF & 0x80000000) | (ZF << 30)
1375        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1376        | env->pstate | env->daif | (env->btype << 10);
1377}
1378
1379static inline void pstate_write(CPUARMState *env, uint32_t val)
1380{
1381    env->ZF = (~val) & PSTATE_Z;
1382    env->NF = val;
1383    env->CF = (val >> 29) & 1;
1384    env->VF = (val << 3) & 0x80000000;
1385    env->daif = val & PSTATE_DAIF;
1386    env->btype = (val >> 10) & 3;
1387    env->pstate = val & ~CACHED_PSTATE_BITS;
1388}
1389
1390/* Return the current CPSR value.  */
1391uint32_t cpsr_read(CPUARMState *env);
1392
1393typedef enum CPSRWriteType {
1394    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1395    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1396    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1397    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1398} CPSRWriteType;
1399
1400/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1401void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1402                CPSRWriteType write_type);
1403
1404/* Return the current xPSR value.  */
1405static inline uint32_t xpsr_read(CPUARMState *env)
1406{
1407    int ZF;
1408    ZF = (env->ZF == 0);
1409    return (env->NF & 0x80000000) | (ZF << 30)
1410        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1411        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1412        | ((env->condexec_bits & 0xfc) << 8)
1413        | (env->GE << 16)
1414        | env->v7m.exception;
1415}
1416
1417/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1418static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1419{
1420    if (mask & XPSR_NZCV) {
1421        env->ZF = (~val) & XPSR_Z;
1422        env->NF = val;
1423        env->CF = (val >> 29) & 1;
1424        env->VF = (val << 3) & 0x80000000;
1425    }
1426    if (mask & XPSR_Q) {
1427        env->QF = ((val & XPSR_Q) != 0);
1428    }
1429    if (mask & XPSR_GE) {
1430        env->GE = (val & XPSR_GE) >> 16;
1431    }
1432#ifndef CONFIG_USER_ONLY
1433    if (mask & XPSR_T) {
1434        env->thumb = ((val & XPSR_T) != 0);
1435    }
1436    if (mask & XPSR_IT_0_1) {
1437        env->condexec_bits &= ~3;
1438        env->condexec_bits |= (val >> 25) & 3;
1439    }
1440    if (mask & XPSR_IT_2_7) {
1441        env->condexec_bits &= 3;
1442        env->condexec_bits |= (val >> 8) & 0xfc;
1443    }
1444    if (mask & XPSR_EXCP) {
1445        /* Note that this only happens on exception exit */
1446        write_v7m_exception(env, val & XPSR_EXCP);
1447    }
1448#endif
1449}
1450
1451#define HCR_VM        (1ULL << 0)
1452#define HCR_SWIO      (1ULL << 1)
1453#define HCR_PTW       (1ULL << 2)
1454#define HCR_FMO       (1ULL << 3)
1455#define HCR_IMO       (1ULL << 4)
1456#define HCR_AMO       (1ULL << 5)
1457#define HCR_VF        (1ULL << 6)
1458#define HCR_VI        (1ULL << 7)
1459#define HCR_VSE       (1ULL << 8)
1460#define HCR_FB        (1ULL << 9)
1461#define HCR_BSU_MASK  (3ULL << 10)
1462#define HCR_DC        (1ULL << 12)
1463#define HCR_TWI       (1ULL << 13)
1464#define HCR_TWE       (1ULL << 14)
1465#define HCR_TID0      (1ULL << 15)
1466#define HCR_TID1      (1ULL << 16)
1467#define HCR_TID2      (1ULL << 17)
1468#define HCR_TID3      (1ULL << 18)
1469#define HCR_TSC       (1ULL << 19)
1470#define HCR_TIDCP     (1ULL << 20)
1471#define HCR_TACR      (1ULL << 21)
1472#define HCR_TSW       (1ULL << 22)
1473#define HCR_TPCP      (1ULL << 23)
1474#define HCR_TPU       (1ULL << 24)
1475#define HCR_TTLB      (1ULL << 25)
1476#define HCR_TVM       (1ULL << 26)
1477#define HCR_TGE       (1ULL << 27)
1478#define HCR_TDZ       (1ULL << 28)
1479#define HCR_HCD       (1ULL << 29)
1480#define HCR_TRVM      (1ULL << 30)
1481#define HCR_RW        (1ULL << 31)
1482#define HCR_CD        (1ULL << 32)
1483#define HCR_ID        (1ULL << 33)
1484#define HCR_E2H       (1ULL << 34)
1485#define HCR_TLOR      (1ULL << 35)
1486#define HCR_TERR      (1ULL << 36)
1487#define HCR_TEA       (1ULL << 37)
1488#define HCR_MIOCNCE   (1ULL << 38)
1489/* RES0 bit 39 */
1490#define HCR_APK       (1ULL << 40)
1491#define HCR_API       (1ULL << 41)
1492#define HCR_NV        (1ULL << 42)
1493#define HCR_NV1       (1ULL << 43)
1494#define HCR_AT        (1ULL << 44)
1495#define HCR_NV2       (1ULL << 45)
1496#define HCR_FWB       (1ULL << 46)
1497#define HCR_FIEN      (1ULL << 47)
1498/* RES0 bit 48 */
1499#define HCR_TID4      (1ULL << 49)
1500#define HCR_TICAB     (1ULL << 50)
1501#define HCR_AMVOFFEN  (1ULL << 51)
1502#define HCR_TOCU      (1ULL << 52)
1503#define HCR_ENSCXT    (1ULL << 53)
1504#define HCR_TTLBIS    (1ULL << 54)
1505#define HCR_TTLBOS    (1ULL << 55)
1506#define HCR_ATA       (1ULL << 56)
1507#define HCR_DCT       (1ULL << 57)
1508#define HCR_TID5      (1ULL << 58)
1509#define HCR_TWEDEN    (1ULL << 59)
1510#define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1511
1512#define HPFAR_NS      (1ULL << 63)
1513
1514#define SCR_NS                (1U << 0)
1515#define SCR_IRQ               (1U << 1)
1516#define SCR_FIQ               (1U << 2)
1517#define SCR_EA                (1U << 3)
1518#define SCR_FW                (1U << 4)
1519#define SCR_AW                (1U << 5)
1520#define SCR_NET               (1U << 6)
1521#define SCR_SMD               (1U << 7)
1522#define SCR_HCE               (1U << 8)
1523#define SCR_SIF               (1U << 9)
1524#define SCR_RW                (1U << 10)
1525#define SCR_ST                (1U << 11)
1526#define SCR_TWI               (1U << 12)
1527#define SCR_TWE               (1U << 13)
1528#define SCR_TLOR              (1U << 14)
1529#define SCR_TERR              (1U << 15)
1530#define SCR_APK               (1U << 16)
1531#define SCR_API               (1U << 17)
1532#define SCR_EEL2              (1U << 18)
1533#define SCR_EASE              (1U << 19)
1534#define SCR_NMEA              (1U << 20)
1535#define SCR_FIEN              (1U << 21)
1536#define SCR_ENSCXT            (1U << 25)
1537#define SCR_ATA               (1U << 26)
1538
1539/* Return the current FPSCR value.  */
1540uint32_t vfp_get_fpscr(CPUARMState *env);
1541void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1542
1543/* FPCR, Floating Point Control Register
1544 * FPSR, Floating Poiht Status Register
1545 *
1546 * For A64 the FPSCR is split into two logically distinct registers,
1547 * FPCR and FPSR. However since they still use non-overlapping bits
1548 * we store the underlying state in fpscr and just mask on read/write.
1549 */
1550#define FPSR_MASK 0xf800009f
1551#define FPCR_MASK 0x07ff9f00
1552
1553#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1554#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1555#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1556#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1557#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1558#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1559#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1560#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1561#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1562#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1563#define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1564#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1565#define FPCR_V      (1 << 28)   /* FP overflow flag */
1566#define FPCR_C      (1 << 29)   /* FP carry flag */
1567#define FPCR_Z      (1 << 30)   /* FP zero flag */
1568#define FPCR_N      (1 << 31)   /* FP negative flag */
1569
1570#define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1571#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1572#define FPCR_LTPSIZE_LENGTH 3
1573
1574#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1575#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1576
1577static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1578{
1579    return vfp_get_fpscr(env) & FPSR_MASK;
1580}
1581
1582static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1583{
1584    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1585    vfp_set_fpscr(env, new_fpscr);
1586}
1587
1588static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1589{
1590    return vfp_get_fpscr(env) & FPCR_MASK;
1591}
1592
1593static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1594{
1595    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1596    vfp_set_fpscr(env, new_fpscr);
1597}
1598
1599enum arm_cpu_mode {
1600  ARM_CPU_MODE_USR = 0x10,
1601  ARM_CPU_MODE_FIQ = 0x11,
1602  ARM_CPU_MODE_IRQ = 0x12,
1603  ARM_CPU_MODE_SVC = 0x13,
1604  ARM_CPU_MODE_MON = 0x16,
1605  ARM_CPU_MODE_ABT = 0x17,
1606  ARM_CPU_MODE_HYP = 0x1a,
1607  ARM_CPU_MODE_UND = 0x1b,
1608  ARM_CPU_MODE_SYS = 0x1f
1609};
1610
1611/* VFP system registers.  */
1612#define ARM_VFP_FPSID   0
1613#define ARM_VFP_FPSCR   1
1614#define ARM_VFP_MVFR2   5
1615#define ARM_VFP_MVFR1   6
1616#define ARM_VFP_MVFR0   7
1617#define ARM_VFP_FPEXC   8
1618#define ARM_VFP_FPINST  9
1619#define ARM_VFP_FPINST2 10
1620/* These ones are M-profile only */
1621#define ARM_VFP_FPSCR_NZCVQC 2
1622#define ARM_VFP_VPR 12
1623#define ARM_VFP_P0 13
1624#define ARM_VFP_FPCXT_NS 14
1625#define ARM_VFP_FPCXT_S 15
1626
1627/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1628#define QEMU_VFP_FPSCR_NZCV 0xffff
1629
1630/* iwMMXt coprocessor control registers.  */
1631#define ARM_IWMMXT_wCID  0
1632#define ARM_IWMMXT_wCon  1
1633#define ARM_IWMMXT_wCSSF 2
1634#define ARM_IWMMXT_wCASF 3
1635#define ARM_IWMMXT_wCGR0 8
1636#define ARM_IWMMXT_wCGR1 9
1637#define ARM_IWMMXT_wCGR2 10
1638#define ARM_IWMMXT_wCGR3 11
1639
1640/* V7M CCR bits */
1641FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1642FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1643FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1644FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1645FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1646FIELD(V7M_CCR, STKALIGN, 9, 1)
1647FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1648FIELD(V7M_CCR, DC, 16, 1)
1649FIELD(V7M_CCR, IC, 17, 1)
1650FIELD(V7M_CCR, BP, 18, 1)
1651FIELD(V7M_CCR, LOB, 19, 1)
1652FIELD(V7M_CCR, TRD, 20, 1)
1653
1654/* V7M SCR bits */
1655FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1656FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1657FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1658FIELD(V7M_SCR, SEVONPEND, 4, 1)
1659
1660/* V7M AIRCR bits */
1661FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1662FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1663FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1664FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1665FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1666FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1667FIELD(V7M_AIRCR, PRIS, 14, 1)
1668FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1669FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1670
1671/* V7M CFSR bits for MMFSR */
1672FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1673FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1674FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1675FIELD(V7M_CFSR, MSTKERR, 4, 1)
1676FIELD(V7M_CFSR, MLSPERR, 5, 1)
1677FIELD(V7M_CFSR, MMARVALID, 7, 1)
1678
1679/* V7M CFSR bits for BFSR */
1680FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1681FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1682FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1683FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1684FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1685FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1686FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1687
1688/* V7M CFSR bits for UFSR */
1689FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1690FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1691FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1692FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1693FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1694FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1695FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1696
1697/* V7M CFSR bit masks covering all of the subregister bits */
1698FIELD(V7M_CFSR, MMFSR, 0, 8)
1699FIELD(V7M_CFSR, BFSR, 8, 8)
1700FIELD(V7M_CFSR, UFSR, 16, 16)
1701
1702/* V7M HFSR bits */
1703FIELD(V7M_HFSR, VECTTBL, 1, 1)
1704FIELD(V7M_HFSR, FORCED, 30, 1)
1705FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1706
1707/* V7M DFSR bits */
1708FIELD(V7M_DFSR, HALTED, 0, 1)
1709FIELD(V7M_DFSR, BKPT, 1, 1)
1710FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1711FIELD(V7M_DFSR, VCATCH, 3, 1)
1712FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1713
1714/* V7M SFSR bits */
1715FIELD(V7M_SFSR, INVEP, 0, 1)
1716FIELD(V7M_SFSR, INVIS, 1, 1)
1717FIELD(V7M_SFSR, INVER, 2, 1)
1718FIELD(V7M_SFSR, AUVIOL, 3, 1)
1719FIELD(V7M_SFSR, INVTRAN, 4, 1)
1720FIELD(V7M_SFSR, LSPERR, 5, 1)
1721FIELD(V7M_SFSR, SFARVALID, 6, 1)
1722FIELD(V7M_SFSR, LSERR, 7, 1)
1723
1724/* v7M MPU_CTRL bits */
1725FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1726FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1727FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1728
1729/* v7M CLIDR bits */
1730FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1731FIELD(V7M_CLIDR, LOUIS, 21, 3)
1732FIELD(V7M_CLIDR, LOC, 24, 3)
1733FIELD(V7M_CLIDR, LOUU, 27, 3)
1734FIELD(V7M_CLIDR, ICB, 30, 2)
1735
1736FIELD(V7M_CSSELR, IND, 0, 1)
1737FIELD(V7M_CSSELR, LEVEL, 1, 3)
1738/* We use the combination of InD and Level to index into cpu->ccsidr[];
1739 * define a mask for this and check that it doesn't permit running off
1740 * the end of the array.
1741 */
1742FIELD(V7M_CSSELR, INDEX, 0, 4)
1743
1744/* v7M FPCCR bits */
1745FIELD(V7M_FPCCR, LSPACT, 0, 1)
1746FIELD(V7M_FPCCR, USER, 1, 1)
1747FIELD(V7M_FPCCR, S, 2, 1)
1748FIELD(V7M_FPCCR, THREAD, 3, 1)
1749FIELD(V7M_FPCCR, HFRDY, 4, 1)
1750FIELD(V7M_FPCCR, MMRDY, 5, 1)
1751FIELD(V7M_FPCCR, BFRDY, 6, 1)
1752FIELD(V7M_FPCCR, SFRDY, 7, 1)
1753FIELD(V7M_FPCCR, MONRDY, 8, 1)
1754FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1755FIELD(V7M_FPCCR, UFRDY, 10, 1)
1756FIELD(V7M_FPCCR, RES0, 11, 15)
1757FIELD(V7M_FPCCR, TS, 26, 1)
1758FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1759FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1760FIELD(V7M_FPCCR, LSPENS, 29, 1)
1761FIELD(V7M_FPCCR, LSPEN, 30, 1)
1762FIELD(V7M_FPCCR, ASPEN, 31, 1)
1763/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1764#define R_V7M_FPCCR_BANKED_MASK                 \
1765    (R_V7M_FPCCR_LSPACT_MASK |                  \
1766     R_V7M_FPCCR_USER_MASK |                    \
1767     R_V7M_FPCCR_THREAD_MASK |                  \
1768     R_V7M_FPCCR_MMRDY_MASK |                   \
1769     R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1770     R_V7M_FPCCR_UFRDY_MASK |                   \
1771     R_V7M_FPCCR_ASPEN_MASK)
1772
1773/* v7M VPR bits */
1774FIELD(V7M_VPR, P0, 0, 16)
1775FIELD(V7M_VPR, MASK01, 16, 4)
1776FIELD(V7M_VPR, MASK23, 20, 4)
1777
1778/*
1779 * System register ID fields.
1780 */
1781FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1782FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1783FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1784FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1785FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1786FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1787FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1788FIELD(CLIDR_EL1, LOUIS, 21, 3)
1789FIELD(CLIDR_EL1, LOC, 24, 3)
1790FIELD(CLIDR_EL1, LOUU, 27, 3)
1791FIELD(CLIDR_EL1, ICB, 30, 3)
1792
1793/* When FEAT_CCIDX is implemented */
1794FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1795FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1796FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1797
1798/* When FEAT_CCIDX is not implemented */
1799FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1800FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1801FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1802
1803FIELD(CTR_EL0,  IMINLINE, 0, 4)
1804FIELD(CTR_EL0,  L1IP, 14, 2)
1805FIELD(CTR_EL0,  DMINLINE, 16, 4)
1806FIELD(CTR_EL0,  ERG, 20, 4)
1807FIELD(CTR_EL0,  CWG, 24, 4)
1808FIELD(CTR_EL0,  IDC, 28, 1)
1809FIELD(CTR_EL0,  DIC, 29, 1)
1810FIELD(CTR_EL0,  TMINLINE, 32, 6)
1811
1812FIELD(MIDR_EL1, REVISION, 0, 4)
1813FIELD(MIDR_EL1, PARTNUM, 4, 12)
1814FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1815FIELD(MIDR_EL1, VARIANT, 20, 4)
1816FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1817
1818FIELD(ID_ISAR0, SWAP, 0, 4)
1819FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1820FIELD(ID_ISAR0, BITFIELD, 8, 4)
1821FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1822FIELD(ID_ISAR0, COPROC, 16, 4)
1823FIELD(ID_ISAR0, DEBUG, 20, 4)
1824FIELD(ID_ISAR0, DIVIDE, 24, 4)
1825
1826FIELD(ID_ISAR1, ENDIAN, 0, 4)
1827FIELD(ID_ISAR1, EXCEPT, 4, 4)
1828FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1829FIELD(ID_ISAR1, EXTEND, 12, 4)
1830FIELD(ID_ISAR1, IFTHEN, 16, 4)
1831FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1832FIELD(ID_ISAR1, INTERWORK, 24, 4)
1833FIELD(ID_ISAR1, JAZELLE, 28, 4)
1834
1835FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1836FIELD(ID_ISAR2, MEMHINT, 4, 4)
1837FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1838FIELD(ID_ISAR2, MULT, 12, 4)
1839FIELD(ID_ISAR2, MULTS, 16, 4)
1840FIELD(ID_ISAR2, MULTU, 20, 4)
1841FIELD(ID_ISAR2, PSR_AR, 24, 4)
1842FIELD(ID_ISAR2, REVERSAL, 28, 4)
1843
1844FIELD(ID_ISAR3, SATURATE, 0, 4)
1845FIELD(ID_ISAR3, SIMD, 4, 4)
1846FIELD(ID_ISAR3, SVC, 8, 4)
1847FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1848FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1849FIELD(ID_ISAR3, T32COPY, 20, 4)
1850FIELD(ID_ISAR3, TRUENOP, 24, 4)
1851FIELD(ID_ISAR3, T32EE, 28, 4)
1852
1853FIELD(ID_ISAR4, UNPRIV, 0, 4)
1854FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1855FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1856FIELD(ID_ISAR4, SMC, 12, 4)
1857FIELD(ID_ISAR4, BARRIER, 16, 4)
1858FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1859FIELD(ID_ISAR4, PSR_M, 24, 4)
1860FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1861
1862FIELD(ID_ISAR5, SEVL, 0, 4)
1863FIELD(ID_ISAR5, AES, 4, 4)
1864FIELD(ID_ISAR5, SHA1, 8, 4)
1865FIELD(ID_ISAR5, SHA2, 12, 4)
1866FIELD(ID_ISAR5, CRC32, 16, 4)
1867FIELD(ID_ISAR5, RDM, 24, 4)
1868FIELD(ID_ISAR5, VCMA, 28, 4)
1869
1870FIELD(ID_ISAR6, JSCVT, 0, 4)
1871FIELD(ID_ISAR6, DP, 4, 4)
1872FIELD(ID_ISAR6, FHM, 8, 4)
1873FIELD(ID_ISAR6, SB, 12, 4)
1874FIELD(ID_ISAR6, SPECRES, 16, 4)
1875FIELD(ID_ISAR6, BF16, 20, 4)
1876FIELD(ID_ISAR6, I8MM, 24, 4)
1877
1878FIELD(ID_MMFR0, VMSA, 0, 4)
1879FIELD(ID_MMFR0, PMSA, 4, 4)
1880FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1881FIELD(ID_MMFR0, SHARELVL, 12, 4)
1882FIELD(ID_MMFR0, TCM, 16, 4)
1883FIELD(ID_MMFR0, AUXREG, 20, 4)
1884FIELD(ID_MMFR0, FCSE, 24, 4)
1885FIELD(ID_MMFR0, INNERSHR, 28, 4)
1886
1887FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1888FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1889FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1890FIELD(ID_MMFR1, L1UNISW, 12, 4)
1891FIELD(ID_MMFR1, L1HVD, 16, 4)
1892FIELD(ID_MMFR1, L1UNI, 20, 4)
1893FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1894FIELD(ID_MMFR1, BPRED, 28, 4)
1895
1896FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1897FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1898FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1899FIELD(ID_MMFR2, HVDTLB, 12, 4)
1900FIELD(ID_MMFR2, UNITLB, 16, 4)
1901FIELD(ID_MMFR2, MEMBARR, 20, 4)
1902FIELD(ID_MMFR2, WFISTALL, 24, 4)
1903FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1904
1905FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1906FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1907FIELD(ID_MMFR3, BPMAINT, 8, 4)
1908FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1909FIELD(ID_MMFR3, PAN, 16, 4)
1910FIELD(ID_MMFR3, COHWALK, 20, 4)
1911FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1912FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1913
1914FIELD(ID_MMFR4, SPECSEI, 0, 4)
1915FIELD(ID_MMFR4, AC2, 4, 4)
1916FIELD(ID_MMFR4, XNX, 8, 4)
1917FIELD(ID_MMFR4, CNP, 12, 4)
1918FIELD(ID_MMFR4, HPDS, 16, 4)
1919FIELD(ID_MMFR4, LSM, 20, 4)
1920FIELD(ID_MMFR4, CCIDX, 24, 4)
1921FIELD(ID_MMFR4, EVT, 28, 4)
1922
1923FIELD(ID_MMFR5, ETS, 0, 4)
1924
1925FIELD(ID_PFR0, STATE0, 0, 4)
1926FIELD(ID_PFR0, STATE1, 4, 4)
1927FIELD(ID_PFR0, STATE2, 8, 4)
1928FIELD(ID_PFR0, STATE3, 12, 4)
1929FIELD(ID_PFR0, CSV2, 16, 4)
1930FIELD(ID_PFR0, AMU, 20, 4)
1931FIELD(ID_PFR0, DIT, 24, 4)
1932FIELD(ID_PFR0, RAS, 28, 4)
1933
1934FIELD(ID_PFR1, PROGMOD, 0, 4)
1935FIELD(ID_PFR1, SECURITY, 4, 4)
1936FIELD(ID_PFR1, MPROGMOD, 8, 4)
1937FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1938FIELD(ID_PFR1, GENTIMER, 16, 4)
1939FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1940FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1941FIELD(ID_PFR1, GIC, 28, 4)
1942
1943FIELD(ID_PFR2, CSV3, 0, 4)
1944FIELD(ID_PFR2, SSBS, 4, 4)
1945FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1946
1947FIELD(ID_AA64ISAR0, AES, 4, 4)
1948FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1949FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1950FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1951FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1952FIELD(ID_AA64ISAR0, RDM, 28, 4)
1953FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1954FIELD(ID_AA64ISAR0, SM3, 36, 4)
1955FIELD(ID_AA64ISAR0, SM4, 40, 4)
1956FIELD(ID_AA64ISAR0, DP, 44, 4)
1957FIELD(ID_AA64ISAR0, FHM, 48, 4)
1958FIELD(ID_AA64ISAR0, TS, 52, 4)
1959FIELD(ID_AA64ISAR0, TLB, 56, 4)
1960FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1961
1962FIELD(ID_AA64ISAR1, DPB, 0, 4)
1963FIELD(ID_AA64ISAR1, APA, 4, 4)
1964FIELD(ID_AA64ISAR1, API, 8, 4)
1965FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1966FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1967FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1968FIELD(ID_AA64ISAR1, GPA, 24, 4)
1969FIELD(ID_AA64ISAR1, GPI, 28, 4)
1970FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1971FIELD(ID_AA64ISAR1, SB, 36, 4)
1972FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1973FIELD(ID_AA64ISAR1, BF16, 44, 4)
1974FIELD(ID_AA64ISAR1, DGH, 48, 4)
1975FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1976
1977FIELD(ID_AA64PFR0, EL0, 0, 4)
1978FIELD(ID_AA64PFR0, EL1, 4, 4)
1979FIELD(ID_AA64PFR0, EL2, 8, 4)
1980FIELD(ID_AA64PFR0, EL3, 12, 4)
1981FIELD(ID_AA64PFR0, FP, 16, 4)
1982FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1983FIELD(ID_AA64PFR0, GIC, 24, 4)
1984FIELD(ID_AA64PFR0, RAS, 28, 4)
1985FIELD(ID_AA64PFR0, SVE, 32, 4)
1986FIELD(ID_AA64PFR0, SEL2, 36, 4)
1987FIELD(ID_AA64PFR0, MPAM, 40, 4)
1988FIELD(ID_AA64PFR0, AMU, 44, 4)
1989FIELD(ID_AA64PFR0, DIT, 48, 4)
1990FIELD(ID_AA64PFR0, CSV2, 56, 4)
1991FIELD(ID_AA64PFR0, CSV3, 60, 4)
1992
1993FIELD(ID_AA64PFR1, BT, 0, 4)
1994FIELD(ID_AA64PFR1, SSBS, 4, 4)
1995FIELD(ID_AA64PFR1, MTE, 8, 4)
1996FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1997FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
1998
1999FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2000FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2001FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2002FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2003FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2004FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2005FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2006FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2007FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2008FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2009FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2010FIELD(ID_AA64MMFR0, EXS, 44, 4)
2011FIELD(ID_AA64MMFR0, FGT, 56, 4)
2012FIELD(ID_AA64MMFR0, ECV, 60, 4)
2013
2014FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2015FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2016FIELD(ID_AA64MMFR1, VH, 8, 4)
2017FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2018FIELD(ID_AA64MMFR1, LO, 16, 4)
2019FIELD(ID_AA64MMFR1, PAN, 20, 4)
2020FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2021FIELD(ID_AA64MMFR1, XNX, 28, 4)
2022FIELD(ID_AA64MMFR1, TWED, 32, 4)
2023FIELD(ID_AA64MMFR1, ETS, 36, 4)
2024
2025FIELD(ID_AA64MMFR2, CNP, 0, 4)
2026FIELD(ID_AA64MMFR2, UAO, 4, 4)
2027FIELD(ID_AA64MMFR2, LSM, 8, 4)
2028FIELD(ID_AA64MMFR2, IESB, 12, 4)
2029FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2030FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2031FIELD(ID_AA64MMFR2, NV, 24, 4)
2032FIELD(ID_AA64MMFR2, ST, 28, 4)
2033FIELD(ID_AA64MMFR2, AT, 32, 4)
2034FIELD(ID_AA64MMFR2, IDS, 36, 4)
2035FIELD(ID_AA64MMFR2, FWB, 40, 4)
2036FIELD(ID_AA64MMFR2, TTL, 48, 4)
2037FIELD(ID_AA64MMFR2, BBM, 52, 4)
2038FIELD(ID_AA64MMFR2, EVT, 56, 4)
2039FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2040
2041FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2042FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2043FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2044FIELD(ID_AA64DFR0, BRPS, 12, 4)
2045FIELD(ID_AA64DFR0, WRPS, 20, 4)
2046FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2047FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2048FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2049FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2050FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2051
2052FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2053FIELD(ID_AA64ZFR0, AES, 4, 4)
2054FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2055FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2056FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2057FIELD(ID_AA64ZFR0, SM4, 40, 4)
2058FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2059FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2060FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2061
2062FIELD(ID_DFR0, COPDBG, 0, 4)
2063FIELD(ID_DFR0, COPSDBG, 4, 4)
2064FIELD(ID_DFR0, MMAPDBG, 8, 4)
2065FIELD(ID_DFR0, COPTRC, 12, 4)
2066FIELD(ID_DFR0, MMAPTRC, 16, 4)
2067FIELD(ID_DFR0, MPROFDBG, 20, 4)
2068FIELD(ID_DFR0, PERFMON, 24, 4)
2069FIELD(ID_DFR0, TRACEFILT, 28, 4)
2070
2071FIELD(ID_DFR1, MTPMU, 0, 4)
2072
2073FIELD(DBGDIDR, SE_IMP, 12, 1)
2074FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2075FIELD(DBGDIDR, VERSION, 16, 4)
2076FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2077FIELD(DBGDIDR, BRPS, 24, 4)
2078FIELD(DBGDIDR, WRPS, 28, 4)
2079
2080FIELD(MVFR0, SIMDREG, 0, 4)
2081FIELD(MVFR0, FPSP, 4, 4)
2082FIELD(MVFR0, FPDP, 8, 4)
2083FIELD(MVFR0, FPTRAP, 12, 4)
2084FIELD(MVFR0, FPDIVIDE, 16, 4)
2085FIELD(MVFR0, FPSQRT, 20, 4)
2086FIELD(MVFR0, FPSHVEC, 24, 4)
2087FIELD(MVFR0, FPROUND, 28, 4)
2088
2089FIELD(MVFR1, FPFTZ, 0, 4)
2090FIELD(MVFR1, FPDNAN, 4, 4)
2091FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2092FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2093FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2094FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2095FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2096FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2097FIELD(MVFR1, FPHP, 24, 4)
2098FIELD(MVFR1, SIMDFMAC, 28, 4)
2099
2100FIELD(MVFR2, SIMDMISC, 0, 4)
2101FIELD(MVFR2, FPMISC, 4, 4)
2102
2103QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2104
2105/* If adding a feature bit which corresponds to a Linux ELF
2106 * HWCAP bit, remember to update the feature-bit-to-hwcap
2107 * mapping in linux-user/elfload.c:get_elf_hwcap().
2108 */
2109enum arm_features {
2110    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2111    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2112    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2113    ARM_FEATURE_V6,
2114    ARM_FEATURE_V6K,
2115    ARM_FEATURE_V7,
2116    ARM_FEATURE_THUMB2,
2117    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2118    ARM_FEATURE_NEON,
2119    ARM_FEATURE_M, /* Microcontroller profile.  */
2120    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2121    ARM_FEATURE_THUMB2EE,
2122    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2123    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2124    ARM_FEATURE_V4T,
2125    ARM_FEATURE_V5,
2126    ARM_FEATURE_STRONGARM,
2127    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2128    ARM_FEATURE_GENERIC_TIMER,
2129    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2130    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2131    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2132    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2133    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2134    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2135    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2136    ARM_FEATURE_V8,
2137    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2138    ARM_FEATURE_CBAR, /* has cp15 CBAR */
2139    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2140    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2141    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2142    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2143    ARM_FEATURE_PMU, /* has PMU support */
2144    ARM_FEATURE_VBAR, /* has cp15 VBAR */
2145    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2146    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2147    ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2148};
2149
2150static inline int arm_feature(CPUARMState *env, int feature)
2151{
2152    return (env->features & (1ULL << feature)) != 0;
2153}
2154
2155void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2156
2157#if !defined(CONFIG_USER_ONLY)
2158/* Return true if exception levels below EL3 are in secure state,
2159 * or would be following an exception return to that level.
2160 * Unlike arm_is_secure() (which is always a question about the
2161 * _current_ state of the CPU) this doesn't care about the current
2162 * EL or mode.
2163 */
2164static inline bool arm_is_secure_below_el3(CPUARMState *env)
2165{
2166    if (arm_feature(env, ARM_FEATURE_EL3)) {
2167        return !(env->cp15.scr_el3 & SCR_NS);
2168    } else {
2169        /* If EL3 is not supported then the secure state is implementation
2170         * defined, in which case QEMU defaults to non-secure.
2171         */
2172        return false;
2173    }
2174}
2175
2176/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2177static inline bool arm_is_el3_or_mon(CPUARMState *env)
2178{
2179    if (arm_feature(env, ARM_FEATURE_EL3)) {
2180        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2181            /* CPU currently in AArch64 state and EL3 */
2182            return true;
2183        } else if (!is_a64(env) &&
2184                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2185            /* CPU currently in AArch32 state and monitor mode */
2186            return true;
2187        }
2188    }
2189    return false;
2190}
2191
2192/* Return true if the processor is in secure state */
2193static inline bool arm_is_secure(CPUARMState *env)
2194{
2195    if (arm_is_el3_or_mon(env)) {
2196        return true;
2197    }
2198    return arm_is_secure_below_el3(env);
2199}
2200
2201/*
2202 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2203 * This corresponds to the pseudocode EL2Enabled()
2204 */
2205static inline bool arm_is_el2_enabled(CPUARMState *env)
2206{
2207    if (arm_feature(env, ARM_FEATURE_EL2)) {
2208        if (arm_is_secure_below_el3(env)) {
2209            return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2210        }
2211        return true;
2212    }
2213    return false;
2214}
2215
2216#else
2217static inline bool arm_is_secure_below_el3(CPUARMState *env)
2218{
2219    return false;
2220}
2221
2222static inline bool arm_is_secure(CPUARMState *env)
2223{
2224    return false;
2225}
2226
2227static inline bool arm_is_el2_enabled(CPUARMState *env)
2228{
2229    return false;
2230}
2231#endif
2232
2233/**
2234 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2235 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2236 * "for all purposes other than a direct read or write access of HCR_EL2."
2237 * Not included here is HCR_RW.
2238 */
2239uint64_t arm_hcr_el2_eff(CPUARMState *env);
2240
2241/* Return true if the specified exception level is running in AArch64 state. */
2242static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2243{
2244    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2245     * and if we're not in EL0 then the state of EL0 isn't well defined.)
2246     */
2247    assert(el >= 1 && el <= 3);
2248    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2249
2250    /* The highest exception level is always at the maximum supported
2251     * register width, and then lower levels have a register width controlled
2252     * by bits in the SCR or HCR registers.
2253     */
2254    if (el == 3) {
2255        return aa64;
2256    }
2257
2258    if (arm_feature(env, ARM_FEATURE_EL3) &&
2259        ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2260        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2261    }
2262
2263    if (el == 2) {
2264        return aa64;
2265    }
2266
2267    if (arm_is_el2_enabled(env)) {
2268        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2269    }
2270
2271    return aa64;
2272}
2273
2274/* Function for determing whether guest cp register reads and writes should
2275 * access the secure or non-secure bank of a cp register.  When EL3 is
2276 * operating in AArch32 state, the NS-bit determines whether the secure
2277 * instance of a cp register should be used. When EL3 is AArch64 (or if
2278 * it doesn't exist at all) then there is no register banking, and all
2279 * accesses are to the non-secure version.
2280 */
2281static inline bool access_secure_reg(CPUARMState *env)
2282{
2283    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2284                !arm_el_is_aa64(env, 3) &&
2285                !(env->cp15.scr_el3 & SCR_NS));
2286
2287    return ret;
2288}
2289
2290/* Macros for accessing a specified CP register bank */
2291#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2292    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2293
2294#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2295    do {                                                \
2296        if (_secure) {                                   \
2297            (_env)->cp15._regname##_s = (_val);            \
2298        } else {                                        \
2299            (_env)->cp15._regname##_ns = (_val);           \
2300        }                                               \
2301    } while (0)
2302
2303/* Macros for automatically accessing a specific CP register bank depending on
2304 * the current secure state of the system.  These macros are not intended for
2305 * supporting instruction translation reads/writes as these are dependent
2306 * solely on the SCR.NS bit and not the mode.
2307 */
2308#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2309    A32_BANKED_REG_GET((_env), _regname,                \
2310                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2311
2312#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2313    A32_BANKED_REG_SET((_env), _regname,                                    \
2314                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2315                       (_val))
2316
2317void arm_cpu_list(void);
2318uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2319                                 uint32_t cur_el, bool secure);
2320
2321/* Interface between CPU and Interrupt controller.  */
2322#ifndef CONFIG_USER_ONLY
2323bool armv7m_nvic_can_take_pending_exception(void *opaque);
2324#else
2325static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2326{
2327    return true;
2328}
2329#endif
2330/**
2331 * armv7m_nvic_set_pending: mark the specified exception as pending
2332 * @opaque: the NVIC
2333 * @irq: the exception number to mark pending
2334 * @secure: false for non-banked exceptions or for the nonsecure
2335 * version of a banked exception, true for the secure version of a banked
2336 * exception.
2337 *
2338 * Marks the specified exception as pending. Note that we will assert()
2339 * if @secure is true and @irq does not specify one of the fixed set
2340 * of architecturally banked exceptions.
2341 */
2342void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2343/**
2344 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2345 * @opaque: the NVIC
2346 * @irq: the exception number to mark pending
2347 * @secure: false for non-banked exceptions or for the nonsecure
2348 * version of a banked exception, true for the secure version of a banked
2349 * exception.
2350 *
2351 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2352 * exceptions (exceptions generated in the course of trying to take
2353 * a different exception).
2354 */
2355void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2356/**
2357 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2358 * @opaque: the NVIC
2359 * @irq: the exception number to mark pending
2360 * @secure: false for non-banked exceptions or for the nonsecure
2361 * version of a banked exception, true for the secure version of a banked
2362 * exception.
2363 *
2364 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2365 * generated in the course of lazy stacking of FP registers.
2366 */
2367void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2368/**
2369 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2370 *    exception, and whether it targets Secure state
2371 * @opaque: the NVIC
2372 * @pirq: set to pending exception number
2373 * @ptargets_secure: set to whether pending exception targets Secure
2374 *
2375 * This function writes the number of the highest priority pending
2376 * exception (the one which would be made active by
2377 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2378 * to true if the current highest priority pending exception should
2379 * be taken to Secure state, false for NS.
2380 */
2381void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2382                                      bool *ptargets_secure);
2383/**
2384 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2385 * @opaque: the NVIC
2386 *
2387 * Move the current highest priority pending exception from the pending
2388 * state to the active state, and update v7m.exception to indicate that
2389 * it is the exception currently being handled.
2390 */
2391void armv7m_nvic_acknowledge_irq(void *opaque);
2392/**
2393 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2394 * @opaque: the NVIC
2395 * @irq: the exception number to complete
2396 * @secure: true if this exception was secure
2397 *
2398 * Returns: -1 if the irq was not active
2399 *           1 if completing this irq brought us back to base (no active irqs)
2400 *           0 if there is still an irq active after this one was completed
2401 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2402 */
2403int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2404/**
2405 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2406 * @opaque: the NVIC
2407 * @irq: the exception number to mark pending
2408 * @secure: false for non-banked exceptions or for the nonsecure
2409 * version of a banked exception, true for the secure version of a banked
2410 * exception.
2411 *
2412 * Return whether an exception is "ready", i.e. whether the exception is
2413 * enabled and is configured at a priority which would allow it to
2414 * interrupt the current execution priority. This controls whether the
2415 * RDY bit for it in the FPCCR is set.
2416 */
2417bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2418/**
2419 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2420 * @opaque: the NVIC
2421 *
2422 * Returns: the raw execution priority as defined by the v8M architecture.
2423 * This is the execution priority minus the effects of AIRCR.PRIS,
2424 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2425 * (v8M ARM ARM I_PKLD.)
2426 */
2427int armv7m_nvic_raw_execution_priority(void *opaque);
2428/**
2429 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2430 * priority is negative for the specified security state.
2431 * @opaque: the NVIC
2432 * @secure: the security state to test
2433 * This corresponds to the pseudocode IsReqExecPriNeg().
2434 */
2435#ifndef CONFIG_USER_ONLY
2436bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2437#else
2438static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2439{
2440    return false;
2441}
2442#endif
2443
2444/* Interface for defining coprocessor registers.
2445 * Registers are defined in tables of arm_cp_reginfo structs
2446 * which are passed to define_arm_cp_regs().
2447 */
2448
2449/* When looking up a coprocessor register we look for it
2450 * via an integer which encodes all of:
2451 *  coprocessor number
2452 *  Crn, Crm, opc1, opc2 fields
2453 *  32 or 64 bit register (ie is it accessed via MRC/MCR
2454 *    or via MRRC/MCRR?)
2455 *  non-secure/secure bank (AArch32 only)
2456 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2457 * (In this case crn and opc2 should be zero.)
2458 * For AArch64, there is no 32/64 bit size distinction;
2459 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2460 * and 4 bit CRn and CRm. The encoding patterns are chosen
2461 * to be easy to convert to and from the KVM encodings, and also
2462 * so that the hashtable can contain both AArch32 and AArch64
2463 * registers (to allow for interprocessing where we might run
2464 * 32 bit code on a 64 bit core).
2465 */
2466/* This bit is private to our hashtable cpreg; in KVM register
2467 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2468 * in the upper bits of the 64 bit ID.
2469 */
2470#define CP_REG_AA64_SHIFT 28
2471#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2472
2473/* To enable banking of coprocessor registers depending on ns-bit we
2474 * add a bit to distinguish between secure and non-secure cpregs in the
2475 * hashtable.
2476 */
2477#define CP_REG_NS_SHIFT 29
2478#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2479
2480#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2481    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2482     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2483
2484#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2485    (CP_REG_AA64_MASK |                                 \
2486     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2487     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2488     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2489     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2490     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2491     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2492
2493/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2494 * version used as a key for the coprocessor register hashtable
2495 */
2496static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2497{
2498    uint32_t cpregid = kvmid;
2499    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2500        cpregid |= CP_REG_AA64_MASK;
2501    } else {
2502        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2503            cpregid |= (1 << 15);
2504        }
2505
2506        /* KVM is always non-secure so add the NS flag on AArch32 register
2507         * entries.
2508         */
2509         cpregid |= 1 << CP_REG_NS_SHIFT;
2510    }
2511    return cpregid;
2512}
2513
2514/* Convert a truncated 32 bit hashtable key into the full
2515 * 64 bit KVM register ID.
2516 */
2517static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2518{
2519    uint64_t kvmid;
2520
2521    if (cpregid & CP_REG_AA64_MASK) {
2522        kvmid = cpregid & ~CP_REG_AA64_MASK;
2523        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2524    } else {
2525        kvmid = cpregid & ~(1 << 15);
2526        if (cpregid & (1 << 15)) {
2527            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2528        } else {
2529            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2530        }
2531    }
2532    return kvmid;
2533}
2534
2535/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2536 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2537 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2538 * TCG can assume the value to be constant (ie load at translate time)
2539 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2540 * indicates that the TB should not be ended after a write to this register
2541 * (the default is that the TB ends after cp writes). OVERRIDE permits
2542 * a register definition to override a previous definition for the
2543 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2544 * old must have the OVERRIDE bit set.
2545 * ALIAS indicates that this register is an alias view of some underlying
2546 * state which is also visible via another register, and that the other
2547 * register is handling migration and reset; registers marked ALIAS will not be
2548 * migrated but may have their state set by syncing of register state from KVM.
2549 * NO_RAW indicates that this register has no underlying state and does not
2550 * support raw access for state saving/loading; it will not be used for either
2551 * migration or KVM state synchronization. (Typically this is for "registers"
2552 * which are actually used as instructions for cache maintenance and so on.)
2553 * IO indicates that this register does I/O and therefore its accesses
2554 * need to be marked with gen_io_start() and also end the TB. In particular,
2555 * registers which implement clocks or timers require this.
2556 * RAISES_EXC is for when the read or write hook might raise an exception;
2557 * the generated code will synchronize the CPU state before calling the hook
2558 * so that it is safe for the hook to call raise_exception().
2559 * NEWEL is for writes to registers that might change the exception
2560 * level - typically on older ARM chips. For those cases we need to
2561 * re-read the new el when recomputing the translation flags.
2562 */
2563#define ARM_CP_SPECIAL           0x0001
2564#define ARM_CP_CONST             0x0002
2565#define ARM_CP_64BIT             0x0004
2566#define ARM_CP_SUPPRESS_TB_END   0x0008
2567#define ARM_CP_OVERRIDE          0x0010
2568#define ARM_CP_ALIAS             0x0020
2569#define ARM_CP_IO                0x0040
2570#define ARM_CP_NO_RAW            0x0080
2571#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2572#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2573#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2574#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2575#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2576#define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2577#define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2578#define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2579#define ARM_CP_FPU               0x1000
2580#define ARM_CP_SVE               0x2000
2581#define ARM_CP_NO_GDB            0x4000
2582#define ARM_CP_RAISES_EXC        0x8000
2583#define ARM_CP_NEWEL             0x10000
2584/* Used only as a terminator for ARMCPRegInfo lists */
2585#define ARM_CP_SENTINEL          0xfffff
2586/* Mask of only the flag bits in a type field */
2587#define ARM_CP_FLAG_MASK         0x1f0ff
2588
2589/* Valid values for ARMCPRegInfo state field, indicating which of
2590 * the AArch32 and AArch64 execution states this register is visible in.
2591 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2592 * If the reginfo is declared to be visible in both states then a second
2593 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2594 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2595 * Note that we rely on the values of these enums as we iterate through
2596 * the various states in some places.
2597 */
2598enum {
2599    ARM_CP_STATE_AA32 = 0,
2600    ARM_CP_STATE_AA64 = 1,
2601    ARM_CP_STATE_BOTH = 2,
2602};
2603
2604/* ARM CP register secure state flags.  These flags identify security state
2605 * attributes for a given CP register entry.
2606 * The existence of both or neither secure and non-secure flags indicates that
2607 * the register has both a secure and non-secure hash entry.  A single one of
2608 * these flags causes the register to only be hashed for the specified
2609 * security state.
2610 * Although definitions may have any combination of the S/NS bits, each
2611 * registered entry will only have one to identify whether the entry is secure
2612 * or non-secure.
2613 */
2614enum {
2615    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2616    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2617};
2618
2619/* Return true if cptype is a valid type field. This is used to try to
2620 * catch errors where the sentinel has been accidentally left off the end
2621 * of a list of registers.
2622 */
2623static inline bool cptype_valid(int cptype)
2624{
2625    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2626        || ((cptype & ARM_CP_SPECIAL) &&
2627            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2628}
2629
2630/* Access rights:
2631 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2632 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2633 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2634 * (ie any of the privileged modes in Secure state, or Monitor mode).
2635 * If a register is accessible in one privilege level it's always accessible
2636 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2637 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2638 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2639 * terminology a little and call this PL3.
2640 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2641 * with the ELx exception levels.
2642 *
2643 * If access permissions for a register are more complex than can be
2644 * described with these bits, then use a laxer set of restrictions, and
2645 * do the more restrictive/complex check inside a helper function.
2646 */
2647#define PL3_R 0x80
2648#define PL3_W 0x40
2649#define PL2_R (0x20 | PL3_R)
2650#define PL2_W (0x10 | PL3_W)
2651#define PL1_R (0x08 | PL2_R)
2652#define PL1_W (0x04 | PL2_W)
2653#define PL0_R (0x02 | PL1_R)
2654#define PL0_W (0x01 | PL1_W)
2655
2656/*
2657 * For user-mode some registers are accessible to EL0 via a kernel
2658 * trap-and-emulate ABI. In this case we define the read permissions
2659 * as actually being PL0_R. However some bits of any given register
2660 * may still be masked.
2661 */
2662#ifdef CONFIG_USER_ONLY
2663#define PL0U_R PL0_R
2664#else
2665#define PL0U_R PL1_R
2666#endif
2667
2668#define PL3_RW (PL3_R | PL3_W)
2669#define PL2_RW (PL2_R | PL2_W)
2670#define PL1_RW (PL1_R | PL1_W)
2671#define PL0_RW (PL0_R | PL0_W)
2672
2673/* Return the highest implemented Exception Level */
2674static inline int arm_highest_el(CPUARMState *env)
2675{
2676    if (arm_feature(env, ARM_FEATURE_EL3)) {
2677        return 3;
2678    }
2679    if (arm_feature(env, ARM_FEATURE_EL2)) {
2680        return 2;
2681    }
2682    return 1;
2683}
2684
2685/* Return true if a v7M CPU is in Handler mode */
2686static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2687{
2688    return env->v7m.exception != 0;
2689}
2690
2691/* Return the current Exception Level (as per ARMv8; note that this differs
2692 * from the ARMv7 Privilege Level).
2693 */
2694static inline int arm_current_el(CPUARMState *env)
2695{
2696    if (arm_feature(env, ARM_FEATURE_M)) {
2697        return arm_v7m_is_handler_mode(env) ||
2698            !(env->v7m.control[env->v7m.secure] & 1);
2699    }
2700
2701    if (is_a64(env)) {
2702        return extract32(env->pstate, 2, 2);
2703    }
2704
2705    switch (env->uncached_cpsr & 0x1f) {
2706    case ARM_CPU_MODE_USR:
2707        return 0;
2708    case ARM_CPU_MODE_HYP:
2709        return 2;
2710    case ARM_CPU_MODE_MON:
2711        return 3;
2712    default:
2713        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2714            /* If EL3 is 32-bit then all secure privileged modes run in
2715             * EL3
2716             */
2717            return 3;
2718        }
2719
2720        return 1;
2721    }
2722}
2723
2724typedef struct ARMCPRegInfo ARMCPRegInfo;
2725
2726typedef enum CPAccessResult {
2727    /* Access is permitted */
2728    CP_ACCESS_OK = 0,
2729    /* Access fails due to a configurable trap or enable which would
2730     * result in a categorized exception syndrome giving information about
2731     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2732     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2733     * PL1 if in EL0, otherwise to the current EL).
2734     */
2735    CP_ACCESS_TRAP = 1,
2736    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2737     * Note that this is not a catch-all case -- the set of cases which may
2738     * result in this failure is specifically defined by the architecture.
2739     */
2740    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2741    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2742    CP_ACCESS_TRAP_EL2 = 3,
2743    CP_ACCESS_TRAP_EL3 = 4,
2744    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2745    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2746    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2747    /* Access fails and results in an exception syndrome for an FP access,
2748     * trapped directly to EL2 or EL3
2749     */
2750    CP_ACCESS_TRAP_FP_EL2 = 7,
2751    CP_ACCESS_TRAP_FP_EL3 = 8,
2752} CPAccessResult;
2753
2754/* Access functions for coprocessor registers. These cannot fail and
2755 * may not raise exceptions.
2756 */
2757typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2758typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2759                       uint64_t value);
2760/* Access permission check functions for coprocessor registers. */
2761typedef CPAccessResult CPAccessFn(CPUARMState *env,
2762                                  const ARMCPRegInfo *opaque,
2763                                  bool isread);
2764/* Hook function for register reset */
2765typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2766
2767#define CP_ANY 0xff
2768
2769/* Definition of an ARM coprocessor register */
2770struct ARMCPRegInfo {
2771    /* Name of register (useful mainly for debugging, need not be unique) */
2772    const char *name;
2773    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2774     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2775     * 'wildcard' field -- any value of that field in the MRC/MCR insn
2776     * will be decoded to this register. The register read and write
2777     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2778     * used by the program, so it is possible to register a wildcard and
2779     * then behave differently on read/write if necessary.
2780     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2781     * must both be zero.
2782     * For AArch64-visible registers, opc0 is also used.
2783     * Since there are no "coprocessors" in AArch64, cp is purely used as a
2784     * way to distinguish (for KVM's benefit) guest-visible system registers
2785     * from demuxed ones provided to preserve the "no side effects on
2786     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2787     * visible (to match KVM's encoding); cp==0 will be converted to
2788     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2789     */
2790    uint8_t cp;
2791    uint8_t crn;
2792    uint8_t crm;
2793    uint8_t opc0;
2794    uint8_t opc1;
2795    uint8_t opc2;
2796    /* Execution state in which this register is visible: ARM_CP_STATE_* */
2797    int state;
2798    /* Register type: ARM_CP_* bits/values */
2799    int type;
2800    /* Access rights: PL*_[RW] */
2801    int access;
2802    /* Security state: ARM_CP_SECSTATE_* bits/values */
2803    int secure;
2804    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2805     * this register was defined: can be used to hand data through to the
2806     * register read/write functions, since they are passed the ARMCPRegInfo*.
2807     */
2808    void *opaque;
2809    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2810     * fieldoffset is non-zero, the reset value of the register.
2811     */
2812    uint64_t resetvalue;
2813    /* Offset of the field in CPUARMState for this register.
2814     *
2815     * This is not needed if either:
2816     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2817     *  2. both readfn and writefn are specified
2818     */
2819    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2820
2821    /* Offsets of the secure and non-secure fields in CPUARMState for the
2822     * register if it is banked.  These fields are only used during the static
2823     * registration of a register.  During hashing the bank associated
2824     * with a given security state is copied to fieldoffset which is used from
2825     * there on out.
2826     *
2827     * It is expected that register definitions use either fieldoffset or
2828     * bank_fieldoffsets in the definition but not both.  It is also expected
2829     * that both bank offsets are set when defining a banked register.  This
2830     * use indicates that a register is banked.
2831     */
2832    ptrdiff_t bank_fieldoffsets[2];
2833
2834    /* Function for making any access checks for this register in addition to
2835     * those specified by the 'access' permissions bits. If NULL, no extra
2836     * checks required. The access check is performed at runtime, not at
2837     * translate time.
2838     */
2839    CPAccessFn *accessfn;
2840    /* Function for handling reads of this register. If NULL, then reads
2841     * will be done by loading from the offset into CPUARMState specified
2842     * by fieldoffset.
2843     */
2844    CPReadFn *readfn;
2845    /* Function for handling writes of this register. If NULL, then writes
2846     * will be done by writing to the offset into CPUARMState specified
2847     * by fieldoffset.
2848     */
2849    CPWriteFn *writefn;
2850    /* Function for doing a "raw" read; used when we need to copy
2851     * coprocessor state to the kernel for KVM or out for
2852     * migration. This only needs to be provided if there is also a
2853     * readfn and it has side effects (for instance clear-on-read bits).
2854     */
2855    CPReadFn *raw_readfn;
2856    /* Function for doing a "raw" write; used when we need to copy KVM
2857     * kernel coprocessor state into userspace, or for inbound
2858     * migration. This only needs to be provided if there is also a
2859     * writefn and it masks out "unwritable" bits or has write-one-to-clear
2860     * or similar behaviour.
2861     */
2862    CPWriteFn *raw_writefn;
2863    /* Function for resetting the register. If NULL, then reset will be done
2864     * by writing resetvalue to the field specified in fieldoffset. If
2865     * fieldoffset is 0 then no reset will be done.
2866     */
2867    CPResetFn *resetfn;
2868
2869    /*
2870     * "Original" writefn and readfn.
2871     * For ARMv8.1-VHE register aliases, we overwrite the read/write
2872     * accessor functions of various EL1/EL0 to perform the runtime
2873     * check for which sysreg should actually be modified, and then
2874     * forwards the operation.  Before overwriting the accessors,
2875     * the original function is copied here, so that accesses that
2876     * really do go to the EL1/EL0 version proceed normally.
2877     * (The corresponding EL2 register is linked via opaque.)
2878     */
2879    CPReadFn *orig_readfn;
2880    CPWriteFn *orig_writefn;
2881};
2882
2883/* Macros which are lvalues for the field in CPUARMState for the
2884 * ARMCPRegInfo *ri.
2885 */
2886#define CPREG_FIELD32(env, ri) \
2887    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2888#define CPREG_FIELD64(env, ri) \
2889    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2890
2891#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2892
2893void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2894                                    const ARMCPRegInfo *regs, void *opaque);
2895void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2896                                       const ARMCPRegInfo *regs, void *opaque);
2897static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2898{
2899    define_arm_cp_regs_with_opaque(cpu, regs, 0);
2900}
2901static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2902{
2903    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2904}
2905const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2906
2907/*
2908 * Definition of an ARM co-processor register as viewed from
2909 * userspace. This is used for presenting sanitised versions of
2910 * registers to userspace when emulating the Linux AArch64 CPU
2911 * ID/feature ABI (advertised as HWCAP_CPUID).
2912 */
2913typedef struct ARMCPRegUserSpaceInfo {
2914    /* Name of register */
2915    const char *name;
2916
2917    /* Is the name actually a glob pattern */
2918    bool is_glob;
2919
2920    /* Only some bits are exported to user space */
2921    uint64_t exported_bits;
2922
2923    /* Fixed bits are applied after the mask */
2924    uint64_t fixed_bits;
2925} ARMCPRegUserSpaceInfo;
2926
2927#define REGUSERINFO_SENTINEL { .name = NULL }
2928
2929void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2930
2931/* CPWriteFn that can be used to implement writes-ignored behaviour */
2932void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2933                         uint64_t value);
2934/* CPReadFn that can be used for read-as-zero behaviour */
2935uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2936
2937/* CPResetFn that does nothing, for use if no reset is required even
2938 * if fieldoffset is non zero.
2939 */
2940void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2941
2942/* Return true if this reginfo struct's field in the cpu state struct
2943 * is 64 bits wide.
2944 */
2945static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2946{
2947    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2948}
2949
2950static inline bool cp_access_ok(int current_el,
2951                                const ARMCPRegInfo *ri, int isread)
2952{
2953    return (ri->access >> ((current_el * 2) + isread)) & 1;
2954}
2955
2956/* Raw read of a coprocessor register (as needed for migration, etc) */
2957uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2958
2959/**
2960 * write_list_to_cpustate
2961 * @cpu: ARMCPU
2962 *
2963 * For each register listed in the ARMCPU cpreg_indexes list, write
2964 * its value from the cpreg_values list into the ARMCPUState structure.
2965 * This updates TCG's working data structures from KVM data or
2966 * from incoming migration state.
2967 *
2968 * Returns: true if all register values were updated correctly,
2969 * false if some register was unknown or could not be written.
2970 * Note that we do not stop early on failure -- we will attempt
2971 * writing all registers in the list.
2972 */
2973bool write_list_to_cpustate(ARMCPU *cpu);
2974
2975/**
2976 * write_cpustate_to_list:
2977 * @cpu: ARMCPU
2978 * @kvm_sync: true if this is for syncing back to KVM
2979 *
2980 * For each register listed in the ARMCPU cpreg_indexes list, write
2981 * its value from the ARMCPUState structure into the cpreg_values list.
2982 * This is used to copy info from TCG's working data structures into
2983 * KVM or for outbound migration.
2984 *
2985 * @kvm_sync is true if we are doing this in order to sync the
2986 * register state back to KVM. In this case we will only update
2987 * values in the list if the previous list->cpustate sync actually
2988 * successfully wrote the CPU state. Otherwise we will keep the value
2989 * that is in the list.
2990 *
2991 * Returns: true if all register values were read correctly,
2992 * false if some register was unknown or could not be read.
2993 * Note that we do not stop early on failure -- we will attempt
2994 * reading all registers in the list.
2995 */
2996bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2997
2998#define ARM_CPUID_TI915T      0x54029152
2999#define ARM_CPUID_TI925T      0x54029252
3000
3001#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
3002#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
3003#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
3004
3005#define cpu_signal_handler cpu_arm_signal_handler
3006#define cpu_list arm_cpu_list
3007
3008/* ARM has the following "translation regimes" (as the ARM ARM calls them):
3009 *
3010 * If EL3 is 64-bit:
3011 *  + NonSecure EL1 & 0 stage 1
3012 *  + NonSecure EL1 & 0 stage 2
3013 *  + NonSecure EL2
3014 *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
3015 *  + Secure EL1 & 0
3016 *  + Secure EL3
3017 * If EL3 is 32-bit:
3018 *  + NonSecure PL1 & 0 stage 1
3019 *  + NonSecure PL1 & 0 stage 2
3020 *  + NonSecure PL2
3021 *  + Secure PL0
3022 *  + Secure PL1
3023 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
3024 *
3025 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
3026 *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3027 *     because they may differ in access permissions even if the VA->PA map is
3028 *     the same
3029 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3030 *     translation, which means that we have one mmu_idx that deals with two
3031 *     concatenated translation regimes [this sort of combined s1+2 TLB is
3032 *     architecturally permitted]
3033 *  3. we don't need to allocate an mmu_idx to translations that we won't be
3034 *     handling via the TLB. The only way to do a stage 1 translation without
3035 *     the immediate stage 2 translation is via the ATS or AT system insns,
3036 *     which can be slow-pathed and always do a page table walk.
3037 *     The only use of stage 2 translations is either as part of an s1+2
3038 *     lookup or when loading the descriptors during a stage 1 page table walk,
3039 *     and in both those cases we don't use the TLB.
3040 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3041 *     translation regimes, because they map reasonably well to each other
3042 *     and they can't both be active at the same time.
3043 *  5. we want to be able to use the TLB for accesses done as part of a
3044 *     stage1 page table walk, rather than having to walk the stage2 page
3045 *     table over and over.
3046 *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3047 *     Never (PAN) bit within PSTATE.
3048 *
3049 * This gives us the following list of cases:
3050 *
3051 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3052 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3053 * NS EL1 EL1&0 stage 1+2 +PAN
3054 * NS EL0 EL2&0
3055 * NS EL2 EL2&0
3056 * NS EL2 EL2&0 +PAN
3057 * NS EL2 (aka NS PL2)
3058 * S EL0 EL1&0 (aka S PL0)
3059 * S EL1 EL1&0 (not used if EL3 is 32 bit)
3060 * S EL1 EL1&0 +PAN
3061 * S EL3 (aka S PL1)
3062 *
3063 * for a total of 11 different mmu_idx.
3064 *
3065 * R profile CPUs have an MPU, but can use the same set of MMU indexes
3066 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3067 * NS EL2 if we ever model a Cortex-R52).
3068 *
3069 * M profile CPUs are rather different as they do not have a true MMU.
3070 * They have the following different MMU indexes:
3071 *  User
3072 *  Privileged
3073 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3074 *  Privileged, execution priority negative (ditto)
3075 * If the CPU supports the v8M Security Extension then there are also:
3076 *  Secure User
3077 *  Secure Privileged
3078 *  Secure User, execution priority negative
3079 *  Secure Privileged, execution priority negative
3080 *
3081 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3082 * are not quite the same -- different CPU types (most notably M profile
3083 * vs A/R profile) would like to use MMU indexes with different semantics,
3084 * but since we don't ever need to use all of those in a single CPU we
3085 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3086 * modes + total number of M profile MMU modes". The lower bits of
3087 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3088 * the same for any particular CPU.
3089 * Variables of type ARMMUIdx are always full values, and the core
3090 * index values are in variables of type 'int'.
3091 *
3092 * Our enumeration includes at the end some entries which are not "true"
3093 * mmu_idx values in that they don't have corresponding TLBs and are only
3094 * valid for doing slow path page table walks.
3095 *
3096 * The constant names here are patterned after the general style of the names
3097 * of the AT/ATS operations.
3098 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3099 * For M profile we arrange them to have a bit for priv, a bit for negpri
3100 * and a bit for secure.
3101 */
3102#define ARM_MMU_IDX_A     0x10  /* A profile */
3103#define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3104#define ARM_MMU_IDX_M     0x40  /* M profile */
3105
3106/* Meanings of the bits for A profile mmu idx values */
3107#define ARM_MMU_IDX_A_NS     0x8
3108
3109/* Meanings of the bits for M profile mmu idx values */
3110#define ARM_MMU_IDX_M_PRIV   0x1
3111#define ARM_MMU_IDX_M_NEGPRI 0x2
3112#define ARM_MMU_IDX_M_S      0x4  /* Secure */
3113
3114#define ARM_MMU_IDX_TYPE_MASK \
3115    (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3116#define ARM_MMU_IDX_COREIDX_MASK 0xf
3117
3118typedef enum ARMMMUIdx {
3119    /*
3120     * A-profile.
3121     */
3122    ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3123    ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3124    ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3125    ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3126    ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3127    ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3128    ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3129    ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3130
3131    ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3132    ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3133    ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3134    ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3135    ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3136    ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3137    ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3138
3139    /*
3140     * These are not allocated TLBs and are used only for AT system
3141     * instructions or for the first stage of an S12 page table walk.
3142     */
3143    ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3144    ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3145    ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3146    ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3147    ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3148    ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3149    /*
3150     * Not allocated a TLB: used only for second stage of an S12 page
3151     * table walk, or for descriptor loads during first stage of an S1
3152     * page table walk. Note that if we ever want to have a TLB for this
3153     * then various TLB flush insns which currently are no-ops or flush
3154     * only stage 1 MMU indexes will need to change to flush stage 2.
3155     */
3156    ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3157    ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3158
3159    /*
3160     * M-profile.
3161     */
3162    ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3163    ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3164    ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3165    ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3166    ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3167    ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3168    ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3169    ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3170} ARMMMUIdx;
3171
3172/*
3173 * Bit macros for the core-mmu-index values for each index,
3174 * for use when calling tlb_flush_by_mmuidx() and friends.
3175 */
3176#define TO_CORE_BIT(NAME) \
3177    ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3178
3179typedef enum ARMMMUIdxBit {
3180    TO_CORE_BIT(E10_0),
3181    TO_CORE_BIT(E20_0),
3182    TO_CORE_BIT(E10_1),
3183    TO_CORE_BIT(E10_1_PAN),
3184    TO_CORE_BIT(E2),
3185    TO_CORE_BIT(E20_2),
3186    TO_CORE_BIT(E20_2_PAN),
3187    TO_CORE_BIT(SE10_0),
3188    TO_CORE_BIT(SE20_0),
3189    TO_CORE_BIT(SE10_1),
3190    TO_CORE_BIT(SE20_2),
3191    TO_CORE_BIT(SE10_1_PAN),
3192    TO_CORE_BIT(SE20_2_PAN),
3193    TO_CORE_BIT(SE2),
3194    TO_CORE_BIT(SE3),
3195
3196    TO_CORE_BIT(MUser),
3197    TO_CORE_BIT(MPriv),
3198    TO_CORE_BIT(MUserNegPri),
3199    TO_CORE_BIT(MPrivNegPri),
3200    TO_CORE_BIT(MSUser),
3201    TO_CORE_BIT(MSPriv),
3202    TO_CORE_BIT(MSUserNegPri),
3203    TO_CORE_BIT(MSPrivNegPri),
3204} ARMMMUIdxBit;
3205
3206#undef TO_CORE_BIT
3207
3208#define MMU_USER_IDX 0
3209
3210/* Indexes used when registering address spaces with cpu_address_space_init */
3211typedef enum ARMASIdx {
3212    ARMASIdx_NS = 0,
3213    ARMASIdx_S = 1,
3214    ARMASIdx_TagNS = 2,
3215    ARMASIdx_TagS = 3,
3216} ARMASIdx;
3217
3218/* Return the Exception Level targeted by debug exceptions. */
3219static inline int arm_debug_target_el(CPUARMState *env)
3220{
3221    bool secure = arm_is_secure(env);
3222    bool route_to_el2 = false;
3223
3224    if (arm_is_el2_enabled(env)) {
3225        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3226                       env->cp15.mdcr_el2 & MDCR_TDE;
3227    }
3228
3229    if (route_to_el2) {
3230        return 2;
3231    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3232               !arm_el_is_aa64(env, 3) && secure) {
3233        return 3;
3234    } else {
3235        return 1;
3236    }
3237}
3238
3239static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3240{
3241    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3242     * CSSELR is RAZ/WI.
3243     */
3244    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3245}
3246
3247/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3248static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3249{
3250    int cur_el = arm_current_el(env);
3251    int debug_el;
3252
3253    if (cur_el == 3) {
3254        return false;
3255    }
3256
3257    /* MDCR_EL3.SDD disables debug events from Secure state */
3258    if (arm_is_secure_below_el3(env)
3259        && extract32(env->cp15.mdcr_el3, 16, 1)) {
3260        return false;
3261    }
3262
3263    /*
3264     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3265     * while not masking the (D)ebug bit in DAIF.
3266     */
3267    debug_el = arm_debug_target_el(env);
3268
3269    if (cur_el == debug_el) {
3270        return extract32(env->cp15.mdscr_el1, 13, 1)
3271            && !(env->daif & PSTATE_D);
3272    }
3273
3274    /* Otherwise the debug target needs to be a higher EL */
3275    return debug_el > cur_el;
3276}
3277
3278static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3279{
3280    int el = arm_current_el(env);
3281
3282    if (el == 0 && arm_el_is_aa64(env, 1)) {
3283        return aa64_generate_debug_exceptions(env);
3284    }
3285
3286    if (arm_is_secure(env)) {
3287        int spd;
3288
3289        if (el == 0 && (env->cp15.sder & 1)) {
3290            /* SDER.SUIDEN means debug exceptions from Secure EL0
3291             * are always enabled. Otherwise they are controlled by
3292             * SDCR.SPD like those from other Secure ELs.
3293             */
3294            return true;
3295        }
3296
3297        spd = extract32(env->cp15.mdcr_el3, 14, 2);
3298        switch (spd) {
3299        case 1:
3300            /* SPD == 0b01 is reserved, but behaves as 0b00. */
3301        case 0:
3302            /* For 0b00 we return true if external secure invasive debug
3303             * is enabled. On real hardware this is controlled by external
3304             * signals to the core. QEMU always permits debug, and behaves
3305             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3306             */
3307            return true;
3308        case 2:
3309            return false;
3310        case 3:
3311            return true;
3312        }
3313    }
3314
3315    return el != 2;
3316}
3317
3318/* Return true if debugging exceptions are currently enabled.
3319 * This corresponds to what in ARM ARM pseudocode would be
3320 *    if UsingAArch32() then
3321 *        return AArch32.GenerateDebugExceptions()
3322 *    else
3323 *        return AArch64.GenerateDebugExceptions()
3324 * We choose to push the if() down into this function for clarity,
3325 * since the pseudocode has it at all callsites except for the one in
3326 * CheckSoftwareStep(), where it is elided because both branches would
3327 * always return the same value.
3328 */
3329static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3330{
3331    if (env->aarch64) {
3332        return aa64_generate_debug_exceptions(env);
3333    } else {
3334        return aa32_generate_debug_exceptions(env);
3335    }
3336}
3337
3338/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3339 * implicitly means this always returns false in pre-v8 CPUs.)
3340 */
3341static inline bool arm_singlestep_active(CPUARMState *env)
3342{
3343    return extract32(env->cp15.mdscr_el1, 0, 1)
3344        && arm_el_is_aa64(env, arm_debug_target_el(env))
3345        && arm_generate_debug_exceptions(env);
3346}
3347
3348static inline bool arm_sctlr_b(CPUARMState *env)
3349{
3350    return
3351        /* We need not implement SCTLR.ITD in user-mode emulation, so
3352         * let linux-user ignore the fact that it conflicts with SCTLR_B.
3353         * This lets people run BE32 binaries with "-cpu any".
3354         */
3355#ifndef CONFIG_USER_ONLY
3356        !arm_feature(env, ARM_FEATURE_V7) &&
3357#endif
3358        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3359}
3360
3361uint64_t arm_sctlr(CPUARMState *env, int el);
3362
3363static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3364                                                  bool sctlr_b)
3365{
3366#ifdef CONFIG_USER_ONLY
3367    /*
3368     * In system mode, BE32 is modelled in line with the
3369     * architecture (as word-invariant big-endianness), where loads
3370     * and stores are done little endian but from addresses which
3371     * are adjusted by XORing with the appropriate constant. So the
3372     * endianness to use for the raw data access is not affected by
3373     * SCTLR.B.
3374     * In user mode, however, we model BE32 as byte-invariant
3375     * big-endianness (because user-only code cannot tell the
3376     * difference), and so we need to use a data access endianness
3377     * that depends on SCTLR.B.
3378     */
3379    if (sctlr_b) {
3380        return true;
3381    }
3382#endif
3383    /* In 32bit endianness is determined by looking at CPSR's E bit */
3384    return env->uncached_cpsr & CPSR_E;
3385}
3386
3387static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3388{
3389    return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3390}
3391
3392/* Return true if the processor is in big-endian mode. */
3393static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3394{
3395    if (!is_a64(env)) {
3396        return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3397    } else {
3398        int cur_el = arm_current_el(env);
3399        uint64_t sctlr = arm_sctlr(env, cur_el);
3400        return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3401    }
3402}
3403
3404typedef CPUARMState CPUArchState;
3405typedef ARMCPU ArchCPU;
3406
3407#include "exec/cpu-all.h"
3408
3409/*
3410 * We have more than 32-bits worth of state per TB, so we split the data
3411 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3412 * We collect these two parts in CPUARMTBFlags where they are named
3413 * flags and flags2 respectively.
3414 *
3415 * The flags that are shared between all execution modes, TBFLAG_ANY,
3416 * are stored in flags.  The flags that are specific to a given mode
3417 * are stores in flags2.  Since cs_base is sized on the configured
3418 * address size, flags2 always has 64-bits for A64, and a minimum of
3419 * 32-bits for A32 and M32.
3420 *
3421 * The bits for 32-bit A-profile and M-profile partially overlap:
3422 *
3423 *  31         23         11 10             0
3424 * +-------------+----------+----------------+
3425 * |             |          |   TBFLAG_A32   |
3426 * | TBFLAG_AM32 |          +-----+----------+
3427 * |             |                |TBFLAG_M32|
3428 * +-------------+----------------+----------+
3429 *  31         23                5 4        0
3430 *
3431 * Unless otherwise noted, these bits are cached in env->hflags.
3432 */
3433FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3434FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3435FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3436FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3437FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3438/* Target EL if we take a floating-point-disabled exception */
3439FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3440/* For A-profile only, target EL for debug exceptions.  */
3441FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3442/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3443FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3444
3445/*
3446 * Bit usage when in AArch32 state, both A- and M-profile.
3447 */
3448FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3449FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3450
3451/*
3452 * Bit usage when in AArch32 state, for A-profile only.
3453 */
3454FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3455FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3456/*
3457 * We store the bottom two bits of the CPAR as TB flags and handle
3458 * checks on the other bits at runtime. This shares the same bits as
3459 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3460 * Not cached, because VECLEN+VECSTRIDE are not cached.
3461 */
3462FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3463FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3464FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3465FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3466/*
3467 * Indicates whether cp register reads and writes by guest code should access
3468 * the secure or nonsecure bank of banked registers; note that this is not
3469 * the same thing as the current security state of the processor!
3470 */
3471FIELD(TBFLAG_A32, NS, 10, 1)
3472
3473/*
3474 * Bit usage when in AArch32 state, for M-profile only.
3475 */
3476/* Handler (ie not Thread) mode */
3477FIELD(TBFLAG_M32, HANDLER, 0, 1)
3478/* Whether we should generate stack-limit checks */
3479FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3480/* Set if FPCCR.LSPACT is set */
3481FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3482/* Set if we must create a new FP context */
3483FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3484/* Set if FPCCR.S does not match current security state */
3485FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3486
3487/*
3488 * Bit usage when in AArch64 state
3489 */
3490FIELD(TBFLAG_A64, TBII, 0, 2)
3491FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3492FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3493FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3494FIELD(TBFLAG_A64, BT, 9, 1)
3495FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3496FIELD(TBFLAG_A64, TBID, 12, 2)
3497FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3498FIELD(TBFLAG_A64, ATA, 15, 1)
3499FIELD(TBFLAG_A64, TCMA, 16, 2)
3500FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3501FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3502
3503/*
3504 * Helpers for using the above.
3505 */
3506#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3507    (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3508#define DP_TBFLAG_A64(DST, WHICH, VAL) \
3509    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3510#define DP_TBFLAG_A32(DST, WHICH, VAL) \
3511    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3512#define DP_TBFLAG_M32(DST, WHICH, VAL) \
3513    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3514#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3515    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3516
3517#define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3518#define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3519#define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3520#define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3521#define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3522
3523/**
3524 * cpu_mmu_index:
3525 * @env: The cpu environment
3526 * @ifetch: True for code access, false for data access.
3527 *
3528 * Return the core mmu index for the current translation regime.
3529 * This function is used by generic TCG code paths.
3530 */
3531static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3532{
3533    return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3534}
3535
3536static inline bool bswap_code(bool sctlr_b)
3537{
3538#ifdef CONFIG_USER_ONLY
3539    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3540     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3541     * would also end up as a mixed-endian mode with BE code, LE data.
3542     */
3543    return
3544#ifdef TARGET_WORDS_BIGENDIAN
3545        1 ^
3546#endif
3547        sctlr_b;
3548#else
3549    /* All code access in ARM is little endian, and there are no loaders
3550     * doing swaps that need to be reversed
3551     */
3552    return 0;
3553#endif
3554}
3555
3556#ifdef CONFIG_USER_ONLY
3557static inline bool arm_cpu_bswap_data(CPUARMState *env)
3558{
3559    return
3560#ifdef TARGET_WORDS_BIGENDIAN
3561       1 ^
3562#endif
3563       arm_cpu_data_is_big_endian(env);
3564}
3565#endif
3566
3567void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3568                          target_ulong *cs_base, uint32_t *flags);
3569
3570enum {
3571    QEMU_PSCI_CONDUIT_DISABLED = 0,
3572    QEMU_PSCI_CONDUIT_SMC = 1,
3573    QEMU_PSCI_CONDUIT_HVC = 2,
3574};
3575
3576#ifndef CONFIG_USER_ONLY
3577/* Return the address space index to use for a memory access */
3578static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3579{
3580    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3581}
3582
3583/* Return the AddressSpace to use for a memory access
3584 * (which depends on whether the access is S or NS, and whether
3585 * the board gave us a separate AddressSpace for S accesses).
3586 */
3587static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3588{
3589    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3590}
3591#endif
3592
3593/**
3594 * arm_register_pre_el_change_hook:
3595 * Register a hook function which will be called immediately before this
3596 * CPU changes exception level or mode. The hook function will be
3597 * passed a pointer to the ARMCPU and the opaque data pointer passed
3598 * to this function when the hook was registered.
3599 *
3600 * Note that if a pre-change hook is called, any registered post-change hooks
3601 * are guaranteed to subsequently be called.
3602 */
3603void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3604                                 void *opaque);
3605/**
3606 * arm_register_el_change_hook:
3607 * Register a hook function which will be called immediately after this
3608 * CPU changes exception level or mode. The hook function will be
3609 * passed a pointer to the ARMCPU and the opaque data pointer passed
3610 * to this function when the hook was registered.
3611 *
3612 * Note that any registered hooks registered here are guaranteed to be called
3613 * if pre-change hooks have been.
3614 */
3615void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3616        *opaque);
3617
3618/**
3619 * arm_rebuild_hflags:
3620 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3621 */
3622void arm_rebuild_hflags(CPUARMState *env);
3623
3624/**
3625 * aa32_vfp_dreg:
3626 * Return a pointer to the Dn register within env in 32-bit mode.
3627 */
3628static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3629{
3630    return &env->vfp.zregs[regno >> 1].d[regno & 1];
3631}
3632
3633/**
3634 * aa32_vfp_qreg:
3635 * Return a pointer to the Qn register within env in 32-bit mode.
3636 */
3637static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3638{
3639    return &env->vfp.zregs[regno].d[0];
3640}
3641
3642/**
3643 * aa64_vfp_qreg:
3644 * Return a pointer to the Qn register within env in 64-bit mode.
3645 */
3646static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3647{
3648    return &env->vfp.zregs[regno].d[0];
3649}
3650
3651/* Shared between translate-sve.c and sve_helper.c.  */
3652extern const uint64_t pred_esz_masks[4];
3653
3654/* Helper for the macros below, validating the argument type. */
3655static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3656{
3657    return x;
3658}
3659
3660/*
3661 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3662 * Using these should be a bit more self-documenting than using the
3663 * generic target bits directly.
3664 */
3665#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3666#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3667
3668/*
3669 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3670 */
3671#define PAGE_BTI  PAGE_TARGET_1
3672#define PAGE_MTE  PAGE_TARGET_2
3673
3674#ifdef TARGET_TAGGED_ADDRESSES
3675/**
3676 * cpu_untagged_addr:
3677 * @cs: CPU context
3678 * @x: tagged address
3679 *
3680 * Remove any address tag from @x.  This is explicitly related to the
3681 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3682 *
3683 * There should be a better place to put this, but we need this in
3684 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3685 */
3686static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3687{
3688    ARMCPU *cpu = ARM_CPU(cs);
3689    if (cpu->env.tagged_addr_enable) {
3690        /*
3691         * TBI is enabled for userspace but not kernelspace addresses.
3692         * Only clear the tag if bit 55 is clear.
3693         */
3694        x &= sextract64(x, 0, 56);
3695    }
3696    return x;
3697}
3698#endif
3699
3700/*
3701 * Naming convention for isar_feature functions:
3702 * Functions which test 32-bit ID registers should have _aa32_ in
3703 * their name. Functions which test 64-bit ID registers should have
3704 * _aa64_ in their name. These must only be used in code where we
3705 * know for certain that the CPU has AArch32 or AArch64 respectively
3706 * or where the correct answer for a CPU which doesn't implement that
3707 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3708 * system registers that are specific to that CPU state, for "should
3709 * we let this system register bit be set" tests where the 32-bit
3710 * flavour of the register doesn't have the bit, and so on).
3711 * Functions which simply ask "does this feature exist at all" have
3712 * _any_ in their name, and always return the logical OR of the _aa64_
3713 * and the _aa32_ function.
3714 */
3715
3716/*
3717 * 32-bit feature tests via id registers.
3718 */
3719static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3720{
3721    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3722}
3723
3724static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3725{
3726    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3727}
3728
3729static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3730{
3731    /* (M-profile) low-overhead loops and branch future */
3732    return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3733}
3734
3735static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3736{
3737    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3738}
3739
3740static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3741{
3742    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3743}
3744
3745static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3746{
3747    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3748}
3749
3750static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3751{
3752    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3753}
3754
3755static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3756{
3757    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3758}
3759
3760static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3761{
3762    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3763}
3764
3765static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3766{
3767    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3768}
3769
3770static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3771{
3772    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3773}
3774
3775static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3776{
3777    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3778}
3779
3780static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3781{
3782    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3783}
3784
3785static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3786{
3787    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3788}
3789
3790static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3791{
3792    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3793}
3794
3795static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3796{
3797    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3798}
3799
3800static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3801{
3802    return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3803}
3804
3805static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3806{
3807    return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3808}
3809
3810static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3811{
3812    return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3813}
3814
3815static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3816{
3817    return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3818}
3819
3820static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3821{
3822    /*
3823     * Return true if M-profile state handling insns
3824     * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3825     */
3826    return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3827}
3828
3829static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3830{
3831    /* Sadly this is encoded differently for A-profile and M-profile */
3832    if (isar_feature_aa32_mprofile(id)) {
3833        return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3834    } else {
3835        return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3836    }
3837}
3838
3839static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3840{
3841    /*
3842     * Return true if MVE is supported (either integer or floating point).
3843     * We must check for M-profile as the MVFR1 field means something
3844     * else for A-profile.
3845     */
3846    return isar_feature_aa32_mprofile(id) &&
3847        FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3848}
3849
3850static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3851{
3852    /*
3853     * Return true if MVE is supported (either integer or floating point).
3854     * We must check for M-profile as the MVFR1 field means something
3855     * else for A-profile.
3856     */
3857    return isar_feature_aa32_mprofile(id) &&
3858        FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3859}
3860
3861static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3862{
3863    /*
3864     * Return true if either VFP or SIMD is implemented.
3865     * In this case, a minimum of VFP w/ D0-D15.
3866     */
3867    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3868}
3869
3870static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3871{
3872    /* Return true if D16-D31 are implemented */
3873    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3874}
3875
3876static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3877{
3878    return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3879}
3880
3881static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3882{
3883    /* Return true if CPU supports single precision floating point, VFPv2 */
3884    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3885}
3886
3887static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3888{
3889    /* Return true if CPU supports single precision floating point, VFPv3 */
3890    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3891}
3892
3893static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3894{
3895    /* Return true if CPU supports double precision floating point, VFPv2 */
3896    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3897}
3898
3899static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3900{
3901    /* Return true if CPU supports double precision floating point, VFPv3 */
3902    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3903}
3904
3905static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3906{
3907    return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3908}
3909
3910/*
3911 * We always set the FP and SIMD FP16 fields to indicate identical
3912 * levels of support (assuming SIMD is implemented at all), so
3913 * we only need one set of accessors.
3914 */
3915static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3916{
3917    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3918}
3919
3920static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3921{
3922    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3923}
3924
3925/*
3926 * Note that this ID register field covers both VFP and Neon FMAC,
3927 * so should usually be tested in combination with some other
3928 * check that confirms the presence of whichever of VFP or Neon is
3929 * relevant, to avoid accidentally enabling a Neon feature on
3930 * a VFP-no-Neon core or vice-versa.
3931 */
3932static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3933{
3934    return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3935}
3936
3937static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3938{
3939    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3940}
3941
3942static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3943{
3944    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3945}
3946
3947static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3948{
3949    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3950}
3951
3952static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3953{
3954    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3955}
3956
3957static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3958{
3959    return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3960}
3961
3962static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3963{
3964    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3965}
3966
3967static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3968{
3969    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3970}
3971
3972static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3973{
3974    /* 0xf means "non-standard IMPDEF PMU" */
3975    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3976        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3977}
3978
3979static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3980{
3981    /* 0xf means "non-standard IMPDEF PMU" */
3982    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3983        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3984}
3985
3986static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3987{
3988    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3989}
3990
3991static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3992{
3993    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3994}
3995
3996static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3997{
3998    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3999}
4000
4001static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
4002{
4003    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
4004}
4005
4006static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
4007{
4008    return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
4009}
4010
4011static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
4012{
4013    return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
4014}
4015
4016/*
4017 * 64-bit feature tests via id registers.
4018 */
4019static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
4020{
4021    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
4022}
4023
4024static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
4025{
4026    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
4027}
4028
4029static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
4030{
4031    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
4032}
4033
4034static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
4035{
4036    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
4037}
4038
4039static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
4040{
4041    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
4042}
4043
4044static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
4045{
4046    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
4047}
4048
4049static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
4050{
4051    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
4052}
4053
4054static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
4055{
4056    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4057}
4058
4059static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4060{
4061    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4062}
4063
4064static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4065{
4066    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4067}
4068
4069static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4070{
4071    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4072}
4073
4074static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4075{
4076    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4077}
4078
4079static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4080{
4081    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4082}
4083
4084static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4085{
4086    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4087}
4088
4089static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4090{
4091    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4092}
4093
4094static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4095{
4096    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4097}
4098
4099static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4100{
4101    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4102}
4103
4104static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4105{
4106    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4107}
4108
4109static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4110{
4111    /*
4112     * Return true if any form of pauth is enabled, as this
4113     * predicate controls migration of the 128-bit keys.
4114     */
4115    return (id->id_aa64isar1 &
4116            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4117             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4118             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4119             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4120}
4121
4122static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4123{
4124    /*
4125     * Return true if pauth is enabled with the architected QARMA algorithm.
4126     * QEMU will always set APA+GPA to the same value.
4127     */
4128    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4129}
4130
4131static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
4132{
4133    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
4134}
4135
4136static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
4137{
4138    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
4139}
4140
4141static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4142{
4143    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4144}
4145
4146static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4147{
4148    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4149}
4150
4151static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4152{
4153    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4154}
4155
4156static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4157{
4158    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4159}
4160
4161static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4162{
4163    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4164}
4165
4166static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
4167{
4168    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
4169}
4170
4171static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4172{
4173    /* We always set the AdvSIMD and FP fields identically.  */
4174    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4175}
4176
4177static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4178{
4179    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4180    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4181}
4182
4183static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4184{
4185    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4186}
4187
4188static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4189{
4190    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4191}
4192
4193static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4194{
4195    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4196}
4197
4198static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4199{
4200    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4201}
4202
4203static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4204{
4205    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4206}
4207
4208static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4209{
4210    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4211}
4212
4213static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4214{
4215    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4216}
4217
4218static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4219{
4220    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4221}
4222
4223static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4224{
4225    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4226}
4227
4228static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4229{
4230    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4231}
4232
4233static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4234{
4235    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4236}
4237
4238static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4239{
4240    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4241}
4242
4243static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4244{
4245    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4246}
4247
4248static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4249{
4250    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4251        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4252}
4253
4254static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4255{
4256    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4257        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4258}
4259
4260static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4261{
4262    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4263}
4264
4265static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4266{
4267    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4268}
4269
4270static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4271{
4272    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4273}
4274
4275static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4276{
4277    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4278}
4279
4280static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4281{
4282    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4283}
4284
4285static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4286{
4287    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4288}
4289
4290static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4291{
4292    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4293}
4294
4295static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4296{
4297    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4298}
4299
4300static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4301{
4302    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4303}
4304
4305static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4306{
4307    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4308}
4309
4310static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4311{
4312    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4313}
4314
4315static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4316{
4317    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4318}
4319
4320static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4321{
4322    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4323}
4324
4325static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4326{
4327    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4328}
4329
4330static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4331{
4332    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4333}
4334
4335static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4336{
4337    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4338}
4339
4340static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4341{
4342    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4343}
4344
4345/*
4346 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4347 */
4348static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4349{
4350    return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4351}
4352
4353static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4354{
4355    return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4356}
4357
4358static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4359{
4360    return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4361}
4362
4363static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4364{
4365    return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4366}
4367
4368static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4369{
4370    return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4371}
4372
4373static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4374{
4375    return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4376}
4377
4378/*
4379 * Forward to the above feature tests given an ARMCPU pointer.
4380 */
4381#define cpu_isar_feature(name, cpu) \
4382    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4383
4384#endif
4385