qemu/target/arm/helper.c
<<
>>
Prefs
   1/*
   2 * ARM generic helpers.
   3 *
   4 * This code is licensed under the GNU GPL v2 or later.
   5 *
   6 * SPDX-License-Identifier: GPL-2.0-or-later
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "qemu/units.h"
  11#include "target/arm/idau.h"
  12#include "trace.h"
  13#include "cpu.h"
  14#include "internals.h"
  15#include "exec/gdbstub.h"
  16#include "exec/helper-proto.h"
  17#include "qemu/host-utils.h"
  18#include "qemu/main-loop.h"
  19#include "qemu/bitops.h"
  20#include "qemu/crc32c.h"
  21#include "qemu/qemu-print.h"
  22#include "exec/exec-all.h"
  23#include <zlib.h> /* For crc32 */
  24#include "hw/irq.h"
  25#include "semihosting/semihost.h"
  26#include "sysemu/cpus.h"
  27#include "sysemu/cpu-timers.h"
  28#include "sysemu/kvm.h"
  29#include "sysemu/tcg.h"
  30#include "qemu/range.h"
  31#include "qapi/qapi-commands-machine-target.h"
  32#include "qapi/error.h"
  33#include "qemu/guest-random.h"
  34#ifdef CONFIG_TCG
  35#include "arm_ldst.h"
  36#include "exec/cpu_ldst.h"
  37#include "semihosting/common-semi.h"
  38#endif
  39
  40#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
  41#define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
  42
  43#ifndef CONFIG_USER_ONLY
  44
  45static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
  46                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
  47                               bool s1_is_el0,
  48                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
  49                               target_ulong *page_size_ptr,
  50                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
  51    __attribute__((nonnull));
  52#endif
  53
  54static void switch_mode(CPUARMState *env, int mode);
  55static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
  56
  57static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
  58{
  59    ARMCPU *cpu = env_archcpu(env);
  60    int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
  61
  62    /* VFP data registers are always little-endian.  */
  63    if (reg < nregs) {
  64        return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
  65    }
  66    if (arm_feature(env, ARM_FEATURE_NEON)) {
  67        /* Aliases for Q regs.  */
  68        nregs += 16;
  69        if (reg < nregs) {
  70            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
  71            return gdb_get_reg128(buf, q[0], q[1]);
  72        }
  73    }
  74    switch (reg - nregs) {
  75    case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
  76    case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
  77    case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
  78    }
  79    return 0;
  80}
  81
  82static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
  83{
  84    ARMCPU *cpu = env_archcpu(env);
  85    int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
  86
  87    if (reg < nregs) {
  88        *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
  89        return 8;
  90    }
  91    if (arm_feature(env, ARM_FEATURE_NEON)) {
  92        nregs += 16;
  93        if (reg < nregs) {
  94            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
  95            q[0] = ldq_le_p(buf);
  96            q[1] = ldq_le_p(buf + 8);
  97            return 16;
  98        }
  99    }
 100    switch (reg - nregs) {
 101    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
 102    case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
 103    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
 104    }
 105    return 0;
 106}
 107
 108static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
 109{
 110    switch (reg) {
 111    case 0 ... 31:
 112    {
 113        /* 128 bit FP register - quads are in LE order */
 114        uint64_t *q = aa64_vfp_qreg(env, reg);
 115        return gdb_get_reg128(buf, q[1], q[0]);
 116    }
 117    case 32:
 118        /* FPSR */
 119        return gdb_get_reg32(buf, vfp_get_fpsr(env));
 120    case 33:
 121        /* FPCR */
 122        return gdb_get_reg32(buf,vfp_get_fpcr(env));
 123    default:
 124        return 0;
 125    }
 126}
 127
 128static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 129{
 130    switch (reg) {
 131    case 0 ... 31:
 132        /* 128 bit FP register */
 133        {
 134            uint64_t *q = aa64_vfp_qreg(env, reg);
 135            q[0] = ldq_le_p(buf);
 136            q[1] = ldq_le_p(buf + 8);
 137            return 16;
 138        }
 139    case 32:
 140        /* FPSR */
 141        vfp_set_fpsr(env, ldl_p(buf));
 142        return 4;
 143    case 33:
 144        /* FPCR */
 145        vfp_set_fpcr(env, ldl_p(buf));
 146        return 4;
 147    default:
 148        return 0;
 149    }
 150}
 151
 152static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
 153{
 154    assert(ri->fieldoffset);
 155    if (cpreg_field_is_64bit(ri)) {
 156        return CPREG_FIELD64(env, ri);
 157    } else {
 158        return CPREG_FIELD32(env, ri);
 159    }
 160}
 161
 162static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 163                      uint64_t value)
 164{
 165    assert(ri->fieldoffset);
 166    if (cpreg_field_is_64bit(ri)) {
 167        CPREG_FIELD64(env, ri) = value;
 168    } else {
 169        CPREG_FIELD32(env, ri) = value;
 170    }
 171}
 172
 173static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
 174{
 175    return (char *)env + ri->fieldoffset;
 176}
 177
 178uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
 179{
 180    /* Raw read of a coprocessor register (as needed for migration, etc). */
 181    if (ri->type & ARM_CP_CONST) {
 182        return ri->resetvalue;
 183    } else if (ri->raw_readfn) {
 184        return ri->raw_readfn(env, ri);
 185    } else if (ri->readfn) {
 186        return ri->readfn(env, ri);
 187    } else {
 188        return raw_read(env, ri);
 189    }
 190}
 191
 192static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
 193                             uint64_t v)
 194{
 195    /* Raw write of a coprocessor register (as needed for migration, etc).
 196     * Note that constant registers are treated as write-ignored; the
 197     * caller should check for success by whether a readback gives the
 198     * value written.
 199     */
 200    if (ri->type & ARM_CP_CONST) {
 201        return;
 202    } else if (ri->raw_writefn) {
 203        ri->raw_writefn(env, ri, v);
 204    } else if (ri->writefn) {
 205        ri->writefn(env, ri, v);
 206    } else {
 207        raw_write(env, ri, v);
 208    }
 209}
 210
 211/**
 212 * arm_get/set_gdb_*: get/set a gdb register
 213 * @env: the CPU state
 214 * @buf: a buffer to copy to/from
 215 * @reg: register number (offset from start of group)
 216 *
 217 * We return the number of bytes copied
 218 */
 219
 220static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
 221{
 222    ARMCPU *cpu = env_archcpu(env);
 223    const ARMCPRegInfo *ri;
 224    uint32_t key;
 225
 226    key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
 227    ri = get_arm_cp_reginfo(cpu->cp_regs, key);
 228    if (ri) {
 229        if (cpreg_field_is_64bit(ri)) {
 230            return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
 231        } else {
 232            return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
 233        }
 234    }
 235    return 0;
 236}
 237
 238static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
 239{
 240    return 0;
 241}
 242
 243#ifdef TARGET_AARCH64
 244static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
 245{
 246    ARMCPU *cpu = env_archcpu(env);
 247
 248    switch (reg) {
 249    /* The first 32 registers are the zregs */
 250    case 0 ... 31:
 251    {
 252        int vq, len = 0;
 253        for (vq = 0; vq < cpu->sve_max_vq; vq++) {
 254            len += gdb_get_reg128(buf,
 255                                  env->vfp.zregs[reg].d[vq * 2 + 1],
 256                                  env->vfp.zregs[reg].d[vq * 2]);
 257        }
 258        return len;
 259    }
 260    case 32:
 261        return gdb_get_reg32(buf, vfp_get_fpsr(env));
 262    case 33:
 263        return gdb_get_reg32(buf, vfp_get_fpcr(env));
 264    /* then 16 predicates and the ffr */
 265    case 34 ... 50:
 266    {
 267        int preg = reg - 34;
 268        int vq, len = 0;
 269        for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
 270            len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
 271        }
 272        return len;
 273    }
 274    case 51:
 275    {
 276        /*
 277         * We report in Vector Granules (VG) which is 64bit in a Z reg
 278         * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
 279         */
 280        int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
 281        return gdb_get_reg64(buf, vq * 2);
 282    }
 283    default:
 284        /* gdbstub asked for something out our range */
 285        qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
 286        break;
 287    }
 288
 289    return 0;
 290}
 291
 292static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
 293{
 294    ARMCPU *cpu = env_archcpu(env);
 295
 296    /* The first 32 registers are the zregs */
 297    switch (reg) {
 298    /* The first 32 registers are the zregs */
 299    case 0 ... 31:
 300    {
 301        int vq, len = 0;
 302        uint64_t *p = (uint64_t *) buf;
 303        for (vq = 0; vq < cpu->sve_max_vq; vq++) {
 304            env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
 305            env->vfp.zregs[reg].d[vq * 2] = *p++;
 306            len += 16;
 307        }
 308        return len;
 309    }
 310    case 32:
 311        vfp_set_fpsr(env, *(uint32_t *)buf);
 312        return 4;
 313    case 33:
 314        vfp_set_fpcr(env, *(uint32_t *)buf);
 315        return 4;
 316    case 34 ... 50:
 317    {
 318        int preg = reg - 34;
 319        int vq, len = 0;
 320        uint64_t *p = (uint64_t *) buf;
 321        for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
 322            env->vfp.pregs[preg].p[vq / 4] = *p++;
 323            len += 8;
 324        }
 325        return len;
 326    }
 327    case 51:
 328        /* cannot set vg via gdbstub */
 329        return 0;
 330    default:
 331        /* gdbstub asked for something out our range */
 332        break;
 333    }
 334
 335    return 0;
 336}
 337#endif /* TARGET_AARCH64 */
 338
 339static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
 340{
 341   /* Return true if the regdef would cause an assertion if you called
 342    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
 343    * program bug for it not to have the NO_RAW flag).
 344    * NB that returning false here doesn't necessarily mean that calling
 345    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
 346    * read/write access functions which are safe for raw use" from "has
 347    * read/write access functions which have side effects but has forgotten
 348    * to provide raw access functions".
 349    * The tests here line up with the conditions in read/write_raw_cp_reg()
 350    * and assertions in raw_read()/raw_write().
 351    */
 352    if ((ri->type & ARM_CP_CONST) ||
 353        ri->fieldoffset ||
 354        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
 355        return false;
 356    }
 357    return true;
 358}
 359
 360bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
 361{
 362    /* Write the coprocessor state from cpu->env to the (index,value) list. */
 363    int i;
 364    bool ok = true;
 365
 366    for (i = 0; i < cpu->cpreg_array_len; i++) {
 367        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 368        const ARMCPRegInfo *ri;
 369        uint64_t newval;
 370
 371        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 372        if (!ri) {
 373            ok = false;
 374            continue;
 375        }
 376        if (ri->type & ARM_CP_NO_RAW) {
 377            continue;
 378        }
 379
 380        newval = read_raw_cp_reg(&cpu->env, ri);
 381        if (kvm_sync) {
 382            /*
 383             * Only sync if the previous list->cpustate sync succeeded.
 384             * Rather than tracking the success/failure state for every
 385             * item in the list, we just recheck "does the raw write we must
 386             * have made in write_list_to_cpustate() read back OK" here.
 387             */
 388            uint64_t oldval = cpu->cpreg_values[i];
 389
 390            if (oldval == newval) {
 391                continue;
 392            }
 393
 394            write_raw_cp_reg(&cpu->env, ri, oldval);
 395            if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
 396                continue;
 397            }
 398
 399            write_raw_cp_reg(&cpu->env, ri, newval);
 400        }
 401        cpu->cpreg_values[i] = newval;
 402    }
 403    return ok;
 404}
 405
 406bool write_list_to_cpustate(ARMCPU *cpu)
 407{
 408    int i;
 409    bool ok = true;
 410
 411    for (i = 0; i < cpu->cpreg_array_len; i++) {
 412        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 413        uint64_t v = cpu->cpreg_values[i];
 414        const ARMCPRegInfo *ri;
 415
 416        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 417        if (!ri) {
 418            ok = false;
 419            continue;
 420        }
 421        if (ri->type & ARM_CP_NO_RAW) {
 422            continue;
 423        }
 424        /* Write value and confirm it reads back as written
 425         * (to catch read-only registers and partially read-only
 426         * registers where the incoming migration value doesn't match)
 427         */
 428        write_raw_cp_reg(&cpu->env, ri, v);
 429        if (read_raw_cp_reg(&cpu->env, ri) != v) {
 430            ok = false;
 431        }
 432    }
 433    return ok;
 434}
 435
 436static void add_cpreg_to_list(gpointer key, gpointer opaque)
 437{
 438    ARMCPU *cpu = opaque;
 439    uint64_t regidx;
 440    const ARMCPRegInfo *ri;
 441
 442    regidx = *(uint32_t *)key;
 443    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 444
 445    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 446        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 447        /* The value array need not be initialized at this point */
 448        cpu->cpreg_array_len++;
 449    }
 450}
 451
 452static void count_cpreg(gpointer key, gpointer opaque)
 453{
 454    ARMCPU *cpu = opaque;
 455    uint64_t regidx;
 456    const ARMCPRegInfo *ri;
 457
 458    regidx = *(uint32_t *)key;
 459    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 460
 461    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 462        cpu->cpreg_array_len++;
 463    }
 464}
 465
 466static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 467{
 468    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
 469    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
 470
 471    if (aidx > bidx) {
 472        return 1;
 473    }
 474    if (aidx < bidx) {
 475        return -1;
 476    }
 477    return 0;
 478}
 479
 480void init_cpreg_list(ARMCPU *cpu)
 481{
 482    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
 483     * Note that we require cpreg_tuples[] to be sorted by key ID.
 484     */
 485    GList *keys;
 486    int arraylen;
 487
 488    keys = g_hash_table_get_keys(cpu->cp_regs);
 489    keys = g_list_sort(keys, cpreg_key_compare);
 490
 491    cpu->cpreg_array_len = 0;
 492
 493    g_list_foreach(keys, count_cpreg, cpu);
 494
 495    arraylen = cpu->cpreg_array_len;
 496    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 497    cpu->cpreg_values = g_new(uint64_t, arraylen);
 498    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 499    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 500    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 501    cpu->cpreg_array_len = 0;
 502
 503    g_list_foreach(keys, add_cpreg_to_list, cpu);
 504
 505    assert(cpu->cpreg_array_len == arraylen);
 506
 507    g_list_free(keys);
 508}
 509
 510/*
 511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
 512 */
 513static CPAccessResult access_el3_aa32ns(CPUARMState *env,
 514                                        const ARMCPRegInfo *ri,
 515                                        bool isread)
 516{
 517    if (!is_a64(env) && arm_current_el(env) == 3 &&
 518        arm_is_secure_below_el3(env)) {
 519        return CP_ACCESS_TRAP_UNCATEGORIZED;
 520    }
 521    return CP_ACCESS_OK;
 522}
 523
 524/* Some secure-only AArch32 registers trap to EL3 if used from
 525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 527 * We assume that the .access field is set to PL1_RW.
 528 */
 529static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
 530                                            const ARMCPRegInfo *ri,
 531                                            bool isread)
 532{
 533    if (arm_current_el(env) == 3) {
 534        return CP_ACCESS_OK;
 535    }
 536    if (arm_is_secure_below_el3(env)) {
 537        if (env->cp15.scr_el3 & SCR_EEL2) {
 538            return CP_ACCESS_TRAP_EL2;
 539        }
 540        return CP_ACCESS_TRAP_EL3;
 541    }
 542    /* This will be EL1 NS and EL2 NS, which just UNDEF */
 543    return CP_ACCESS_TRAP_UNCATEGORIZED;
 544}
 545
 546static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
 547{
 548    return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
 549}
 550
 551/* Check for traps to "powerdown debug" registers, which are controlled
 552 * by MDCR.TDOSA
 553 */
 554static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 555                                   bool isread)
 556{
 557    int el = arm_current_el(env);
 558    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 559    bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
 560        (arm_hcr_el2_eff(env) & HCR_TGE);
 561
 562    if (el < 2 && mdcr_el2_tdosa) {
 563        return CP_ACCESS_TRAP_EL2;
 564    }
 565    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 566        return CP_ACCESS_TRAP_EL3;
 567    }
 568    return CP_ACCESS_OK;
 569}
 570
 571/* Check for traps to "debug ROM" registers, which are controlled
 572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 573 */
 574static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 575                                  bool isread)
 576{
 577    int el = arm_current_el(env);
 578    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 579    bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
 580        (arm_hcr_el2_eff(env) & HCR_TGE);
 581
 582    if (el < 2 && mdcr_el2_tdra) {
 583        return CP_ACCESS_TRAP_EL2;
 584    }
 585    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 586        return CP_ACCESS_TRAP_EL3;
 587    }
 588    return CP_ACCESS_OK;
 589}
 590
 591/* Check for traps to general debug registers, which are controlled
 592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 593 */
 594static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 595                                  bool isread)
 596{
 597    int el = arm_current_el(env);
 598    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 599    bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
 600        (arm_hcr_el2_eff(env) & HCR_TGE);
 601
 602    if (el < 2 && mdcr_el2_tda) {
 603        return CP_ACCESS_TRAP_EL2;
 604    }
 605    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 606        return CP_ACCESS_TRAP_EL3;
 607    }
 608    return CP_ACCESS_OK;
 609}
 610
 611/* Check for traps to performance monitor registers, which are controlled
 612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 613 */
 614static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
 615                                 bool isread)
 616{
 617    int el = arm_current_el(env);
 618    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 619
 620    if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
 621        return CP_ACCESS_TRAP_EL2;
 622    }
 623    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 624        return CP_ACCESS_TRAP_EL3;
 625    }
 626    return CP_ACCESS_OK;
 627}
 628
 629/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
 630static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
 631                                      bool isread)
 632{
 633    if (arm_current_el(env) == 1) {
 634        uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
 635        if (arm_hcr_el2_eff(env) & trap) {
 636            return CP_ACCESS_TRAP_EL2;
 637        }
 638    }
 639    return CP_ACCESS_OK;
 640}
 641
 642/* Check for traps from EL1 due to HCR_EL2.TSW.  */
 643static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
 644                                 bool isread)
 645{
 646    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
 647        return CP_ACCESS_TRAP_EL2;
 648    }
 649    return CP_ACCESS_OK;
 650}
 651
 652/* Check for traps from EL1 due to HCR_EL2.TACR.  */
 653static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
 654                                  bool isread)
 655{
 656    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
 657        return CP_ACCESS_TRAP_EL2;
 658    }
 659    return CP_ACCESS_OK;
 660}
 661
 662/* Check for traps from EL1 due to HCR_EL2.TTLB. */
 663static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
 664                                  bool isread)
 665{
 666    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
 667        return CP_ACCESS_TRAP_EL2;
 668    }
 669    return CP_ACCESS_OK;
 670}
 671
 672static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 673{
 674    ARMCPU *cpu = env_archcpu(env);
 675
 676    raw_write(env, ri, value);
 677    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
 678}
 679
 680static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 681{
 682    ARMCPU *cpu = env_archcpu(env);
 683
 684    if (raw_read(env, ri) != value) {
 685        /* Unlike real hardware the qemu TLB uses virtual addresses,
 686         * not modified virtual addresses, so this causes a TLB flush.
 687         */
 688        tlb_flush(CPU(cpu));
 689        raw_write(env, ri, value);
 690    }
 691}
 692
 693static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 694                             uint64_t value)
 695{
 696    ARMCPU *cpu = env_archcpu(env);
 697
 698    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
 699        && !extended_addresses_enabled(env)) {
 700        /* For VMSA (when not using the LPAE long descriptor page table
 701         * format) this register includes the ASID, so do a TLB flush.
 702         * For PMSA it is purely a process ID and no action is needed.
 703         */
 704        tlb_flush(CPU(cpu));
 705    }
 706    raw_write(env, ri, value);
 707}
 708
 709/* IS variants of TLB operations must affect all cores */
 710static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 711                             uint64_t value)
 712{
 713    CPUState *cs = env_cpu(env);
 714
 715    tlb_flush_all_cpus_synced(cs);
 716}
 717
 718static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 719                             uint64_t value)
 720{
 721    CPUState *cs = env_cpu(env);
 722
 723    tlb_flush_all_cpus_synced(cs);
 724}
 725
 726static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 727                             uint64_t value)
 728{
 729    CPUState *cs = env_cpu(env);
 730
 731    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 732}
 733
 734static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 735                             uint64_t value)
 736{
 737    CPUState *cs = env_cpu(env);
 738
 739    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 740}
 741
 742/*
 743 * Non-IS variants of TLB operations are upgraded to
 744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
 745 * force broadcast of these operations.
 746 */
 747static bool tlb_force_broadcast(CPUARMState *env)
 748{
 749    return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
 750}
 751
 752static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 753                          uint64_t value)
 754{
 755    /* Invalidate all (TLBIALL) */
 756    CPUState *cs = env_cpu(env);
 757
 758    if (tlb_force_broadcast(env)) {
 759        tlb_flush_all_cpus_synced(cs);
 760    } else {
 761        tlb_flush(cs);
 762    }
 763}
 764
 765static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 766                          uint64_t value)
 767{
 768    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 769    CPUState *cs = env_cpu(env);
 770
 771    value &= TARGET_PAGE_MASK;
 772    if (tlb_force_broadcast(env)) {
 773        tlb_flush_page_all_cpus_synced(cs, value);
 774    } else {
 775        tlb_flush_page(cs, value);
 776    }
 777}
 778
 779static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 780                           uint64_t value)
 781{
 782    /* Invalidate by ASID (TLBIASID) */
 783    CPUState *cs = env_cpu(env);
 784
 785    if (tlb_force_broadcast(env)) {
 786        tlb_flush_all_cpus_synced(cs);
 787    } else {
 788        tlb_flush(cs);
 789    }
 790}
 791
 792static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 793                           uint64_t value)
 794{
 795    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 796    CPUState *cs = env_cpu(env);
 797
 798    value &= TARGET_PAGE_MASK;
 799    if (tlb_force_broadcast(env)) {
 800        tlb_flush_page_all_cpus_synced(cs, value);
 801    } else {
 802        tlb_flush_page(cs, value);
 803    }
 804}
 805
 806static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
 807                               uint64_t value)
 808{
 809    CPUState *cs = env_cpu(env);
 810
 811    tlb_flush_by_mmuidx(cs,
 812                        ARMMMUIdxBit_E10_1 |
 813                        ARMMMUIdxBit_E10_1_PAN |
 814                        ARMMMUIdxBit_E10_0);
 815}
 816
 817static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 818                                  uint64_t value)
 819{
 820    CPUState *cs = env_cpu(env);
 821
 822    tlb_flush_by_mmuidx_all_cpus_synced(cs,
 823                                        ARMMMUIdxBit_E10_1 |
 824                                        ARMMMUIdxBit_E10_1_PAN |
 825                                        ARMMMUIdxBit_E10_0);
 826}
 827
 828
 829static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 830                              uint64_t value)
 831{
 832    CPUState *cs = env_cpu(env);
 833
 834    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
 835}
 836
 837static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 838                                 uint64_t value)
 839{
 840    CPUState *cs = env_cpu(env);
 841
 842    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
 843}
 844
 845static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 846                              uint64_t value)
 847{
 848    CPUState *cs = env_cpu(env);
 849    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 850
 851    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
 852}
 853
 854static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 855                                 uint64_t value)
 856{
 857    CPUState *cs = env_cpu(env);
 858    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 859
 860    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 861                                             ARMMMUIdxBit_E2);
 862}
 863
 864static const ARMCPRegInfo cp_reginfo[] = {
 865    /* Define the secure and non-secure FCSE identifier CP registers
 866     * separately because there is no secure bank in V8 (no _EL3).  This allows
 867     * the secure register to be properly reset and migrated. There is also no
 868     * v8 EL1 version of the register so the non-secure instance stands alone.
 869     */
 870    { .name = "FCSEIDR",
 871      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 872      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 873      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
 874      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 875    { .name = "FCSEIDR_S",
 876      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 877      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 878      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
 879      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 880    /* Define the secure and non-secure context identifier CP registers
 881     * separately because there is no secure bank in V8 (no _EL3).  This allows
 882     * the secure register to be properly reset and migrated.  In the
 883     * non-secure case, the 32-bit register will have reset and migration
 884     * disabled during registration as it is handled by the 64-bit instance.
 885     */
 886    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
 887      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 888      .access = PL1_RW, .accessfn = access_tvm_trvm,
 889      .secure = ARM_CP_SECSTATE_NS,
 890      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
 891      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 892    { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
 893      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 894      .access = PL1_RW, .accessfn = access_tvm_trvm,
 895      .secure = ARM_CP_SECSTATE_S,
 896      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
 897      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 898    REGINFO_SENTINEL
 899};
 900
 901static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 902    /* NB: Some of these registers exist in v8 but with more precise
 903     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
 904     */
 905    /* MMU Domain access control / MPU write buffer control */
 906    { .name = "DACR",
 907      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
 908      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
 909      .writefn = dacr_write, .raw_writefn = raw_write,
 910      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 911                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 912    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
 913     * For v6 and v5, these mappings are overly broad.
 914     */
 915    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
 916      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 917    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
 918      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 919    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
 920      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 921    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
 922      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 923    /* Cache maintenance ops; some of this space may be overridden later. */
 924    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 925      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 926      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 927    REGINFO_SENTINEL
 928};
 929
 930static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 931    /* Not all pre-v6 cores implemented this WFI, so this is slightly
 932     * over-broad.
 933     */
 934    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 935      .access = PL1_W, .type = ARM_CP_WFI },
 936    REGINFO_SENTINEL
 937};
 938
 939static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 940    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 941     * is UNPREDICTABLE; we choose to NOP as most implementations do).
 942     */
 943    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 944      .access = PL1_W, .type = ARM_CP_WFI },
 945    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 946     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 947     * OMAPCP will override this space.
 948     */
 949    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 950      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 951      .resetvalue = 0 },
 952    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 953      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 954      .resetvalue = 0 },
 955    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 956    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 957      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 958      .resetvalue = 0 },
 959    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
 960     * implementing it as RAZ means the "debug architecture version" bits
 961     * will read as a reserved value, which should cause Linux to not try
 962     * to use the debug hardware.
 963     */
 964    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 965      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 966    /* MMU TLB control. Note that the wildcarding means we cover not just
 967     * the unified TLB ops but also the dside/iside/inner-shareable variants.
 968     */
 969    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 970      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 971      .type = ARM_CP_NO_RAW },
 972    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 973      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 974      .type = ARM_CP_NO_RAW },
 975    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 976      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 977      .type = ARM_CP_NO_RAW },
 978    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 979      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 980      .type = ARM_CP_NO_RAW },
 981    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
 982      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
 983    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
 984      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
 985    REGINFO_SENTINEL
 986};
 987
 988static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 989                        uint64_t value)
 990{
 991    uint32_t mask = 0;
 992
 993    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
 994    if (!arm_feature(env, ARM_FEATURE_V8)) {
 995        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
 996         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
 997         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
 998         */
 999        if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000            /* VFP coprocessor: cp10 & cp11 [23:20] */
1001            mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1002
1003            if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004                /* ASEDIS [31] bit is RAO/WI */
1005                value |= (1 << 31);
1006            }
1007
1008            /* VFPv3 and upwards with NEON implement 32 double precision
1009             * registers (D0-D31).
1010             */
1011            if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013                value |= (1 << 30);
1014            }
1015        }
1016        value &= mask;
1017    }
1018
1019    /*
1020     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1022     */
1023    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025        value &= ~(0xf << 20);
1026        value |= env->cp15.cpacr_el1 & (0xf << 20);
1027    }
1028
1029    env->cp15.cpacr_el1 = value;
1030}
1031
1032static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033{
1034    /*
1035     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1037     */
1038    uint64_t value = env->cp15.cpacr_el1;
1039
1040    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042        value &= ~(0xf << 20);
1043    }
1044    return value;
1045}
1046
1047
1048static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1049{
1050    /* Call cpacr_write() so that we reset with the correct RAO bits set
1051     * for our CPU features.
1052     */
1053    cpacr_write(env, ri, 0);
1054}
1055
1056static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057                                   bool isread)
1058{
1059    if (arm_feature(env, ARM_FEATURE_V8)) {
1060        /* Check if CPACR accesses are to be trapped to EL2 */
1061        if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062            (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063            return CP_ACCESS_TRAP_EL2;
1064        /* Check if CPACR accesses are to be trapped to EL3 */
1065        } else if (arm_current_el(env) < 3 &&
1066                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067            return CP_ACCESS_TRAP_EL3;
1068        }
1069    }
1070
1071    return CP_ACCESS_OK;
1072}
1073
1074static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075                                  bool isread)
1076{
1077    /* Check if CPTR accesses are set to trap to EL3 */
1078    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079        return CP_ACCESS_TRAP_EL3;
1080    }
1081
1082    return CP_ACCESS_OK;
1083}
1084
1085static const ARMCPRegInfo v6_cp_reginfo[] = {
1086    /* prefetch by MVA in v6, NOP in v7 */
1087    { .name = "MVA_prefetch",
1088      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089      .access = PL1_W, .type = ARM_CP_NOP },
1090    /* We need to break the TB after ISB to execute self-modifying code
1091     * correctly and also to take any pending interrupts immediately.
1092     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1093     */
1094    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097      .access = PL0_W, .type = ARM_CP_NOP },
1098    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099      .access = PL0_W, .type = ARM_CP_NOP },
1100    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101      .access = PL1_RW, .accessfn = access_tvm_trvm,
1102      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103                             offsetof(CPUARMState, cp15.ifar_ns) },
1104      .resetvalue = 0, },
1105    /* Watchpoint Fault Address Register : should actually only be present
1106     * for 1136, 1176, 11MPCore.
1107     */
1108    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113      .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114    REGINFO_SENTINEL
1115};
1116
1117/* Definitions for the PMU registers */
1118#define PMCRN_MASK  0xf800
1119#define PMCRN_SHIFT 11
1120#define PMCRLC  0x40
1121#define PMCRDP  0x20
1122#define PMCRX   0x10
1123#define PMCRD   0x8
1124#define PMCRC   0x4
1125#define PMCRP   0x2
1126#define PMCRE   0x1
1127/*
1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129 * which can be written as 1 to trigger behaviour but which stay RAZ).
1130 */
1131#define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1132
1133#define PMXEVTYPER_P          0x80000000
1134#define PMXEVTYPER_U          0x40000000
1135#define PMXEVTYPER_NSK        0x20000000
1136#define PMXEVTYPER_NSU        0x10000000
1137#define PMXEVTYPER_NSH        0x08000000
1138#define PMXEVTYPER_M          0x04000000
1139#define PMXEVTYPER_MT         0x02000000
1140#define PMXEVTYPER_EVTCOUNT   0x0000ffff
1141#define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142                               PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143                               PMXEVTYPER_M | PMXEVTYPER_MT | \
1144                               PMXEVTYPER_EVTCOUNT)
1145
1146#define PMCCFILTR             0xf8000000
1147#define PMCCFILTR_M           PMXEVTYPER_M
1148#define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1149
1150static inline uint32_t pmu_num_counters(CPUARMState *env)
1151{
1152  return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1153}
1154
1155/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156static inline uint64_t pmu_counter_mask(CPUARMState *env)
1157{
1158  return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1159}
1160
1161typedef struct pm_event {
1162    uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163    /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164    bool (*supported)(CPUARMState *);
1165    /*
1166     * Retrieve the current count of the underlying event. The programmed
1167     * counters hold a difference from the return value from this function
1168     */
1169    uint64_t (*get_count)(CPUARMState *);
1170    /*
1171     * Return how many nanoseconds it will take (at a minimum) for count events
1172     * to occur. A negative value indicates the counter will never overflow, or
1173     * that the counter has otherwise arranged for the overflow bit to be set
1174     * and the PMU interrupt to be raised on overflow.
1175     */
1176    int64_t (*ns_per_count)(uint64_t);
1177} pm_event;
1178
1179static bool event_always_supported(CPUARMState *env)
1180{
1181    return true;
1182}
1183
1184static uint64_t swinc_get_count(CPUARMState *env)
1185{
1186    /*
1187     * SW_INCR events are written directly to the pmevcntr's by writes to
1188     * PMSWINC, so there is no underlying count maintained by the PMU itself
1189     */
1190    return 0;
1191}
1192
1193static int64_t swinc_ns_per(uint64_t ignored)
1194{
1195    return -1;
1196}
1197
1198/*
1199 * Return the underlying cycle count for the PMU cycle counters. If we're in
1200 * usermode, simply return 0.
1201 */
1202static uint64_t cycles_get_count(CPUARMState *env)
1203{
1204#ifndef CONFIG_USER_ONLY
1205    return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206                   ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207#else
1208    return cpu_get_host_ticks();
1209#endif
1210}
1211
1212#ifndef CONFIG_USER_ONLY
1213static int64_t cycles_ns_per(uint64_t cycles)
1214{
1215    return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1216}
1217
1218static bool instructions_supported(CPUARMState *env)
1219{
1220    return icount_enabled() == 1; /* Precise instruction counting */
1221}
1222
1223static uint64_t instructions_get_count(CPUARMState *env)
1224{
1225    return (uint64_t)icount_get_raw();
1226}
1227
1228static int64_t instructions_ns_per(uint64_t icount)
1229{
1230    return icount_to_ns((int64_t)icount);
1231}
1232#endif
1233
1234static bool pmu_8_1_events_supported(CPUARMState *env)
1235{
1236    /* For events which are supported in any v8.1 PMU */
1237    return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1238}
1239
1240static bool pmu_8_4_events_supported(CPUARMState *env)
1241{
1242    /* For events which are supported in any v8.1 PMU */
1243    return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1244}
1245
1246static uint64_t zero_event_get_count(CPUARMState *env)
1247{
1248    /* For events which on QEMU never fire, so their count is always zero */
1249    return 0;
1250}
1251
1252static int64_t zero_event_ns_per(uint64_t cycles)
1253{
1254    /* An event which never fires can never overflow */
1255    return -1;
1256}
1257
1258static const pm_event pm_events[] = {
1259    { .number = 0x000, /* SW_INCR */
1260      .supported = event_always_supported,
1261      .get_count = swinc_get_count,
1262      .ns_per_count = swinc_ns_per,
1263    },
1264#ifndef CONFIG_USER_ONLY
1265    { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266      .supported = instructions_supported,
1267      .get_count = instructions_get_count,
1268      .ns_per_count = instructions_ns_per,
1269    },
1270    { .number = 0x011, /* CPU_CYCLES, Cycle */
1271      .supported = event_always_supported,
1272      .get_count = cycles_get_count,
1273      .ns_per_count = cycles_ns_per,
1274    },
1275#endif
1276    { .number = 0x023, /* STALL_FRONTEND */
1277      .supported = pmu_8_1_events_supported,
1278      .get_count = zero_event_get_count,
1279      .ns_per_count = zero_event_ns_per,
1280    },
1281    { .number = 0x024, /* STALL_BACKEND */
1282      .supported = pmu_8_1_events_supported,
1283      .get_count = zero_event_get_count,
1284      .ns_per_count = zero_event_ns_per,
1285    },
1286    { .number = 0x03c, /* STALL */
1287      .supported = pmu_8_4_events_supported,
1288      .get_count = zero_event_get_count,
1289      .ns_per_count = zero_event_ns_per,
1290    },
1291};
1292
1293/*
1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295 * events (i.e. the statistical profiling extension), this implementation
1296 * should first be updated to something sparse instead of the current
1297 * supported_event_map[] array.
1298 */
1299#define MAX_EVENT_ID 0x3c
1300#define UNSUPPORTED_EVENT UINT16_MAX
1301static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1302
1303/*
1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305 * of ARM event numbers to indices in our pm_events array.
1306 *
1307 * Note: Events in the 0x40XX range are not currently supported.
1308 */
1309void pmu_init(ARMCPU *cpu)
1310{
1311    unsigned int i;
1312
1313    /*
1314     * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315     * events to them
1316     */
1317    for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318        supported_event_map[i] = UNSUPPORTED_EVENT;
1319    }
1320    cpu->pmceid0 = 0;
1321    cpu->pmceid1 = 0;
1322
1323    for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324        const pm_event *cnt = &pm_events[i];
1325        assert(cnt->number <= MAX_EVENT_ID);
1326        /* We do not currently support events in the 0x40xx range */
1327        assert(cnt->number <= 0x3f);
1328
1329        if (cnt->supported(&cpu->env)) {
1330            supported_event_map[cnt->number] = i;
1331            uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332            if (cnt->number & 0x20) {
1333                cpu->pmceid1 |= event_mask;
1334            } else {
1335                cpu->pmceid0 |= event_mask;
1336            }
1337        }
1338    }
1339}
1340
1341/*
1342 * Check at runtime whether a PMU event is supported for the current machine
1343 */
1344static bool event_supported(uint16_t number)
1345{
1346    if (number > MAX_EVENT_ID) {
1347        return false;
1348    }
1349    return supported_event_map[number] != UNSUPPORTED_EVENT;
1350}
1351
1352static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353                                   bool isread)
1354{
1355    /* Performance monitor registers user accessibility is controlled
1356     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357     * trapping to EL2 or EL3 for other accesses.
1358     */
1359    int el = arm_current_el(env);
1360    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1361
1362    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363        return CP_ACCESS_TRAP;
1364    }
1365    if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366        return CP_ACCESS_TRAP_EL2;
1367    }
1368    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369        return CP_ACCESS_TRAP_EL3;
1370    }
1371
1372    return CP_ACCESS_OK;
1373}
1374
1375static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376                                           const ARMCPRegInfo *ri,
1377                                           bool isread)
1378{
1379    /* ER: event counter read trap control */
1380    if (arm_feature(env, ARM_FEATURE_V8)
1381        && arm_current_el(env) == 0
1382        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383        && isread) {
1384        return CP_ACCESS_OK;
1385    }
1386
1387    return pmreg_access(env, ri, isread);
1388}
1389
1390static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391                                         const ARMCPRegInfo *ri,
1392                                         bool isread)
1393{
1394    /* SW: software increment write trap control */
1395    if (arm_feature(env, ARM_FEATURE_V8)
1396        && arm_current_el(env) == 0
1397        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398        && !isread) {
1399        return CP_ACCESS_OK;
1400    }
1401
1402    return pmreg_access(env, ri, isread);
1403}
1404
1405static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406                                        const ARMCPRegInfo *ri,
1407                                        bool isread)
1408{
1409    /* ER: event counter read trap control */
1410    if (arm_feature(env, ARM_FEATURE_V8)
1411        && arm_current_el(env) == 0
1412        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413        return CP_ACCESS_OK;
1414    }
1415
1416    return pmreg_access(env, ri, isread);
1417}
1418
1419static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420                                         const ARMCPRegInfo *ri,
1421                                         bool isread)
1422{
1423    /* CR: cycle counter read trap control */
1424    if (arm_feature(env, ARM_FEATURE_V8)
1425        && arm_current_el(env) == 0
1426        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427        && isread) {
1428        return CP_ACCESS_OK;
1429    }
1430
1431    return pmreg_access(env, ri, isread);
1432}
1433
1434/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435 * the current EL, security state, and register configuration.
1436 */
1437static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1438{
1439    uint64_t filter;
1440    bool e, p, u, nsk, nsu, nsh, m;
1441    bool enabled, prohibited, filtered;
1442    bool secure = arm_is_secure(env);
1443    int el = arm_current_el(env);
1444    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445    uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1446
1447    if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448        return false;
1449    }
1450
1451    if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452            (counter < hpmn || counter == 31)) {
1453        e = env->cp15.c9_pmcr & PMCRE;
1454    } else {
1455        e = mdcr_el2 & MDCR_HPME;
1456    }
1457    enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1458
1459    if (!secure) {
1460        if (el == 2 && (counter < hpmn || counter == 31)) {
1461            prohibited = mdcr_el2 & MDCR_HPMD;
1462        } else {
1463            prohibited = false;
1464        }
1465    } else {
1466        prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467           !(env->cp15.mdcr_el3 & MDCR_SPME);
1468    }
1469
1470    if (prohibited && counter == 31) {
1471        prohibited = env->cp15.c9_pmcr & PMCRDP;
1472    }
1473
1474    if (counter == 31) {
1475        filter = env->cp15.pmccfiltr_el0;
1476    } else {
1477        filter = env->cp15.c14_pmevtyper[counter];
1478    }
1479
1480    p   = filter & PMXEVTYPER_P;
1481    u   = filter & PMXEVTYPER_U;
1482    nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483    nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484    nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485    m   = arm_el_is_aa64(env, 1) &&
1486              arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1487
1488    if (el == 0) {
1489        filtered = secure ? u : u != nsu;
1490    } else if (el == 1) {
1491        filtered = secure ? p : p != nsk;
1492    } else if (el == 2) {
1493        filtered = !nsh;
1494    } else { /* EL3 */
1495        filtered = m != p;
1496    }
1497
1498    if (counter != 31) {
1499        /*
1500         * If not checking PMCCNTR, ensure the counter is setup to an event we
1501         * support
1502         */
1503        uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504        if (!event_supported(event)) {
1505            return false;
1506        }
1507    }
1508
1509    return enabled && !prohibited && !filtered;
1510}
1511
1512static void pmu_update_irq(CPUARMState *env)
1513{
1514    ARMCPU *cpu = env_archcpu(env);
1515    qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516            (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1517}
1518
1519/*
1520 * Ensure c15_ccnt is the guest-visible count so that operations such as
1521 * enabling/disabling the counter or filtering, modifying the count itself,
1522 * etc. can be done logically. This is essentially a no-op if the counter is
1523 * not enabled at the time of the call.
1524 */
1525static void pmccntr_op_start(CPUARMState *env)
1526{
1527    uint64_t cycles = cycles_get_count(env);
1528
1529    if (pmu_counter_enabled(env, 31)) {
1530        uint64_t eff_cycles = cycles;
1531        if (env->cp15.c9_pmcr & PMCRD) {
1532            /* Increment once every 64 processor clock cycles */
1533            eff_cycles /= 64;
1534        }
1535
1536        uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1537
1538        uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539                                 1ull << 63 : 1ull << 31;
1540        if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541            env->cp15.c9_pmovsr |= (1 << 31);
1542            pmu_update_irq(env);
1543        }
1544
1545        env->cp15.c15_ccnt = new_pmccntr;
1546    }
1547    env->cp15.c15_ccnt_delta = cycles;
1548}
1549
1550/*
1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553 * pmccntr_op_start.
1554 */
1555static void pmccntr_op_finish(CPUARMState *env)
1556{
1557    if (pmu_counter_enabled(env, 31)) {
1558#ifndef CONFIG_USER_ONLY
1559        /* Calculate when the counter will next overflow */
1560        uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561        if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562            remaining_cycles = (uint32_t)remaining_cycles;
1563        }
1564        int64_t overflow_in = cycles_ns_per(remaining_cycles);
1565
1566        if (overflow_in > 0) {
1567            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568                overflow_in;
1569            ARMCPU *cpu = env_archcpu(env);
1570            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1571        }
1572#endif
1573
1574        uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575        if (env->cp15.c9_pmcr & PMCRD) {
1576            /* Increment once every 64 processor clock cycles */
1577            prev_cycles /= 64;
1578        }
1579        env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1580    }
1581}
1582
1583static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1584{
1585
1586    uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587    uint64_t count = 0;
1588    if (event_supported(event)) {
1589        uint16_t event_idx = supported_event_map[event];
1590        count = pm_events[event_idx].get_count(env);
1591    }
1592
1593    if (pmu_counter_enabled(env, counter)) {
1594        uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1595
1596        if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597            env->cp15.c9_pmovsr |= (1 << counter);
1598            pmu_update_irq(env);
1599        }
1600        env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1601    }
1602    env->cp15.c14_pmevcntr_delta[counter] = count;
1603}
1604
1605static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1606{
1607    if (pmu_counter_enabled(env, counter)) {
1608#ifndef CONFIG_USER_ONLY
1609        uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610        uint16_t event_idx = supported_event_map[event];
1611        uint64_t delta = UINT32_MAX -
1612            (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613        int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1614
1615        if (overflow_in > 0) {
1616            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617                overflow_in;
1618            ARMCPU *cpu = env_archcpu(env);
1619            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1620        }
1621#endif
1622
1623        env->cp15.c14_pmevcntr_delta[counter] -=
1624            env->cp15.c14_pmevcntr[counter];
1625    }
1626}
1627
1628void pmu_op_start(CPUARMState *env)
1629{
1630    unsigned int i;
1631    pmccntr_op_start(env);
1632    for (i = 0; i < pmu_num_counters(env); i++) {
1633        pmevcntr_op_start(env, i);
1634    }
1635}
1636
1637void pmu_op_finish(CPUARMState *env)
1638{
1639    unsigned int i;
1640    pmccntr_op_finish(env);
1641    for (i = 0; i < pmu_num_counters(env); i++) {
1642        pmevcntr_op_finish(env, i);
1643    }
1644}
1645
1646void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1647{
1648    pmu_op_start(&cpu->env);
1649}
1650
1651void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1652{
1653    pmu_op_finish(&cpu->env);
1654}
1655
1656void arm_pmu_timer_cb(void *opaque)
1657{
1658    ARMCPU *cpu = opaque;
1659
1660    /*
1661     * Update all the counter values based on the current underlying counts,
1662     * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663     * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664     * counter may expire.
1665     */
1666    pmu_op_start(&cpu->env);
1667    pmu_op_finish(&cpu->env);
1668}
1669
1670static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671                       uint64_t value)
1672{
1673    pmu_op_start(env);
1674
1675    if (value & PMCRC) {
1676        /* The counter has been reset */
1677        env->cp15.c15_ccnt = 0;
1678    }
1679
1680    if (value & PMCRP) {
1681        unsigned int i;
1682        for (i = 0; i < pmu_num_counters(env); i++) {
1683            env->cp15.c14_pmevcntr[i] = 0;
1684        }
1685    }
1686
1687    env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688    env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1689
1690    pmu_op_finish(env);
1691}
1692
1693static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694                          uint64_t value)
1695{
1696    unsigned int i;
1697    for (i = 0; i < pmu_num_counters(env); i++) {
1698        /* Increment a counter's count iff: */
1699        if ((value & (1 << i)) && /* counter's bit is set */
1700                /* counter is enabled and not filtered */
1701                pmu_counter_enabled(env, i) &&
1702                /* counter is SW_INCR */
1703                (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704            pmevcntr_op_start(env, i);
1705
1706            /*
1707             * Detect if this write causes an overflow since we can't predict
1708             * PMSWINC overflows like we can for other events
1709             */
1710            uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1711
1712            if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713                env->cp15.c9_pmovsr |= (1 << i);
1714                pmu_update_irq(env);
1715            }
1716
1717            env->cp15.c14_pmevcntr[i] = new_pmswinc;
1718
1719            pmevcntr_op_finish(env, i);
1720        }
1721    }
1722}
1723
1724static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725{
1726    uint64_t ret;
1727    pmccntr_op_start(env);
1728    ret = env->cp15.c15_ccnt;
1729    pmccntr_op_finish(env);
1730    return ret;
1731}
1732
1733static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                         uint64_t value)
1735{
1736    /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739     * accessed.
1740     */
1741    env->cp15.c9_pmselr = value & 0x1f;
1742}
1743
1744static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745                        uint64_t value)
1746{
1747    pmccntr_op_start(env);
1748    env->cp15.c15_ccnt = value;
1749    pmccntr_op_finish(env);
1750}
1751
1752static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753                            uint64_t value)
1754{
1755    uint64_t cur_val = pmccntr_read(env, NULL);
1756
1757    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1758}
1759
1760static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761                            uint64_t value)
1762{
1763    pmccntr_op_start(env);
1764    env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765    pmccntr_op_finish(env);
1766}
1767
1768static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769                            uint64_t value)
1770{
1771    pmccntr_op_start(env);
1772    /* M is not accessible from AArch32 */
1773    env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774        (value & PMCCFILTR);
1775    pmccntr_op_finish(env);
1776}
1777
1778static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1779{
1780    /* M is not visible in AArch32 */
1781    return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1782}
1783
1784static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785                            uint64_t value)
1786{
1787    value &= pmu_counter_mask(env);
1788    env->cp15.c9_pmcnten |= value;
1789}
1790
1791static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                             uint64_t value)
1793{
1794    value &= pmu_counter_mask(env);
1795    env->cp15.c9_pmcnten &= ~value;
1796}
1797
1798static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                         uint64_t value)
1800{
1801    value &= pmu_counter_mask(env);
1802    env->cp15.c9_pmovsr &= ~value;
1803    pmu_update_irq(env);
1804}
1805
1806static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                         uint64_t value)
1808{
1809    value &= pmu_counter_mask(env);
1810    env->cp15.c9_pmovsr |= value;
1811    pmu_update_irq(env);
1812}
1813
1814static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                             uint64_t value, const uint8_t counter)
1816{
1817    if (counter == 31) {
1818        pmccfiltr_write(env, ri, value);
1819    } else if (counter < pmu_num_counters(env)) {
1820        pmevcntr_op_start(env, counter);
1821
1822        /*
1823         * If this counter's event type is changing, store the current
1824         * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825         * pmevcntr_op_finish has the correct baseline when it converts back to
1826         * a delta.
1827         */
1828        uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829            PMXEVTYPER_EVTCOUNT;
1830        uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831        if (old_event != new_event) {
1832            uint64_t count = 0;
1833            if (event_supported(new_event)) {
1834                uint16_t event_idx = supported_event_map[new_event];
1835                count = pm_events[event_idx].get_count(env);
1836            }
1837            env->cp15.c14_pmevcntr_delta[counter] = count;
1838        }
1839
1840        env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841        pmevcntr_op_finish(env, counter);
1842    }
1843    /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844     * PMSELR value is equal to or greater than the number of implemented
1845     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1846     */
1847}
1848
1849static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850                               const uint8_t counter)
1851{
1852    if (counter == 31) {
1853        return env->cp15.pmccfiltr_el0;
1854    } else if (counter < pmu_num_counters(env)) {
1855        return env->cp15.c14_pmevtyper[counter];
1856    } else {
1857      /*
1858       * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859       * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1860       */
1861        return 0;
1862    }
1863}
1864
1865static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866                              uint64_t value)
1867{
1868    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869    pmevtyper_write(env, ri, value, counter);
1870}
1871
1872static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873                               uint64_t value)
1874{
1875    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876    env->cp15.c14_pmevtyper[counter] = value;
1877
1878    /*
1879     * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880     * pmu_op_finish calls when loading saved state for a migration. Because
1881     * we're potentially updating the type of event here, the value written to
1882     * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883     * different counter type. Therefore, we need to set this value to the
1884     * current count for the counter type we're writing so that pmu_op_finish
1885     * has the correct count for its calculation.
1886     */
1887    uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888    if (event_supported(event)) {
1889        uint16_t event_idx = supported_event_map[event];
1890        env->cp15.c14_pmevcntr_delta[counter] =
1891            pm_events[event_idx].get_count(env);
1892    }
1893}
1894
1895static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1896{
1897    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898    return pmevtyper_read(env, ri, counter);
1899}
1900
1901static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902                             uint64_t value)
1903{
1904    pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1905}
1906
1907static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1908{
1909    return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1910}
1911
1912static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913                             uint64_t value, uint8_t counter)
1914{
1915    if (counter < pmu_num_counters(env)) {
1916        pmevcntr_op_start(env, counter);
1917        env->cp15.c14_pmevcntr[counter] = value;
1918        pmevcntr_op_finish(env, counter);
1919    }
1920    /*
1921     * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922     * are CONSTRAINED UNPREDICTABLE.
1923     */
1924}
1925
1926static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927                              uint8_t counter)
1928{
1929    if (counter < pmu_num_counters(env)) {
1930        uint64_t ret;
1931        pmevcntr_op_start(env, counter);
1932        ret = env->cp15.c14_pmevcntr[counter];
1933        pmevcntr_op_finish(env, counter);
1934        return ret;
1935    } else {
1936      /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937       * are CONSTRAINED UNPREDICTABLE. */
1938        return 0;
1939    }
1940}
1941
1942static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943                             uint64_t value)
1944{
1945    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946    pmevcntr_write(env, ri, value, counter);
1947}
1948
1949static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1950{
1951    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952    return pmevcntr_read(env, ri, counter);
1953}
1954
1955static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956                             uint64_t value)
1957{
1958    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959    assert(counter < pmu_num_counters(env));
1960    env->cp15.c14_pmevcntr[counter] = value;
1961    pmevcntr_write(env, ri, value, counter);
1962}
1963
1964static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1965{
1966    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967    assert(counter < pmu_num_counters(env));
1968    return env->cp15.c14_pmevcntr[counter];
1969}
1970
1971static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972                             uint64_t value)
1973{
1974    pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1975}
1976
1977static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1978{
1979    return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1980}
1981
1982static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983                            uint64_t value)
1984{
1985    if (arm_feature(env, ARM_FEATURE_V8)) {
1986        env->cp15.c9_pmuserenr = value & 0xf;
1987    } else {
1988        env->cp15.c9_pmuserenr = value & 1;
1989    }
1990}
1991
1992static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993                             uint64_t value)
1994{
1995    /* We have no event counters so only the C bit can be changed */
1996    value &= pmu_counter_mask(env);
1997    env->cp15.c9_pminten |= value;
1998    pmu_update_irq(env);
1999}
2000
2001static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002                             uint64_t value)
2003{
2004    value &= pmu_counter_mask(env);
2005    env->cp15.c9_pminten &= ~value;
2006    pmu_update_irq(env);
2007}
2008
2009static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010                       uint64_t value)
2011{
2012    /* Note that even though the AArch64 view of this register has bits
2013     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014     * architectural requirements for bits which are RES0 only in some
2015     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2017     */
2018    raw_write(env, ri, value & ~0x1FULL);
2019}
2020
2021static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2022{
2023    /* Begin with base v8.0 state.  */
2024    uint32_t valid_mask = 0x3fff;
2025    ARMCPU *cpu = env_archcpu(env);
2026
2027    if (ri->state == ARM_CP_STATE_AA64) {
2028        if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029            !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030                value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2031        }
2032        valid_mask &= ~SCR_NET;
2033
2034        if (cpu_isar_feature(aa64_lor, cpu)) {
2035            valid_mask |= SCR_TLOR;
2036        }
2037        if (cpu_isar_feature(aa64_pauth, cpu)) {
2038            valid_mask |= SCR_API | SCR_APK;
2039        }
2040        if (cpu_isar_feature(aa64_sel2, cpu)) {
2041            valid_mask |= SCR_EEL2;
2042        }
2043        if (cpu_isar_feature(aa64_mte, cpu)) {
2044            valid_mask |= SCR_ATA;
2045        }
2046    } else {
2047        valid_mask &= ~(SCR_RW | SCR_ST);
2048    }
2049
2050    if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051        valid_mask &= ~SCR_HCE;
2052
2053        /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054         * supported if EL2 exists. The bit is UNK/SBZP when
2055         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056         * when EL2 is unavailable.
2057         * On ARMv8, this bit is always available.
2058         */
2059        if (arm_feature(env, ARM_FEATURE_V7) &&
2060            !arm_feature(env, ARM_FEATURE_V8)) {
2061            valid_mask &= ~SCR_SMD;
2062        }
2063    }
2064
2065    /* Clear all-context RES0 bits.  */
2066    value &= valid_mask;
2067    raw_write(env, ri, value);
2068}
2069
2070static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2071{
2072    /*
2073     * scr_write will set the RES1 bits on an AArch64-only CPU.
2074     * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2075     */
2076    scr_write(env, ri, 0);
2077}
2078
2079static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080                                       const ARMCPRegInfo *ri,
2081                                       bool isread)
2082{
2083    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084        return CP_ACCESS_TRAP_EL2;
2085    }
2086
2087    return CP_ACCESS_OK;
2088}
2089
2090static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2091{
2092    ARMCPU *cpu = env_archcpu(env);
2093
2094    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095     * bank
2096     */
2097    uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098                                        ri->secure & ARM_CP_SECSTATE_S);
2099
2100    return cpu->ccsidr[index];
2101}
2102
2103static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104                         uint64_t value)
2105{
2106    raw_write(env, ri, value & 0xf);
2107}
2108
2109static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2110{
2111    CPUState *cs = env_cpu(env);
2112    bool el1 = arm_current_el(env) == 1;
2113    uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114    uint64_t ret = 0;
2115
2116    if (hcr_el2 & HCR_IMO) {
2117        if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118            ret |= CPSR_I;
2119        }
2120    } else {
2121        if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122            ret |= CPSR_I;
2123        }
2124    }
2125
2126    if (hcr_el2 & HCR_FMO) {
2127        if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128            ret |= CPSR_F;
2129        }
2130    } else {
2131        if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132            ret |= CPSR_F;
2133        }
2134    }
2135
2136    /* External aborts are not possible in QEMU so A bit is always clear */
2137    return ret;
2138}
2139
2140static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141                                       bool isread)
2142{
2143    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144        return CP_ACCESS_TRAP_EL2;
2145    }
2146
2147    return CP_ACCESS_OK;
2148}
2149
2150static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151                                       bool isread)
2152{
2153    if (arm_feature(env, ARM_FEATURE_V8)) {
2154        return access_aa64_tid1(env, ri, isread);
2155    }
2156
2157    return CP_ACCESS_OK;
2158}
2159
2160static const ARMCPRegInfo v7_cp_reginfo[] = {
2161    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163      .access = PL1_W, .type = ARM_CP_NOP },
2164    /* Performance monitors are implementation defined in v7,
2165     * but with an ARM recommended set of registers, which we
2166     * follow.
2167     *
2168     * Performance registers fall into three categories:
2169     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2174     */
2175    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176      .access = PL0_RW, .type = ARM_CP_ALIAS,
2177      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178      .writefn = pmcntenset_write,
2179      .accessfn = pmreg_access,
2180      .raw_writefn = raw_write },
2181    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183      .access = PL0_RW, .accessfn = pmreg_access,
2184      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185      .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187      .access = PL0_RW,
2188      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189      .accessfn = pmreg_access,
2190      .writefn = pmcntenclr_write,
2191      .type = ARM_CP_ALIAS },
2192    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194      .access = PL0_RW, .accessfn = pmreg_access,
2195      .type = ARM_CP_ALIAS,
2196      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197      .writefn = pmcntenclr_write },
2198    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199      .access = PL0_RW, .type = ARM_CP_IO,
2200      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201      .accessfn = pmreg_access,
2202      .writefn = pmovsr_write,
2203      .raw_writefn = raw_write },
2204    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206      .access = PL0_RW, .accessfn = pmreg_access,
2207      .type = ARM_CP_ALIAS | ARM_CP_IO,
2208      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209      .writefn = pmovsr_write,
2210      .raw_writefn = raw_write },
2211    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212      .access = PL0_W, .accessfn = pmreg_access_swinc,
2213      .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214      .writefn = pmswinc_write },
2215    { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217      .access = PL0_W, .accessfn = pmreg_access_swinc,
2218      .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219      .writefn = pmswinc_write },
2220    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221      .access = PL0_RW, .type = ARM_CP_ALIAS,
2222      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224      .raw_writefn = raw_write},
2225    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227      .access = PL0_RW, .accessfn = pmreg_access_selr,
2228      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229      .writefn = pmselr_write, .raw_writefn = raw_write, },
2230    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232      .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233      .accessfn = pmreg_access_ccntr },
2234    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237      .type = ARM_CP_IO,
2238      .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239      .readfn = pmccntr_read, .writefn = pmccntr_write,
2240      .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241    { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242      .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243      .access = PL0_RW, .accessfn = pmreg_access,
2244      .type = ARM_CP_ALIAS | ARM_CP_IO,
2245      .resetvalue = 0, },
2246    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248      .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249      .access = PL0_RW, .accessfn = pmreg_access,
2250      .type = ARM_CP_IO,
2251      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252      .resetvalue = 0, },
2253    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255      .accessfn = pmreg_access,
2256      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260      .accessfn = pmreg_access,
2261      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264      .accessfn = pmreg_access_xevcntr,
2265      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266    { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269      .accessfn = pmreg_access_xevcntr,
2270      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274      .resetvalue = 0,
2275      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280      .resetvalue = 0,
2281      .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283      .access = PL1_RW, .accessfn = access_tpm,
2284      .type = ARM_CP_ALIAS | ARM_CP_IO,
2285      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286      .resetvalue = 0,
2287      .writefn = pmintenset_write, .raw_writefn = raw_write },
2288    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290      .access = PL1_RW, .accessfn = access_tpm,
2291      .type = ARM_CP_IO,
2292      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293      .writefn = pmintenset_write, .raw_writefn = raw_write,
2294      .resetvalue = 0x0 },
2295    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296      .access = PL1_RW, .accessfn = access_tpm,
2297      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299      .writefn = pmintenclr_write, },
2300    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302      .access = PL1_RW, .accessfn = access_tpm,
2303      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305      .writefn = pmintenclr_write },
2306    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308      .access = PL1_R,
2309      .accessfn = access_aa64_tid2,
2310      .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313      .access = PL1_RW,
2314      .accessfn = access_aa64_tid2,
2315      .writefn = csselr_write, .resetvalue = 0,
2316      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317                             offsetof(CPUARMState, cp15.csselr_ns) } },
2318    /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319     * just RAZ for all cores:
2320     */
2321    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323      .access = PL1_R, .type = ARM_CP_CONST,
2324      .accessfn = access_aa64_tid1,
2325      .resetvalue = 0 },
2326    /* Auxiliary fault status registers: these also are IMPDEF, and we
2327     * choose to RAZ/WI for all cores.
2328     */
2329    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331      .access = PL1_RW, .accessfn = access_tvm_trvm,
2332      .type = ARM_CP_CONST, .resetvalue = 0 },
2333    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335      .access = PL1_RW, .accessfn = access_tvm_trvm,
2336      .type = ARM_CP_CONST, .resetvalue = 0 },
2337    /* MAIR can just read-as-written because we don't implement caches
2338     * and so don't need to care about memory attributes.
2339     */
2340    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342      .access = PL1_RW, .accessfn = access_tvm_trvm,
2343      .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344      .resetvalue = 0 },
2345    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348      .resetvalue = 0 },
2349    /* For non-long-descriptor page tables these are PRRR and NMRR;
2350     * regardless they still act as reads-as-written for QEMU.
2351     */
2352     /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353      * allows them to assign the correct fieldoffset based on the endianness
2354      * handled in the field definitions.
2355      */
2356    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358      .access = PL1_RW, .accessfn = access_tvm_trvm,
2359      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360                             offsetof(CPUARMState, cp15.mair0_ns) },
2361      .resetfn = arm_cp_reset_ignore },
2362    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364      .access = PL1_RW, .accessfn = access_tvm_trvm,
2365      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366                             offsetof(CPUARMState, cp15.mair1_ns) },
2367      .resetfn = arm_cp_reset_ignore },
2368    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371    /* 32 bit ITLB invalidates */
2372    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374      .writefn = tlbiall_write },
2375    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377      .writefn = tlbimva_write },
2378    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380      .writefn = tlbiasid_write },
2381    /* 32 bit DTLB invalidates */
2382    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384      .writefn = tlbiall_write },
2385    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387      .writefn = tlbimva_write },
2388    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390      .writefn = tlbiasid_write },
2391    /* 32 bit TLB invalidates */
2392    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394      .writefn = tlbiall_write },
2395    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397      .writefn = tlbimva_write },
2398    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400      .writefn = tlbiasid_write },
2401    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403      .writefn = tlbimvaa_write },
2404    REGINFO_SENTINEL
2405};
2406
2407static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408    /* 32 bit TLB invalidates, Inner Shareable */
2409    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411      .writefn = tlbiall_is_write },
2412    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414      .writefn = tlbimva_is_write },
2415    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417      .writefn = tlbiasid_is_write },
2418    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420      .writefn = tlbimvaa_is_write },
2421    REGINFO_SENTINEL
2422};
2423
2424static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425    /* PMOVSSET is not implemented in v7 before v7ve */
2426    { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427      .access = PL0_RW, .accessfn = pmreg_access,
2428      .type = ARM_CP_ALIAS | ARM_CP_IO,
2429      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430      .writefn = pmovsset_write,
2431      .raw_writefn = raw_write },
2432    { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434      .access = PL0_RW, .accessfn = pmreg_access,
2435      .type = ARM_CP_ALIAS | ARM_CP_IO,
2436      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437      .writefn = pmovsset_write,
2438      .raw_writefn = raw_write },
2439    REGINFO_SENTINEL
2440};
2441
2442static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443                        uint64_t value)
2444{
2445    value &= 1;
2446    env->teecr = value;
2447}
2448
2449static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450                                    bool isread)
2451{
2452    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2453        return CP_ACCESS_TRAP;
2454    }
2455    return CP_ACCESS_OK;
2456}
2457
2458static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2459    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2460      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2461      .resetvalue = 0,
2462      .writefn = teecr_write },
2463    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2464      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2465      .accessfn = teehbr_access, .resetvalue = 0 },
2466    REGINFO_SENTINEL
2467};
2468
2469static const ARMCPRegInfo v6k_cp_reginfo[] = {
2470    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2471      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2472      .access = PL0_RW,
2473      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2474    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2475      .access = PL0_RW,
2476      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2477                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2478      .resetfn = arm_cp_reset_ignore },
2479    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2480      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2481      .access = PL0_R|PL1_W,
2482      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2483      .resetvalue = 0},
2484    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2485      .access = PL0_R|PL1_W,
2486      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2487                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2488      .resetfn = arm_cp_reset_ignore },
2489    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2490      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2491      .access = PL1_RW,
2492      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2493    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2494      .access = PL1_RW,
2495      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2496                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2497      .resetvalue = 0 },
2498    REGINFO_SENTINEL
2499};
2500
2501#ifndef CONFIG_USER_ONLY
2502
2503static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2504                                       bool isread)
2505{
2506    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2507     * Writable only at the highest implemented exception level.
2508     */
2509    int el = arm_current_el(env);
2510    uint64_t hcr;
2511    uint32_t cntkctl;
2512
2513    switch (el) {
2514    case 0:
2515        hcr = arm_hcr_el2_eff(env);
2516        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517            cntkctl = env->cp15.cnthctl_el2;
2518        } else {
2519            cntkctl = env->cp15.c14_cntkctl;
2520        }
2521        if (!extract32(cntkctl, 0, 2)) {
2522            return CP_ACCESS_TRAP;
2523        }
2524        break;
2525    case 1:
2526        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2527            arm_is_secure_below_el3(env)) {
2528            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2529            return CP_ACCESS_TRAP_UNCATEGORIZED;
2530        }
2531        break;
2532    case 2:
2533    case 3:
2534        break;
2535    }
2536
2537    if (!isread && el < arm_highest_el(env)) {
2538        return CP_ACCESS_TRAP_UNCATEGORIZED;
2539    }
2540
2541    return CP_ACCESS_OK;
2542}
2543
2544static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2545                                        bool isread)
2546{
2547    unsigned int cur_el = arm_current_el(env);
2548    bool has_el2 = arm_is_el2_enabled(env);
2549    uint64_t hcr = arm_hcr_el2_eff(env);
2550
2551    switch (cur_el) {
2552    case 0:
2553        /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2554        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2555            return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2556                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2557        }
2558
2559        /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2560        if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2561            return CP_ACCESS_TRAP;
2562        }
2563
2564        /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2565        if (hcr & HCR_E2H) {
2566            if (timeridx == GTIMER_PHYS &&
2567                !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2568                return CP_ACCESS_TRAP_EL2;
2569            }
2570        } else {
2571            /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2572            if (has_el2 && timeridx == GTIMER_PHYS &&
2573                !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2574                return CP_ACCESS_TRAP_EL2;
2575            }
2576        }
2577        break;
2578
2579    case 1:
2580        /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2581        if (has_el2 && timeridx == GTIMER_PHYS &&
2582            (hcr & HCR_E2H
2583             ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2584             : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2585            return CP_ACCESS_TRAP_EL2;
2586        }
2587        break;
2588    }
2589    return CP_ACCESS_OK;
2590}
2591
2592static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2593                                      bool isread)
2594{
2595    unsigned int cur_el = arm_current_el(env);
2596    bool has_el2 = arm_is_el2_enabled(env);
2597    uint64_t hcr = arm_hcr_el2_eff(env);
2598
2599    switch (cur_el) {
2600    case 0:
2601        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2602            /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2603            return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2604                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2605        }
2606
2607        /*
2608         * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2609         * EL0 if EL0[PV]TEN is zero.
2610         */
2611        if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2612            return CP_ACCESS_TRAP;
2613        }
2614        /* fall through */
2615
2616    case 1:
2617        if (has_el2 && timeridx == GTIMER_PHYS) {
2618            if (hcr & HCR_E2H) {
2619                /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2620                if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2621                    return CP_ACCESS_TRAP_EL2;
2622                }
2623            } else {
2624                /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2625                if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2626                    return CP_ACCESS_TRAP_EL2;
2627                }
2628            }
2629        }
2630        break;
2631    }
2632    return CP_ACCESS_OK;
2633}
2634
2635static CPAccessResult gt_pct_access(CPUARMState *env,
2636                                    const ARMCPRegInfo *ri,
2637                                    bool isread)
2638{
2639    return gt_counter_access(env, GTIMER_PHYS, isread);
2640}
2641
2642static CPAccessResult gt_vct_access(CPUARMState *env,
2643                                    const ARMCPRegInfo *ri,
2644                                    bool isread)
2645{
2646    return gt_counter_access(env, GTIMER_VIRT, isread);
2647}
2648
2649static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2650                                       bool isread)
2651{
2652    return gt_timer_access(env, GTIMER_PHYS, isread);
2653}
2654
2655static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2656                                       bool isread)
2657{
2658    return gt_timer_access(env, GTIMER_VIRT, isread);
2659}
2660
2661static CPAccessResult gt_stimer_access(CPUARMState *env,
2662                                       const ARMCPRegInfo *ri,
2663                                       bool isread)
2664{
2665    /* The AArch64 register view of the secure physical timer is
2666     * always accessible from EL3, and configurably accessible from
2667     * Secure EL1.
2668     */
2669    switch (arm_current_el(env)) {
2670    case 1:
2671        if (!arm_is_secure(env)) {
2672            return CP_ACCESS_TRAP;
2673        }
2674        if (!(env->cp15.scr_el3 & SCR_ST)) {
2675            return CP_ACCESS_TRAP_EL3;
2676        }
2677        return CP_ACCESS_OK;
2678    case 0:
2679    case 2:
2680        return CP_ACCESS_TRAP;
2681    case 3:
2682        return CP_ACCESS_OK;
2683    default:
2684        g_assert_not_reached();
2685    }
2686}
2687
2688static uint64_t gt_get_countervalue(CPUARMState *env)
2689{
2690    ARMCPU *cpu = env_archcpu(env);
2691
2692    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2693}
2694
2695static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2696{
2697    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2698
2699    if (gt->ctl & 1) {
2700        /* Timer enabled: calculate and set current ISTATUS, irq, and
2701         * reset timer to when ISTATUS next has to change
2702         */
2703        uint64_t offset = timeridx == GTIMER_VIRT ?
2704                                      cpu->env.cp15.cntvoff_el2 : 0;
2705        uint64_t count = gt_get_countervalue(&cpu->env);
2706        /* Note that this must be unsigned 64 bit arithmetic: */
2707        int istatus = count - offset >= gt->cval;
2708        uint64_t nexttick;
2709        int irqstate;
2710
2711        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2712
2713        irqstate = (istatus && !(gt->ctl & 2));
2714        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2715
2716        if (istatus) {
2717            /* Next transition is when count rolls back over to zero */
2718            nexttick = UINT64_MAX;
2719        } else {
2720            /* Next transition is when we hit cval */
2721            nexttick = gt->cval + offset;
2722        }
2723        /* Note that the desired next expiry time might be beyond the
2724         * signed-64-bit range of a QEMUTimer -- in this case we just
2725         * set the timer for as far in the future as possible. When the
2726         * timer expires we will reset the timer for any remaining period.
2727         */
2728        if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2729            timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2730        } else {
2731            timer_mod(cpu->gt_timer[timeridx], nexttick);
2732        }
2733        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2734    } else {
2735        /* Timer disabled: ISTATUS and timer output always clear */
2736        gt->ctl &= ~4;
2737        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2738        timer_del(cpu->gt_timer[timeridx]);
2739        trace_arm_gt_recalc_disabled(timeridx);
2740    }
2741}
2742
2743static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2744                           int timeridx)
2745{
2746    ARMCPU *cpu = env_archcpu(env);
2747
2748    timer_del(cpu->gt_timer[timeridx]);
2749}
2750
2751static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2752{
2753    return gt_get_countervalue(env);
2754}
2755
2756static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2757{
2758    uint64_t hcr;
2759
2760    switch (arm_current_el(env)) {
2761    case 2:
2762        hcr = arm_hcr_el2_eff(env);
2763        if (hcr & HCR_E2H) {
2764            return 0;
2765        }
2766        break;
2767    case 0:
2768        hcr = arm_hcr_el2_eff(env);
2769        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2770            return 0;
2771        }
2772        break;
2773    }
2774
2775    return env->cp15.cntvoff_el2;
2776}
2777
2778static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2779{
2780    return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2781}
2782
2783static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784                          int timeridx,
2785                          uint64_t value)
2786{
2787    trace_arm_gt_cval_write(timeridx, value);
2788    env->cp15.c14_timer[timeridx].cval = value;
2789    gt_recalc_timer(env_archcpu(env), timeridx);
2790}
2791
2792static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2793                             int timeridx)
2794{
2795    uint64_t offset = 0;
2796
2797    switch (timeridx) {
2798    case GTIMER_VIRT:
2799    case GTIMER_HYPVIRT:
2800        offset = gt_virt_cnt_offset(env);
2801        break;
2802    }
2803
2804    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2805                      (gt_get_countervalue(env) - offset));
2806}
2807
2808static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809                          int timeridx,
2810                          uint64_t value)
2811{
2812    uint64_t offset = 0;
2813
2814    switch (timeridx) {
2815    case GTIMER_VIRT:
2816    case GTIMER_HYPVIRT:
2817        offset = gt_virt_cnt_offset(env);
2818        break;
2819    }
2820
2821    trace_arm_gt_tval_write(timeridx, value);
2822    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2823                                         sextract64(value, 0, 32);
2824    gt_recalc_timer(env_archcpu(env), timeridx);
2825}
2826
2827static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828                         int timeridx,
2829                         uint64_t value)
2830{
2831    ARMCPU *cpu = env_archcpu(env);
2832    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2833
2834    trace_arm_gt_ctl_write(timeridx, value);
2835    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2836    if ((oldval ^ value) & 1) {
2837        /* Enable toggled */
2838        gt_recalc_timer(cpu, timeridx);
2839    } else if ((oldval ^ value) & 2) {
2840        /* IMASK toggled: don't need to recalculate,
2841         * just set the interrupt line based on ISTATUS
2842         */
2843        int irqstate = (oldval & 4) && !(value & 2);
2844
2845        trace_arm_gt_imask_toggle(timeridx, irqstate);
2846        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2847    }
2848}
2849
2850static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2851{
2852    gt_timer_reset(env, ri, GTIMER_PHYS);
2853}
2854
2855static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                               uint64_t value)
2857{
2858    gt_cval_write(env, ri, GTIMER_PHYS, value);
2859}
2860
2861static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2862{
2863    return gt_tval_read(env, ri, GTIMER_PHYS);
2864}
2865
2866static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867                               uint64_t value)
2868{
2869    gt_tval_write(env, ri, GTIMER_PHYS, value);
2870}
2871
2872static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873                              uint64_t value)
2874{
2875    gt_ctl_write(env, ri, GTIMER_PHYS, value);
2876}
2877
2878static int gt_phys_redir_timeridx(CPUARMState *env)
2879{
2880    switch (arm_mmu_idx(env)) {
2881    case ARMMMUIdx_E20_0:
2882    case ARMMMUIdx_E20_2:
2883    case ARMMMUIdx_E20_2_PAN:
2884    case ARMMMUIdx_SE20_0:
2885    case ARMMMUIdx_SE20_2:
2886    case ARMMMUIdx_SE20_2_PAN:
2887        return GTIMER_HYP;
2888    default:
2889        return GTIMER_PHYS;
2890    }
2891}
2892
2893static int gt_virt_redir_timeridx(CPUARMState *env)
2894{
2895    switch (arm_mmu_idx(env)) {
2896    case ARMMMUIdx_E20_0:
2897    case ARMMMUIdx_E20_2:
2898    case ARMMMUIdx_E20_2_PAN:
2899    case ARMMMUIdx_SE20_0:
2900    case ARMMMUIdx_SE20_2:
2901    case ARMMMUIdx_SE20_2_PAN:
2902        return GTIMER_HYPVIRT;
2903    default:
2904        return GTIMER_VIRT;
2905    }
2906}
2907
2908static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2909                                        const ARMCPRegInfo *ri)
2910{
2911    int timeridx = gt_phys_redir_timeridx(env);
2912    return env->cp15.c14_timer[timeridx].cval;
2913}
2914
2915static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916                                     uint64_t value)
2917{
2918    int timeridx = gt_phys_redir_timeridx(env);
2919    gt_cval_write(env, ri, timeridx, value);
2920}
2921
2922static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2923                                        const ARMCPRegInfo *ri)
2924{
2925    int timeridx = gt_phys_redir_timeridx(env);
2926    return gt_tval_read(env, ri, timeridx);
2927}
2928
2929static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                                     uint64_t value)
2931{
2932    int timeridx = gt_phys_redir_timeridx(env);
2933    gt_tval_write(env, ri, timeridx, value);
2934}
2935
2936static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2937                                       const ARMCPRegInfo *ri)
2938{
2939    int timeridx = gt_phys_redir_timeridx(env);
2940    return env->cp15.c14_timer[timeridx].ctl;
2941}
2942
2943static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944                                    uint64_t value)
2945{
2946    int timeridx = gt_phys_redir_timeridx(env);
2947    gt_ctl_write(env, ri, timeridx, value);
2948}
2949
2950static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2951{
2952    gt_timer_reset(env, ri, GTIMER_VIRT);
2953}
2954
2955static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956                               uint64_t value)
2957{
2958    gt_cval_write(env, ri, GTIMER_VIRT, value);
2959}
2960
2961static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2962{
2963    return gt_tval_read(env, ri, GTIMER_VIRT);
2964}
2965
2966static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967                               uint64_t value)
2968{
2969    gt_tval_write(env, ri, GTIMER_VIRT, value);
2970}
2971
2972static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973                              uint64_t value)
2974{
2975    gt_ctl_write(env, ri, GTIMER_VIRT, value);
2976}
2977
2978static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979                              uint64_t value)
2980{
2981    ARMCPU *cpu = env_archcpu(env);
2982
2983    trace_arm_gt_cntvoff_write(value);
2984    raw_write(env, ri, value);
2985    gt_recalc_timer(cpu, GTIMER_VIRT);
2986}
2987
2988static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2989                                        const ARMCPRegInfo *ri)
2990{
2991    int timeridx = gt_virt_redir_timeridx(env);
2992    return env->cp15.c14_timer[timeridx].cval;
2993}
2994
2995static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996                                     uint64_t value)
2997{
2998    int timeridx = gt_virt_redir_timeridx(env);
2999    gt_cval_write(env, ri, timeridx, value);
3000}
3001
3002static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3003                                        const ARMCPRegInfo *ri)
3004{
3005    int timeridx = gt_virt_redir_timeridx(env);
3006    return gt_tval_read(env, ri, timeridx);
3007}
3008
3009static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                                     uint64_t value)
3011{
3012    int timeridx = gt_virt_redir_timeridx(env);
3013    gt_tval_write(env, ri, timeridx, value);
3014}
3015
3016static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3017                                       const ARMCPRegInfo *ri)
3018{
3019    int timeridx = gt_virt_redir_timeridx(env);
3020    return env->cp15.c14_timer[timeridx].ctl;
3021}
3022
3023static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024                                    uint64_t value)
3025{
3026    int timeridx = gt_virt_redir_timeridx(env);
3027    gt_ctl_write(env, ri, timeridx, value);
3028}
3029
3030static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3031{
3032    gt_timer_reset(env, ri, GTIMER_HYP);
3033}
3034
3035static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036                              uint64_t value)
3037{
3038    gt_cval_write(env, ri, GTIMER_HYP, value);
3039}
3040
3041static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042{
3043    return gt_tval_read(env, ri, GTIMER_HYP);
3044}
3045
3046static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                              uint64_t value)
3048{
3049    gt_tval_write(env, ri, GTIMER_HYP, value);
3050}
3051
3052static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053                              uint64_t value)
3054{
3055    gt_ctl_write(env, ri, GTIMER_HYP, value);
3056}
3057
3058static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3059{
3060    gt_timer_reset(env, ri, GTIMER_SEC);
3061}
3062
3063static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                              uint64_t value)
3065{
3066    gt_cval_write(env, ri, GTIMER_SEC, value);
3067}
3068
3069static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3070{
3071    return gt_tval_read(env, ri, GTIMER_SEC);
3072}
3073
3074static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075                              uint64_t value)
3076{
3077    gt_tval_write(env, ri, GTIMER_SEC, value);
3078}
3079
3080static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081                              uint64_t value)
3082{
3083    gt_ctl_write(env, ri, GTIMER_SEC, value);
3084}
3085
3086static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3087{
3088    gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3089}
3090
3091static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092                             uint64_t value)
3093{
3094    gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3095}
3096
3097static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3098{
3099    return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3100}
3101
3102static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103                             uint64_t value)
3104{
3105    gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3106}
3107
3108static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                            uint64_t value)
3110{
3111    gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3112}
3113
3114void arm_gt_ptimer_cb(void *opaque)
3115{
3116    ARMCPU *cpu = opaque;
3117
3118    gt_recalc_timer(cpu, GTIMER_PHYS);
3119}
3120
3121void arm_gt_vtimer_cb(void *opaque)
3122{
3123    ARMCPU *cpu = opaque;
3124
3125    gt_recalc_timer(cpu, GTIMER_VIRT);
3126}
3127
3128void arm_gt_htimer_cb(void *opaque)
3129{
3130    ARMCPU *cpu = opaque;
3131
3132    gt_recalc_timer(cpu, GTIMER_HYP);
3133}
3134
3135void arm_gt_stimer_cb(void *opaque)
3136{
3137    ARMCPU *cpu = opaque;
3138
3139    gt_recalc_timer(cpu, GTIMER_SEC);
3140}
3141
3142void arm_gt_hvtimer_cb(void *opaque)
3143{
3144    ARMCPU *cpu = opaque;
3145
3146    gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3147}
3148
3149static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3150{
3151    ARMCPU *cpu = env_archcpu(env);
3152
3153    cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3154}
3155
3156static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3157    /* Note that CNTFRQ is purely reads-as-written for the benefit
3158     * of software; writing it doesn't actually change the timer frequency.
3159     * Our reset value matches the fixed frequency we implement the timer at.
3160     */
3161    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3162      .type = ARM_CP_ALIAS,
3163      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3165    },
3166    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3167      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3168      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3169      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3170      .resetfn = arm_gt_cntfrq_reset,
3171    },
3172    /* overall control: mostly access permissions */
3173    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3174      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3175      .access = PL1_RW,
3176      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3177      .resetvalue = 0,
3178    },
3179    /* per-timer control */
3180    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3181      .secure = ARM_CP_SECSTATE_NS,
3182      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183      .accessfn = gt_ptimer_access,
3184      .fieldoffset = offsetoflow32(CPUARMState,
3185                                   cp15.c14_timer[GTIMER_PHYS].ctl),
3186      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3187      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3188    },
3189    { .name = "CNTP_CTL_S",
3190      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3191      .secure = ARM_CP_SECSTATE_S,
3192      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193      .accessfn = gt_ptimer_access,
3194      .fieldoffset = offsetoflow32(CPUARMState,
3195                                   cp15.c14_timer[GTIMER_SEC].ctl),
3196      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3197    },
3198    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3200      .type = ARM_CP_IO, .access = PL0_RW,
3201      .accessfn = gt_ptimer_access,
3202      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3203      .resetvalue = 0,
3204      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3205      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3206    },
3207    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3208      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3209      .accessfn = gt_vtimer_access,
3210      .fieldoffset = offsetoflow32(CPUARMState,
3211                                   cp15.c14_timer[GTIMER_VIRT].ctl),
3212      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3213      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3214    },
3215    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3216      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3217      .type = ARM_CP_IO, .access = PL0_RW,
3218      .accessfn = gt_vtimer_access,
3219      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3220      .resetvalue = 0,
3221      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3222      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3223    },
3224    /* TimerValue views: a 32 bit downcounting view of the underlying state */
3225    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3226      .secure = ARM_CP_SECSTATE_NS,
3227      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228      .accessfn = gt_ptimer_access,
3229      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3230    },
3231    { .name = "CNTP_TVAL_S",
3232      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3233      .secure = ARM_CP_SECSTATE_S,
3234      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235      .accessfn = gt_ptimer_access,
3236      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3237    },
3238    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3239      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3240      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3242      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3243    },
3244    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3245      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246      .accessfn = gt_vtimer_access,
3247      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3248    },
3249    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3250      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3251      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3253      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3254    },
3255    /* The counter itself */
3256    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3257      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3258      .accessfn = gt_pct_access,
3259      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3260    },
3261    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3262      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3263      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3264      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3265    },
3266    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3267      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3268      .accessfn = gt_vct_access,
3269      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3270    },
3271    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3272      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3273      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3274      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3275    },
3276    /* Comparison value, indicating when the timer goes off */
3277    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3278      .secure = ARM_CP_SECSTATE_NS,
3279      .access = PL0_RW,
3280      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282      .accessfn = gt_ptimer_access,
3283      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3285    },
3286    { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3287      .secure = ARM_CP_SECSTATE_S,
3288      .access = PL0_RW,
3289      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3290      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3291      .accessfn = gt_ptimer_access,
3292      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3293    },
3294    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3296      .access = PL0_RW,
3297      .type = ARM_CP_IO,
3298      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3299      .resetvalue = 0, .accessfn = gt_ptimer_access,
3300      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3301      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3302    },
3303    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3304      .access = PL0_RW,
3305      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3306      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3307      .accessfn = gt_vtimer_access,
3308      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3309      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3310    },
3311    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3312      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3313      .access = PL0_RW,
3314      .type = ARM_CP_IO,
3315      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316      .resetvalue = 0, .accessfn = gt_vtimer_access,
3317      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3319    },
3320    /* Secure timer -- this is actually restricted to only EL3
3321     * and configurably Secure-EL1 via the accessfn.
3322     */
3323    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326      .accessfn = gt_stimer_access,
3327      .readfn = gt_sec_tval_read,
3328      .writefn = gt_sec_tval_write,
3329      .resetfn = gt_sec_timer_reset,
3330    },
3331    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333      .type = ARM_CP_IO, .access = PL1_RW,
3334      .accessfn = gt_stimer_access,
3335      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336      .resetvalue = 0,
3337      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3338    },
3339    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341      .type = ARM_CP_IO, .access = PL1_RW,
3342      .accessfn = gt_stimer_access,
3343      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3345    },
3346    REGINFO_SENTINEL
3347};
3348
3349static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350                                 bool isread)
3351{
3352    if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3353        return CP_ACCESS_TRAP;
3354    }
3355    return CP_ACCESS_OK;
3356}
3357
3358#else
3359
3360/* In user-mode most of the generic timer registers are inaccessible
3361 * however modern kernels (4.12+) allow access to cntvct_el0
3362 */
3363
3364static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3365{
3366    ARMCPU *cpu = env_archcpu(env);
3367
3368    /* Currently we have no support for QEMUTimer in linux-user so we
3369     * can't call gt_get_countervalue(env), instead we directly
3370     * call the lower level functions.
3371     */
3372    return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3373}
3374
3375static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3376    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3377      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3378      .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3379      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3380      .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3381    },
3382    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3383      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3384      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3385      .readfn = gt_virt_cnt_read,
3386    },
3387    REGINFO_SENTINEL
3388};
3389
3390#endif
3391
3392static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3393{
3394    if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395        raw_write(env, ri, value);
3396    } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397        raw_write(env, ri, value & 0xfffff6ff);
3398    } else {
3399        raw_write(env, ri, value & 0xfffff1ff);
3400    }
3401}
3402
3403#ifndef CONFIG_USER_ONLY
3404/* get_phys_addr() isn't present for user-mode-only targets */
3405
3406static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407                                 bool isread)
3408{
3409    if (ri->opc2 & 4) {
3410        /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3411         * Secure EL1 (which can only happen if EL3 is AArch64).
3412         * They are simply UNDEF if executed from NS EL1.
3413         * They function normally from EL2 or EL3.
3414         */
3415        if (arm_current_el(env) == 1) {
3416            if (arm_is_secure_below_el3(env)) {
3417                if (env->cp15.scr_el3 & SCR_EEL2) {
3418                    return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3419                }
3420                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3421            }
3422            return CP_ACCESS_TRAP_UNCATEGORIZED;
3423        }
3424    }
3425    return CP_ACCESS_OK;
3426}
3427
3428#ifdef CONFIG_TCG
3429static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3430                             MMUAccessType access_type, ARMMMUIdx mmu_idx)
3431{
3432    hwaddr phys_addr;
3433    target_ulong page_size;
3434    int prot;
3435    bool ret;
3436    uint64_t par64;
3437    bool format64 = false;
3438    MemTxAttrs attrs = {};
3439    ARMMMUFaultInfo fi = {};
3440    ARMCacheAttrs cacheattrs = {};
3441
3442    ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3443                        &prot, &page_size, &fi, &cacheattrs);
3444
3445    if (ret) {
3446        /*
3447         * Some kinds of translation fault must cause exceptions rather
3448         * than being reported in the PAR.
3449         */
3450        int current_el = arm_current_el(env);
3451        int target_el;
3452        uint32_t syn, fsr, fsc;
3453        bool take_exc = false;
3454
3455        if (fi.s1ptw && current_el == 1
3456            && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3457            /*
3458             * Synchronous stage 2 fault on an access made as part of the
3459             * translation table walk for AT S1E0* or AT S1E1* insn
3460             * executed from NS EL1. If this is a synchronous external abort
3461             * and SCR_EL3.EA == 1, then we take a synchronous external abort
3462             * to EL3. Otherwise the fault is taken as an exception to EL2,
3463             * and HPFAR_EL2 holds the faulting IPA.
3464             */
3465            if (fi.type == ARMFault_SyncExternalOnWalk &&
3466                (env->cp15.scr_el3 & SCR_EA)) {
3467                target_el = 3;
3468            } else {
3469                env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3470                if (arm_is_secure_below_el3(env) && fi.s1ns) {
3471                    env->cp15.hpfar_el2 |= HPFAR_NS;
3472                }
3473                target_el = 2;
3474            }
3475            take_exc = true;
3476        } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3477            /*
3478             * Synchronous external aborts during a translation table walk
3479             * are taken as Data Abort exceptions.
3480             */
3481            if (fi.stage2) {
3482                if (current_el == 3) {
3483                    target_el = 3;
3484                } else {
3485                    target_el = 2;
3486                }
3487            } else {
3488                target_el = exception_target_el(env);
3489            }
3490            take_exc = true;
3491        }
3492
3493        if (take_exc) {
3494            /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3495            if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3496                arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3497                fsr = arm_fi_to_lfsc(&fi);
3498                fsc = extract32(fsr, 0, 6);
3499            } else {
3500                fsr = arm_fi_to_sfsc(&fi);
3501                fsc = 0x3f;
3502            }
3503            /*
3504             * Report exception with ESR indicating a fault due to a
3505             * translation table walk for a cache maintenance instruction.
3506             */
3507            syn = syn_data_abort_no_iss(current_el == target_el, 0,
3508                                        fi.ea, 1, fi.s1ptw, 1, fsc);
3509            env->exception.vaddress = value;
3510            env->exception.fsr = fsr;
3511            raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3512        }
3513    }
3514
3515    if (is_a64(env)) {
3516        format64 = true;
3517    } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3518        /*
3519         * ATS1Cxx:
3520         * * TTBCR.EAE determines whether the result is returned using the
3521         *   32-bit or the 64-bit PAR format
3522         * * Instructions executed in Hyp mode always use the 64bit format
3523         *
3524         * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3525         * * The Non-secure TTBCR.EAE bit is set to 1
3526         * * The implementation includes EL2, and the value of HCR.VM is 1
3527         *
3528         * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3529         *
3530         * ATS1Hx always uses the 64bit format.
3531         */
3532        format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3533
3534        if (arm_feature(env, ARM_FEATURE_EL2)) {
3535            if (mmu_idx == ARMMMUIdx_E10_0 ||
3536                mmu_idx == ARMMMUIdx_E10_1 ||
3537                mmu_idx == ARMMMUIdx_E10_1_PAN) {
3538                format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3539            } else {
3540                format64 |= arm_current_el(env) == 2;
3541            }
3542        }
3543    }
3544
3545    if (format64) {
3546        /* Create a 64-bit PAR */
3547        par64 = (1 << 11); /* LPAE bit always set */
3548        if (!ret) {
3549            par64 |= phys_addr & ~0xfffULL;
3550            if (!attrs.secure) {
3551                par64 |= (1 << 9); /* NS */
3552            }
3553            par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3554            par64 |= cacheattrs.shareability << 7; /* SH */
3555        } else {
3556            uint32_t fsr = arm_fi_to_lfsc(&fi);
3557
3558            par64 |= 1; /* F */
3559            par64 |= (fsr & 0x3f) << 1; /* FS */
3560            if (fi.stage2) {
3561                par64 |= (1 << 9); /* S */
3562            }
3563            if (fi.s1ptw) {
3564                par64 |= (1 << 8); /* PTW */
3565            }
3566        }
3567    } else {
3568        /* fsr is a DFSR/IFSR value for the short descriptor
3569         * translation table format (with WnR always clear).
3570         * Convert it to a 32-bit PAR.
3571         */
3572        if (!ret) {
3573            /* We do not set any attribute bits in the PAR */
3574            if (page_size == (1 << 24)
3575                && arm_feature(env, ARM_FEATURE_V7)) {
3576                par64 = (phys_addr & 0xff000000) | (1 << 1);
3577            } else {
3578                par64 = phys_addr & 0xfffff000;
3579            }
3580            if (!attrs.secure) {
3581                par64 |= (1 << 9); /* NS */
3582            }
3583        } else {
3584            uint32_t fsr = arm_fi_to_sfsc(&fi);
3585
3586            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3587                    ((fsr & 0xf) << 1) | 1;
3588        }
3589    }
3590    return par64;
3591}
3592#endif /* CONFIG_TCG */
3593
3594static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3595{
3596#ifdef CONFIG_TCG
3597    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3598    uint64_t par64;
3599    ARMMMUIdx mmu_idx;
3600    int el = arm_current_el(env);
3601    bool secure = arm_is_secure_below_el3(env);
3602
3603    switch (ri->opc2 & 6) {
3604    case 0:
3605        /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3606        switch (el) {
3607        case 3:
3608            mmu_idx = ARMMMUIdx_SE3;
3609            break;
3610        case 2:
3611            g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3612            /* fall through */
3613        case 1:
3614            if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3615                mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3616                           : ARMMMUIdx_Stage1_E1_PAN);
3617            } else {
3618                mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3619            }
3620            break;
3621        default:
3622            g_assert_not_reached();
3623        }
3624        break;
3625    case 2:
3626        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3627        switch (el) {
3628        case 3:
3629            mmu_idx = ARMMMUIdx_SE10_0;
3630            break;
3631        case 2:
3632            g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3633            mmu_idx = ARMMMUIdx_Stage1_E0;
3634            break;
3635        case 1:
3636            mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3637            break;
3638        default:
3639            g_assert_not_reached();
3640        }
3641        break;
3642    case 4:
3643        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3644        mmu_idx = ARMMMUIdx_E10_1;
3645        break;
3646    case 6:
3647        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3648        mmu_idx = ARMMMUIdx_E10_0;
3649        break;
3650    default:
3651        g_assert_not_reached();
3652    }
3653
3654    par64 = do_ats_write(env, value, access_type, mmu_idx);
3655
3656    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3657#else
3658    /* Handled by hardware accelerator. */
3659    g_assert_not_reached();
3660#endif /* CONFIG_TCG */
3661}
3662
3663static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3664                        uint64_t value)
3665{
3666#ifdef CONFIG_TCG
3667    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3668    uint64_t par64;
3669
3670    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3671
3672    A32_BANKED_CURRENT_REG_SET(env, par, par64);
3673#else
3674    /* Handled by hardware accelerator. */
3675    g_assert_not_reached();
3676#endif /* CONFIG_TCG */
3677}
3678
3679static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3680                                     bool isread)
3681{
3682    if (arm_current_el(env) == 3 &&
3683        !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3684        return CP_ACCESS_TRAP;
3685    }
3686    return CP_ACCESS_OK;
3687}
3688
3689static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690                        uint64_t value)
3691{
3692#ifdef CONFIG_TCG
3693    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3694    ARMMMUIdx mmu_idx;
3695    int secure = arm_is_secure_below_el3(env);
3696
3697    switch (ri->opc2 & 6) {
3698    case 0:
3699        switch (ri->opc1) {
3700        case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3701            if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3702                mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3703                           : ARMMMUIdx_Stage1_E1_PAN);
3704            } else {
3705                mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3706            }
3707            break;
3708        case 4: /* AT S1E2R, AT S1E2W */
3709            mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3710            break;
3711        case 6: /* AT S1E3R, AT S1E3W */
3712            mmu_idx = ARMMMUIdx_SE3;
3713            break;
3714        default:
3715            g_assert_not_reached();
3716        }
3717        break;
3718    case 2: /* AT S1E0R, AT S1E0W */
3719        mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3720        break;
3721    case 4: /* AT S12E1R, AT S12E1W */
3722        mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3723        break;
3724    case 6: /* AT S12E0R, AT S12E0W */
3725        mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3726        break;
3727    default:
3728        g_assert_not_reached();
3729    }
3730
3731    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732#else
3733    /* Handled by hardware accelerator. */
3734    g_assert_not_reached();
3735#endif /* CONFIG_TCG */
3736}
3737#endif
3738
3739static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741      .access = PL1_RW, .resetvalue = 0,
3742      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743                             offsetoflow32(CPUARMState, cp15.par_ns) },
3744      .writefn = par_write },
3745#ifndef CONFIG_USER_ONLY
3746    /* This underdecoding is safe because the reginfo is NO_RAW. */
3747    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748      .access = PL1_W, .accessfn = ats_access,
3749      .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750#endif
3751    REGINFO_SENTINEL
3752};
3753
3754/* Return basic MPU access permission bits.  */
3755static uint32_t simple_mpu_ap_bits(uint32_t val)
3756{
3757    uint32_t ret;
3758    uint32_t mask;
3759    int i;
3760    ret = 0;
3761    mask = 3;
3762    for (i = 0; i < 16; i += 2) {
3763        ret |= (val >> i) & mask;
3764        mask <<= 2;
3765    }
3766    return ret;
3767}
3768
3769/* Pad basic MPU access permission bits to extended format.  */
3770static uint32_t extended_mpu_ap_bits(uint32_t val)
3771{
3772    uint32_t ret;
3773    uint32_t mask;
3774    int i;
3775    ret = 0;
3776    mask = 3;
3777    for (i = 0; i < 16; i += 2) {
3778        ret |= (val & mask) << i;
3779        mask <<= 2;
3780    }
3781    return ret;
3782}
3783
3784static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                                 uint64_t value)
3786{
3787    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3788}
3789
3790static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3791{
3792    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3793}
3794
3795static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3796                                 uint64_t value)
3797{
3798    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3799}
3800
3801static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3802{
3803    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3804}
3805
3806static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3807{
3808    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3809
3810    if (!u32p) {
3811        return 0;
3812    }
3813
3814    u32p += env->pmsav7.rnr[M_REG_NS];
3815    return *u32p;
3816}
3817
3818static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819                         uint64_t value)
3820{
3821    ARMCPU *cpu = env_archcpu(env);
3822    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3823
3824    if (!u32p) {
3825        return;
3826    }
3827
3828    u32p += env->pmsav7.rnr[M_REG_NS];
3829    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830    *u32p = value;
3831}
3832
3833static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834                              uint64_t value)
3835{
3836    ARMCPU *cpu = env_archcpu(env);
3837    uint32_t nrgs = cpu->pmsav7_dregion;
3838
3839    if (value >= nrgs) {
3840        qemu_log_mask(LOG_GUEST_ERROR,
3841                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3842                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3843        return;
3844    }
3845
3846    raw_write(env, ri, value);
3847}
3848
3849static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3850    /* Reset for all these registers is handled in arm_cpu_reset(),
3851     * because the PMSAv7 is also used by M-profile CPUs, which do
3852     * not register cpregs but still need the state to be reset.
3853     */
3854    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3855      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3857      .readfn = pmsav7_read, .writefn = pmsav7_write,
3858      .resetfn = arm_cp_reset_ignore },
3859    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3860      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3862      .readfn = pmsav7_read, .writefn = pmsav7_write,
3863      .resetfn = arm_cp_reset_ignore },
3864    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3865      .access = PL1_RW, .type = ARM_CP_NO_RAW,
3866      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3867      .readfn = pmsav7_read, .writefn = pmsav7_write,
3868      .resetfn = arm_cp_reset_ignore },
3869    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3870      .access = PL1_RW,
3871      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3872      .writefn = pmsav7_rgnr_write,
3873      .resetfn = arm_cp_reset_ignore },
3874    REGINFO_SENTINEL
3875};
3876
3877static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3878    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3879      .access = PL1_RW, .type = ARM_CP_ALIAS,
3880      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3881      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3882    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3883      .access = PL1_RW, .type = ARM_CP_ALIAS,
3884      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3885      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3886    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3887      .access = PL1_RW,
3888      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3889      .resetvalue = 0, },
3890    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3891      .access = PL1_RW,
3892      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3893      .resetvalue = 0, },
3894    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3895      .access = PL1_RW,
3896      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3897    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3898      .access = PL1_RW,
3899      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3900    /* Protection region base and size registers */
3901    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3902      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3903      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3904    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3905      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3906      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3907    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3908      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3909      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3910    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3911      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3912      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3913    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3914      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3915      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3916    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3917      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3918      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3919    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3920      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3921      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3922    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3923      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3924      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3925    REGINFO_SENTINEL
3926};
3927
3928static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929                                 uint64_t value)
3930{
3931    TCR *tcr = raw_ptr(env, ri);
3932    int maskshift = extract32(value, 0, 3);
3933
3934    if (!arm_feature(env, ARM_FEATURE_V8)) {
3935        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3936            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3937             * using Long-desciptor translation table format */
3938            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3939        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3940            /* In an implementation that includes the Security Extensions
3941             * TTBCR has additional fields PD0 [4] and PD1 [5] for
3942             * Short-descriptor translation table format.
3943             */
3944            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3945        } else {
3946            value &= TTBCR_N;
3947        }
3948    }
3949
3950    /* Update the masks corresponding to the TCR bank being written
3951     * Note that we always calculate mask and base_mask, but
3952     * they are only used for short-descriptor tables (ie if EAE is 0);
3953     * for long-descriptor tables the TCR fields are used differently
3954     * and the mask and base_mask values are meaningless.
3955     */
3956    tcr->raw_tcr = value;
3957    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3958    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3959}
3960
3961static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962                             uint64_t value)
3963{
3964    ARMCPU *cpu = env_archcpu(env);
3965    TCR *tcr = raw_ptr(env, ri);
3966
3967    if (arm_feature(env, ARM_FEATURE_LPAE)) {
3968        /* With LPAE the TTBCR could result in a change of ASID
3969         * via the TTBCR.A1 bit, so do a TLB flush.
3970         */
3971        tlb_flush(CPU(cpu));
3972    }
3973    /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3974    value = deposit64(tcr->raw_tcr, 0, 32, value);
3975    vmsa_ttbcr_raw_write(env, ri, value);
3976}
3977
3978static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3979{
3980    TCR *tcr = raw_ptr(env, ri);
3981
3982    /* Reset both the TCR as well as the masks corresponding to the bank of
3983     * the TCR being reset.
3984     */
3985    tcr->raw_tcr = 0;
3986    tcr->mask = 0;
3987    tcr->base_mask = 0xffffc000u;
3988}
3989
3990static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991                               uint64_t value)
3992{
3993    ARMCPU *cpu = env_archcpu(env);
3994    TCR *tcr = raw_ptr(env, ri);
3995
3996    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3997    tlb_flush(CPU(cpu));
3998    tcr->raw_tcr = value;
3999}
4000
4001static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002                            uint64_t value)
4003{
4004    /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4005    if (cpreg_field_is_64bit(ri) &&
4006        extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4007        ARMCPU *cpu = env_archcpu(env);
4008        tlb_flush(CPU(cpu));
4009    }
4010    raw_write(env, ri, value);
4011}
4012
4013static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014                                    uint64_t value)
4015{
4016    /*
4017     * If we are running with E2&0 regime, then an ASID is active.
4018     * Flush if that might be changing.  Note we're not checking
4019     * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4020     * holds the active ASID, only checking the field that might.
4021     */
4022    if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4023        (arm_hcr_el2_eff(env) & HCR_E2H)) {
4024        uint16_t mask = ARMMMUIdxBit_E20_2 |
4025                        ARMMMUIdxBit_E20_2_PAN |
4026                        ARMMMUIdxBit_E20_0;
4027
4028        if (arm_is_secure_below_el3(env)) {
4029            mask >>= ARM_MMU_IDX_A_NS;
4030        }
4031
4032        tlb_flush_by_mmuidx(env_cpu(env), mask);
4033    }
4034    raw_write(env, ri, value);
4035}
4036
4037static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038                        uint64_t value)
4039{
4040    ARMCPU *cpu = env_archcpu(env);
4041    CPUState *cs = CPU(cpu);
4042
4043    /*
4044     * A change in VMID to the stage2 page table (Stage2) invalidates
4045     * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4046     */
4047    if (raw_read(env, ri) != value) {
4048        uint16_t mask = ARMMMUIdxBit_E10_1 |
4049                        ARMMMUIdxBit_E10_1_PAN |
4050                        ARMMMUIdxBit_E10_0;
4051
4052        if (arm_is_secure_below_el3(env)) {
4053            mask >>= ARM_MMU_IDX_A_NS;
4054        }
4055
4056        tlb_flush_by_mmuidx(cs, mask);
4057        raw_write(env, ri, value);
4058    }
4059}
4060
4061static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4062    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4063      .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4064      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4065                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4066    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4067      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4068      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4069                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4070    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4071      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4072      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4073                             offsetof(CPUARMState, cp15.dfar_ns) } },
4074    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4075      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4076      .access = PL1_RW, .accessfn = access_tvm_trvm,
4077      .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4078      .resetvalue = 0, },
4079    REGINFO_SENTINEL
4080};
4081
4082static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4083    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4084      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4085      .access = PL1_RW, .accessfn = access_tvm_trvm,
4086      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4087    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4088      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4089      .access = PL1_RW, .accessfn = access_tvm_trvm,
4090      .writefn = vmsa_ttbr_write, .resetvalue = 0,
4091      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4092                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
4093    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4094      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4095      .access = PL1_RW, .accessfn = access_tvm_trvm,
4096      .writefn = vmsa_ttbr_write, .resetvalue = 0,
4097      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4098                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
4099    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4100      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4101      .access = PL1_RW, .accessfn = access_tvm_trvm,
4102      .writefn = vmsa_tcr_el12_write,
4103      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4104      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4105    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4106      .access = PL1_RW, .accessfn = access_tvm_trvm,
4107      .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4108      .raw_writefn = vmsa_ttbcr_raw_write,
4109      /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
4110      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
4111                             offsetof(CPUARMState, cp15.tcr_el[1])} },
4112    REGINFO_SENTINEL
4113};
4114
4115/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4116 * qemu tlbs nor adjusting cached masks.
4117 */
4118static const ARMCPRegInfo ttbcr2_reginfo = {
4119    .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4120    .access = PL1_RW, .accessfn = access_tvm_trvm,
4121    .type = ARM_CP_ALIAS,
4122    .bank_fieldoffsets = {
4123        offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
4124        offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
4125    },
4126};
4127
4128static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4129                                uint64_t value)
4130{
4131    env->cp15.c15_ticonfig = value & 0xe7;
4132    /* The OS_TYPE bit in this register changes the reported CPUID! */
4133    env->cp15.c0_cpuid = (value & (1 << 5)) ?
4134        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4135}
4136
4137static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4138                                uint64_t value)
4139{
4140    env->cp15.c15_threadid = value & 0xffff;
4141}
4142
4143static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4144                           uint64_t value)
4145{
4146    /* Wait-for-interrupt (deprecated) */
4147    cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4148}
4149
4150static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4151                                  uint64_t value)
4152{
4153    /* On OMAP there are registers indicating the max/min index of dcache lines
4154     * containing a dirty line; cache flush operations have to reset these.
4155     */
4156    env->cp15.c15_i_max = 0x000;
4157    env->cp15.c15_i_min = 0xff0;
4158}
4159
4160static const ARMCPRegInfo omap_cp_reginfo[] = {
4161    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4162      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4163      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4164      .resetvalue = 0, },
4165    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4166      .access = PL1_RW, .type = ARM_CP_NOP },
4167    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4168      .access = PL1_RW,
4169      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4170      .writefn = omap_ticonfig_write },
4171    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4172      .access = PL1_RW,
4173      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4174    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4175      .access = PL1_RW, .resetvalue = 0xff0,
4176      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4177    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4178      .access = PL1_RW,
4179      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4180      .writefn = omap_threadid_write },
4181    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4182      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4183      .type = ARM_CP_NO_RAW,
4184      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4185    /* TODO: Peripheral port remap register:
4186     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4187     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4188     * when MMU is off.
4189     */
4190    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4191      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4192      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4193      .writefn = omap_cachemaint_write },
4194    { .name = "C9", .cp = 15, .crn = 9,
4195      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4196      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4197    REGINFO_SENTINEL
4198};
4199
4200static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4201                              uint64_t value)
4202{
4203    env->cp15.c15_cpar = value & 0x3fff;
4204}
4205
4206static const ARMCPRegInfo xscale_cp_reginfo[] = {
4207    { .name = "XSCALE_CPAR",
4208      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4209      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4210      .writefn = xscale_cpar_write, },
4211    { .name = "XSCALE_AUXCR",
4212      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4213      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4214      .resetvalue = 0, },
4215    /* XScale specific cache-lockdown: since we have no cache we NOP these
4216     * and hope the guest does not really rely on cache behaviour.
4217     */
4218    { .name = "XSCALE_LOCK_ICACHE_LINE",
4219      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4220      .access = PL1_W, .type = ARM_CP_NOP },
4221    { .name = "XSCALE_UNLOCK_ICACHE",
4222      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4223      .access = PL1_W, .type = ARM_CP_NOP },
4224    { .name = "XSCALE_DCACHE_LOCK",
4225      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4226      .access = PL1_RW, .type = ARM_CP_NOP },
4227    { .name = "XSCALE_UNLOCK_DCACHE",
4228      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4229      .access = PL1_W, .type = ARM_CP_NOP },
4230    REGINFO_SENTINEL
4231};
4232
4233static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4234    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4235     * implementation of this implementation-defined space.
4236     * Ideally this should eventually disappear in favour of actually
4237     * implementing the correct behaviour for all cores.
4238     */
4239    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4240      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4241      .access = PL1_RW,
4242      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4243      .resetvalue = 0 },
4244    REGINFO_SENTINEL
4245};
4246
4247static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4248    /* Cache status: RAZ because we have no cache so it's always clean */
4249    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4250      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4251      .resetvalue = 0 },
4252    REGINFO_SENTINEL
4253};
4254
4255static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4256    /* We never have a a block transfer operation in progress */
4257    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4258      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4259      .resetvalue = 0 },
4260    /* The cache ops themselves: these all NOP for QEMU */
4261    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4262      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4263    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4264      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4265    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4266      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4267    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4268      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4269    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4270      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4271    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4272      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4273    REGINFO_SENTINEL
4274};
4275
4276static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4277    /* The cache test-and-clean instructions always return (1 << 30)
4278     * to indicate that there are no dirty cache lines.
4279     */
4280    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4281      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4282      .resetvalue = (1 << 30) },
4283    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4284      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4285      .resetvalue = (1 << 30) },
4286    REGINFO_SENTINEL
4287};
4288
4289static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4290    /* Ignore ReadBuffer accesses */
4291    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4292      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4293      .access = PL1_RW, .resetvalue = 0,
4294      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4295    REGINFO_SENTINEL
4296};
4297
4298static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4299{
4300    unsigned int cur_el = arm_current_el(env);
4301
4302    if (arm_is_el2_enabled(env) && cur_el == 1) {
4303        return env->cp15.vpidr_el2;
4304    }
4305    return raw_read(env, ri);
4306}
4307
4308static uint64_t mpidr_read_val(CPUARMState *env)
4309{
4310    ARMCPU *cpu = env_archcpu(env);
4311    uint64_t mpidr = cpu->mp_affinity;
4312
4313    if (arm_feature(env, ARM_FEATURE_V7MP)) {
4314        mpidr |= (1U << 31);
4315        /* Cores which are uniprocessor (non-coherent)
4316         * but still implement the MP extensions set
4317         * bit 30. (For instance, Cortex-R5).
4318         */
4319        if (cpu->mp_is_up) {
4320            mpidr |= (1u << 30);
4321        }
4322    }
4323    return mpidr;
4324}
4325
4326static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4327{
4328    unsigned int cur_el = arm_current_el(env);
4329
4330    if (arm_is_el2_enabled(env) && cur_el == 1) {
4331        return env->cp15.vmpidr_el2;
4332    }
4333    return mpidr_read_val(env);
4334}
4335
4336static const ARMCPRegInfo lpae_cp_reginfo[] = {
4337    /* NOP AMAIR0/1 */
4338    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4339      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4340      .access = PL1_RW, .accessfn = access_tvm_trvm,
4341      .type = ARM_CP_CONST, .resetvalue = 0 },
4342    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4343    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4344      .access = PL1_RW, .accessfn = access_tvm_trvm,
4345      .type = ARM_CP_CONST, .resetvalue = 0 },
4346    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4347      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4348      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4349                             offsetof(CPUARMState, cp15.par_ns)} },
4350    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4351      .access = PL1_RW, .accessfn = access_tvm_trvm,
4352      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4353      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4354                             offsetof(CPUARMState, cp15.ttbr0_ns) },
4355      .writefn = vmsa_ttbr_write, },
4356    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4357      .access = PL1_RW, .accessfn = access_tvm_trvm,
4358      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4359      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4360                             offsetof(CPUARMState, cp15.ttbr1_ns) },
4361      .writefn = vmsa_ttbr_write, },
4362    REGINFO_SENTINEL
4363};
4364
4365static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4366{
4367    return vfp_get_fpcr(env);
4368}
4369
4370static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4371                            uint64_t value)
4372{
4373    vfp_set_fpcr(env, value);
4374}
4375
4376static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4377{
4378    return vfp_get_fpsr(env);
4379}
4380
4381static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4382                            uint64_t value)
4383{
4384    vfp_set_fpsr(env, value);
4385}
4386
4387static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4388                                       bool isread)
4389{
4390    if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4391        return CP_ACCESS_TRAP;
4392    }
4393    return CP_ACCESS_OK;
4394}
4395
4396static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4397                            uint64_t value)
4398{
4399    env->daif = value & PSTATE_DAIF;
4400}
4401
4402static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4403{
4404    return env->pstate & PSTATE_PAN;
4405}
4406
4407static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4408                           uint64_t value)
4409{
4410    env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4411}
4412
4413static const ARMCPRegInfo pan_reginfo = {
4414    .name = "PAN", .state = ARM_CP_STATE_AA64,
4415    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4416    .type = ARM_CP_NO_RAW, .access = PL1_RW,
4417    .readfn = aa64_pan_read, .writefn = aa64_pan_write
4418};
4419
4420static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4421{
4422    return env->pstate & PSTATE_UAO;
4423}
4424
4425static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426                           uint64_t value)
4427{
4428    env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4429}
4430
4431static const ARMCPRegInfo uao_reginfo = {
4432    .name = "UAO", .state = ARM_CP_STATE_AA64,
4433    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4434    .type = ARM_CP_NO_RAW, .access = PL1_RW,
4435    .readfn = aa64_uao_read, .writefn = aa64_uao_write
4436};
4437
4438static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4439{
4440    return env->pstate & PSTATE_DIT;
4441}
4442
4443static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4444                           uint64_t value)
4445{
4446    env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4447}
4448
4449static const ARMCPRegInfo dit_reginfo = {
4450    .name = "DIT", .state = ARM_CP_STATE_AA64,
4451    .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4452    .type = ARM_CP_NO_RAW, .access = PL0_RW,
4453    .readfn = aa64_dit_read, .writefn = aa64_dit_write
4454};
4455
4456static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4457{
4458    return env->pstate & PSTATE_SSBS;
4459}
4460
4461static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4462                           uint64_t value)
4463{
4464    env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4465}
4466
4467static const ARMCPRegInfo ssbs_reginfo = {
4468    .name = "SSBS", .state = ARM_CP_STATE_AA64,
4469    .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4470    .type = ARM_CP_NO_RAW, .access = PL0_RW,
4471    .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4472};
4473
4474static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4475                                              const ARMCPRegInfo *ri,
4476                                              bool isread)
4477{
4478    /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4479    switch (arm_current_el(env)) {
4480    case 0:
4481        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4482        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4483            return CP_ACCESS_TRAP;
4484        }
4485        /* fall through */
4486    case 1:
4487        /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4488        if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4489            return CP_ACCESS_TRAP_EL2;
4490        }
4491        break;
4492    }
4493    return CP_ACCESS_OK;
4494}
4495
4496static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4497                                              const ARMCPRegInfo *ri,
4498                                              bool isread)
4499{
4500    /* Cache invalidate/clean to Point of Unification... */
4501    switch (arm_current_el(env)) {
4502    case 0:
4503        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4504        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4505            return CP_ACCESS_TRAP;
4506        }
4507        /* fall through */
4508    case 1:
4509        /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4510        if (arm_hcr_el2_eff(env) & HCR_TPU) {
4511            return CP_ACCESS_TRAP_EL2;
4512        }
4513        break;
4514    }
4515    return CP_ACCESS_OK;
4516}
4517
4518/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4519 * Page D4-1736 (DDI0487A.b)
4520 */
4521
4522static int vae1_tlbmask(CPUARMState *env)
4523{
4524    uint64_t hcr = arm_hcr_el2_eff(env);
4525    uint16_t mask;
4526
4527    if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4528        mask = ARMMMUIdxBit_E20_2 |
4529               ARMMMUIdxBit_E20_2_PAN |
4530               ARMMMUIdxBit_E20_0;
4531    } else {
4532        mask = ARMMMUIdxBit_E10_1 |
4533               ARMMMUIdxBit_E10_1_PAN |
4534               ARMMMUIdxBit_E10_0;
4535    }
4536
4537    if (arm_is_secure_below_el3(env)) {
4538        mask >>= ARM_MMU_IDX_A_NS;
4539    }
4540
4541    return mask;
4542}
4543
4544/* Return 56 if TBI is enabled, 64 otherwise. */
4545static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4546                              uint64_t addr)
4547{
4548    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4549    int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4550    int select = extract64(addr, 55, 1);
4551
4552    return (tbi >> select) & 1 ? 56 : 64;
4553}
4554
4555static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4556{
4557    uint64_t hcr = arm_hcr_el2_eff(env);
4558    ARMMMUIdx mmu_idx;
4559
4560    /* Only the regime of the mmu_idx below is significant. */
4561    if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4562        mmu_idx = ARMMMUIdx_E20_0;
4563    } else {
4564        mmu_idx = ARMMMUIdx_E10_0;
4565    }
4566
4567    if (arm_is_secure_below_el3(env)) {
4568        mmu_idx &= ~ARM_MMU_IDX_A_NS;
4569    }
4570
4571    return tlbbits_for_regime(env, mmu_idx, addr);
4572}
4573
4574static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4575                                      uint64_t value)
4576{
4577    CPUState *cs = env_cpu(env);
4578    int mask = vae1_tlbmask(env);
4579
4580    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4581}
4582
4583static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4584                                    uint64_t value)
4585{
4586    CPUState *cs = env_cpu(env);
4587    int mask = vae1_tlbmask(env);
4588
4589    if (tlb_force_broadcast(env)) {
4590        tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4591    } else {
4592        tlb_flush_by_mmuidx(cs, mask);
4593    }
4594}
4595
4596static int alle1_tlbmask(CPUARMState *env)
4597{
4598    /*
4599     * Note that the 'ALL' scope must invalidate both stage 1 and
4600     * stage 2 translations, whereas most other scopes only invalidate
4601     * stage 1 translations.
4602     */
4603    if (arm_is_secure_below_el3(env)) {
4604        return ARMMMUIdxBit_SE10_1 |
4605               ARMMMUIdxBit_SE10_1_PAN |
4606               ARMMMUIdxBit_SE10_0;
4607    } else {
4608        return ARMMMUIdxBit_E10_1 |
4609               ARMMMUIdxBit_E10_1_PAN |
4610               ARMMMUIdxBit_E10_0;
4611    }
4612}
4613
4614static int e2_tlbmask(CPUARMState *env)
4615{
4616    if (arm_is_secure_below_el3(env)) {
4617        return ARMMMUIdxBit_SE20_0 |
4618               ARMMMUIdxBit_SE20_2 |
4619               ARMMMUIdxBit_SE20_2_PAN |
4620               ARMMMUIdxBit_SE2;
4621    } else {
4622        return ARMMMUIdxBit_E20_0 |
4623               ARMMMUIdxBit_E20_2 |
4624               ARMMMUIdxBit_E20_2_PAN |
4625               ARMMMUIdxBit_E2;
4626    }
4627}
4628
4629static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4630                                  uint64_t value)
4631{
4632    CPUState *cs = env_cpu(env);
4633    int mask = alle1_tlbmask(env);
4634
4635    tlb_flush_by_mmuidx(cs, mask);
4636}
4637
4638static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4639                                  uint64_t value)
4640{
4641    CPUState *cs = env_cpu(env);
4642    int mask = e2_tlbmask(env);
4643
4644    tlb_flush_by_mmuidx(cs, mask);
4645}
4646
4647static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4648                                  uint64_t value)
4649{
4650    ARMCPU *cpu = env_archcpu(env);
4651    CPUState *cs = CPU(cpu);
4652
4653    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4654}
4655
4656static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4657                                    uint64_t value)
4658{
4659    CPUState *cs = env_cpu(env);
4660    int mask = alle1_tlbmask(env);
4661
4662    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4663}
4664
4665static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4666                                    uint64_t value)
4667{
4668    CPUState *cs = env_cpu(env);
4669    int mask = e2_tlbmask(env);
4670
4671    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4672}
4673
4674static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4675                                    uint64_t value)
4676{
4677    CPUState *cs = env_cpu(env);
4678
4679    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4680}
4681
4682static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683                                 uint64_t value)
4684{
4685    /* Invalidate by VA, EL2
4686     * Currently handles both VAE2 and VALE2, since we don't support
4687     * flush-last-level-only.
4688     */
4689    CPUState *cs = env_cpu(env);
4690    int mask = e2_tlbmask(env);
4691    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4692
4693    tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4694}
4695
4696static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4697                                 uint64_t value)
4698{
4699    /* Invalidate by VA, EL3
4700     * Currently handles both VAE3 and VALE3, since we don't support
4701     * flush-last-level-only.
4702     */
4703    ARMCPU *cpu = env_archcpu(env);
4704    CPUState *cs = CPU(cpu);
4705    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4706
4707    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4708}
4709
4710static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4711                                   uint64_t value)
4712{
4713    CPUState *cs = env_cpu(env);
4714    int mask = vae1_tlbmask(env);
4715    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4716    int bits = vae1_tlbbits(env, pageaddr);
4717
4718    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4719}
4720
4721static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722                                 uint64_t value)
4723{
4724    /* Invalidate by VA, EL1&0 (AArch64 version).
4725     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4726     * since we don't support flush-for-specific-ASID-only or
4727     * flush-last-level-only.
4728     */
4729    CPUState *cs = env_cpu(env);
4730    int mask = vae1_tlbmask(env);
4731    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4732    int bits = vae1_tlbbits(env, pageaddr);
4733
4734    if (tlb_force_broadcast(env)) {
4735        tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4736    } else {
4737        tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4738    }
4739}
4740
4741static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4742                                   uint64_t value)
4743{
4744    CPUState *cs = env_cpu(env);
4745    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4746    bool secure = arm_is_secure_below_el3(env);
4747    int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4748    int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4749                                  pageaddr);
4750
4751    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4752}
4753
4754static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4755                                   uint64_t value)
4756{
4757    CPUState *cs = env_cpu(env);
4758    uint64_t pageaddr = sextract64(value << 12, 0, 56);
4759    int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4760
4761    tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4762                                                  ARMMMUIdxBit_SE3, bits);
4763}
4764
4765#ifdef TARGET_AARCH64
4766static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4767                                           uint64_t value)
4768{
4769    unsigned int page_shift;
4770    unsigned int page_size_granule;
4771    uint64_t num;
4772    uint64_t scale;
4773    uint64_t exponent;
4774    uint64_t length;
4775
4776    num = extract64(value, 39, 4);
4777    scale = extract64(value, 44, 2);
4778    page_size_granule = extract64(value, 46, 2);
4779
4780    page_shift = page_size_granule * 2 + 12;
4781
4782    if (page_size_granule == 0) {
4783        qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4784                      page_size_granule);
4785        return 0;
4786    }
4787
4788    exponent = (5 * scale) + 1;
4789    length = (num + 1) << (exponent + page_shift);
4790
4791    return length;
4792}
4793
4794static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4795                                        bool two_ranges)
4796{
4797    /* TODO: ARMv8.7 FEAT_LPA2 */
4798    uint64_t pageaddr;
4799
4800    if (two_ranges) {
4801        pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4802    } else {
4803        pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4804    }
4805
4806    return pageaddr;
4807}
4808
4809static void do_rvae_write(CPUARMState *env, uint64_t value,
4810                          int idxmap, bool synced)
4811{
4812    ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4813    bool two_ranges = regime_has_2_ranges(one_idx);
4814    uint64_t baseaddr, length;
4815    int bits;
4816
4817    baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4818    length = tlbi_aa64_range_get_length(env, value);
4819    bits = tlbbits_for_regime(env, one_idx, baseaddr);
4820
4821    if (synced) {
4822        tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4823                                                  baseaddr,
4824                                                  length,
4825                                                  idxmap,
4826                                                  bits);
4827    } else {
4828        tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4829                                  length, idxmap, bits);
4830    }
4831}
4832
4833static void tlbi_aa64_rvae1_write(CPUARMState *env,
4834                                  const ARMCPRegInfo *ri,
4835                                  uint64_t value)
4836{
4837    /*
4838     * Invalidate by VA range, EL1&0.
4839     * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4840     * since we don't support flush-for-specific-ASID-only or
4841     * flush-last-level-only.
4842     */
4843
4844    do_rvae_write(env, value, vae1_tlbmask(env),
4845                  tlb_force_broadcast(env));
4846}
4847
4848static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4849                                    const ARMCPRegInfo *ri,
4850                                    uint64_t value)
4851{
4852    /*
4853     * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4854     * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4855     * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4856     * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4857     * shareable specific flushes.
4858     */
4859
4860    do_rvae_write(env, value, vae1_tlbmask(env), true);
4861}
4862
4863static int vae2_tlbmask(CPUARMState *env)
4864{
4865    return (arm_is_secure_below_el3(env)
4866            ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4867}
4868
4869static void tlbi_aa64_rvae2_write(CPUARMState *env,
4870                                  const ARMCPRegInfo *ri,
4871                                  uint64_t value)
4872{
4873    /*
4874     * Invalidate by VA range, EL2.
4875     * Currently handles all of RVAE2 and RVALE2,
4876     * since we don't support flush-for-specific-ASID-only or
4877     * flush-last-level-only.
4878     */
4879
4880    do_rvae_write(env, value, vae2_tlbmask(env),
4881                  tlb_force_broadcast(env));
4882
4883
4884}
4885
4886static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4887                                    const ARMCPRegInfo *ri,
4888                                    uint64_t value)
4889{
4890    /*
4891     * Invalidate by VA range, Inner/Outer Shareable, EL2.
4892     * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4893     * since we don't support flush-for-specific-ASID-only,
4894     * flush-last-level-only or inner/outer shareable specific flushes.
4895     */
4896
4897    do_rvae_write(env, value, vae2_tlbmask(env), true);
4898
4899}
4900
4901static void tlbi_aa64_rvae3_write(CPUARMState *env,
4902                                  const ARMCPRegInfo *ri,
4903                                  uint64_t value)
4904{
4905    /*
4906     * Invalidate by VA range, EL3.
4907     * Currently handles all of RVAE3 and RVALE3,
4908     * since we don't support flush-for-specific-ASID-only or
4909     * flush-last-level-only.
4910     */
4911
4912    do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4913                  tlb_force_broadcast(env));
4914}
4915
4916static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4917                                    const ARMCPRegInfo *ri,
4918                                    uint64_t value)
4919{
4920    /*
4921     * Invalidate by VA range, EL3, Inner/Outer Shareable.
4922     * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4923     * since we don't support flush-for-specific-ASID-only,
4924     * flush-last-level-only or inner/outer specific flushes.
4925     */
4926
4927    do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4928}
4929#endif
4930
4931static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4932                                      bool isread)
4933{
4934    int cur_el = arm_current_el(env);
4935
4936    if (cur_el < 2) {
4937        uint64_t hcr = arm_hcr_el2_eff(env);
4938
4939        if (cur_el == 0) {
4940            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4941                if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4942                    return CP_ACCESS_TRAP_EL2;
4943                }
4944            } else {
4945                if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4946                    return CP_ACCESS_TRAP;
4947                }
4948                if (hcr & HCR_TDZ) {
4949                    return CP_ACCESS_TRAP_EL2;
4950                }
4951            }
4952        } else if (hcr & HCR_TDZ) {
4953            return CP_ACCESS_TRAP_EL2;
4954        }
4955    }
4956    return CP_ACCESS_OK;
4957}
4958
4959static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4960{
4961    ARMCPU *cpu = env_archcpu(env);
4962    int dzp_bit = 1 << 4;
4963
4964    /* DZP indicates whether DC ZVA access is allowed */
4965    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4966        dzp_bit = 0;
4967    }
4968    return cpu->dcz_blocksize | dzp_bit;
4969}
4970
4971static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4972                                    bool isread)
4973{
4974    if (!(env->pstate & PSTATE_SP)) {
4975        /* Access to SP_EL0 is undefined if it's being used as
4976         * the stack pointer.
4977         */
4978        return CP_ACCESS_TRAP_UNCATEGORIZED;
4979    }
4980    return CP_ACCESS_OK;
4981}
4982
4983static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4984{
4985    return env->pstate & PSTATE_SP;
4986}
4987
4988static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4989{
4990    update_spsel(env, val);
4991}
4992
4993static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4994                        uint64_t value)
4995{
4996    ARMCPU *cpu = env_archcpu(env);
4997
4998    if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4999        /* M bit is RAZ/WI for PMSA with no MPU implemented */
5000        value &= ~SCTLR_M;
5001    }
5002
5003    /* ??? Lots of these bits are not implemented.  */
5004
5005    if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5006        if (ri->opc1 == 6) { /* SCTLR_EL3 */
5007            value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5008        } else {
5009            value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5010                       SCTLR_ATA0 | SCTLR_ATA);
5011        }
5012    }
5013
5014    if (raw_read(env, ri) == value) {
5015        /* Skip the TLB flush if nothing actually changed; Linux likes
5016         * to do a lot of pointless SCTLR writes.
5017         */
5018        return;
5019    }
5020
5021    raw_write(env, ri, value);
5022
5023    /* This may enable/disable the MMU, so do a TLB flush.  */
5024    tlb_flush(CPU(cpu));
5025
5026    if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5027        /*
5028         * Normally we would always end the TB on an SCTLR write; see the
5029         * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5030         * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5031         * of hflags from the translator, so do it here.
5032         */
5033        arm_rebuild_hflags(env);
5034    }
5035}
5036
5037static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
5038                                     bool isread)
5039{
5040    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
5041        return CP_ACCESS_TRAP_FP_EL2;
5042    }
5043    if (env->cp15.cptr_el[3] & CPTR_TFP) {
5044        return CP_ACCESS_TRAP_FP_EL3;
5045    }
5046    return CP_ACCESS_OK;
5047}
5048
5049static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5050                       uint64_t value)
5051{
5052    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
5053}
5054
5055static const ARMCPRegInfo v8_cp_reginfo[] = {
5056    /* Minimal set of EL0-visible registers. This will need to be expanded
5057     * significantly for system emulation of AArch64 CPUs.
5058     */
5059    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5060      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5061      .access = PL0_RW, .type = ARM_CP_NZCV },
5062    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5063      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5064      .type = ARM_CP_NO_RAW,
5065      .access = PL0_RW, .accessfn = aa64_daif_access,
5066      .fieldoffset = offsetof(CPUARMState, daif),
5067      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5068    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5069      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5070      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5071      .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5072    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5073      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5074      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5075      .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5076    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5077      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5078      .access = PL0_R, .type = ARM_CP_NO_RAW,
5079      .readfn = aa64_dczid_read },
5080    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5081      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5082      .access = PL0_W, .type = ARM_CP_DC_ZVA,
5083#ifndef CONFIG_USER_ONLY
5084      /* Avoid overhead of an access check that always passes in user-mode */
5085      .accessfn = aa64_zva_access,
5086#endif
5087    },
5088    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5089      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5090      .access = PL1_R, .type = ARM_CP_CURRENTEL },
5091    /* Cache ops: all NOPs since we don't emulate caches */
5092    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5093      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5094      .access = PL1_W, .type = ARM_CP_NOP,
5095      .accessfn = aa64_cacheop_pou_access },
5096    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5097      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5098      .access = PL1_W, .type = ARM_CP_NOP,
5099      .accessfn = aa64_cacheop_pou_access },
5100    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5101      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5102      .access = PL0_W, .type = ARM_CP_NOP,
5103      .accessfn = aa64_cacheop_pou_access },
5104    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5105      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5106      .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5107      .type = ARM_CP_NOP },
5108    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5109      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5110      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5111    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5112      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5113      .access = PL0_W, .type = ARM_CP_NOP,
5114      .accessfn = aa64_cacheop_poc_access },
5115    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5116      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5117      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5118    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5119      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5120      .access = PL0_W, .type = ARM_CP_NOP,
5121      .accessfn = aa64_cacheop_pou_access },
5122    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5123      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5124      .access = PL0_W, .type = ARM_CP_NOP,
5125      .accessfn = aa64_cacheop_poc_access },
5126    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5127      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5128      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5129    /* TLBI operations */
5130    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5131      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5132      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5133      .writefn = tlbi_aa64_vmalle1is_write },
5134    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5135      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5136      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5137      .writefn = tlbi_aa64_vae1is_write },
5138    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5139      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5140      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5141      .writefn = tlbi_aa64_vmalle1is_write },
5142    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5143      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5144      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5145      .writefn = tlbi_aa64_vae1is_write },
5146    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5147      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5148      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5149      .writefn = tlbi_aa64_vae1is_write },
5150    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5151      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5152      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5153      .writefn = tlbi_aa64_vae1is_write },
5154    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5155      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5156      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5157      .writefn = tlbi_aa64_vmalle1_write },
5158    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5159      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5160      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5161      .writefn = tlbi_aa64_vae1_write },
5162    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5163      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5164      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5165      .writefn = tlbi_aa64_vmalle1_write },
5166    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5167      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5168      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5169      .writefn = tlbi_aa64_vae1_write },
5170    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5171      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5172      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5173      .writefn = tlbi_aa64_vae1_write },
5174    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5175      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5176      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5177      .writefn = tlbi_aa64_vae1_write },
5178    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5179      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5180      .access = PL2_W, .type = ARM_CP_NOP },
5181    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5182      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5183      .access = PL2_W, .type = ARM_CP_NOP },
5184    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5185      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5186      .access = PL2_W, .type = ARM_CP_NO_RAW,
5187      .writefn = tlbi_aa64_alle1is_write },
5188    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5189      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5190      .access = PL2_W, .type = ARM_CP_NO_RAW,
5191      .writefn = tlbi_aa64_alle1is_write },
5192    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5193      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5194      .access = PL2_W, .type = ARM_CP_NOP },
5195    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5196      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5197      .access = PL2_W, .type = ARM_CP_NOP },
5198    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5199      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5200      .access = PL2_W, .type = ARM_CP_NO_RAW,
5201      .writefn = tlbi_aa64_alle1_write },
5202    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5203      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5204      .access = PL2_W, .type = ARM_CP_NO_RAW,
5205      .writefn = tlbi_aa64_alle1is_write },
5206#ifndef CONFIG_USER_ONLY
5207    /* 64 bit address translation operations */
5208    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5209      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5210      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5211      .writefn = ats_write64 },
5212    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5213      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5214      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5215      .writefn = ats_write64 },
5216    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5217      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5218      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5219      .writefn = ats_write64 },
5220    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5221      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5222      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5223      .writefn = ats_write64 },
5224    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5225      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5226      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5227      .writefn = ats_write64 },
5228    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5229      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5230      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5231      .writefn = ats_write64 },
5232    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5233      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5234      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5235      .writefn = ats_write64 },
5236    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5237      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5238      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5239      .writefn = ats_write64 },
5240    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5241    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5242      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5243      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5244      .writefn = ats_write64 },
5245    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5246      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5247      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5248      .writefn = ats_write64 },
5249    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5250      .type = ARM_CP_ALIAS,
5251      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5252      .access = PL1_RW, .resetvalue = 0,
5253      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5254      .writefn = par_write },
5255#endif
5256    /* TLB invalidate last level of translation table walk */
5257    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5258      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5259      .writefn = tlbimva_is_write },
5260    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5261      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5262      .writefn = tlbimvaa_is_write },
5263    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5264      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5265      .writefn = tlbimva_write },
5266    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5267      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5268      .writefn = tlbimvaa_write },
5269    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5270      .type = ARM_CP_NO_RAW, .access = PL2_W,
5271      .writefn = tlbimva_hyp_write },
5272    { .name = "TLBIMVALHIS",
5273      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5274      .type = ARM_CP_NO_RAW, .access = PL2_W,
5275      .writefn = tlbimva_hyp_is_write },
5276    { .name = "TLBIIPAS2",
5277      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5278      .type = ARM_CP_NOP, .access = PL2_W },
5279    { .name = "TLBIIPAS2IS",
5280      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5281      .type = ARM_CP_NOP, .access = PL2_W },
5282    { .name = "TLBIIPAS2L",
5283      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5284      .type = ARM_CP_NOP, .access = PL2_W },
5285    { .name = "TLBIIPAS2LIS",
5286      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5287      .type = ARM_CP_NOP, .access = PL2_W },
5288    /* 32 bit cache operations */
5289    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5290      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5291    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5292      .type = ARM_CP_NOP, .access = PL1_W },
5293    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5294      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5295    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5296      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5297    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5298      .type = ARM_CP_NOP, .access = PL1_W },
5299    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5300      .type = ARM_CP_NOP, .access = PL1_W },
5301    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5302      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5303    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5304      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5305    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5306      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5307    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5308      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5309    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5310      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5311    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5312      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5313    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5314      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5315    /* MMU Domain access control / MPU write buffer control */
5316    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5317      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5318      .writefn = dacr_write, .raw_writefn = raw_write,
5319      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5320                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5321    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5322      .type = ARM_CP_ALIAS,
5323      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5324      .access = PL1_RW,
5325      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5326    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5327      .type = ARM_CP_ALIAS,
5328      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5329      .access = PL1_RW,
5330      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5331    /* We rely on the access checks not allowing the guest to write to the
5332     * state field when SPSel indicates that it's being used as the stack
5333     * pointer.
5334     */
5335    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5336      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5337      .access = PL1_RW, .accessfn = sp_el0_access,
5338      .type = ARM_CP_ALIAS,
5339      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5340    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5341      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5342      .access = PL2_RW, .type = ARM_CP_ALIAS,
5343      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5344    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5345      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5346      .type = ARM_CP_NO_RAW,
5347      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5348    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5349      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5350      .type = ARM_CP_ALIAS,
5351      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5352      .access = PL2_RW, .accessfn = fpexc32_access },
5353    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5354      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5355      .access = PL2_RW, .resetvalue = 0,
5356      .writefn = dacr_write, .raw_writefn = raw_write,
5357      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5358    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5359      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5360      .access = PL2_RW, .resetvalue = 0,
5361      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5362    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5363      .type = ARM_CP_ALIAS,
5364      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5365      .access = PL2_RW,
5366      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5367    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5368      .type = ARM_CP_ALIAS,
5369      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5370      .access = PL2_RW,
5371      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5372    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5373      .type = ARM_CP_ALIAS,
5374      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5375      .access = PL2_RW,
5376      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5377    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5378      .type = ARM_CP_ALIAS,
5379      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5380      .access = PL2_RW,
5381      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5382    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5383      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5384      .resetvalue = 0,
5385      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5386    { .name = "SDCR", .type = ARM_CP_ALIAS,
5387      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5388      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5389      .writefn = sdcr_write,
5390      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5391    REGINFO_SENTINEL
5392};
5393
5394/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5395static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5396    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5397      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5398      .access = PL2_RW,
5399      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5400    { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5401      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5402      .access = PL2_RW,
5403      .type = ARM_CP_CONST, .resetvalue = 0 },
5404    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5405      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5406      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5407    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5408      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5409      .access = PL2_RW,
5410      .type = ARM_CP_CONST, .resetvalue = 0 },
5411    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5412      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5413      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5414    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5415      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5416      .access = PL2_RW, .type = ARM_CP_CONST,
5417      .resetvalue = 0 },
5418    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5419      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5420      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5421    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5422      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5423      .access = PL2_RW, .type = ARM_CP_CONST,
5424      .resetvalue = 0 },
5425    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5426      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5427      .access = PL2_RW, .type = ARM_CP_CONST,
5428      .resetvalue = 0 },
5429    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5430      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5431      .access = PL2_RW, .type = ARM_CP_CONST,
5432      .resetvalue = 0 },
5433    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5434      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5435      .access = PL2_RW, .type = ARM_CP_CONST,
5436      .resetvalue = 0 },
5437    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5438      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5439      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5440    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5441      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5442      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5443      .type = ARM_CP_CONST, .resetvalue = 0 },
5444    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5445      .cp = 15, .opc1 = 6, .crm = 2,
5446      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5447      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5448    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5449      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5450      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5451    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5452      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5453      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5454    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5455      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5456      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5457    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5458      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5459      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5460    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5461      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5462      .resetvalue = 0 },
5463    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5464      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5465      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5466    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5467      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5468      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5469    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5470      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5471      .resetvalue = 0 },
5472    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5473      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5474      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5475    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5476      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5477      .resetvalue = 0 },
5478    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5479      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5480      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5481    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5482      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5483      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5484    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5485      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5486      .access = PL2_RW, .accessfn = access_tda,
5487      .type = ARM_CP_CONST, .resetvalue = 0 },
5488    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5489      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5490      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5491      .type = ARM_CP_CONST, .resetvalue = 0 },
5492    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5493      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5494      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5495    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5496      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5497      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5498    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5499      .type = ARM_CP_CONST,
5500      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5501      .access = PL2_RW, .resetvalue = 0 },
5502    REGINFO_SENTINEL
5503};
5504
5505/* Ditto, but for registers which exist in ARMv8 but not v7 */
5506static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5507    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5508      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5509      .access = PL2_RW,
5510      .type = ARM_CP_CONST, .resetvalue = 0 },
5511    REGINFO_SENTINEL
5512};
5513
5514static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5515{
5516    ARMCPU *cpu = env_archcpu(env);
5517
5518    if (arm_feature(env, ARM_FEATURE_V8)) {
5519        valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5520    } else {
5521        valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5522    }
5523
5524    if (arm_feature(env, ARM_FEATURE_EL3)) {
5525        valid_mask &= ~HCR_HCD;
5526    } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5527        /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5528         * However, if we're using the SMC PSCI conduit then QEMU is
5529         * effectively acting like EL3 firmware and so the guest at
5530         * EL2 should retain the ability to prevent EL1 from being
5531         * able to make SMC calls into the ersatz firmware, so in
5532         * that case HCR.TSC should be read/write.
5533         */
5534        valid_mask &= ~HCR_TSC;
5535    }
5536
5537    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5538        if (cpu_isar_feature(aa64_vh, cpu)) {
5539            valid_mask |= HCR_E2H;
5540        }
5541        if (cpu_isar_feature(aa64_lor, cpu)) {
5542            valid_mask |= HCR_TLOR;
5543        }
5544        if (cpu_isar_feature(aa64_pauth, cpu)) {
5545            valid_mask |= HCR_API | HCR_APK;
5546        }
5547        if (cpu_isar_feature(aa64_mte, cpu)) {
5548            valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5549        }
5550    }
5551
5552    /* Clear RES0 bits.  */
5553    value &= valid_mask;
5554
5555    /*
5556     * These bits change the MMU setup:
5557     * HCR_VM enables stage 2 translation
5558     * HCR_PTW forbids certain page-table setups
5559     * HCR_DC disables stage1 and enables stage2 translation
5560     * HCR_DCT enables tagging on (disabled) stage1 translation
5561     */
5562    if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5563        tlb_flush(CPU(cpu));
5564    }
5565    env->cp15.hcr_el2 = value;
5566
5567    /*
5568     * Updates to VI and VF require us to update the status of
5569     * virtual interrupts, which are the logical OR of these bits
5570     * and the state of the input lines from the GIC. (This requires
5571     * that we have the iothread lock, which is done by marking the
5572     * reginfo structs as ARM_CP_IO.)
5573     * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5574     * possible for it to be taken immediately, because VIRQ and
5575     * VFIQ are masked unless running at EL0 or EL1, and HCR
5576     * can only be written at EL2.
5577     */
5578    g_assert(qemu_mutex_iothread_locked());
5579    arm_cpu_update_virq(cpu);
5580    arm_cpu_update_vfiq(cpu);
5581}
5582
5583static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5584{
5585    do_hcr_write(env, value, 0);
5586}
5587
5588static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5589                          uint64_t value)
5590{
5591    /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5592    value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5593    do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5594}
5595
5596static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5597                         uint64_t value)
5598{
5599    /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5600    value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5601    do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5602}
5603
5604/*
5605 * Return the effective value of HCR_EL2.
5606 * Bits that are not included here:
5607 * RW       (read from SCR_EL3.RW as needed)
5608 */
5609uint64_t arm_hcr_el2_eff(CPUARMState *env)
5610{
5611    uint64_t ret = env->cp15.hcr_el2;
5612
5613    if (!arm_is_el2_enabled(env)) {
5614        /*
5615         * "This register has no effect if EL2 is not enabled in the
5616         * current Security state".  This is ARMv8.4-SecEL2 speak for
5617         * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5618         *
5619         * Prior to that, the language was "In an implementation that
5620         * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5621         * as if this field is 0 for all purposes other than a direct
5622         * read or write access of HCR_EL2".  With lots of enumeration
5623         * on a per-field basis.  In current QEMU, this is condition
5624         * is arm_is_secure_below_el3.
5625         *
5626         * Since the v8.4 language applies to the entire register, and
5627         * appears to be backward compatible, use that.
5628         */
5629        return 0;
5630    }
5631
5632    /*
5633     * For a cpu that supports both aarch64 and aarch32, we can set bits
5634     * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5635     * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5636     */
5637    if (!arm_el_is_aa64(env, 2)) {
5638        uint64_t aa32_valid;
5639
5640        /*
5641         * These bits are up-to-date as of ARMv8.6.
5642         * For HCR, it's easiest to list just the 2 bits that are invalid.
5643         * For HCR2, list those that are valid.
5644         */
5645        aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5646        aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5647                       HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5648        ret &= aa32_valid;
5649    }
5650
5651    if (ret & HCR_TGE) {
5652        /* These bits are up-to-date as of ARMv8.6.  */
5653        if (ret & HCR_E2H) {
5654            ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5655                     HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5656                     HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5657                     HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5658                     HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5659                     HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5660        } else {
5661            ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5662        }
5663        ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5664                 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5665                 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5666                 HCR_TLOR);
5667    }
5668
5669    return ret;
5670}
5671
5672static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5673                           uint64_t value)
5674{
5675    /*
5676     * For A-profile AArch32 EL3, if NSACR.CP10
5677     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5678     */
5679    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5680        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5681        value &= ~(0x3 << 10);
5682        value |= env->cp15.cptr_el[2] & (0x3 << 10);
5683    }
5684    env->cp15.cptr_el[2] = value;
5685}
5686
5687static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5688{
5689    /*
5690     * For A-profile AArch32 EL3, if NSACR.CP10
5691     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5692     */
5693    uint64_t value = env->cp15.cptr_el[2];
5694
5695    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5696        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5697        value |= 0x3 << 10;
5698    }
5699    return value;
5700}
5701
5702static const ARMCPRegInfo el2_cp_reginfo[] = {
5703    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5704      .type = ARM_CP_IO,
5705      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5706      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5707      .writefn = hcr_write },
5708    { .name = "HCR", .state = ARM_CP_STATE_AA32,
5709      .type = ARM_CP_ALIAS | ARM_CP_IO,
5710      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5711      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5712      .writefn = hcr_writelow },
5713    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5714      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5715      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5716    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5717      .type = ARM_CP_ALIAS,
5718      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5719      .access = PL2_RW,
5720      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5721    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5722      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5723      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5724    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5725      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5726      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5727    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5728      .type = ARM_CP_ALIAS,
5729      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5730      .access = PL2_RW,
5731      .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5732    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5733      .type = ARM_CP_ALIAS,
5734      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5735      .access = PL2_RW,
5736      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5737    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5738      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5739      .access = PL2_RW, .writefn = vbar_write,
5740      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5741      .resetvalue = 0 },
5742    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5743      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5744      .access = PL3_RW, .type = ARM_CP_ALIAS,
5745      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5746    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5747      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5748      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5749      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5750      .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5751    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5752      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5753      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5754      .resetvalue = 0 },
5755    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5756      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5757      .access = PL2_RW, .type = ARM_CP_ALIAS,
5758      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5759    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5760      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5761      .access = PL2_RW, .type = ARM_CP_CONST,
5762      .resetvalue = 0 },
5763    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5764    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5765      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5766      .access = PL2_RW, .type = ARM_CP_CONST,
5767      .resetvalue = 0 },
5768    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5769      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5770      .access = PL2_RW, .type = ARM_CP_CONST,
5771      .resetvalue = 0 },
5772    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5773      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5774      .access = PL2_RW, .type = ARM_CP_CONST,
5775      .resetvalue = 0 },
5776    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5777      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5778      .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5779      /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5780      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5781    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5782      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5783      .type = ARM_CP_ALIAS,
5784      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5785      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5786    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5787      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5788      .access = PL2_RW,
5789      /* no .writefn needed as this can't cause an ASID change;
5790       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5791       */
5792      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5793    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5794      .cp = 15, .opc1 = 6, .crm = 2,
5795      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5796      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5797      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5798      .writefn = vttbr_write },
5799    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5800      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5801      .access = PL2_RW, .writefn = vttbr_write,
5802      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5803    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5804      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5805      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5806      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5807    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5808      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5809      .access = PL2_RW, .resetvalue = 0,
5810      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5811    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5812      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5813      .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5814      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5815    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5816      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5817      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5818    { .name = "TLBIALLNSNH",
5819      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5820      .type = ARM_CP_NO_RAW, .access = PL2_W,
5821      .writefn = tlbiall_nsnh_write },
5822    { .name = "TLBIALLNSNHIS",
5823      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5824      .type = ARM_CP_NO_RAW, .access = PL2_W,
5825      .writefn = tlbiall_nsnh_is_write },
5826    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5827      .type = ARM_CP_NO_RAW, .access = PL2_W,
5828      .writefn = tlbiall_hyp_write },
5829    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5830      .type = ARM_CP_NO_RAW, .access = PL2_W,
5831      .writefn = tlbiall_hyp_is_write },
5832    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5833      .type = ARM_CP_NO_RAW, .access = PL2_W,
5834      .writefn = tlbimva_hyp_write },
5835    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5836      .type = ARM_CP_NO_RAW, .access = PL2_W,
5837      .writefn = tlbimva_hyp_is_write },
5838    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5839      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5840      .type = ARM_CP_NO_RAW, .access = PL2_W,
5841      .writefn = tlbi_aa64_alle2_write },
5842    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5843      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5844      .type = ARM_CP_NO_RAW, .access = PL2_W,
5845      .writefn = tlbi_aa64_vae2_write },
5846    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5847      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5848      .access = PL2_W, .type = ARM_CP_NO_RAW,
5849      .writefn = tlbi_aa64_vae2_write },
5850    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5851      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5852      .access = PL2_W, .type = ARM_CP_NO_RAW,
5853      .writefn = tlbi_aa64_alle2is_write },
5854    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5855      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5856      .type = ARM_CP_NO_RAW, .access = PL2_W,
5857      .writefn = tlbi_aa64_vae2is_write },
5858    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5859      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5860      .access = PL2_W, .type = ARM_CP_NO_RAW,
5861      .writefn = tlbi_aa64_vae2is_write },
5862#ifndef CONFIG_USER_ONLY
5863    /* Unlike the other EL2-related AT operations, these must
5864     * UNDEF from EL3 if EL2 is not implemented, which is why we
5865     * define them here rather than with the rest of the AT ops.
5866     */
5867    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5868      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5869      .access = PL2_W, .accessfn = at_s1e2_access,
5870      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5871    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5872      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5873      .access = PL2_W, .accessfn = at_s1e2_access,
5874      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5875    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5876     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5877     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5878     * to behave as if SCR.NS was 1.
5879     */
5880    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5881      .access = PL2_W,
5882      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5883    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5884      .access = PL2_W,
5885      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5886    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5887      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5888      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5889       * reset values as IMPDEF. We choose to reset to 3 to comply with
5890       * both ARMv7 and ARMv8.
5891       */
5892      .access = PL2_RW, .resetvalue = 3,
5893      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5894    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5895      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5896      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5897      .writefn = gt_cntvoff_write,
5898      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5899    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5900      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5901      .writefn = gt_cntvoff_write,
5902      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5903    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5904      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5905      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5906      .type = ARM_CP_IO, .access = PL2_RW,
5907      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5908    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5909      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5910      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5911      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5912    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5913      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5914      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5915      .resetfn = gt_hyp_timer_reset,
5916      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5917    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5918      .type = ARM_CP_IO,
5919      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5920      .access = PL2_RW,
5921      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5922      .resetvalue = 0,
5923      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5924#endif
5925    /* The only field of MDCR_EL2 that has a defined architectural reset value
5926     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5927     */
5928    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5929      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5930      .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5931      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5932    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5933      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5934      .access = PL2_RW, .accessfn = access_el3_aa32ns,
5935      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5936    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5937      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5938      .access = PL2_RW,
5939      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5940    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5941      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5942      .access = PL2_RW,
5943      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5944    REGINFO_SENTINEL
5945};
5946
5947static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5948    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5949      .type = ARM_CP_ALIAS | ARM_CP_IO,
5950      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5951      .access = PL2_RW,
5952      .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5953      .writefn = hcr_writehigh },
5954    REGINFO_SENTINEL
5955};
5956
5957static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5958                                  bool isread)
5959{
5960    if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5961        return CP_ACCESS_OK;
5962    }
5963    return CP_ACCESS_TRAP_UNCATEGORIZED;
5964}
5965
5966static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5967    { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5968      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5969      .access = PL2_RW, .accessfn = sel2_access,
5970      .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5971    { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5972      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5973      .access = PL2_RW, .accessfn = sel2_access,
5974      .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5975    REGINFO_SENTINEL
5976};
5977
5978static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5979                                   bool isread)
5980{
5981    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5982     * At Secure EL1 it traps to EL3 or EL2.
5983     */
5984    if (arm_current_el(env) == 3) {
5985        return CP_ACCESS_OK;
5986    }
5987    if (arm_is_secure_below_el3(env)) {
5988        if (env->cp15.scr_el3 & SCR_EEL2) {
5989            return CP_ACCESS_TRAP_EL2;
5990        }
5991        return CP_ACCESS_TRAP_EL3;
5992    }
5993    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5994    if (isread) {
5995        return CP_ACCESS_OK;
5996    }
5997    return CP_ACCESS_TRAP_UNCATEGORIZED;
5998}
5999
6000static const ARMCPRegInfo el3_cp_reginfo[] = {
6001    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6002      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6003      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6004      .resetfn = scr_reset, .writefn = scr_write },
6005    { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6006      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6007      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6008      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6009      .writefn = scr_write },
6010    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6011      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6012      .access = PL3_RW, .resetvalue = 0,
6013      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6014    { .name = "SDER",
6015      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6016      .access = PL3_RW, .resetvalue = 0,
6017      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6018    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6019      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6020      .writefn = vbar_write, .resetvalue = 0,
6021      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6022    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6023      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6024      .access = PL3_RW, .resetvalue = 0,
6025      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6026    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6027      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6028      .access = PL3_RW,
6029      /* no .writefn needed as this can't cause an ASID change;
6030       * we must provide a .raw_writefn and .resetfn because we handle
6031       * reset and migration for the AArch32 TTBCR(S), which might be
6032       * using mask and base_mask.
6033       */
6034      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
6035      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6036    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6037      .type = ARM_CP_ALIAS,
6038      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6039      .access = PL3_RW,
6040      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6041    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6042      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6043      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6044    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6045      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6046      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6047    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6048      .type = ARM_CP_ALIAS,
6049      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6050      .access = PL3_RW,
6051      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6052    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6053      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6054      .access = PL3_RW, .writefn = vbar_write,
6055      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6056      .resetvalue = 0 },
6057    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6058      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6059      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6060      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6061    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6062      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6063      .access = PL3_RW, .resetvalue = 0,
6064      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6065    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6066      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6067      .access = PL3_RW, .type = ARM_CP_CONST,
6068      .resetvalue = 0 },
6069    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6070      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6071      .access = PL3_RW, .type = ARM_CP_CONST,
6072      .resetvalue = 0 },
6073    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6074      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6075      .access = PL3_RW, .type = ARM_CP_CONST,
6076      .resetvalue = 0 },
6077    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6078      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6079      .access = PL3_W, .type = ARM_CP_NO_RAW,
6080      .writefn = tlbi_aa64_alle3is_write },
6081    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6082      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6083      .access = PL3_W, .type = ARM_CP_NO_RAW,
6084      .writefn = tlbi_aa64_vae3is_write },
6085    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6086      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6087      .access = PL3_W, .type = ARM_CP_NO_RAW,
6088      .writefn = tlbi_aa64_vae3is_write },
6089    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6090      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6091      .access = PL3_W, .type = ARM_CP_NO_RAW,
6092      .writefn = tlbi_aa64_alle3_write },
6093    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6094      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6095      .access = PL3_W, .type = ARM_CP_NO_RAW,
6096      .writefn = tlbi_aa64_vae3_write },
6097    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6098      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6099      .access = PL3_W, .type = ARM_CP_NO_RAW,
6100      .writefn = tlbi_aa64_vae3_write },
6101    REGINFO_SENTINEL
6102};
6103
6104#ifndef CONFIG_USER_ONLY
6105/* Test if system register redirection is to occur in the current state.  */
6106static bool redirect_for_e2h(CPUARMState *env)
6107{
6108    return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6109}
6110
6111static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6112{
6113    CPReadFn *readfn;
6114
6115    if (redirect_for_e2h(env)) {
6116        /* Switch to the saved EL2 version of the register.  */
6117        ri = ri->opaque;
6118        readfn = ri->readfn;
6119    } else {
6120        readfn = ri->orig_readfn;
6121    }
6122    if (readfn == NULL) {
6123        readfn = raw_read;
6124    }
6125    return readfn(env, ri);
6126}
6127
6128static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6129                          uint64_t value)
6130{
6131    CPWriteFn *writefn;
6132
6133    if (redirect_for_e2h(env)) {
6134        /* Switch to the saved EL2 version of the register.  */
6135        ri = ri->opaque;
6136        writefn = ri->writefn;
6137    } else {
6138        writefn = ri->orig_writefn;
6139    }
6140    if (writefn == NULL) {
6141        writefn = raw_write;
6142    }
6143    writefn(env, ri, value);
6144}
6145
6146static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6147{
6148    struct E2HAlias {
6149        uint32_t src_key, dst_key, new_key;
6150        const char *src_name, *dst_name, *new_name;
6151        bool (*feature)(const ARMISARegisters *id);
6152    };
6153
6154#define K(op0, op1, crn, crm, op2) \
6155    ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6156
6157    static const struct E2HAlias aliases[] = {
6158        { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6159          "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6160        { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6161          "CPACR", "CPTR_EL2", "CPACR_EL12" },
6162        { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6163          "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6164        { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6165          "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6166        { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6167          "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6168        { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6169          "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6170        { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6171          "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6172        { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6173          "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6174        { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6175          "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6176        { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6177          "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6178        { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6179          "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6180        { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6181          "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6182        { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6183          "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6184        { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6185          "VBAR", "VBAR_EL2", "VBAR_EL12" },
6186        { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6187          "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6188        { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6189          "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6190
6191        /*
6192         * Note that redirection of ZCR is mentioned in the description
6193         * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6194         * not in the summary table.
6195         */
6196        { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6197          "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6198
6199        { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6200          "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6201
6202        /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6203        /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6204    };
6205#undef K
6206
6207    size_t i;
6208
6209    for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6210        const struct E2HAlias *a = &aliases[i];
6211        ARMCPRegInfo *src_reg, *dst_reg;
6212
6213        if (a->feature && !a->feature(&cpu->isar)) {
6214            continue;
6215        }
6216
6217        src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6218        dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6219        g_assert(src_reg != NULL);
6220        g_assert(dst_reg != NULL);
6221
6222        /* Cross-compare names to detect typos in the keys.  */
6223        g_assert(strcmp(src_reg->name, a->src_name) == 0);
6224        g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6225
6226        /* None of the core system registers use opaque; we will.  */
6227        g_assert(src_reg->opaque == NULL);
6228
6229        /* Create alias before redirection so we dup the right data. */
6230        if (a->new_key) {
6231            ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6232            uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6233            bool ok;
6234
6235            new_reg->name = a->new_name;
6236            new_reg->type |= ARM_CP_ALIAS;
6237            /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6238            new_reg->access &= PL2_RW | PL3_RW;
6239
6240            ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6241            g_assert(ok);
6242        }
6243
6244        src_reg->opaque = dst_reg;
6245        src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6246        src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6247        if (!src_reg->raw_readfn) {
6248            src_reg->raw_readfn = raw_read;
6249        }
6250        if (!src_reg->raw_writefn) {
6251            src_reg->raw_writefn = raw_write;
6252        }
6253        src_reg->readfn = el2_e2h_read;
6254        src_reg->writefn = el2_e2h_write;
6255    }
6256}
6257#endif
6258
6259static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6260                                     bool isread)
6261{
6262    int cur_el = arm_current_el(env);
6263
6264    if (cur_el < 2) {
6265        uint64_t hcr = arm_hcr_el2_eff(env);
6266
6267        if (cur_el == 0) {
6268            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6269                if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6270                    return CP_ACCESS_TRAP_EL2;
6271                }
6272            } else {
6273                if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6274                    return CP_ACCESS_TRAP;
6275                }
6276                if (hcr & HCR_TID2) {
6277                    return CP_ACCESS_TRAP_EL2;
6278                }
6279            }
6280        } else if (hcr & HCR_TID2) {
6281            return CP_ACCESS_TRAP_EL2;
6282        }
6283    }
6284
6285    if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6286        return CP_ACCESS_TRAP_EL2;
6287    }
6288
6289    return CP_ACCESS_OK;
6290}
6291
6292static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6293                        uint64_t value)
6294{
6295    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6296     * read via a bit in OSLSR_EL1.
6297     */
6298    int oslock;
6299
6300    if (ri->state == ARM_CP_STATE_AA32) {
6301        oslock = (value == 0xC5ACCE55);
6302    } else {
6303        oslock = value & 1;
6304    }
6305
6306    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6307}
6308
6309static const ARMCPRegInfo debug_cp_reginfo[] = {
6310    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6311     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6312     * unlike DBGDRAR it is never accessible from EL0.
6313     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6314     * accessor.
6315     */
6316    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6317      .access = PL0_R, .accessfn = access_tdra,
6318      .type = ARM_CP_CONST, .resetvalue = 0 },
6319    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6320      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6321      .access = PL1_R, .accessfn = access_tdra,
6322      .type = ARM_CP_CONST, .resetvalue = 0 },
6323    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6324      .access = PL0_R, .accessfn = access_tdra,
6325      .type = ARM_CP_CONST, .resetvalue = 0 },
6326    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6327    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6328      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6329      .access = PL1_RW, .accessfn = access_tda,
6330      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6331      .resetvalue = 0 },
6332    /*
6333     * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6334     * Debug Communication Channel is not implemented.
6335     */
6336    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6337      .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6338      .access = PL0_R, .accessfn = access_tda,
6339      .type = ARM_CP_CONST, .resetvalue = 0 },
6340    /*
6341     * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6342     * it is unlikely a guest will care.
6343     * We don't implement the configurable EL0 access.
6344     */
6345    { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6346      .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6347      .type = ARM_CP_ALIAS,
6348      .access = PL1_R, .accessfn = access_tda,
6349      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6350    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6351      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6352      .access = PL1_W, .type = ARM_CP_NO_RAW,
6353      .accessfn = access_tdosa,
6354      .writefn = oslar_write },
6355    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6356      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6357      .access = PL1_R, .resetvalue = 10,
6358      .accessfn = access_tdosa,
6359      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6360    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6361    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6362      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6363      .access = PL1_RW, .accessfn = access_tdosa,
6364      .type = ARM_CP_NOP },
6365    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6366     * implement vector catch debug events yet.
6367     */
6368    { .name = "DBGVCR",
6369      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6370      .access = PL1_RW, .accessfn = access_tda,
6371      .type = ARM_CP_NOP },
6372    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6373     * to save and restore a 32-bit guest's DBGVCR)
6374     */
6375    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6376      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6377      .access = PL2_RW, .accessfn = access_tda,
6378      .type = ARM_CP_NOP },
6379    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6380     * Channel but Linux may try to access this register. The 32-bit
6381     * alias is DBGDCCINT.
6382     */
6383    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6384      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6385      .access = PL1_RW, .accessfn = access_tda,
6386      .type = ARM_CP_NOP },
6387    REGINFO_SENTINEL
6388};
6389
6390static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6391    /* 64 bit access versions of the (dummy) debug registers */
6392    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6393      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6394    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6395      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6396    REGINFO_SENTINEL
6397};
6398
6399/* Return the exception level to which exceptions should be taken
6400 * via SVEAccessTrap.  If an exception should be routed through
6401 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6402 * take care of raising that exception.
6403 * C.f. the ARM pseudocode function CheckSVEEnabled.
6404 */
6405int sve_exception_el(CPUARMState *env, int el)
6406{
6407#ifndef CONFIG_USER_ONLY
6408    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6409
6410    if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6411        bool disabled = false;
6412
6413        /* The CPACR.ZEN controls traps to EL1:
6414         * 0, 2 : trap EL0 and EL1 accesses
6415         * 1    : trap only EL0 accesses
6416         * 3    : trap no accesses
6417         */
6418        if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6419            disabled = true;
6420        } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6421            disabled = el == 0;
6422        }
6423        if (disabled) {
6424            /* route_to_el2 */
6425            return hcr_el2 & HCR_TGE ? 2 : 1;
6426        }
6427
6428        /* Check CPACR.FPEN.  */
6429        if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6430            disabled = true;
6431        } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6432            disabled = el == 0;
6433        }
6434        if (disabled) {
6435            return 0;
6436        }
6437    }
6438
6439    /* CPTR_EL2.  Since TZ and TFP are positive,
6440     * they will be zero when EL2 is not present.
6441     */
6442    if (el <= 2 && arm_is_el2_enabled(env)) {
6443        if (env->cp15.cptr_el[2] & CPTR_TZ) {
6444            return 2;
6445        }
6446        if (env->cp15.cptr_el[2] & CPTR_TFP) {
6447            return 0;
6448        }
6449    }
6450
6451    /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6452    if (arm_feature(env, ARM_FEATURE_EL3)
6453        && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6454        return 3;
6455    }
6456#endif
6457    return 0;
6458}
6459
6460uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6461{
6462    uint32_t end_len;
6463
6464    start_len = MIN(start_len, ARM_MAX_VQ - 1);
6465    end_len = start_len;
6466
6467    if (!test_bit(start_len, cpu->sve_vq_map)) {
6468        end_len = find_last_bit(cpu->sve_vq_map, start_len);
6469        assert(end_len < start_len);
6470    }
6471    return end_len;
6472}
6473
6474/*
6475 * Given that SVE is enabled, return the vector length for EL.
6476 */
6477uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6478{
6479    ARMCPU *cpu = env_archcpu(env);
6480    uint32_t zcr_len = cpu->sve_max_vq - 1;
6481
6482    if (el <= 1) {
6483        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6484    }
6485    if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6486        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6487    }
6488    if (arm_feature(env, ARM_FEATURE_EL3)) {
6489        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6490    }
6491
6492    return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6493}
6494
6495static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6496                      uint64_t value)
6497{
6498    int cur_el = arm_current_el(env);
6499    int old_len = sve_zcr_len_for_el(env, cur_el);
6500    int new_len;
6501
6502    /* Bits other than [3:0] are RAZ/WI.  */
6503    QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6504    raw_write(env, ri, value & 0xf);
6505
6506    /*
6507     * Because we arrived here, we know both FP and SVE are enabled;
6508     * otherwise we would have trapped access to the ZCR_ELn register.
6509     */
6510    new_len = sve_zcr_len_for_el(env, cur_el);
6511    if (new_len < old_len) {
6512        aarch64_sve_narrow_vq(env, new_len + 1);
6513    }
6514}
6515
6516static const ARMCPRegInfo zcr_el1_reginfo = {
6517    .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6518    .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6519    .access = PL1_RW, .type = ARM_CP_SVE,
6520    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6521    .writefn = zcr_write, .raw_writefn = raw_write
6522};
6523
6524static const ARMCPRegInfo zcr_el2_reginfo = {
6525    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6526    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6527    .access = PL2_RW, .type = ARM_CP_SVE,
6528    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6529    .writefn = zcr_write, .raw_writefn = raw_write
6530};
6531
6532static const ARMCPRegInfo zcr_no_el2_reginfo = {
6533    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6534    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6535    .access = PL2_RW, .type = ARM_CP_SVE,
6536    .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6537};
6538
6539static const ARMCPRegInfo zcr_el3_reginfo = {
6540    .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6541    .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6542    .access = PL3_RW, .type = ARM_CP_SVE,
6543    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6544    .writefn = zcr_write, .raw_writefn = raw_write
6545};
6546
6547void hw_watchpoint_update(ARMCPU *cpu, int n)
6548{
6549    CPUARMState *env = &cpu->env;
6550    vaddr len = 0;
6551    vaddr wvr = env->cp15.dbgwvr[n];
6552    uint64_t wcr = env->cp15.dbgwcr[n];
6553    int mask;
6554    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6555
6556    if (env->cpu_watchpoint[n]) {
6557        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6558        env->cpu_watchpoint[n] = NULL;
6559    }
6560
6561    if (!extract64(wcr, 0, 1)) {
6562        /* E bit clear : watchpoint disabled */
6563        return;
6564    }
6565
6566    switch (extract64(wcr, 3, 2)) {
6567    case 0:
6568        /* LSC 00 is reserved and must behave as if the wp is disabled */
6569        return;
6570    case 1:
6571        flags |= BP_MEM_READ;
6572        break;
6573    case 2:
6574        flags |= BP_MEM_WRITE;
6575        break;
6576    case 3:
6577        flags |= BP_MEM_ACCESS;
6578        break;
6579    }
6580
6581    /* Attempts to use both MASK and BAS fields simultaneously are
6582     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6583     * thus generating a watchpoint for every byte in the masked region.
6584     */
6585    mask = extract64(wcr, 24, 4);
6586    if (mask == 1 || mask == 2) {
6587        /* Reserved values of MASK; we must act as if the mask value was
6588         * some non-reserved value, or as if the watchpoint were disabled.
6589         * We choose the latter.
6590         */
6591        return;
6592    } else if (mask) {
6593        /* Watchpoint covers an aligned area up to 2GB in size */
6594        len = 1ULL << mask;
6595        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6596         * whether the watchpoint fires when the unmasked bits match; we opt
6597         * to generate the exceptions.
6598         */
6599        wvr &= ~(len - 1);
6600    } else {
6601        /* Watchpoint covers bytes defined by the byte address select bits */
6602        int bas = extract64(wcr, 5, 8);
6603        int basstart;
6604
6605        if (extract64(wvr, 2, 1)) {
6606            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6607             * ignored, and BAS[3:0] define which bytes to watch.
6608             */
6609            bas &= 0xf;
6610        }
6611
6612        if (bas == 0) {
6613            /* This must act as if the watchpoint is disabled */
6614            return;
6615        }
6616
6617        /* The BAS bits are supposed to be programmed to indicate a contiguous
6618         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6619         * we fire for each byte in the word/doubleword addressed by the WVR.
6620         * We choose to ignore any non-zero bits after the first range of 1s.
6621         */
6622        basstart = ctz32(bas);
6623        len = cto32(bas >> basstart);
6624        wvr += basstart;
6625    }
6626
6627    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6628                          &env->cpu_watchpoint[n]);
6629}
6630
6631void hw_watchpoint_update_all(ARMCPU *cpu)
6632{
6633    int i;
6634    CPUARMState *env = &cpu->env;
6635
6636    /* Completely clear out existing QEMU watchpoints and our array, to
6637     * avoid possible stale entries following migration load.
6638     */
6639    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6640    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6641
6642    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6643        hw_watchpoint_update(cpu, i);
6644    }
6645}
6646
6647static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6648                         uint64_t value)
6649{
6650    ARMCPU *cpu = env_archcpu(env);
6651    int i = ri->crm;
6652
6653    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6654     * register reads and behaves as if values written are sign extended.
6655     * Bits [1:0] are RES0.
6656     */
6657    value = sextract64(value, 0, 49) & ~3ULL;
6658
6659    raw_write(env, ri, value);
6660    hw_watchpoint_update(cpu, i);
6661}
6662
6663static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6664                         uint64_t value)
6665{
6666    ARMCPU *cpu = env_archcpu(env);
6667    int i = ri->crm;
6668
6669    raw_write(env, ri, value);
6670    hw_watchpoint_update(cpu, i);
6671}
6672
6673void hw_breakpoint_update(ARMCPU *cpu, int n)
6674{
6675    CPUARMState *env = &cpu->env;
6676    uint64_t bvr = env->cp15.dbgbvr[n];
6677    uint64_t bcr = env->cp15.dbgbcr[n];
6678    vaddr addr;
6679    int bt;
6680    int flags = BP_CPU;
6681
6682    if (env->cpu_breakpoint[n]) {
6683        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6684        env->cpu_breakpoint[n] = NULL;
6685    }
6686
6687    if (!extract64(bcr, 0, 1)) {
6688        /* E bit clear : watchpoint disabled */
6689        return;
6690    }
6691
6692    bt = extract64(bcr, 20, 4);
6693
6694    switch (bt) {
6695    case 4: /* unlinked address mismatch (reserved if AArch64) */
6696    case 5: /* linked address mismatch (reserved if AArch64) */
6697        qemu_log_mask(LOG_UNIMP,
6698                      "arm: address mismatch breakpoint types not implemented\n");
6699        return;
6700    case 0: /* unlinked address match */
6701    case 1: /* linked address match */
6702    {
6703        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6704         * we behave as if the register was sign extended. Bits [1:0] are
6705         * RES0. The BAS field is used to allow setting breakpoints on 16
6706         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6707         * a bp will fire if the addresses covered by the bp and the addresses
6708         * covered by the insn overlap but the insn doesn't start at the
6709         * start of the bp address range. We choose to require the insn and
6710         * the bp to have the same address. The constraints on writing to
6711         * BAS enforced in dbgbcr_write mean we have only four cases:
6712         *  0b0000  => no breakpoint
6713         *  0b0011  => breakpoint on addr
6714         *  0b1100  => breakpoint on addr + 2
6715         *  0b1111  => breakpoint on addr
6716         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6717         */
6718        int bas = extract64(bcr, 5, 4);
6719        addr = sextract64(bvr, 0, 49) & ~3ULL;
6720        if (bas == 0) {
6721            return;
6722        }
6723        if (bas == 0xc) {
6724            addr += 2;
6725        }
6726        break;
6727    }
6728    case 2: /* unlinked context ID match */
6729    case 8: /* unlinked VMID match (reserved if no EL2) */
6730    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6731        qemu_log_mask(LOG_UNIMP,
6732                      "arm: unlinked context breakpoint types not implemented\n");
6733        return;
6734    case 9: /* linked VMID match (reserved if no EL2) */
6735    case 11: /* linked context ID and VMID match (reserved if no EL2) */
6736    case 3: /* linked context ID match */
6737    default:
6738        /* We must generate no events for Linked context matches (unless
6739         * they are linked to by some other bp/wp, which is handled in
6740         * updates for the linking bp/wp). We choose to also generate no events
6741         * for reserved values.
6742         */
6743        return;
6744    }
6745
6746    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6747}
6748
6749void hw_breakpoint_update_all(ARMCPU *cpu)
6750{
6751    int i;
6752    CPUARMState *env = &cpu->env;
6753
6754    /* Completely clear out existing QEMU breakpoints and our array, to
6755     * avoid possible stale entries following migration load.
6756     */
6757    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6758    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6759
6760    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6761        hw_breakpoint_update(cpu, i);
6762    }
6763}
6764
6765static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6766                         uint64_t value)
6767{
6768    ARMCPU *cpu = env_archcpu(env);
6769    int i = ri->crm;
6770
6771    raw_write(env, ri, value);
6772    hw_breakpoint_update(cpu, i);
6773}
6774
6775static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6776                         uint64_t value)
6777{
6778    ARMCPU *cpu = env_archcpu(env);
6779    int i = ri->crm;
6780
6781    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6782     * copy of BAS[0].
6783     */
6784    value = deposit64(value, 6, 1, extract64(value, 5, 1));
6785    value = deposit64(value, 8, 1, extract64(value, 7, 1));
6786
6787    raw_write(env, ri, value);
6788    hw_breakpoint_update(cpu, i);
6789}
6790
6791static void define_debug_regs(ARMCPU *cpu)
6792{
6793    /* Define v7 and v8 architectural debug registers.
6794     * These are just dummy implementations for now.
6795     */
6796    int i;
6797    int wrps, brps, ctx_cmps;
6798
6799    /*
6800     * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6801     * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6802     * the register must not exist for this cpu.
6803     */
6804    if (cpu->isar.dbgdidr != 0) {
6805        ARMCPRegInfo dbgdidr = {
6806            .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6807            .opc1 = 0, .opc2 = 0,
6808            .access = PL0_R, .accessfn = access_tda,
6809            .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6810        };
6811        define_one_arm_cp_reg(cpu, &dbgdidr);
6812    }
6813
6814    /* Note that all these register fields hold "number of Xs minus 1". */
6815    brps = arm_num_brps(cpu);
6816    wrps = arm_num_wrps(cpu);
6817    ctx_cmps = arm_num_ctx_cmps(cpu);
6818
6819    assert(ctx_cmps <= brps);
6820
6821    define_arm_cp_regs(cpu, debug_cp_reginfo);
6822
6823    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6824        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6825    }
6826
6827    for (i = 0; i < brps; i++) {
6828        ARMCPRegInfo dbgregs[] = {
6829            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6830              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6831              .access = PL1_RW, .accessfn = access_tda,
6832              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6833              .writefn = dbgbvr_write, .raw_writefn = raw_write
6834            },
6835            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6836              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6837              .access = PL1_RW, .accessfn = access_tda,
6838              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6839              .writefn = dbgbcr_write, .raw_writefn = raw_write
6840            },
6841            REGINFO_SENTINEL
6842        };
6843        define_arm_cp_regs(cpu, dbgregs);
6844    }
6845
6846    for (i = 0; i < wrps; i++) {
6847        ARMCPRegInfo dbgregs[] = {
6848            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6849              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6850              .access = PL1_RW, .accessfn = access_tda,
6851              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6852              .writefn = dbgwvr_write, .raw_writefn = raw_write
6853            },
6854            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6855              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6856              .access = PL1_RW, .accessfn = access_tda,
6857              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6858              .writefn = dbgwcr_write, .raw_writefn = raw_write
6859            },
6860            REGINFO_SENTINEL
6861        };
6862        define_arm_cp_regs(cpu, dbgregs);
6863    }
6864}
6865
6866static void define_pmu_regs(ARMCPU *cpu)
6867{
6868    /*
6869     * v7 performance monitor control register: same implementor
6870     * field as main ID register, and we implement four counters in
6871     * addition to the cycle count register.
6872     */
6873    unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6874    ARMCPRegInfo pmcr = {
6875        .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6876        .access = PL0_RW,
6877        .type = ARM_CP_IO | ARM_CP_ALIAS,
6878        .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6879        .accessfn = pmreg_access, .writefn = pmcr_write,
6880        .raw_writefn = raw_write,
6881    };
6882    ARMCPRegInfo pmcr64 = {
6883        .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6884        .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6885        .access = PL0_RW, .accessfn = pmreg_access,
6886        .type = ARM_CP_IO,
6887        .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6888        .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6889                      PMCRLC,
6890        .writefn = pmcr_write, .raw_writefn = raw_write,
6891    };
6892    define_one_arm_cp_reg(cpu, &pmcr);
6893    define_one_arm_cp_reg(cpu, &pmcr64);
6894    for (i = 0; i < pmcrn; i++) {
6895        char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6896        char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6897        char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6898        char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6899        ARMCPRegInfo pmev_regs[] = {
6900            { .name = pmevcntr_name, .cp = 15, .crn = 14,
6901              .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6902              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6903              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6904              .accessfn = pmreg_access },
6905            { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6906              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6907              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6908              .type = ARM_CP_IO,
6909              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6910              .raw_readfn = pmevcntr_rawread,
6911              .raw_writefn = pmevcntr_rawwrite },
6912            { .name = pmevtyper_name, .cp = 15, .crn = 14,
6913              .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6914              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6915              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6916              .accessfn = pmreg_access },
6917            { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6918              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6919              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6920              .type = ARM_CP_IO,
6921              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6922              .raw_writefn = pmevtyper_rawwrite },
6923            REGINFO_SENTINEL
6924        };
6925        define_arm_cp_regs(cpu, pmev_regs);
6926        g_free(pmevcntr_name);
6927        g_free(pmevcntr_el0_name);
6928        g_free(pmevtyper_name);
6929        g_free(pmevtyper_el0_name);
6930    }
6931    if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6932        ARMCPRegInfo v81_pmu_regs[] = {
6933            { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6934              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6935              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6936              .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6937            { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6938              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6939              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6940              .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6941            REGINFO_SENTINEL
6942        };
6943        define_arm_cp_regs(cpu, v81_pmu_regs);
6944    }
6945    if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6946        static const ARMCPRegInfo v84_pmmir = {
6947            .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6948            .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6949            .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6950            .resetvalue = 0
6951        };
6952        define_one_arm_cp_reg(cpu, &v84_pmmir);
6953    }
6954}
6955
6956/* We don't know until after realize whether there's a GICv3
6957 * attached, and that is what registers the gicv3 sysregs.
6958 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6959 * at runtime.
6960 */
6961static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6962{
6963    ARMCPU *cpu = env_archcpu(env);
6964    uint64_t pfr1 = cpu->isar.id_pfr1;
6965
6966    if (env->gicv3state) {
6967        pfr1 |= 1 << 28;
6968    }
6969    return pfr1;
6970}
6971
6972#ifndef CONFIG_USER_ONLY
6973static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6974{
6975    ARMCPU *cpu = env_archcpu(env);
6976    uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6977
6978    if (env->gicv3state) {
6979        pfr0 |= 1 << 24;
6980    }
6981    return pfr0;
6982}
6983#endif
6984
6985/* Shared logic between LORID and the rest of the LOR* registers.
6986 * Secure state exclusion has already been dealt with.
6987 */
6988static CPAccessResult access_lor_ns(CPUARMState *env,
6989                                    const ARMCPRegInfo *ri, bool isread)
6990{
6991    int el = arm_current_el(env);
6992
6993    if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6994        return CP_ACCESS_TRAP_EL2;
6995    }
6996    if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6997        return CP_ACCESS_TRAP_EL3;
6998    }
6999    return CP_ACCESS_OK;
7000}
7001
7002static CPAccessResult access_lor_other(CPUARMState *env,
7003                                       const ARMCPRegInfo *ri, bool isread)
7004{
7005    if (arm_is_secure_below_el3(env)) {
7006        /* Access denied in secure mode.  */
7007        return CP_ACCESS_TRAP;
7008    }
7009    return access_lor_ns(env, ri, isread);
7010}
7011
7012/*
7013 * A trivial implementation of ARMv8.1-LOR leaves all of these
7014 * registers fixed at 0, which indicates that there are zero
7015 * supported Limited Ordering regions.
7016 */
7017static const ARMCPRegInfo lor_reginfo[] = {
7018    { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7019      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7020      .access = PL1_RW, .accessfn = access_lor_other,
7021      .type = ARM_CP_CONST, .resetvalue = 0 },
7022    { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7023      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7024      .access = PL1_RW, .accessfn = access_lor_other,
7025      .type = ARM_CP_CONST, .resetvalue = 0 },
7026    { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7027      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7028      .access = PL1_RW, .accessfn = access_lor_other,
7029      .type = ARM_CP_CONST, .resetvalue = 0 },
7030    { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7031      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7032      .access = PL1_RW, .accessfn = access_lor_other,
7033      .type = ARM_CP_CONST, .resetvalue = 0 },
7034    { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7035      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7036      .access = PL1_R, .accessfn = access_lor_ns,
7037      .type = ARM_CP_CONST, .resetvalue = 0 },
7038    REGINFO_SENTINEL
7039};
7040
7041#ifdef TARGET_AARCH64
7042static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7043                                   bool isread)
7044{
7045    int el = arm_current_el(env);
7046
7047    if (el < 2 &&
7048        arm_feature(env, ARM_FEATURE_EL2) &&
7049        !(arm_hcr_el2_eff(env) & HCR_APK)) {
7050        return CP_ACCESS_TRAP_EL2;
7051    }
7052    if (el < 3 &&
7053        arm_feature(env, ARM_FEATURE_EL3) &&
7054        !(env->cp15.scr_el3 & SCR_APK)) {
7055        return CP_ACCESS_TRAP_EL3;
7056    }
7057    return CP_ACCESS_OK;
7058}
7059
7060static const ARMCPRegInfo pauth_reginfo[] = {
7061    { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7062      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7063      .access = PL1_RW, .accessfn = access_pauth,
7064      .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7065    { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7066      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7067      .access = PL1_RW, .accessfn = access_pauth,
7068      .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7069    { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7070      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7071      .access = PL1_RW, .accessfn = access_pauth,
7072      .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7073    { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7074      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7075      .access = PL1_RW, .accessfn = access_pauth,
7076      .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7077    { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7078      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7079      .access = PL1_RW, .accessfn = access_pauth,
7080      .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7081    { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7082      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7083      .access = PL1_RW, .accessfn = access_pauth,
7084      .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7085    { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7086      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7087      .access = PL1_RW, .accessfn = access_pauth,
7088      .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7089    { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7090      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7091      .access = PL1_RW, .accessfn = access_pauth,
7092      .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7093    { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7094      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7095      .access = PL1_RW, .accessfn = access_pauth,
7096      .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7097    { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7098      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7099      .access = PL1_RW, .accessfn = access_pauth,
7100      .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7101    REGINFO_SENTINEL
7102};
7103
7104static const ARMCPRegInfo tlbirange_reginfo[] = {
7105    { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7106      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7107      .access = PL1_W, .type = ARM_CP_NO_RAW,
7108      .writefn = tlbi_aa64_rvae1is_write },
7109    { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7110      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7111      .access = PL1_W, .type = ARM_CP_NO_RAW,
7112      .writefn = tlbi_aa64_rvae1is_write },
7113   { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7114      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7115      .access = PL1_W, .type = ARM_CP_NO_RAW,
7116      .writefn = tlbi_aa64_rvae1is_write },
7117    { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7118      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7119      .access = PL1_W, .type = ARM_CP_NO_RAW,
7120      .writefn = tlbi_aa64_rvae1is_write },
7121    { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7122      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7123      .access = PL1_W, .type = ARM_CP_NO_RAW,
7124      .writefn = tlbi_aa64_rvae1is_write },
7125    { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7126      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7127      .access = PL1_W, .type = ARM_CP_NO_RAW,
7128      .writefn = tlbi_aa64_rvae1is_write },
7129   { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7130      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7131      .access = PL1_W, .type = ARM_CP_NO_RAW,
7132      .writefn = tlbi_aa64_rvae1is_write },
7133    { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7134      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7135      .access = PL1_W, .type = ARM_CP_NO_RAW,
7136      .writefn = tlbi_aa64_rvae1is_write },
7137    { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7138      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7139      .access = PL1_W, .type = ARM_CP_NO_RAW,
7140      .writefn = tlbi_aa64_rvae1_write },
7141    { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7142      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7143      .access = PL1_W, .type = ARM_CP_NO_RAW,
7144      .writefn = tlbi_aa64_rvae1_write },
7145   { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7146      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7147      .access = PL1_W, .type = ARM_CP_NO_RAW,
7148      .writefn = tlbi_aa64_rvae1_write },
7149    { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7150      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7151      .access = PL1_W, .type = ARM_CP_NO_RAW,
7152      .writefn = tlbi_aa64_rvae1_write },
7153    { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7154      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7155      .access = PL2_W, .type = ARM_CP_NOP },
7156    { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7157      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7158      .access = PL2_W, .type = ARM_CP_NOP },
7159    { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7160      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7161      .access = PL2_W, .type = ARM_CP_NO_RAW,
7162      .writefn = tlbi_aa64_rvae2is_write },
7163   { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7164      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7165      .access = PL2_W, .type = ARM_CP_NO_RAW,
7166      .writefn = tlbi_aa64_rvae2is_write },
7167    { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7168      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7169      .access = PL2_W, .type = ARM_CP_NOP },
7170   { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7171      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7172      .access = PL2_W, .type = ARM_CP_NOP },
7173   { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7174      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7175      .access = PL2_W, .type = ARM_CP_NO_RAW,
7176      .writefn = tlbi_aa64_rvae2is_write },
7177   { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7178      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7179      .access = PL2_W, .type = ARM_CP_NO_RAW,
7180      .writefn = tlbi_aa64_rvae2is_write },
7181    { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7182      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7183      .access = PL2_W, .type = ARM_CP_NO_RAW,
7184      .writefn = tlbi_aa64_rvae2_write },
7185   { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7186      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7187      .access = PL2_W, .type = ARM_CP_NO_RAW,
7188      .writefn = tlbi_aa64_rvae2_write },
7189   { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7190      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7191      .access = PL3_W, .type = ARM_CP_NO_RAW,
7192      .writefn = tlbi_aa64_rvae3is_write },
7193   { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7194      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7195      .access = PL3_W, .type = ARM_CP_NO_RAW,
7196      .writefn = tlbi_aa64_rvae3is_write },
7197   { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7198      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7199      .access = PL3_W, .type = ARM_CP_NO_RAW,
7200      .writefn = tlbi_aa64_rvae3is_write },
7201   { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7202      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7203      .access = PL3_W, .type = ARM_CP_NO_RAW,
7204      .writefn = tlbi_aa64_rvae3is_write },
7205   { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7206      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7207      .access = PL3_W, .type = ARM_CP_NO_RAW,
7208      .writefn = tlbi_aa64_rvae3_write },
7209   { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7210      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7211      .access = PL3_W, .type = ARM_CP_NO_RAW,
7212      .writefn = tlbi_aa64_rvae3_write },
7213    REGINFO_SENTINEL
7214};
7215
7216static const ARMCPRegInfo tlbios_reginfo[] = {
7217    { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7218      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7219      .access = PL1_W, .type = ARM_CP_NO_RAW,
7220      .writefn = tlbi_aa64_vmalle1is_write },
7221    { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7222      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7223      .access = PL1_W, .type = ARM_CP_NO_RAW,
7224      .writefn = tlbi_aa64_vmalle1is_write },
7225    { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7226      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7227      .access = PL2_W, .type = ARM_CP_NO_RAW,
7228      .writefn = tlbi_aa64_alle2is_write },
7229   { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7230      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7231      .access = PL2_W, .type = ARM_CP_NO_RAW,
7232      .writefn = tlbi_aa64_alle1is_write },
7233    { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7234      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7235      .access = PL2_W, .type = ARM_CP_NO_RAW,
7236      .writefn = tlbi_aa64_alle1is_write },
7237    { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7238      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7239      .access = PL2_W, .type = ARM_CP_NOP },
7240    { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7241      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7242      .access = PL2_W, .type = ARM_CP_NOP },
7243    { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7244      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7245      .access = PL2_W, .type = ARM_CP_NOP },
7246    { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7247      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7248      .access = PL2_W, .type = ARM_CP_NOP },
7249    { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7250      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7251      .access = PL3_W, .type = ARM_CP_NO_RAW,
7252      .writefn = tlbi_aa64_alle3is_write },
7253    REGINFO_SENTINEL
7254};
7255
7256static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7257{
7258    Error *err = NULL;
7259    uint64_t ret;
7260
7261    /* Success sets NZCV = 0000.  */
7262    env->NF = env->CF = env->VF = 0, env->ZF = 1;
7263
7264    if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7265        /*
7266         * ??? Failed, for unknown reasons in the crypto subsystem.
7267         * The best we can do is log the reason and return the
7268         * timed-out indication to the guest.  There is no reason
7269         * we know to expect this failure to be transitory, so the
7270         * guest may well hang retrying the operation.
7271         */
7272        qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7273                      ri->name, error_get_pretty(err));
7274        error_free(err);
7275
7276        env->ZF = 0; /* NZCF = 0100 */
7277        return 0;
7278    }
7279    return ret;
7280}
7281
7282/* We do not support re-seeding, so the two registers operate the same.  */
7283static const ARMCPRegInfo rndr_reginfo[] = {
7284    { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7285      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7286      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7287      .access = PL0_R, .readfn = rndr_readfn },
7288    { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7289      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7290      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7291      .access = PL0_R, .readfn = rndr_readfn },
7292    REGINFO_SENTINEL
7293};
7294
7295#ifndef CONFIG_USER_ONLY
7296static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7297                          uint64_t value)
7298{
7299    ARMCPU *cpu = env_archcpu(env);
7300    /* CTR_EL0 System register -> DminLine, bits [19:16] */
7301    uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7302    uint64_t vaddr_in = (uint64_t) value;
7303    uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7304    void *haddr;
7305    int mem_idx = cpu_mmu_index(env, false);
7306
7307    /* This won't be crossing page boundaries */
7308    haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7309    if (haddr) {
7310
7311        ram_addr_t offset;
7312        MemoryRegion *mr;
7313
7314        /* RCU lock is already being held */
7315        mr = memory_region_from_host(haddr, &offset);
7316
7317        if (mr) {
7318            memory_region_writeback(mr, offset, dline_size);
7319        }
7320    }
7321}
7322
7323static const ARMCPRegInfo dcpop_reg[] = {
7324    { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7325      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7326      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7327      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7328    REGINFO_SENTINEL
7329};
7330
7331static const ARMCPRegInfo dcpodp_reg[] = {
7332    { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7333      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7334      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7335      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7336    REGINFO_SENTINEL
7337};
7338#endif /*CONFIG_USER_ONLY*/
7339
7340static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7341                                       bool isread)
7342{
7343    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7344        return CP_ACCESS_TRAP_EL2;
7345    }
7346
7347    return CP_ACCESS_OK;
7348}
7349
7350static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7351                                 bool isread)
7352{
7353    int el = arm_current_el(env);
7354
7355    if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7356        uint64_t hcr = arm_hcr_el2_eff(env);
7357        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7358            return CP_ACCESS_TRAP_EL2;
7359        }
7360    }
7361    if (el < 3 &&
7362        arm_feature(env, ARM_FEATURE_EL3) &&
7363        !(env->cp15.scr_el3 & SCR_ATA)) {
7364        return CP_ACCESS_TRAP_EL3;
7365    }
7366    return CP_ACCESS_OK;
7367}
7368
7369static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7370{
7371    return env->pstate & PSTATE_TCO;
7372}
7373
7374static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7375{
7376    env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7377}
7378
7379static const ARMCPRegInfo mte_reginfo[] = {
7380    { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7381      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7382      .access = PL1_RW, .accessfn = access_mte,
7383      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7384    { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7385      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7386      .access = PL1_RW, .accessfn = access_mte,
7387      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7388    { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7389      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7390      .access = PL2_RW, .accessfn = access_mte,
7391      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7392    { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7393      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7394      .access = PL3_RW,
7395      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7396    { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7397      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7398      .access = PL1_RW, .accessfn = access_mte,
7399      .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7400    { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7401      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7402      .access = PL1_RW, .accessfn = access_mte,
7403      .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7404    { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7405      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7406      .access = PL1_R, .accessfn = access_aa64_tid5,
7407      .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7408    { .name = "TCO", .state = ARM_CP_STATE_AA64,
7409      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7410      .type = ARM_CP_NO_RAW,
7411      .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7412    { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7413      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7414      .type = ARM_CP_NOP, .access = PL1_W,
7415      .accessfn = aa64_cacheop_poc_access },
7416    { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7417      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7418      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7419    { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7420      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7421      .type = ARM_CP_NOP, .access = PL1_W,
7422      .accessfn = aa64_cacheop_poc_access },
7423    { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7424      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7425      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7426    { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7427      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7428      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7429    { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7430      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7431      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7432    { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7433      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7434      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7435    { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7436      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7437      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7438    REGINFO_SENTINEL
7439};
7440
7441static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7442    { .name = "TCO", .state = ARM_CP_STATE_AA64,
7443      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7444      .type = ARM_CP_CONST, .access = PL0_RW, },
7445    REGINFO_SENTINEL
7446};
7447
7448static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7449    { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7450      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7451      .type = ARM_CP_NOP, .access = PL0_W,
7452      .accessfn = aa64_cacheop_poc_access },
7453    { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7454      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7455      .type = ARM_CP_NOP, .access = PL0_W,
7456      .accessfn = aa64_cacheop_poc_access },
7457    { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7458      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7459      .type = ARM_CP_NOP, .access = PL0_W,
7460      .accessfn = aa64_cacheop_poc_access },
7461    { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7462      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7463      .type = ARM_CP_NOP, .access = PL0_W,
7464      .accessfn = aa64_cacheop_poc_access },
7465    { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7466      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7467      .type = ARM_CP_NOP, .access = PL0_W,
7468      .accessfn = aa64_cacheop_poc_access },
7469    { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7470      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7471      .type = ARM_CP_NOP, .access = PL0_W,
7472      .accessfn = aa64_cacheop_poc_access },
7473    { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7474      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7475      .type = ARM_CP_NOP, .access = PL0_W,
7476      .accessfn = aa64_cacheop_poc_access },
7477    { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7478      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7479      .type = ARM_CP_NOP, .access = PL0_W,
7480      .accessfn = aa64_cacheop_poc_access },
7481    { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7482      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7483      .access = PL0_W, .type = ARM_CP_DC_GVA,
7484#ifndef CONFIG_USER_ONLY
7485      /* Avoid overhead of an access check that always passes in user-mode */
7486      .accessfn = aa64_zva_access,
7487#endif
7488    },
7489    { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7490      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7491      .access = PL0_W, .type = ARM_CP_DC_GZVA,
7492#ifndef CONFIG_USER_ONLY
7493      /* Avoid overhead of an access check that always passes in user-mode */
7494      .accessfn = aa64_zva_access,
7495#endif
7496    },
7497    REGINFO_SENTINEL
7498};
7499
7500#endif
7501
7502static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7503                                     bool isread)
7504{
7505    int el = arm_current_el(env);
7506
7507    if (el == 0) {
7508        uint64_t sctlr = arm_sctlr(env, el);
7509        if (!(sctlr & SCTLR_EnRCTX)) {
7510            return CP_ACCESS_TRAP;
7511        }
7512    } else if (el == 1) {
7513        uint64_t hcr = arm_hcr_el2_eff(env);
7514        if (hcr & HCR_NV) {
7515            return CP_ACCESS_TRAP_EL2;
7516        }
7517    }
7518    return CP_ACCESS_OK;
7519}
7520
7521static const ARMCPRegInfo predinv_reginfo[] = {
7522    { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7523      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7524      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7525    { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7526      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7527      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7528    { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7529      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7530      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7531    /*
7532     * Note the AArch32 opcodes have a different OPC1.
7533     */
7534    { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7535      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7536      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7537    { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7538      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7539      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7540    { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7541      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7542      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7543    REGINFO_SENTINEL
7544};
7545
7546static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7547{
7548    /* Read the high 32 bits of the current CCSIDR */
7549    return extract64(ccsidr_read(env, ri), 32, 32);
7550}
7551
7552static const ARMCPRegInfo ccsidr2_reginfo[] = {
7553    { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7554      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7555      .access = PL1_R,
7556      .accessfn = access_aa64_tid2,
7557      .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7558    REGINFO_SENTINEL
7559};
7560
7561static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7562                                       bool isread)
7563{
7564    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7565        return CP_ACCESS_TRAP_EL2;
7566    }
7567
7568    return CP_ACCESS_OK;
7569}
7570
7571static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7572                                       bool isread)
7573{
7574    if (arm_feature(env, ARM_FEATURE_V8)) {
7575        return access_aa64_tid3(env, ri, isread);
7576    }
7577
7578    return CP_ACCESS_OK;
7579}
7580
7581static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7582                                     bool isread)
7583{
7584    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7585        return CP_ACCESS_TRAP_EL2;
7586    }
7587
7588    return CP_ACCESS_OK;
7589}
7590
7591static const ARMCPRegInfo jazelle_regs[] = {
7592    { .name = "JIDR",
7593      .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7594      .access = PL1_R, .accessfn = access_jazelle,
7595      .type = ARM_CP_CONST, .resetvalue = 0 },
7596    { .name = "JOSCR",
7597      .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7598      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7599    { .name = "JMCR",
7600      .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7601      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7602    REGINFO_SENTINEL
7603};
7604
7605static const ARMCPRegInfo vhe_reginfo[] = {
7606    { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7607      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7608      .access = PL2_RW,
7609      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7610    { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7611      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7612      .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7613      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7614#ifndef CONFIG_USER_ONLY
7615    { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7616      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7617      .fieldoffset =
7618        offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7619      .type = ARM_CP_IO, .access = PL2_RW,
7620      .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7621    { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7622      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7623      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7624      .resetfn = gt_hv_timer_reset,
7625      .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7626    { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7627      .type = ARM_CP_IO,
7628      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7629      .access = PL2_RW,
7630      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7631      .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7632    { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7633      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7634      .type = ARM_CP_IO | ARM_CP_ALIAS,
7635      .access = PL2_RW, .accessfn = e2h_access,
7636      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7637      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7638    { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7639      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7640      .type = ARM_CP_IO | ARM_CP_ALIAS,
7641      .access = PL2_RW, .accessfn = e2h_access,
7642      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7643      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7644    { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7645      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7646      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7647      .access = PL2_RW, .accessfn = e2h_access,
7648      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7649    { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7650      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7651      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7652      .access = PL2_RW, .accessfn = e2h_access,
7653      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7654    { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7655      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7656      .type = ARM_CP_IO | ARM_CP_ALIAS,
7657      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7658      .access = PL2_RW, .accessfn = e2h_access,
7659      .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7660    { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7661      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7662      .type = ARM_CP_IO | ARM_CP_ALIAS,
7663      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7664      .access = PL2_RW, .accessfn = e2h_access,
7665      .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7666#endif
7667    REGINFO_SENTINEL
7668};
7669
7670#ifndef CONFIG_USER_ONLY
7671static const ARMCPRegInfo ats1e1_reginfo[] = {
7672    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7673      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7674      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7675      .writefn = ats_write64 },
7676    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7677      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7678      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7679      .writefn = ats_write64 },
7680    REGINFO_SENTINEL
7681};
7682
7683static const ARMCPRegInfo ats1cp_reginfo[] = {
7684    { .name = "ATS1CPRP",
7685      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7686      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7687      .writefn = ats_write },
7688    { .name = "ATS1CPWP",
7689      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7690      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7691      .writefn = ats_write },
7692    REGINFO_SENTINEL
7693};
7694#endif
7695
7696/*
7697 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7698 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7699 * is non-zero, which is never for ARMv7, optionally in ARMv8
7700 * and mandatorily for ARMv8.2 and up.
7701 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7702 * implementation is RAZ/WI we can ignore this detail, as we
7703 * do for ACTLR.
7704 */
7705static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7706    { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7707      .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7708      .access = PL1_RW, .accessfn = access_tacr,
7709      .type = ARM_CP_CONST, .resetvalue = 0 },
7710    { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7711      .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7712      .access = PL2_RW, .type = ARM_CP_CONST,
7713      .resetvalue = 0 },
7714    REGINFO_SENTINEL
7715};
7716
7717void register_cp_regs_for_features(ARMCPU *cpu)
7718{
7719    /* Register all the coprocessor registers based on feature bits */
7720    CPUARMState *env = &cpu->env;
7721    if (arm_feature(env, ARM_FEATURE_M)) {
7722        /* M profile has no coprocessor registers */
7723        return;
7724    }
7725
7726    define_arm_cp_regs(cpu, cp_reginfo);
7727    if (!arm_feature(env, ARM_FEATURE_V8)) {
7728        /* Must go early as it is full of wildcards that may be
7729         * overridden by later definitions.
7730         */
7731        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7732    }
7733
7734    if (arm_feature(env, ARM_FEATURE_V6)) {
7735        /* The ID registers all have impdef reset values */
7736        ARMCPRegInfo v6_idregs[] = {
7737            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7738              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7739              .access = PL1_R, .type = ARM_CP_CONST,
7740              .accessfn = access_aa32_tid3,
7741              .resetvalue = cpu->isar.id_pfr0 },
7742            /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7743             * the value of the GIC field until after we define these regs.
7744             */
7745            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7746              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7747              .access = PL1_R, .type = ARM_CP_NO_RAW,
7748              .accessfn = access_aa32_tid3,
7749              .readfn = id_pfr1_read,
7750              .writefn = arm_cp_write_ignore },
7751            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7752              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7753              .access = PL1_R, .type = ARM_CP_CONST,
7754              .accessfn = access_aa32_tid3,
7755              .resetvalue = cpu->isar.id_dfr0 },
7756            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7757              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7758              .access = PL1_R, .type = ARM_CP_CONST,
7759              .accessfn = access_aa32_tid3,
7760              .resetvalue = cpu->id_afr0 },
7761            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7762              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7763              .access = PL1_R, .type = ARM_CP_CONST,
7764              .accessfn = access_aa32_tid3,
7765              .resetvalue = cpu->isar.id_mmfr0 },
7766            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7767              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7768              .access = PL1_R, .type = ARM_CP_CONST,
7769              .accessfn = access_aa32_tid3,
7770              .resetvalue = cpu->isar.id_mmfr1 },
7771            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7772              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7773              .access = PL1_R, .type = ARM_CP_CONST,
7774              .accessfn = access_aa32_tid3,
7775              .resetvalue = cpu->isar.id_mmfr2 },
7776            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7777              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7778              .access = PL1_R, .type = ARM_CP_CONST,
7779              .accessfn = access_aa32_tid3,
7780              .resetvalue = cpu->isar.id_mmfr3 },
7781            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7782              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7783              .access = PL1_R, .type = ARM_CP_CONST,
7784              .accessfn = access_aa32_tid3,
7785              .resetvalue = cpu->isar.id_isar0 },
7786            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7787              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7788              .access = PL1_R, .type = ARM_CP_CONST,
7789              .accessfn = access_aa32_tid3,
7790              .resetvalue = cpu->isar.id_isar1 },
7791            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7792              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7793              .access = PL1_R, .type = ARM_CP_CONST,
7794              .accessfn = access_aa32_tid3,
7795              .resetvalue = cpu->isar.id_isar2 },
7796            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7797              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7798              .access = PL1_R, .type = ARM_CP_CONST,
7799              .accessfn = access_aa32_tid3,
7800              .resetvalue = cpu->isar.id_isar3 },
7801            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7802              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7803              .access = PL1_R, .type = ARM_CP_CONST,
7804              .accessfn = access_aa32_tid3,
7805              .resetvalue = cpu->isar.id_isar4 },
7806            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7807              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7808              .access = PL1_R, .type = ARM_CP_CONST,
7809              .accessfn = access_aa32_tid3,
7810              .resetvalue = cpu->isar.id_isar5 },
7811            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7812              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7813              .access = PL1_R, .type = ARM_CP_CONST,
7814              .accessfn = access_aa32_tid3,
7815              .resetvalue = cpu->isar.id_mmfr4 },
7816            { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7817              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7818              .access = PL1_R, .type = ARM_CP_CONST,
7819              .accessfn = access_aa32_tid3,
7820              .resetvalue = cpu->isar.id_isar6 },
7821            REGINFO_SENTINEL
7822        };
7823        define_arm_cp_regs(cpu, v6_idregs);
7824        define_arm_cp_regs(cpu, v6_cp_reginfo);
7825    } else {
7826        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7827    }
7828    if (arm_feature(env, ARM_FEATURE_V6K)) {
7829        define_arm_cp_regs(cpu, v6k_cp_reginfo);
7830    }
7831    if (arm_feature(env, ARM_FEATURE_V7MP) &&
7832        !arm_feature(env, ARM_FEATURE_PMSA)) {
7833        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7834    }
7835    if (arm_feature(env, ARM_FEATURE_V7VE)) {
7836        define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7837    }
7838    if (arm_feature(env, ARM_FEATURE_V7)) {
7839        ARMCPRegInfo clidr = {
7840            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7841            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7842            .access = PL1_R, .type = ARM_CP_CONST,
7843            .accessfn = access_aa64_tid2,
7844            .resetvalue = cpu->clidr
7845        };
7846        define_one_arm_cp_reg(cpu, &clidr);
7847        define_arm_cp_regs(cpu, v7_cp_reginfo);
7848        define_debug_regs(cpu);
7849        define_pmu_regs(cpu);
7850    } else {
7851        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7852    }
7853    if (arm_feature(env, ARM_FEATURE_V8)) {
7854        /* AArch64 ID registers, which all have impdef reset values.
7855         * Note that within the ID register ranges the unused slots
7856         * must all RAZ, not UNDEF; future architecture versions may
7857         * define new registers here.
7858         */
7859        ARMCPRegInfo v8_idregs[] = {
7860            /*
7861             * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7862             * emulation because we don't know the right value for the
7863             * GIC field until after we define these regs.
7864             */
7865            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7866              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7867              .access = PL1_R,
7868#ifdef CONFIG_USER_ONLY
7869              .type = ARM_CP_CONST,
7870              .resetvalue = cpu->isar.id_aa64pfr0
7871#else
7872              .type = ARM_CP_NO_RAW,
7873              .accessfn = access_aa64_tid3,
7874              .readfn = id_aa64pfr0_read,
7875              .writefn = arm_cp_write_ignore
7876#endif
7877            },
7878            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7879              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7880              .access = PL1_R, .type = ARM_CP_CONST,
7881              .accessfn = access_aa64_tid3,
7882              .resetvalue = cpu->isar.id_aa64pfr1},
7883            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7884              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7885              .access = PL1_R, .type = ARM_CP_CONST,
7886              .accessfn = access_aa64_tid3,
7887              .resetvalue = 0 },
7888            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7889              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7890              .access = PL1_R, .type = ARM_CP_CONST,
7891              .accessfn = access_aa64_tid3,
7892              .resetvalue = 0 },
7893            { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7894              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7895              .access = PL1_R, .type = ARM_CP_CONST,
7896              .accessfn = access_aa64_tid3,
7897              .resetvalue = cpu->isar.id_aa64zfr0 },
7898            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7899              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7900              .access = PL1_R, .type = ARM_CP_CONST,
7901              .accessfn = access_aa64_tid3,
7902              .resetvalue = 0 },
7903            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7904              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7905              .access = PL1_R, .type = ARM_CP_CONST,
7906              .accessfn = access_aa64_tid3,
7907              .resetvalue = 0 },
7908            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7909              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7910              .access = PL1_R, .type = ARM_CP_CONST,
7911              .accessfn = access_aa64_tid3,
7912              .resetvalue = 0 },
7913            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7914              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7915              .access = PL1_R, .type = ARM_CP_CONST,
7916              .accessfn = access_aa64_tid3,
7917              .resetvalue = cpu->isar.id_aa64dfr0 },
7918            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7919              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7920              .access = PL1_R, .type = ARM_CP_CONST,
7921              .accessfn = access_aa64_tid3,
7922              .resetvalue = cpu->isar.id_aa64dfr1 },
7923            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7924              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7925              .access = PL1_R, .type = ARM_CP_CONST,
7926              .accessfn = access_aa64_tid3,
7927              .resetvalue = 0 },
7928            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7929              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7930              .access = PL1_R, .type = ARM_CP_CONST,
7931              .accessfn = access_aa64_tid3,
7932              .resetvalue = 0 },
7933            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7934              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7935              .access = PL1_R, .type = ARM_CP_CONST,
7936              .accessfn = access_aa64_tid3,
7937              .resetvalue = cpu->id_aa64afr0 },
7938            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7939              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7940              .access = PL1_R, .type = ARM_CP_CONST,
7941              .accessfn = access_aa64_tid3,
7942              .resetvalue = cpu->id_aa64afr1 },
7943            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7944              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7945              .access = PL1_R, .type = ARM_CP_CONST,
7946              .accessfn = access_aa64_tid3,
7947              .resetvalue = 0 },
7948            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7949              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7950              .access = PL1_R, .type = ARM_CP_CONST,
7951              .accessfn = access_aa64_tid3,
7952              .resetvalue = 0 },
7953            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7954              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7955              .access = PL1_R, .type = ARM_CP_CONST,
7956              .accessfn = access_aa64_tid3,
7957              .resetvalue = cpu->isar.id_aa64isar0 },
7958            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7959              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7960              .access = PL1_R, .type = ARM_CP_CONST,
7961              .accessfn = access_aa64_tid3,
7962              .resetvalue = cpu->isar.id_aa64isar1 },
7963            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7964              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7965              .access = PL1_R, .type = ARM_CP_CONST,
7966              .accessfn = access_aa64_tid3,
7967              .resetvalue = 0 },
7968            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7969              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7970              .access = PL1_R, .type = ARM_CP_CONST,
7971              .accessfn = access_aa64_tid3,
7972              .resetvalue = 0 },
7973            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7974              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7975              .access = PL1_R, .type = ARM_CP_CONST,
7976              .accessfn = access_aa64_tid3,
7977              .resetvalue = 0 },
7978            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7979              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7980              .access = PL1_R, .type = ARM_CP_CONST,
7981              .accessfn = access_aa64_tid3,
7982              .resetvalue = 0 },
7983            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7984              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7985              .access = PL1_R, .type = ARM_CP_CONST,
7986              .accessfn = access_aa64_tid3,
7987              .resetvalue = 0 },
7988            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7989              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7990              .access = PL1_R, .type = ARM_CP_CONST,
7991              .accessfn = access_aa64_tid3,
7992              .resetvalue = 0 },
7993            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7994              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7995              .access = PL1_R, .type = ARM_CP_CONST,
7996              .accessfn = access_aa64_tid3,
7997              .resetvalue = cpu->isar.id_aa64mmfr0 },
7998            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7999              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8000              .access = PL1_R, .type = ARM_CP_CONST,
8001              .accessfn = access_aa64_tid3,
8002              .resetvalue = cpu->isar.id_aa64mmfr1 },
8003            { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8004              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8005              .access = PL1_R, .type = ARM_CP_CONST,
8006              .accessfn = access_aa64_tid3,
8007              .resetvalue = cpu->isar.id_aa64mmfr2 },
8008            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8009              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8010              .access = PL1_R, .type = ARM_CP_CONST,
8011              .accessfn = access_aa64_tid3,
8012              .resetvalue = 0 },
8013            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8014              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8015              .access = PL1_R, .type = ARM_CP_CONST,
8016              .accessfn = access_aa64_tid3,
8017              .resetvalue = 0 },
8018            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8019              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8020              .access = PL1_R, .type = ARM_CP_CONST,
8021              .accessfn = access_aa64_tid3,
8022              .resetvalue = 0 },
8023            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8024              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8025              .access = PL1_R, .type = ARM_CP_CONST,
8026              .accessfn = access_aa64_tid3,
8027              .resetvalue = 0 },
8028            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8029              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8030              .access = PL1_R, .type = ARM_CP_CONST,
8031              .accessfn = access_aa64_tid3,
8032              .resetvalue = 0 },
8033            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8034              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8035              .access = PL1_R, .type = ARM_CP_CONST,
8036              .accessfn = access_aa64_tid3,
8037              .resetvalue = cpu->isar.mvfr0 },
8038            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8039              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8040              .access = PL1_R, .type = ARM_CP_CONST,
8041              .accessfn = access_aa64_tid3,
8042              .resetvalue = cpu->isar.mvfr1 },
8043            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8044              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8045              .access = PL1_R, .type = ARM_CP_CONST,
8046              .accessfn = access_aa64_tid3,
8047              .resetvalue = cpu->isar.mvfr2 },
8048            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8049              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8050              .access = PL1_R, .type = ARM_CP_CONST,
8051              .accessfn = access_aa64_tid3,
8052              .resetvalue = 0 },
8053            { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8054              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8055              .access = PL1_R, .type = ARM_CP_CONST,
8056              .accessfn = access_aa64_tid3,
8057              .resetvalue = cpu->isar.id_pfr2 },
8058            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8059              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8060              .access = PL1_R, .type = ARM_CP_CONST,
8061              .accessfn = access_aa64_tid3,
8062              .resetvalue = 0 },
8063            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8064              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8065              .access = PL1_R, .type = ARM_CP_CONST,
8066              .accessfn = access_aa64_tid3,
8067              .resetvalue = 0 },
8068            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8069              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8070              .access = PL1_R, .type = ARM_CP_CONST,
8071              .accessfn = access_aa64_tid3,
8072              .resetvalue = 0 },
8073            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8074              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8075              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8076              .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8077            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8078              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8079              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8080              .resetvalue = cpu->pmceid0 },
8081            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8082              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8083              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8084              .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8085            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8086              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8087              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8088              .resetvalue = cpu->pmceid1 },
8089            REGINFO_SENTINEL
8090        };
8091#ifdef CONFIG_USER_ONLY
8092        ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8093            { .name = "ID_AA64PFR0_EL1",
8094              .exported_bits = 0x000f000f00ff0000,
8095              .fixed_bits    = 0x0000000000000011 },
8096            { .name = "ID_AA64PFR1_EL1",
8097              .exported_bits = 0x00000000000000f0 },
8098            { .name = "ID_AA64PFR*_EL1_RESERVED",
8099              .is_glob = true                     },
8100            { .name = "ID_AA64ZFR0_EL1"           },
8101            { .name = "ID_AA64MMFR0_EL1",
8102              .fixed_bits    = 0x00000000ff000000 },
8103            { .name = "ID_AA64MMFR1_EL1"          },
8104            { .name = "ID_AA64MMFR*_EL1_RESERVED",
8105              .is_glob = true                     },
8106            { .name = "ID_AA64DFR0_EL1",
8107              .fixed_bits    = 0x0000000000000006 },
8108            { .name = "ID_AA64DFR1_EL1"           },
8109            { .name = "ID_AA64DFR*_EL1_RESERVED",
8110              .is_glob = true                     },
8111            { .name = "ID_AA64AFR*",
8112              .is_glob = true                     },
8113            { .name = "ID_AA64ISAR0_EL1",
8114              .exported_bits = 0x00fffffff0fffff0 },
8115            { .name = "ID_AA64ISAR1_EL1",
8116              .exported_bits = 0x000000f0ffffffff },
8117            { .name = "ID_AA64ISAR*_EL1_RESERVED",
8118              .is_glob = true                     },
8119            REGUSERINFO_SENTINEL
8120        };
8121        modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8122#endif
8123        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8124        if (!arm_feature(env, ARM_FEATURE_EL3) &&
8125            !arm_feature(env, ARM_FEATURE_EL2)) {
8126            ARMCPRegInfo rvbar = {
8127                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
8128                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8129                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
8130            };
8131            define_one_arm_cp_reg(cpu, &rvbar);
8132        }
8133        define_arm_cp_regs(cpu, v8_idregs);
8134        define_arm_cp_regs(cpu, v8_cp_reginfo);
8135    }
8136    if (arm_feature(env, ARM_FEATURE_EL2)) {
8137        uint64_t vmpidr_def = mpidr_read_val(env);
8138        ARMCPRegInfo vpidr_regs[] = {
8139            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8140              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8141              .access = PL2_RW, .accessfn = access_el3_aa32ns,
8142              .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
8143              .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8144            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8145              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8146              .access = PL2_RW, .resetvalue = cpu->midr,
8147              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8148            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8149              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8150              .access = PL2_RW, .accessfn = access_el3_aa32ns,
8151              .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
8152              .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8153            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8154              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8155              .access = PL2_RW,
8156              .resetvalue = vmpidr_def,
8157              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8158            REGINFO_SENTINEL
8159        };
8160        define_arm_cp_regs(cpu, vpidr_regs);
8161        define_arm_cp_regs(cpu, el2_cp_reginfo);
8162        if (arm_feature(env, ARM_FEATURE_V8)) {
8163            define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8164        }
8165        if (cpu_isar_feature(aa64_sel2, cpu)) {
8166            define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8167        }
8168        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8169        if (!arm_feature(env, ARM_FEATURE_EL3)) {
8170            ARMCPRegInfo rvbar = {
8171                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8172                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8173                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
8174            };
8175            define_one_arm_cp_reg(cpu, &rvbar);
8176        }
8177    } else {
8178        /* If EL2 is missing but higher ELs are enabled, we need to
8179         * register the no_el2 reginfos.
8180         */
8181        if (arm_feature(env, ARM_FEATURE_EL3)) {
8182            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8183             * of MIDR_EL1 and MPIDR_EL1.
8184             */
8185            ARMCPRegInfo vpidr_regs[] = {
8186                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8187                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8188                  .access = PL2_RW, .accessfn = access_el3_aa32ns,
8189                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8190                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8191                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8192                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8193                  .access = PL2_RW, .accessfn = access_el3_aa32ns,
8194                  .type = ARM_CP_NO_RAW,
8195                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8196                REGINFO_SENTINEL
8197            };
8198            define_arm_cp_regs(cpu, vpidr_regs);
8199            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8200            if (arm_feature(env, ARM_FEATURE_V8)) {
8201                define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8202            }
8203        }
8204    }
8205    if (arm_feature(env, ARM_FEATURE_EL3)) {
8206        define_arm_cp_regs(cpu, el3_cp_reginfo);
8207        ARMCPRegInfo el3_regs[] = {
8208            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8209              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8210              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8211            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8212              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8213              .access = PL3_RW,
8214              .raw_writefn = raw_write, .writefn = sctlr_write,
8215              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8216              .resetvalue = cpu->reset_sctlr },
8217            REGINFO_SENTINEL
8218        };
8219
8220        define_arm_cp_regs(cpu, el3_regs);
8221    }
8222    /* The behaviour of NSACR is sufficiently various that we don't
8223     * try to describe it in a single reginfo:
8224     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8225     *     reads as constant 0xc00 from NS EL1 and NS EL2
8226     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8227     *  if v7 without EL3, register doesn't exist
8228     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8229     */
8230    if (arm_feature(env, ARM_FEATURE_EL3)) {
8231        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8232            ARMCPRegInfo nsacr = {
8233                .name = "NSACR", .type = ARM_CP_CONST,
8234                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8235                .access = PL1_RW, .accessfn = nsacr_access,
8236                .resetvalue = 0xc00
8237            };
8238            define_one_arm_cp_reg(cpu, &nsacr);
8239        } else {
8240            ARMCPRegInfo nsacr = {
8241                .name = "NSACR",
8242                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8243                .access = PL3_RW | PL1_R,
8244                .resetvalue = 0,
8245                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8246            };
8247            define_one_arm_cp_reg(cpu, &nsacr);
8248        }
8249    } else {
8250        if (arm_feature(env, ARM_FEATURE_V8)) {
8251            ARMCPRegInfo nsacr = {
8252                .name = "NSACR", .type = ARM_CP_CONST,
8253                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8254                .access = PL1_R,
8255                .resetvalue = 0xc00
8256            };
8257            define_one_arm_cp_reg(cpu, &nsacr);
8258        }
8259    }
8260
8261    if (arm_feature(env, ARM_FEATURE_PMSA)) {
8262        if (arm_feature(env, ARM_FEATURE_V6)) {
8263            /* PMSAv6 not implemented */
8264            assert(arm_feature(env, ARM_FEATURE_V7));
8265            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8266            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8267        } else {
8268            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8269        }
8270    } else {
8271        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8272        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8273        /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8274        if (cpu_isar_feature(aa32_hpd, cpu)) {
8275            define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8276        }
8277    }
8278    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8279        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8280    }
8281    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8282        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8283    }
8284    if (arm_feature(env, ARM_FEATURE_VAPA)) {
8285        define_arm_cp_regs(cpu, vapa_cp_reginfo);
8286    }
8287    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8288        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8289    }
8290    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8291        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8292    }
8293    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8294        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8295    }
8296    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8297        define_arm_cp_regs(cpu, omap_cp_reginfo);
8298    }
8299    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8300        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8301    }
8302    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8303        define_arm_cp_regs(cpu, xscale_cp_reginfo);
8304    }
8305    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8306        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8307    }
8308    if (arm_feature(env, ARM_FEATURE_LPAE)) {
8309        define_arm_cp_regs(cpu, lpae_cp_reginfo);
8310    }
8311    if (cpu_isar_feature(aa32_jazelle, cpu)) {
8312        define_arm_cp_regs(cpu, jazelle_regs);
8313    }
8314    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8315     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8316     * be read-only (ie write causes UNDEF exception).
8317     */
8318    {
8319        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8320            /* Pre-v8 MIDR space.
8321             * Note that the MIDR isn't a simple constant register because
8322             * of the TI925 behaviour where writes to another register can
8323             * cause the MIDR value to change.
8324             *
8325             * Unimplemented registers in the c15 0 0 0 space default to
8326             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8327             * and friends override accordingly.
8328             */
8329            { .name = "MIDR",
8330              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8331              .access = PL1_R, .resetvalue = cpu->midr,
8332              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8333              .readfn = midr_read,
8334              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8335              .type = ARM_CP_OVERRIDE },
8336            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8337            { .name = "DUMMY",
8338              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8339              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8340            { .name = "DUMMY",
8341              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8342              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8343            { .name = "DUMMY",
8344              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8345              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8346            { .name = "DUMMY",
8347              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8348              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8349            { .name = "DUMMY",
8350              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8351              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8352            REGINFO_SENTINEL
8353        };
8354        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8355            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8356              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8357              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8358              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8359              .readfn = midr_read },
8360            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8361            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8362              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8363              .access = PL1_R, .resetvalue = cpu->midr },
8364            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8365              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8366              .access = PL1_R, .resetvalue = cpu->midr },
8367            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8368              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8369              .access = PL1_R,
8370              .accessfn = access_aa64_tid1,
8371              .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8372            REGINFO_SENTINEL
8373        };
8374        ARMCPRegInfo id_cp_reginfo[] = {
8375            /* These are common to v8 and pre-v8 */
8376            { .name = "CTR",
8377              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8378              .access = PL1_R, .accessfn = ctr_el0_access,
8379              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8380            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8381              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8382              .access = PL0_R, .accessfn = ctr_el0_access,
8383              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8384            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8385            { .name = "TCMTR",
8386              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8387              .access = PL1_R,
8388              .accessfn = access_aa32_tid1,
8389              .type = ARM_CP_CONST, .resetvalue = 0 },
8390            REGINFO_SENTINEL
8391        };
8392        /* TLBTR is specific to VMSA */
8393        ARMCPRegInfo id_tlbtr_reginfo = {
8394              .name = "TLBTR",
8395              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8396              .access = PL1_R,
8397              .accessfn = access_aa32_tid1,
8398              .type = ARM_CP_CONST, .resetvalue = 0,
8399        };
8400        /* MPUIR is specific to PMSA V6+ */
8401        ARMCPRegInfo id_mpuir_reginfo = {
8402              .name = "MPUIR",
8403              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8404              .access = PL1_R, .type = ARM_CP_CONST,
8405              .resetvalue = cpu->pmsav7_dregion << 8
8406        };
8407        ARMCPRegInfo crn0_wi_reginfo = {
8408            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8409            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8410            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8411        };
8412#ifdef CONFIG_USER_ONLY
8413        ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8414            { .name = "MIDR_EL1",
8415              .exported_bits = 0x00000000ffffffff },
8416            { .name = "REVIDR_EL1"                },
8417            REGUSERINFO_SENTINEL
8418        };
8419        modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8420#endif
8421        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8422            arm_feature(env, ARM_FEATURE_STRONGARM)) {
8423            ARMCPRegInfo *r;
8424            /* Register the blanket "writes ignored" value first to cover the
8425             * whole space. Then update the specific ID registers to allow write
8426             * access, so that they ignore writes rather than causing them to
8427             * UNDEF.
8428             */
8429            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8430            for (r = id_pre_v8_midr_cp_reginfo;
8431                 r->type != ARM_CP_SENTINEL; r++) {
8432                r->access = PL1_RW;
8433            }
8434            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8435                r->access = PL1_RW;
8436            }
8437            id_mpuir_reginfo.access = PL1_RW;
8438            id_tlbtr_reginfo.access = PL1_RW;
8439        }
8440        if (arm_feature(env, ARM_FEATURE_V8)) {
8441            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8442        } else {
8443            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8444        }
8445        define_arm_cp_regs(cpu, id_cp_reginfo);
8446        if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8447            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8448        } else if (arm_feature(env, ARM_FEATURE_V7)) {
8449            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8450        }
8451    }
8452
8453    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8454        ARMCPRegInfo mpidr_cp_reginfo[] = {
8455            { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8456              .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8457              .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8458            REGINFO_SENTINEL
8459        };
8460#ifdef CONFIG_USER_ONLY
8461        ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8462            { .name = "MPIDR_EL1",
8463              .fixed_bits = 0x0000000080000000 },
8464            REGUSERINFO_SENTINEL
8465        };
8466        modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8467#endif
8468        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8469    }
8470
8471    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8472        ARMCPRegInfo auxcr_reginfo[] = {
8473            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8474              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8475              .access = PL1_RW, .accessfn = access_tacr,
8476              .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8477            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8478              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8479              .access = PL2_RW, .type = ARM_CP_CONST,
8480              .resetvalue = 0 },
8481            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8482              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8483              .access = PL3_RW, .type = ARM_CP_CONST,
8484              .resetvalue = 0 },
8485            REGINFO_SENTINEL
8486        };
8487        define_arm_cp_regs(cpu, auxcr_reginfo);
8488        if (cpu_isar_feature(aa32_ac2, cpu)) {
8489            define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8490        }
8491    }
8492
8493    if (arm_feature(env, ARM_FEATURE_CBAR)) {
8494        /*
8495         * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8496         * There are two flavours:
8497         *  (1) older 32-bit only cores have a simple 32-bit CBAR
8498         *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8499         *      32-bit register visible to AArch32 at a different encoding
8500         *      to the "flavour 1" register and with the bits rearranged to
8501         *      be able to squash a 64-bit address into the 32-bit view.
8502         * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8503         * in future if we support AArch32-only configs of some of the
8504         * AArch64 cores we might need to add a specific feature flag
8505         * to indicate cores with "flavour 2" CBAR.
8506         */
8507        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8508            /* 32 bit view is [31:18] 0...0 [43:32]. */
8509            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8510                | extract64(cpu->reset_cbar, 32, 12);
8511            ARMCPRegInfo cbar_reginfo[] = {
8512                { .name = "CBAR",
8513                  .type = ARM_CP_CONST,
8514                  .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8515                  .access = PL1_R, .resetvalue = cbar32 },
8516                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8517                  .type = ARM_CP_CONST,
8518                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8519                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
8520                REGINFO_SENTINEL
8521            };
8522            /* We don't implement a r/w 64 bit CBAR currently */
8523            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8524            define_arm_cp_regs(cpu, cbar_reginfo);
8525        } else {
8526            ARMCPRegInfo cbar = {
8527                .name = "CBAR",
8528                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8529                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8530                .fieldoffset = offsetof(CPUARMState,
8531                                        cp15.c15_config_base_address)
8532            };
8533            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8534                cbar.access = PL1_R;
8535                cbar.fieldoffset = 0;
8536                cbar.type = ARM_CP_CONST;
8537            }
8538            define_one_arm_cp_reg(cpu, &cbar);
8539        }
8540    }
8541
8542    if (arm_feature(env, ARM_FEATURE_VBAR)) {
8543        ARMCPRegInfo vbar_cp_reginfo[] = {
8544            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8545              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8546              .access = PL1_RW, .writefn = vbar_write,
8547              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8548                                     offsetof(CPUARMState, cp15.vbar_ns) },
8549              .resetvalue = 0 },
8550            REGINFO_SENTINEL
8551        };
8552        define_arm_cp_regs(cpu, vbar_cp_reginfo);
8553    }
8554
8555    /* Generic registers whose values depend on the implementation */
8556    {
8557        ARMCPRegInfo sctlr = {
8558            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8559            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8560            .access = PL1_RW, .accessfn = access_tvm_trvm,
8561            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8562                                   offsetof(CPUARMState, cp15.sctlr_ns) },
8563            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8564            .raw_writefn = raw_write,
8565        };
8566        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8567            /* Normally we would always end the TB on an SCTLR write, but Linux
8568             * arch/arm/mach-pxa/sleep.S expects two instructions following
8569             * an MMU enable to execute from cache.  Imitate this behaviour.
8570             */
8571            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8572        }
8573        define_one_arm_cp_reg(cpu, &sctlr);
8574    }
8575
8576    if (cpu_isar_feature(aa64_lor, cpu)) {
8577        define_arm_cp_regs(cpu, lor_reginfo);
8578    }
8579    if (cpu_isar_feature(aa64_pan, cpu)) {
8580        define_one_arm_cp_reg(cpu, &pan_reginfo);
8581    }
8582#ifndef CONFIG_USER_ONLY
8583    if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8584        define_arm_cp_regs(cpu, ats1e1_reginfo);
8585    }
8586    if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8587        define_arm_cp_regs(cpu, ats1cp_reginfo);
8588    }
8589#endif
8590    if (cpu_isar_feature(aa64_uao, cpu)) {
8591        define_one_arm_cp_reg(cpu, &uao_reginfo);
8592    }
8593
8594    if (cpu_isar_feature(aa64_dit, cpu)) {
8595        define_one_arm_cp_reg(cpu, &dit_reginfo);
8596    }
8597    if (cpu_isar_feature(aa64_ssbs, cpu)) {
8598        define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8599    }
8600
8601    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8602        define_arm_cp_regs(cpu, vhe_reginfo);
8603    }
8604
8605    if (cpu_isar_feature(aa64_sve, cpu)) {
8606        define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8607        if (arm_feature(env, ARM_FEATURE_EL2)) {
8608            define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8609        } else {
8610            define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8611        }
8612        if (arm_feature(env, ARM_FEATURE_EL3)) {
8613            define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8614        }
8615    }
8616
8617#ifdef TARGET_AARCH64
8618    if (cpu_isar_feature(aa64_pauth, cpu)) {
8619        define_arm_cp_regs(cpu, pauth_reginfo);
8620    }
8621    if (cpu_isar_feature(aa64_rndr, cpu)) {
8622        define_arm_cp_regs(cpu, rndr_reginfo);
8623    }
8624    if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8625        define_arm_cp_regs(cpu, tlbirange_reginfo);
8626    }
8627    if (cpu_isar_feature(aa64_tlbios, cpu)) {
8628        define_arm_cp_regs(cpu, tlbios_reginfo);
8629    }
8630#ifndef CONFIG_USER_ONLY
8631    /* Data Cache clean instructions up to PoP */
8632    if (cpu_isar_feature(aa64_dcpop, cpu)) {
8633        define_one_arm_cp_reg(cpu, dcpop_reg);
8634
8635        if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8636            define_one_arm_cp_reg(cpu, dcpodp_reg);
8637        }
8638    }
8639#endif /*CONFIG_USER_ONLY*/
8640
8641    /*
8642     * If full MTE is enabled, add all of the system registers.
8643     * If only "instructions available at EL0" are enabled,
8644     * then define only a RAZ/WI version of PSTATE.TCO.
8645     */
8646    if (cpu_isar_feature(aa64_mte, cpu)) {
8647        define_arm_cp_regs(cpu, mte_reginfo);
8648        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8649    } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8650        define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8651        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8652    }
8653#endif
8654
8655    if (cpu_isar_feature(any_predinv, cpu)) {
8656        define_arm_cp_regs(cpu, predinv_reginfo);
8657    }
8658
8659    if (cpu_isar_feature(any_ccidx, cpu)) {
8660        define_arm_cp_regs(cpu, ccsidr2_reginfo);
8661    }
8662
8663#ifndef CONFIG_USER_ONLY
8664    /*
8665     * Register redirections and aliases must be done last,
8666     * after the registers from the other extensions have been defined.
8667     */
8668    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8669        define_arm_vh_e2h_redirects_aliases(cpu);
8670    }
8671#endif
8672}
8673
8674void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8675{
8676    CPUState *cs = CPU(cpu);
8677    CPUARMState *env = &cpu->env;
8678
8679    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8680        /*
8681         * The lower part of each SVE register aliases to the FPU
8682         * registers so we don't need to include both.
8683         */
8684#ifdef TARGET_AARCH64
8685        if (isar_feature_aa64_sve(&cpu->isar)) {
8686            gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8687                                     arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8688                                     "sve-registers.xml", 0);
8689        } else
8690#endif
8691        {
8692            gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8693                                     aarch64_fpu_gdb_set_reg,
8694                                     34, "aarch64-fpu.xml", 0);
8695        }
8696    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8697        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8698                                 51, "arm-neon.xml", 0);
8699    } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8700        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8701                                 35, "arm-vfp3.xml", 0);
8702    } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8703        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8704                                 19, "arm-vfp.xml", 0);
8705    }
8706    gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8707                             arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8708                             "system-registers.xml", 0);
8709
8710}
8711
8712/* Sort alphabetically by type name, except for "any". */
8713static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8714{
8715    ObjectClass *class_a = (ObjectClass *)a;
8716    ObjectClass *class_b = (ObjectClass *)b;
8717    const char *name_a, *name_b;
8718
8719    name_a = object_class_get_name(class_a);
8720    name_b = object_class_get_name(class_b);
8721    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8722        return 1;
8723    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8724        return -1;
8725    } else {
8726        return strcmp(name_a, name_b);
8727    }
8728}
8729
8730static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8731{
8732    ObjectClass *oc = data;
8733    const char *typename;
8734    char *name;
8735
8736    typename = object_class_get_name(oc);
8737    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8738    qemu_printf("  %s\n", name);
8739    g_free(name);
8740}
8741
8742void arm_cpu_list(void)
8743{
8744    GSList *list;
8745
8746    list = object_class_get_list(TYPE_ARM_CPU, false);
8747    list = g_slist_sort(list, arm_cpu_list_compare);
8748    qemu_printf("Available CPUs:\n");
8749    g_slist_foreach(list, arm_cpu_list_entry, NULL);
8750    g_slist_free(list);
8751}
8752
8753static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8754{
8755    ObjectClass *oc = data;
8756    CpuDefinitionInfoList **cpu_list = user_data;
8757    CpuDefinitionInfo *info;
8758    const char *typename;
8759
8760    typename = object_class_get_name(oc);
8761    info = g_malloc0(sizeof(*info));
8762    info->name = g_strndup(typename,
8763                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
8764    info->q_typename = g_strdup(typename);
8765
8766    QAPI_LIST_PREPEND(*cpu_list, info);
8767}
8768
8769CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8770{
8771    CpuDefinitionInfoList *cpu_list = NULL;
8772    GSList *list;
8773
8774    list = object_class_get_list(TYPE_ARM_CPU, false);
8775    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8776    g_slist_free(list);
8777
8778    return cpu_list;
8779}
8780
8781static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8782                                   void *opaque, int state, int secstate,
8783                                   int crm, int opc1, int opc2,
8784                                   const char *name)
8785{
8786    /* Private utility function for define_one_arm_cp_reg_with_opaque():
8787     * add a single reginfo struct to the hash table.
8788     */
8789    uint32_t *key = g_new(uint32_t, 1);
8790    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8791    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8792    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8793
8794    r2->name = g_strdup(name);
8795    /* Reset the secure state to the specific incoming state.  This is
8796     * necessary as the register may have been defined with both states.
8797     */
8798    r2->secure = secstate;
8799
8800    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8801        /* Register is banked (using both entries in array).
8802         * Overwriting fieldoffset as the array is only used to define
8803         * banked registers but later only fieldoffset is used.
8804         */
8805        r2->fieldoffset = r->bank_fieldoffsets[ns];
8806    }
8807
8808    if (state == ARM_CP_STATE_AA32) {
8809        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8810            /* If the register is banked then we don't need to migrate or
8811             * reset the 32-bit instance in certain cases:
8812             *
8813             * 1) If the register has both 32-bit and 64-bit instances then we
8814             *    can count on the 64-bit instance taking care of the
8815             *    non-secure bank.
8816             * 2) If ARMv8 is enabled then we can count on a 64-bit version
8817             *    taking care of the secure bank.  This requires that separate
8818             *    32 and 64-bit definitions are provided.
8819             */
8820            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8821                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8822                r2->type |= ARM_CP_ALIAS;
8823            }
8824        } else if ((secstate != r->secure) && !ns) {
8825            /* The register is not banked so we only want to allow migration of
8826             * the non-secure instance.
8827             */
8828            r2->type |= ARM_CP_ALIAS;
8829        }
8830
8831        if (r->state == ARM_CP_STATE_BOTH) {
8832            /* We assume it is a cp15 register if the .cp field is left unset.
8833             */
8834            if (r2->cp == 0) {
8835                r2->cp = 15;
8836            }
8837
8838#ifdef HOST_WORDS_BIGENDIAN
8839            if (r2->fieldoffset) {
8840                r2->fieldoffset += sizeof(uint32_t);
8841            }
8842#endif
8843        }
8844    }
8845    if (state == ARM_CP_STATE_AA64) {
8846        /* To allow abbreviation of ARMCPRegInfo
8847         * definitions, we treat cp == 0 as equivalent to
8848         * the value for "standard guest-visible sysreg".
8849         * STATE_BOTH definitions are also always "standard
8850         * sysreg" in their AArch64 view (the .cp value may
8851         * be non-zero for the benefit of the AArch32 view).
8852         */
8853        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8854            r2->cp = CP_REG_ARM64_SYSREG_CP;
8855        }
8856        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8857                                  r2->opc0, opc1, opc2);
8858    } else {
8859        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8860    }
8861    if (opaque) {
8862        r2->opaque = opaque;
8863    }
8864    /* reginfo passed to helpers is correct for the actual access,
8865     * and is never ARM_CP_STATE_BOTH:
8866     */
8867    r2->state = state;
8868    /* Make sure reginfo passed to helpers for wildcarded regs
8869     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8870     */
8871    r2->crm = crm;
8872    r2->opc1 = opc1;
8873    r2->opc2 = opc2;
8874    /* By convention, for wildcarded registers only the first
8875     * entry is used for migration; the others are marked as
8876     * ALIAS so we don't try to transfer the register
8877     * multiple times. Special registers (ie NOP/WFI) are
8878     * never migratable and not even raw-accessible.
8879     */
8880    if ((r->type & ARM_CP_SPECIAL)) {
8881        r2->type |= ARM_CP_NO_RAW;
8882    }
8883    if (((r->crm == CP_ANY) && crm != 0) ||
8884        ((r->opc1 == CP_ANY) && opc1 != 0) ||
8885        ((r->opc2 == CP_ANY) && opc2 != 0)) {
8886        r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8887    }
8888
8889    /* Check that raw accesses are either forbidden or handled. Note that
8890     * we can't assert this earlier because the setup of fieldoffset for
8891     * banked registers has to be done first.
8892     */
8893    if (!(r2->type & ARM_CP_NO_RAW)) {
8894        assert(!raw_accessors_invalid(r2));
8895    }
8896
8897    /* Overriding of an existing definition must be explicitly
8898     * requested.
8899     */
8900    if (!(r->type & ARM_CP_OVERRIDE)) {
8901        ARMCPRegInfo *oldreg;
8902        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8903        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8904            fprintf(stderr, "Register redefined: cp=%d %d bit "
8905                    "crn=%d crm=%d opc1=%d opc2=%d, "
8906                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8907                    r2->crn, r2->crm, r2->opc1, r2->opc2,
8908                    oldreg->name, r2->name);
8909            g_assert_not_reached();
8910        }
8911    }
8912    g_hash_table_insert(cpu->cp_regs, key, r2);
8913}
8914
8915
8916void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8917                                       const ARMCPRegInfo *r, void *opaque)
8918{
8919    /* Define implementations of coprocessor registers.
8920     * We store these in a hashtable because typically
8921     * there are less than 150 registers in a space which
8922     * is 16*16*16*8*8 = 262144 in size.
8923     * Wildcarding is supported for the crm, opc1 and opc2 fields.
8924     * If a register is defined twice then the second definition is
8925     * used, so this can be used to define some generic registers and
8926     * then override them with implementation specific variations.
8927     * At least one of the original and the second definition should
8928     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8929     * against accidental use.
8930     *
8931     * The state field defines whether the register is to be
8932     * visible in the AArch32 or AArch64 execution state. If the
8933     * state is set to ARM_CP_STATE_BOTH then we synthesise a
8934     * reginfo structure for the AArch32 view, which sees the lower
8935     * 32 bits of the 64 bit register.
8936     *
8937     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8938     * be wildcarded. AArch64 registers are always considered to be 64
8939     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8940     * the register, if any.
8941     */
8942    int crm, opc1, opc2, state;
8943    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8944    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8945    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8946    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8947    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8948    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8949    /* 64 bit registers have only CRm and Opc1 fields */
8950    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8951    /* op0 only exists in the AArch64 encodings */
8952    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8953    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8954    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8955    /*
8956     * This API is only for Arm's system coprocessors (14 and 15) or
8957     * (M-profile or v7A-and-earlier only) for implementation defined
8958     * coprocessors in the range 0..7.  Our decode assumes this, since
8959     * 8..13 can be used for other insns including VFP and Neon. See
8960     * valid_cp() in translate.c.  Assert here that we haven't tried
8961     * to use an invalid coprocessor number.
8962     */
8963    switch (r->state) {
8964    case ARM_CP_STATE_BOTH:
8965        /* 0 has a special meaning, but otherwise the same rules as AA32. */
8966        if (r->cp == 0) {
8967            break;
8968        }
8969        /* fall through */
8970    case ARM_CP_STATE_AA32:
8971        if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8972            !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8973            assert(r->cp >= 14 && r->cp <= 15);
8974        } else {
8975            assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8976        }
8977        break;
8978    case ARM_CP_STATE_AA64:
8979        assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8980        break;
8981    default:
8982        g_assert_not_reached();
8983    }
8984    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8985     * encodes a minimum access level for the register. We roll this
8986     * runtime check into our general permission check code, so check
8987     * here that the reginfo's specified permissions are strict enough
8988     * to encompass the generic architectural permission check.
8989     */
8990    if (r->state != ARM_CP_STATE_AA32) {
8991        int mask = 0;
8992        switch (r->opc1) {
8993        case 0:
8994            /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8995            mask = PL0U_R | PL1_RW;
8996            break;
8997        case 1: case 2:
8998            /* min_EL EL1 */
8999            mask = PL1_RW;
9000            break;
9001        case 3:
9002            /* min_EL EL0 */
9003            mask = PL0_RW;
9004            break;
9005        case 4:
9006        case 5:
9007            /* min_EL EL2 */
9008            mask = PL2_RW;
9009            break;
9010        case 6:
9011            /* min_EL EL3 */
9012            mask = PL3_RW;
9013            break;
9014        case 7:
9015            /* min_EL EL1, secure mode only (we don't check the latter) */
9016            mask = PL1_RW;
9017            break;
9018        default:
9019            /* broken reginfo with out-of-range opc1 */
9020            assert(false);
9021            break;
9022        }
9023        /* assert our permissions are not too lax (stricter is fine) */
9024        assert((r->access & ~mask) == 0);
9025    }
9026
9027    /* Check that the register definition has enough info to handle
9028     * reads and writes if they are permitted.
9029     */
9030    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
9031        if (r->access & PL3_R) {
9032            assert((r->fieldoffset ||
9033                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9034                   r->readfn);
9035        }
9036        if (r->access & PL3_W) {
9037            assert((r->fieldoffset ||
9038                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9039                   r->writefn);
9040        }
9041    }
9042    /* Bad type field probably means missing sentinel at end of reg list */
9043    assert(cptype_valid(r->type));
9044    for (crm = crmmin; crm <= crmmax; crm++) {
9045        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9046            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9047                for (state = ARM_CP_STATE_AA32;
9048                     state <= ARM_CP_STATE_AA64; state++) {
9049                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9050                        continue;
9051                    }
9052                    if (state == ARM_CP_STATE_AA32) {
9053                        /* Under AArch32 CP registers can be common
9054                         * (same for secure and non-secure world) or banked.
9055                         */
9056                        char *name;
9057
9058                        switch (r->secure) {
9059                        case ARM_CP_SECSTATE_S:
9060                        case ARM_CP_SECSTATE_NS:
9061                            add_cpreg_to_hashtable(cpu, r, opaque, state,
9062                                                   r->secure, crm, opc1, opc2,
9063                                                   r->name);
9064                            break;
9065                        default:
9066                            name = g_strdup_printf("%s_S", r->name);
9067                            add_cpreg_to_hashtable(cpu, r, opaque, state,
9068                                                   ARM_CP_SECSTATE_S,
9069                                                   crm, opc1, opc2, name);
9070                            g_free(name);
9071                            add_cpreg_to_hashtable(cpu, r, opaque, state,
9072                                                   ARM_CP_SECSTATE_NS,
9073                                                   crm, opc1, opc2, r->name);
9074                            break;
9075                        }
9076                    } else {
9077                        /* AArch64 registers get mapped to non-secure instance
9078                         * of AArch32 */
9079                        add_cpreg_to_hashtable(cpu, r, opaque, state,
9080                                               ARM_CP_SECSTATE_NS,
9081                                               crm, opc1, opc2, r->name);
9082                    }
9083                }
9084            }
9085        }
9086    }
9087}
9088
9089void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
9090                                    const ARMCPRegInfo *regs, void *opaque)
9091{
9092    /* Define a whole list of registers */
9093    const ARMCPRegInfo *r;
9094    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9095        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
9096    }
9097}
9098
9099/*
9100 * Modify ARMCPRegInfo for access from userspace.
9101 *
9102 * This is a data driven modification directed by
9103 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9104 * user-space cannot alter any values and dynamic values pertaining to
9105 * execution state are hidden from user space view anyway.
9106 */
9107void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
9108{
9109    const ARMCPRegUserSpaceInfo *m;
9110    ARMCPRegInfo *r;
9111
9112    for (m = mods; m->name; m++) {
9113        GPatternSpec *pat = NULL;
9114        if (m->is_glob) {
9115            pat = g_pattern_spec_new(m->name);
9116        }
9117        for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9118            if (pat && g_pattern_match_string(pat, r->name)) {
9119                r->type = ARM_CP_CONST;
9120                r->access = PL0U_R;
9121                r->resetvalue = 0;
9122                /* continue */
9123            } else if (strcmp(r->name, m->name) == 0) {
9124                r->type = ARM_CP_CONST;
9125                r->access = PL0U_R;
9126                r->resetvalue &= m->exported_bits;
9127                r->resetvalue |= m->fixed_bits;
9128                break;
9129            }
9130        }
9131        if (pat) {
9132            g_pattern_spec_free(pat);
9133        }
9134    }
9135}
9136
9137const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9138{
9139    return g_hash_table_lookup(cpregs, &encoded_cp);
9140}
9141
9142void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9143                         uint64_t value)
9144{
9145    /* Helper coprocessor write function for write-ignore registers */
9146}
9147
9148uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9149{
9150    /* Helper coprocessor write function for read-as-zero registers */
9151    return 0;
9152}
9153
9154void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9155{
9156    /* Helper coprocessor reset function for do-nothing-on-reset registers */
9157}
9158
9159static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9160{
9161    /* Return true if it is not valid for us to switch to
9162     * this CPU mode (ie all the UNPREDICTABLE cases in
9163     * the ARM ARM CPSRWriteByInstr pseudocode).
9164     */
9165
9166    /* Changes to or from Hyp via MSR and CPS are illegal. */
9167    if (write_type == CPSRWriteByInstr &&
9168        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9169         mode == ARM_CPU_MODE_HYP)) {
9170        return 1;
9171    }
9172
9173    switch (mode) {
9174    case ARM_CPU_MODE_USR:
9175        return 0;
9176    case ARM_CPU_MODE_SYS:
9177    case ARM_CPU_MODE_SVC:
9178    case ARM_CPU_MODE_ABT:
9179    case ARM_CPU_MODE_UND:
9180    case ARM_CPU_MODE_IRQ:
9181    case ARM_CPU_MODE_FIQ:
9182        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9183         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9184         */
9185        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9186         * and CPS are treated as illegal mode changes.
9187         */
9188        if (write_type == CPSRWriteByInstr &&
9189            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9190            (arm_hcr_el2_eff(env) & HCR_TGE)) {
9191            return 1;
9192        }
9193        return 0;
9194    case ARM_CPU_MODE_HYP:
9195        return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9196    case ARM_CPU_MODE_MON:
9197        return arm_current_el(env) < 3;
9198    default:
9199        return 1;
9200    }
9201}
9202
9203uint32_t cpsr_read(CPUARMState *env)
9204{
9205    int ZF;
9206    ZF = (env->ZF == 0);
9207    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9208        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9209        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9210        | ((env->condexec_bits & 0xfc) << 8)
9211        | (env->GE << 16) | (env->daif & CPSR_AIF);
9212}
9213
9214void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9215                CPSRWriteType write_type)
9216{
9217    uint32_t changed_daif;
9218
9219    if (mask & CPSR_NZCV) {
9220        env->ZF = (~val) & CPSR_Z;
9221        env->NF = val;
9222        env->CF = (val >> 29) & 1;
9223        env->VF = (val << 3) & 0x80000000;
9224    }
9225    if (mask & CPSR_Q)
9226        env->QF = ((val & CPSR_Q) != 0);
9227    if (mask & CPSR_T)
9228        env->thumb = ((val & CPSR_T) != 0);
9229    if (mask & CPSR_IT_0_1) {
9230        env->condexec_bits &= ~3;
9231        env->condexec_bits |= (val >> 25) & 3;
9232    }
9233    if (mask & CPSR_IT_2_7) {
9234        env->condexec_bits &= 3;
9235        env->condexec_bits |= (val >> 8) & 0xfc;
9236    }
9237    if (mask & CPSR_GE) {
9238        env->GE = (val >> 16) & 0xf;
9239    }
9240
9241    /* In a V7 implementation that includes the security extensions but does
9242     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9243     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9244     * bits respectively.
9245     *
9246     * In a V8 implementation, it is permitted for privileged software to
9247     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9248     */
9249    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9250        arm_feature(env, ARM_FEATURE_EL3) &&
9251        !arm_feature(env, ARM_FEATURE_EL2) &&
9252        !arm_is_secure(env)) {
9253
9254        changed_daif = (env->daif ^ val) & mask;
9255
9256        if (changed_daif & CPSR_A) {
9257            /* Check to see if we are allowed to change the masking of async
9258             * abort exceptions from a non-secure state.
9259             */
9260            if (!(env->cp15.scr_el3 & SCR_AW)) {
9261                qemu_log_mask(LOG_GUEST_ERROR,
9262                              "Ignoring attempt to switch CPSR_A flag from "
9263                              "non-secure world with SCR.AW bit clear\n");
9264                mask &= ~CPSR_A;
9265            }
9266        }
9267
9268        if (changed_daif & CPSR_F) {
9269            /* Check to see if we are allowed to change the masking of FIQ
9270             * exceptions from a non-secure state.
9271             */
9272            if (!(env->cp15.scr_el3 & SCR_FW)) {
9273                qemu_log_mask(LOG_GUEST_ERROR,
9274                              "Ignoring attempt to switch CPSR_F flag from "
9275                              "non-secure world with SCR.FW bit clear\n");
9276                mask &= ~CPSR_F;
9277            }
9278
9279            /* Check whether non-maskable FIQ (NMFI) support is enabled.
9280             * If this bit is set software is not allowed to mask
9281             * FIQs, but is allowed to set CPSR_F to 0.
9282             */
9283            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9284                (val & CPSR_F)) {
9285                qemu_log_mask(LOG_GUEST_ERROR,
9286                              "Ignoring attempt to enable CPSR_F flag "
9287                              "(non-maskable FIQ [NMFI] support enabled)\n");
9288                mask &= ~CPSR_F;
9289            }
9290        }
9291    }
9292
9293    env->daif &= ~(CPSR_AIF & mask);
9294    env->daif |= val & CPSR_AIF & mask;
9295
9296    if (write_type != CPSRWriteRaw &&
9297        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9298        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9299            /* Note that we can only get here in USR mode if this is a
9300             * gdb stub write; for this case we follow the architectural
9301             * behaviour for guest writes in USR mode of ignoring an attempt
9302             * to switch mode. (Those are caught by translate.c for writes
9303             * triggered by guest instructions.)
9304             */
9305            mask &= ~CPSR_M;
9306        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9307            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9308             * v7, and has defined behaviour in v8:
9309             *  + leave CPSR.M untouched
9310             *  + allow changes to the other CPSR fields
9311             *  + set PSTATE.IL
9312             * For user changes via the GDB stub, we don't set PSTATE.IL,
9313             * as this would be unnecessarily harsh for a user error.
9314             */
9315            mask &= ~CPSR_M;
9316            if (write_type != CPSRWriteByGDBStub &&
9317                arm_feature(env, ARM_FEATURE_V8)) {
9318                mask |= CPSR_IL;
9319                val |= CPSR_IL;
9320            }
9321            qemu_log_mask(LOG_GUEST_ERROR,
9322                          "Illegal AArch32 mode switch attempt from %s to %s\n",
9323                          aarch32_mode_name(env->uncached_cpsr),
9324                          aarch32_mode_name(val));
9325        } else {
9326            qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9327                          write_type == CPSRWriteExceptionReturn ?
9328                          "Exception return from AArch32" :
9329                          "AArch32 mode switch from",
9330                          aarch32_mode_name(env->uncached_cpsr),
9331                          aarch32_mode_name(val), env->regs[15]);
9332            switch_mode(env, val & CPSR_M);
9333        }
9334    }
9335    mask &= ~CACHED_CPSR_BITS;
9336    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9337}
9338
9339/* Sign/zero extend */
9340uint32_t HELPER(sxtb16)(uint32_t x)
9341{
9342    uint32_t res;
9343    res = (uint16_t)(int8_t)x;
9344    res |= (uint32_t)(int8_t)(x >> 16) << 16;
9345    return res;
9346}
9347
9348uint32_t HELPER(uxtb16)(uint32_t x)
9349{
9350    uint32_t res;
9351    res = (uint16_t)(uint8_t)x;
9352    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9353    return res;
9354}
9355
9356int32_t HELPER(sdiv)(int32_t num, int32_t den)
9357{
9358    if (den == 0)
9359      return 0;
9360    if (num == INT_MIN && den == -1)
9361      return INT_MIN;
9362    return num / den;
9363}
9364
9365uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
9366{
9367    if (den == 0)
9368      return 0;
9369    return num / den;
9370}
9371
9372uint32_t HELPER(rbit)(uint32_t x)
9373{
9374    return revbit32(x);
9375}
9376
9377#ifdef CONFIG_USER_ONLY
9378
9379static void switch_mode(CPUARMState *env, int mode)
9380{
9381    ARMCPU *cpu = env_archcpu(env);
9382
9383    if (mode != ARM_CPU_MODE_USR) {
9384        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9385    }
9386}
9387
9388uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9389                                 uint32_t cur_el, bool secure)
9390{
9391    return 1;
9392}
9393
9394void aarch64_sync_64_to_32(CPUARMState *env)
9395{
9396    g_assert_not_reached();
9397}
9398
9399#else
9400
9401static void switch_mode(CPUARMState *env, int mode)
9402{
9403    int old_mode;
9404    int i;
9405
9406    old_mode = env->uncached_cpsr & CPSR_M;
9407    if (mode == old_mode)
9408        return;
9409
9410    if (old_mode == ARM_CPU_MODE_FIQ) {
9411        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9412        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9413    } else if (mode == ARM_CPU_MODE_FIQ) {
9414        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9415        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9416    }
9417
9418    i = bank_number(old_mode);
9419    env->banked_r13[i] = env->regs[13];
9420    env->banked_spsr[i] = env->spsr;
9421
9422    i = bank_number(mode);
9423    env->regs[13] = env->banked_r13[i];
9424    env->spsr = env->banked_spsr[i];
9425
9426    env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9427    env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9428}
9429
9430/* Physical Interrupt Target EL Lookup Table
9431 *
9432 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9433 *
9434 * The below multi-dimensional table is used for looking up the target
9435 * exception level given numerous condition criteria.  Specifically, the
9436 * target EL is based on SCR and HCR routing controls as well as the
9437 * currently executing EL and secure state.
9438 *
9439 *    Dimensions:
9440 *    target_el_table[2][2][2][2][2][4]
9441 *                    |  |  |  |  |  +--- Current EL
9442 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9443 *                    |  |  |  +--------- HCR mask override
9444 *                    |  |  +------------ SCR exec state control
9445 *                    |  +--------------- SCR mask override
9446 *                    +------------------ 32-bit(0)/64-bit(1) EL3
9447 *
9448 *    The table values are as such:
9449 *    0-3 = EL0-EL3
9450 *     -1 = Cannot occur
9451 *
9452 * The ARM ARM target EL table includes entries indicating that an "exception
9453 * is not taken".  The two cases where this is applicable are:
9454 *    1) An exception is taken from EL3 but the SCR does not have the exception
9455 *    routed to EL3.
9456 *    2) An exception is taken from EL2 but the HCR does not have the exception
9457 *    routed to EL2.
9458 * In these two cases, the below table contain a target of EL1.  This value is
9459 * returned as it is expected that the consumer of the table data will check
9460 * for "target EL >= current EL" to ensure the exception is not taken.
9461 *
9462 *            SCR     HCR
9463 *         64  EA     AMO                 From
9464 *        BIT IRQ     IMO      Non-secure         Secure
9465 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9466 */
9467static const int8_t target_el_table[2][2][2][2][2][4] = {
9468    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9469       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9470      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9471       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9472     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9473       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9474      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9475       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9476    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9477       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9478      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9479       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9480     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9481       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9482      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9483       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9484};
9485
9486/*
9487 * Determine the target EL for physical exceptions
9488 */
9489uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9490                                 uint32_t cur_el, bool secure)
9491{
9492    CPUARMState *env = cs->env_ptr;
9493    bool rw;
9494    bool scr;
9495    bool hcr;
9496    int target_el;
9497    /* Is the highest EL AArch64? */
9498    bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9499    uint64_t hcr_el2;
9500
9501    if (arm_feature(env, ARM_FEATURE_EL3)) {
9502        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9503    } else {
9504        /* Either EL2 is the highest EL (and so the EL2 register width
9505         * is given by is64); or there is no EL2 or EL3, in which case
9506         * the value of 'rw' does not affect the table lookup anyway.
9507         */
9508        rw = is64;
9509    }
9510
9511    hcr_el2 = arm_hcr_el2_eff(env);
9512    switch (excp_idx) {
9513    case EXCP_IRQ:
9514        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9515        hcr = hcr_el2 & HCR_IMO;
9516        break;
9517    case EXCP_FIQ:
9518        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9519        hcr = hcr_el2 & HCR_FMO;
9520        break;
9521    default:
9522        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9523        hcr = hcr_el2 & HCR_AMO;
9524        break;
9525    };
9526
9527    /*
9528     * For these purposes, TGE and AMO/IMO/FMO both force the
9529     * interrupt to EL2.  Fold TGE into the bit extracted above.
9530     */
9531    hcr |= (hcr_el2 & HCR_TGE) != 0;
9532
9533    /* Perform a table-lookup for the target EL given the current state */
9534    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9535
9536    assert(target_el > 0);
9537
9538    return target_el;
9539}
9540
9541void arm_log_exception(int idx)
9542{
9543    if (qemu_loglevel_mask(CPU_LOG_INT)) {
9544        const char *exc = NULL;
9545        static const char * const excnames[] = {
9546            [EXCP_UDEF] = "Undefined Instruction",
9547            [EXCP_SWI] = "SVC",
9548            [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9549            [EXCP_DATA_ABORT] = "Data Abort",
9550            [EXCP_IRQ] = "IRQ",
9551            [EXCP_FIQ] = "FIQ",
9552            [EXCP_BKPT] = "Breakpoint",
9553            [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9554            [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9555            [EXCP_HVC] = "Hypervisor Call",
9556            [EXCP_HYP_TRAP] = "Hypervisor Trap",
9557            [EXCP_SMC] = "Secure Monitor Call",
9558            [EXCP_VIRQ] = "Virtual IRQ",
9559            [EXCP_VFIQ] = "Virtual FIQ",
9560            [EXCP_SEMIHOST] = "Semihosting call",
9561            [EXCP_NOCP] = "v7M NOCP UsageFault",
9562            [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9563            [EXCP_STKOF] = "v8M STKOF UsageFault",
9564            [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9565            [EXCP_LSERR] = "v8M LSERR UsageFault",
9566            [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9567        };
9568
9569        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9570            exc = excnames[idx];
9571        }
9572        if (!exc) {
9573            exc = "unknown";
9574        }
9575        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9576    }
9577}
9578
9579/*
9580 * Function used to synchronize QEMU's AArch64 register set with AArch32
9581 * register set.  This is necessary when switching between AArch32 and AArch64
9582 * execution state.
9583 */
9584void aarch64_sync_32_to_64(CPUARMState *env)
9585{
9586    int i;
9587    uint32_t mode = env->uncached_cpsr & CPSR_M;
9588
9589    /* We can blanket copy R[0:7] to X[0:7] */
9590    for (i = 0; i < 8; i++) {
9591        env->xregs[i] = env->regs[i];
9592    }
9593
9594    /*
9595     * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9596     * Otherwise, they come from the banked user regs.
9597     */
9598    if (mode == ARM_CPU_MODE_FIQ) {
9599        for (i = 8; i < 13; i++) {
9600            env->xregs[i] = env->usr_regs[i - 8];
9601        }
9602    } else {
9603        for (i = 8; i < 13; i++) {
9604            env->xregs[i] = env->regs[i];
9605        }
9606    }
9607
9608    /*
9609     * Registers x13-x23 are the various mode SP and FP registers. Registers
9610     * r13 and r14 are only copied if we are in that mode, otherwise we copy
9611     * from the mode banked register.
9612     */
9613    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9614        env->xregs[13] = env->regs[13];
9615        env->xregs[14] = env->regs[14];
9616    } else {
9617        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9618        /* HYP is an exception in that it is copied from r14 */
9619        if (mode == ARM_CPU_MODE_HYP) {
9620            env->xregs[14] = env->regs[14];
9621        } else {
9622            env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9623        }
9624    }
9625
9626    if (mode == ARM_CPU_MODE_HYP) {
9627        env->xregs[15] = env->regs[13];
9628    } else {
9629        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9630    }
9631
9632    if (mode == ARM_CPU_MODE_IRQ) {
9633        env->xregs[16] = env->regs[14];
9634        env->xregs[17] = env->regs[13];
9635    } else {
9636        env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9637        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9638    }
9639
9640    if (mode == ARM_CPU_MODE_SVC) {
9641        env->xregs[18] = env->regs[14];
9642        env->xregs[19] = env->regs[13];
9643    } else {
9644        env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9645        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9646    }
9647
9648    if (mode == ARM_CPU_MODE_ABT) {
9649        env->xregs[20] = env->regs[14];
9650        env->xregs[21] = env->regs[13];
9651    } else {
9652        env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9653        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9654    }
9655
9656    if (mode == ARM_CPU_MODE_UND) {
9657        env->xregs[22] = env->regs[14];
9658        env->xregs[23] = env->regs[13];
9659    } else {
9660        env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9661        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9662    }
9663
9664    /*
9665     * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9666     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9667     * FIQ bank for r8-r14.
9668     */
9669    if (mode == ARM_CPU_MODE_FIQ) {
9670        for (i = 24; i < 31; i++) {
9671            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9672        }
9673    } else {
9674        for (i = 24; i < 29; i++) {
9675            env->xregs[i] = env->fiq_regs[i - 24];
9676        }
9677        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9678        env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9679    }
9680
9681    env->pc = env->regs[15];
9682}
9683
9684/*
9685 * Function used to synchronize QEMU's AArch32 register set with AArch64
9686 * register set.  This is necessary when switching between AArch32 and AArch64
9687 * execution state.
9688 */
9689void aarch64_sync_64_to_32(CPUARMState *env)
9690{
9691    int i;
9692    uint32_t mode = env->uncached_cpsr & CPSR_M;
9693
9694    /* We can blanket copy X[0:7] to R[0:7] */
9695    for (i = 0; i < 8; i++) {
9696        env->regs[i] = env->xregs[i];
9697    }
9698
9699    /*
9700     * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9701     * Otherwise, we copy x8-x12 into the banked user regs.
9702     */
9703    if (mode == ARM_CPU_MODE_FIQ) {
9704        for (i = 8; i < 13; i++) {
9705            env->usr_regs[i - 8] = env->xregs[i];
9706        }
9707    } else {
9708        for (i = 8; i < 13; i++) {
9709            env->regs[i] = env->xregs[i];
9710        }
9711    }
9712
9713    /*
9714     * Registers r13 & r14 depend on the current mode.
9715     * If we are in a given mode, we copy the corresponding x registers to r13
9716     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9717     * for the mode.
9718     */
9719    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9720        env->regs[13] = env->xregs[13];
9721        env->regs[14] = env->xregs[14];
9722    } else {
9723        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9724
9725        /*
9726         * HYP is an exception in that it does not have its own banked r14 but
9727         * shares the USR r14
9728         */
9729        if (mode == ARM_CPU_MODE_HYP) {
9730            env->regs[14] = env->xregs[14];
9731        } else {
9732            env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9733        }
9734    }
9735
9736    if (mode == ARM_CPU_MODE_HYP) {
9737        env->regs[13] = env->xregs[15];
9738    } else {
9739        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9740    }
9741
9742    if (mode == ARM_CPU_MODE_IRQ) {
9743        env->regs[14] = env->xregs[16];
9744        env->regs[13] = env->xregs[17];
9745    } else {
9746        env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9747        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9748    }
9749
9750    if (mode == ARM_CPU_MODE_SVC) {
9751        env->regs[14] = env->xregs[18];
9752        env->regs[13] = env->xregs[19];
9753    } else {
9754        env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9755        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9756    }
9757
9758    if (mode == ARM_CPU_MODE_ABT) {
9759        env->regs[14] = env->xregs[20];
9760        env->regs[13] = env->xregs[21];
9761    } else {
9762        env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9763        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9764    }
9765
9766    if (mode == ARM_CPU_MODE_UND) {
9767        env->regs[14] = env->xregs[22];
9768        env->regs[13] = env->xregs[23];
9769    } else {
9770        env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9771        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9772    }
9773
9774    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9775     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9776     * FIQ bank for r8-r14.
9777     */
9778    if (mode == ARM_CPU_MODE_FIQ) {
9779        for (i = 24; i < 31; i++) {
9780            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9781        }
9782    } else {
9783        for (i = 24; i < 29; i++) {
9784            env->fiq_regs[i - 24] = env->xregs[i];
9785        }
9786        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9787        env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9788    }
9789
9790    env->regs[15] = env->pc;
9791}
9792
9793static void take_aarch32_exception(CPUARMState *env, int new_mode,
9794                                   uint32_t mask, uint32_t offset,
9795                                   uint32_t newpc)
9796{
9797    int new_el;
9798
9799    /* Change the CPU state so as to actually take the exception. */
9800    switch_mode(env, new_mode);
9801
9802    /*
9803     * For exceptions taken to AArch32 we must clear the SS bit in both
9804     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9805     */
9806    env->pstate &= ~PSTATE_SS;
9807    env->spsr = cpsr_read(env);
9808    /* Clear IT bits.  */
9809    env->condexec_bits = 0;
9810    /* Switch to the new mode, and to the correct instruction set.  */
9811    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9812
9813    /* This must be after mode switching. */
9814    new_el = arm_current_el(env);
9815
9816    /* Set new mode endianness */
9817    env->uncached_cpsr &= ~CPSR_E;
9818    if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9819        env->uncached_cpsr |= CPSR_E;
9820    }
9821    /* J and IL must always be cleared for exception entry */
9822    env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9823    env->daif |= mask;
9824
9825    if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9826        if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9827            env->uncached_cpsr |= CPSR_SSBS;
9828        } else {
9829            env->uncached_cpsr &= ~CPSR_SSBS;
9830        }
9831    }
9832
9833    if (new_mode == ARM_CPU_MODE_HYP) {
9834        env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9835        env->elr_el[2] = env->regs[15];
9836    } else {
9837        /* CPSR.PAN is normally preserved preserved unless...  */
9838        if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9839            switch (new_el) {
9840            case 3:
9841                if (!arm_is_secure_below_el3(env)) {
9842                    /* ... the target is EL3, from non-secure state.  */
9843                    env->uncached_cpsr &= ~CPSR_PAN;
9844                    break;
9845                }
9846                /* ... the target is EL3, from secure state ... */
9847                /* fall through */
9848            case 1:
9849                /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9850                if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9851                    env->uncached_cpsr |= CPSR_PAN;
9852                }
9853                break;
9854            }
9855        }
9856        /*
9857         * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9858         * and we should just guard the thumb mode on V4
9859         */
9860        if (arm_feature(env, ARM_FEATURE_V4T)) {
9861            env->thumb =
9862                (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9863        }
9864        env->regs[14] = env->regs[15] + offset;
9865    }
9866    env->regs[15] = newpc;
9867    arm_rebuild_hflags(env);
9868}
9869
9870static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9871{
9872    /*
9873     * Handle exception entry to Hyp mode; this is sufficiently
9874     * different to entry to other AArch32 modes that we handle it
9875     * separately here.
9876     *
9877     * The vector table entry used is always the 0x14 Hyp mode entry point,
9878     * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9879     * The offset applied to the preferred return address is always zero
9880     * (see DDI0487C.a section G1.12.3).
9881     * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9882     */
9883    uint32_t addr, mask;
9884    ARMCPU *cpu = ARM_CPU(cs);
9885    CPUARMState *env = &cpu->env;
9886
9887    switch (cs->exception_index) {
9888    case EXCP_UDEF:
9889        addr = 0x04;
9890        break;
9891    case EXCP_SWI:
9892        addr = 0x14;
9893        break;
9894    case EXCP_BKPT:
9895        /* Fall through to prefetch abort.  */
9896    case EXCP_PREFETCH_ABORT:
9897        env->cp15.ifar_s = env->exception.vaddress;
9898        qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9899                      (uint32_t)env->exception.vaddress);
9900        addr = 0x0c;
9901        break;
9902    case EXCP_DATA_ABORT:
9903        env->cp15.dfar_s = env->exception.vaddress;
9904        qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9905                      (uint32_t)env->exception.vaddress);
9906        addr = 0x10;
9907        break;
9908    case EXCP_IRQ:
9909        addr = 0x18;
9910        break;
9911    case EXCP_FIQ:
9912        addr = 0x1c;
9913        break;
9914    case EXCP_HVC:
9915        addr = 0x08;
9916        break;
9917    case EXCP_HYP_TRAP:
9918        addr = 0x14;
9919        break;
9920    default:
9921        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9922    }
9923
9924    if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9925        if (!arm_feature(env, ARM_FEATURE_V8)) {
9926            /*
9927             * QEMU syndrome values are v8-style. v7 has the IL bit
9928             * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9929             * If this is a v7 CPU, squash the IL bit in those cases.
9930             */
9931            if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9932                (cs->exception_index == EXCP_DATA_ABORT &&
9933                 !(env->exception.syndrome & ARM_EL_ISV)) ||
9934                syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9935                env->exception.syndrome &= ~ARM_EL_IL;
9936            }
9937        }
9938        env->cp15.esr_el[2] = env->exception.syndrome;
9939    }
9940
9941    if (arm_current_el(env) != 2 && addr < 0x14) {
9942        addr = 0x14;
9943    }
9944
9945    mask = 0;
9946    if (!(env->cp15.scr_el3 & SCR_EA)) {
9947        mask |= CPSR_A;
9948    }
9949    if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9950        mask |= CPSR_I;
9951    }
9952    if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9953        mask |= CPSR_F;
9954    }
9955
9956    addr += env->cp15.hvbar;
9957
9958    take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9959}
9960
9961static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9962{
9963    ARMCPU *cpu = ARM_CPU(cs);
9964    CPUARMState *env = &cpu->env;
9965    uint32_t addr;
9966    uint32_t mask;
9967    int new_mode;
9968    uint32_t offset;
9969    uint32_t moe;
9970
9971    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9972    switch (syn_get_ec(env->exception.syndrome)) {
9973    case EC_BREAKPOINT:
9974    case EC_BREAKPOINT_SAME_EL:
9975        moe = 1;
9976        break;
9977    case EC_WATCHPOINT:
9978    case EC_WATCHPOINT_SAME_EL:
9979        moe = 10;
9980        break;
9981    case EC_AA32_BKPT:
9982        moe = 3;
9983        break;
9984    case EC_VECTORCATCH:
9985        moe = 5;
9986        break;
9987    default:
9988        moe = 0;
9989        break;
9990    }
9991
9992    if (moe) {
9993        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9994    }
9995
9996    if (env->exception.target_el == 2) {
9997        arm_cpu_do_interrupt_aarch32_hyp(cs);
9998        return;
9999    }
10000
10001    switch (cs->exception_index) {
10002    case EXCP_UDEF:
10003        new_mode = ARM_CPU_MODE_UND;
10004        addr = 0x04;
10005        mask = CPSR_I;
10006        if (env->thumb)
10007            offset = 2;
10008        else
10009            offset = 4;
10010        break;
10011    case EXCP_SWI:
10012        new_mode = ARM_CPU_MODE_SVC;
10013        addr = 0x08;
10014        mask = CPSR_I;
10015        /* The PC already points to the next instruction.  */
10016        offset = 0;
10017        break;
10018    case EXCP_BKPT:
10019        /* Fall through to prefetch abort.  */
10020    case EXCP_PREFETCH_ABORT:
10021        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10022        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10023        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10024                      env->exception.fsr, (uint32_t)env->exception.vaddress);
10025        new_mode = ARM_CPU_MODE_ABT;
10026        addr = 0x0c;
10027        mask = CPSR_A | CPSR_I;
10028        offset = 4;
10029        break;
10030    case EXCP_DATA_ABORT:
10031        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10032        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10033        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10034                      env->exception.fsr,
10035                      (uint32_t)env->exception.vaddress);
10036        new_mode = ARM_CPU_MODE_ABT;
10037        addr = 0x10;
10038        mask = CPSR_A | CPSR_I;
10039        offset = 8;
10040        break;
10041    case EXCP_IRQ:
10042        new_mode = ARM_CPU_MODE_IRQ;
10043        addr = 0x18;
10044        /* Disable IRQ and imprecise data aborts.  */
10045        mask = CPSR_A | CPSR_I;
10046        offset = 4;
10047        if (env->cp15.scr_el3 & SCR_IRQ) {
10048            /* IRQ routed to monitor mode */
10049            new_mode = ARM_CPU_MODE_MON;
10050            mask |= CPSR_F;
10051        }
10052        break;
10053    case EXCP_FIQ:
10054        new_mode = ARM_CPU_MODE_FIQ;
10055        addr = 0x1c;
10056        /* Disable FIQ, IRQ and imprecise data aborts.  */
10057        mask = CPSR_A | CPSR_I | CPSR_F;
10058        if (env->cp15.scr_el3 & SCR_FIQ) {
10059            /* FIQ routed to monitor mode */
10060            new_mode = ARM_CPU_MODE_MON;
10061        }
10062        offset = 4;
10063        break;
10064    case EXCP_VIRQ:
10065        new_mode = ARM_CPU_MODE_IRQ;
10066        addr = 0x18;
10067        /* Disable IRQ and imprecise data aborts.  */
10068        mask = CPSR_A | CPSR_I;
10069        offset = 4;
10070        break;
10071    case EXCP_VFIQ:
10072        new_mode = ARM_CPU_MODE_FIQ;
10073        addr = 0x1c;
10074        /* Disable FIQ, IRQ and imprecise data aborts.  */
10075        mask = CPSR_A | CPSR_I | CPSR_F;
10076        offset = 4;
10077        break;
10078    case EXCP_SMC:
10079        new_mode = ARM_CPU_MODE_MON;
10080        addr = 0x08;
10081        mask = CPSR_A | CPSR_I | CPSR_F;
10082        offset = 0;
10083        break;
10084    default:
10085        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10086        return; /* Never happens.  Keep compiler happy.  */
10087    }
10088
10089    if (new_mode == ARM_CPU_MODE_MON) {
10090        addr += env->cp15.mvbar;
10091    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10092        /* High vectors. When enabled, base address cannot be remapped. */
10093        addr += 0xffff0000;
10094    } else {
10095        /* ARM v7 architectures provide a vector base address register to remap
10096         * the interrupt vector table.
10097         * This register is only followed in non-monitor mode, and is banked.
10098         * Note: only bits 31:5 are valid.
10099         */
10100        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10101    }
10102
10103    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10104        env->cp15.scr_el3 &= ~SCR_NS;
10105    }
10106
10107    take_aarch32_exception(env, new_mode, mask, offset, addr);
10108}
10109
10110static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10111{
10112    /*
10113     * Return the register number of the AArch64 view of the AArch32
10114     * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10115     * be that of the AArch32 mode the exception came from.
10116     */
10117    int mode = env->uncached_cpsr & CPSR_M;
10118
10119    switch (aarch32_reg) {
10120    case 0 ... 7:
10121        return aarch32_reg;
10122    case 8 ... 12:
10123        return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10124    case 13:
10125        switch (mode) {
10126        case ARM_CPU_MODE_USR:
10127        case ARM_CPU_MODE_SYS:
10128            return 13;
10129        case ARM_CPU_MODE_HYP:
10130            return 15;
10131        case ARM_CPU_MODE_IRQ:
10132            return 17;
10133        case ARM_CPU_MODE_SVC:
10134            return 19;
10135        case ARM_CPU_MODE_ABT:
10136            return 21;
10137        case ARM_CPU_MODE_UND:
10138            return 23;
10139        case ARM_CPU_MODE_FIQ:
10140            return 29;
10141        default:
10142            g_assert_not_reached();
10143        }
10144    case 14:
10145        switch (mode) {
10146        case ARM_CPU_MODE_USR:
10147        case ARM_CPU_MODE_SYS:
10148        case ARM_CPU_MODE_HYP:
10149            return 14;
10150        case ARM_CPU_MODE_IRQ:
10151            return 16;
10152        case ARM_CPU_MODE_SVC:
10153            return 18;
10154        case ARM_CPU_MODE_ABT:
10155            return 20;
10156        case ARM_CPU_MODE_UND:
10157            return 22;
10158        case ARM_CPU_MODE_FIQ:
10159            return 30;
10160        default:
10161            g_assert_not_reached();
10162        }
10163    case 15:
10164        return 31;
10165    default:
10166        g_assert_not_reached();
10167    }
10168}
10169
10170static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10171{
10172    uint32_t ret = cpsr_read(env);
10173
10174    /* Move DIT to the correct location for SPSR_ELx */
10175    if (ret & CPSR_DIT) {
10176        ret &= ~CPSR_DIT;
10177        ret |= PSTATE_DIT;
10178    }
10179    /* Merge PSTATE.SS into SPSR_ELx */
10180    ret |= env->pstate & PSTATE_SS;
10181
10182    return ret;
10183}
10184
10185/* Handle exception entry to a target EL which is using AArch64 */
10186static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10187{
10188    ARMCPU *cpu = ARM_CPU(cs);
10189    CPUARMState *env = &cpu->env;
10190    unsigned int new_el = env->exception.target_el;
10191    target_ulong addr = env->cp15.vbar_el[new_el];
10192    unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10193    unsigned int old_mode;
10194    unsigned int cur_el = arm_current_el(env);
10195    int rt;
10196
10197    /*
10198     * Note that new_el can never be 0.  If cur_el is 0, then
10199     * el0_a64 is is_a64(), else el0_a64 is ignored.
10200     */
10201    aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10202
10203    if (cur_el < new_el) {
10204        /* Entry vector offset depends on whether the implemented EL
10205         * immediately lower than the target level is using AArch32 or AArch64
10206         */
10207        bool is_aa64;
10208        uint64_t hcr;
10209
10210        switch (new_el) {
10211        case 3:
10212            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10213            break;
10214        case 2:
10215            hcr = arm_hcr_el2_eff(env);
10216            if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10217                is_aa64 = (hcr & HCR_RW) != 0;
10218                break;
10219            }
10220            /* fall through */
10221        case 1:
10222            is_aa64 = is_a64(env);
10223            break;
10224        default:
10225            g_assert_not_reached();
10226        }
10227
10228        if (is_aa64) {
10229            addr += 0x400;
10230        } else {
10231            addr += 0x600;
10232        }
10233    } else if (pstate_read(env) & PSTATE_SP) {
10234        addr += 0x200;
10235    }
10236
10237    switch (cs->exception_index) {
10238    case EXCP_PREFETCH_ABORT:
10239    case EXCP_DATA_ABORT:
10240        env->cp15.far_el[new_el] = env->exception.vaddress;
10241        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10242                      env->cp15.far_el[new_el]);
10243        /* fall through */
10244    case EXCP_BKPT:
10245    case EXCP_UDEF:
10246    case EXCP_SWI:
10247    case EXCP_HVC:
10248    case EXCP_HYP_TRAP:
10249    case EXCP_SMC:
10250        switch (syn_get_ec(env->exception.syndrome)) {
10251        case EC_ADVSIMDFPACCESSTRAP:
10252            /*
10253             * QEMU internal FP/SIMD syndromes from AArch32 include the
10254             * TA and coproc fields which are only exposed if the exception
10255             * is taken to AArch32 Hyp mode. Mask them out to get a valid
10256             * AArch64 format syndrome.
10257             */
10258            env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10259            break;
10260        case EC_CP14RTTRAP:
10261        case EC_CP15RTTRAP:
10262        case EC_CP14DTTRAP:
10263            /*
10264             * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10265             * the raw register field from the insn; when taking this to
10266             * AArch64 we must convert it to the AArch64 view of the register
10267             * number. Notice that we read a 4-bit AArch32 register number and
10268             * write back a 5-bit AArch64 one.
10269             */
10270            rt = extract32(env->exception.syndrome, 5, 4);
10271            rt = aarch64_regnum(env, rt);
10272            env->exception.syndrome = deposit32(env->exception.syndrome,
10273                                                5, 5, rt);
10274            break;
10275        case EC_CP15RRTTRAP:
10276        case EC_CP14RRTTRAP:
10277            /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10278            rt = extract32(env->exception.syndrome, 5, 4);
10279            rt = aarch64_regnum(env, rt);
10280            env->exception.syndrome = deposit32(env->exception.syndrome,
10281                                                5, 5, rt);
10282            rt = extract32(env->exception.syndrome, 10, 4);
10283            rt = aarch64_regnum(env, rt);
10284            env->exception.syndrome = deposit32(env->exception.syndrome,
10285                                                10, 5, rt);
10286            break;
10287        }
10288        env->cp15.esr_el[new_el] = env->exception.syndrome;
10289        break;
10290    case EXCP_IRQ:
10291    case EXCP_VIRQ:
10292        addr += 0x80;
10293        break;
10294    case EXCP_FIQ:
10295    case EXCP_VFIQ:
10296        addr += 0x100;
10297        break;
10298    default:
10299        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10300    }
10301
10302    if (is_a64(env)) {
10303        old_mode = pstate_read(env);
10304        aarch64_save_sp(env, arm_current_el(env));
10305        env->elr_el[new_el] = env->pc;
10306    } else {
10307        old_mode = cpsr_read_for_spsr_elx(env);
10308        env->elr_el[new_el] = env->regs[15];
10309
10310        aarch64_sync_32_to_64(env);
10311
10312        env->condexec_bits = 0;
10313    }
10314    env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10315
10316    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10317                  env->elr_el[new_el]);
10318
10319    if (cpu_isar_feature(aa64_pan, cpu)) {
10320        /* The value of PSTATE.PAN is normally preserved, except when ... */
10321        new_mode |= old_mode & PSTATE_PAN;
10322        switch (new_el) {
10323        case 2:
10324            /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10325            if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10326                != (HCR_E2H | HCR_TGE)) {
10327                break;
10328            }
10329            /* fall through */
10330        case 1:
10331            /* ... the target is EL1 ... */
10332            /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10333            if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10334                new_mode |= PSTATE_PAN;
10335            }
10336            break;
10337        }
10338    }
10339    if (cpu_isar_feature(aa64_mte, cpu)) {
10340        new_mode |= PSTATE_TCO;
10341    }
10342
10343    if (cpu_isar_feature(aa64_ssbs, cpu)) {
10344        if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10345            new_mode |= PSTATE_SSBS;
10346        } else {
10347            new_mode &= ~PSTATE_SSBS;
10348        }
10349    }
10350
10351    pstate_write(env, PSTATE_DAIF | new_mode);
10352    env->aarch64 = 1;
10353    aarch64_restore_sp(env, new_el);
10354    helper_rebuild_hflags_a64(env, new_el);
10355
10356    env->pc = addr;
10357
10358    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10359                  new_el, env->pc, pstate_read(env));
10360}
10361
10362/*
10363 * Do semihosting call and set the appropriate return value. All the
10364 * permission and validity checks have been done at translate time.
10365 *
10366 * We only see semihosting exceptions in TCG only as they are not
10367 * trapped to the hypervisor in KVM.
10368 */
10369#ifdef CONFIG_TCG
10370static void handle_semihosting(CPUState *cs)
10371{
10372    ARMCPU *cpu = ARM_CPU(cs);
10373    CPUARMState *env = &cpu->env;
10374
10375    if (is_a64(env)) {
10376        qemu_log_mask(CPU_LOG_INT,
10377                      "...handling as semihosting call 0x%" PRIx64 "\n",
10378                      env->xregs[0]);
10379        env->xregs[0] = do_common_semihosting(cs);
10380        env->pc += 4;
10381    } else {
10382        qemu_log_mask(CPU_LOG_INT,
10383                      "...handling as semihosting call 0x%x\n",
10384                      env->regs[0]);
10385        env->regs[0] = do_common_semihosting(cs);
10386        env->regs[15] += env->thumb ? 2 : 4;
10387    }
10388}
10389#endif
10390
10391/* Handle a CPU exception for A and R profile CPUs.
10392 * Do any appropriate logging, handle PSCI calls, and then hand off
10393 * to the AArch64-entry or AArch32-entry function depending on the
10394 * target exception level's register width.
10395 *
10396 * Note: this is used for both TCG (as the do_interrupt tcg op),
10397 *       and KVM to re-inject guest debug exceptions, and to
10398 *       inject a Synchronous-External-Abort.
10399 */
10400void arm_cpu_do_interrupt(CPUState *cs)
10401{
10402    ARMCPU *cpu = ARM_CPU(cs);
10403    CPUARMState *env = &cpu->env;
10404    unsigned int new_el = env->exception.target_el;
10405
10406    assert(!arm_feature(env, ARM_FEATURE_M));
10407
10408    arm_log_exception(cs->exception_index);
10409    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10410                  new_el);
10411    if (qemu_loglevel_mask(CPU_LOG_INT)
10412        && !excp_is_internal(cs->exception_index)) {
10413        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10414                      syn_get_ec(env->exception.syndrome),
10415                      env->exception.syndrome);
10416    }
10417
10418    if (arm_is_psci_call(cpu, cs->exception_index)) {
10419        arm_handle_psci_call(cpu);
10420        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10421        return;
10422    }
10423
10424    /*
10425     * Semihosting semantics depend on the register width of the code
10426     * that caused the exception, not the target exception level, so
10427     * must be handled here.
10428     */
10429#ifdef CONFIG_TCG
10430    if (cs->exception_index == EXCP_SEMIHOST) {
10431        handle_semihosting(cs);
10432        return;
10433    }
10434#endif
10435
10436    /* Hooks may change global state so BQL should be held, also the
10437     * BQL needs to be held for any modification of
10438     * cs->interrupt_request.
10439     */
10440    g_assert(qemu_mutex_iothread_locked());
10441
10442    arm_call_pre_el_change_hook(cpu);
10443
10444    assert(!excp_is_internal(cs->exception_index));
10445    if (arm_el_is_aa64(env, new_el)) {
10446        arm_cpu_do_interrupt_aarch64(cs);
10447    } else {
10448        arm_cpu_do_interrupt_aarch32(cs);
10449    }
10450
10451    arm_call_el_change_hook(cpu);
10452
10453    if (!kvm_enabled()) {
10454        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10455    }
10456}
10457#endif /* !CONFIG_USER_ONLY */
10458
10459uint64_t arm_sctlr(CPUARMState *env, int el)
10460{
10461    /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10462    if (el == 0) {
10463        ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10464        el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10465             ? 2 : 1;
10466    }
10467    return env->cp15.sctlr_el[el];
10468}
10469
10470/* Return the SCTLR value which controls this address translation regime */
10471static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10472{
10473    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10474}
10475
10476#ifndef CONFIG_USER_ONLY
10477
10478/* Return true if the specified stage of address translation is disabled */
10479static inline bool regime_translation_disabled(CPUARMState *env,
10480                                               ARMMMUIdx mmu_idx)
10481{
10482    uint64_t hcr_el2;
10483
10484    if (arm_feature(env, ARM_FEATURE_M)) {
10485        switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10486                (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10487        case R_V7M_MPU_CTRL_ENABLE_MASK:
10488            /* Enabled, but not for HardFault and NMI */
10489            return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10490        case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10491            /* Enabled for all cases */
10492            return false;
10493        case 0:
10494        default:
10495            /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10496             * we warned about that in armv7m_nvic.c when the guest set it.
10497             */
10498            return true;
10499        }
10500    }
10501
10502    hcr_el2 = arm_hcr_el2_eff(env);
10503
10504    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10505        /* HCR.DC means HCR.VM behaves as 1 */
10506        return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10507    }
10508
10509    if (hcr_el2 & HCR_TGE) {
10510        /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10511        if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10512            return true;
10513        }
10514    }
10515
10516    if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10517        /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10518        return true;
10519    }
10520
10521    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10522}
10523
10524static inline bool regime_translation_big_endian(CPUARMState *env,
10525                                                 ARMMMUIdx mmu_idx)
10526{
10527    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10528}
10529
10530/* Return the TTBR associated with this translation regime */
10531static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10532                                   int ttbrn)
10533{
10534    if (mmu_idx == ARMMMUIdx_Stage2) {
10535        return env->cp15.vttbr_el2;
10536    }
10537    if (mmu_idx == ARMMMUIdx_Stage2_S) {
10538        return env->cp15.vsttbr_el2;
10539    }
10540    if (ttbrn == 0) {
10541        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10542    } else {
10543        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10544    }
10545}
10546
10547#endif /* !CONFIG_USER_ONLY */
10548
10549/* Convert a possible stage1+2 MMU index into the appropriate
10550 * stage 1 MMU index
10551 */
10552static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10553{
10554    switch (mmu_idx) {
10555    case ARMMMUIdx_SE10_0:
10556        return ARMMMUIdx_Stage1_SE0;
10557    case ARMMMUIdx_SE10_1:
10558        return ARMMMUIdx_Stage1_SE1;
10559    case ARMMMUIdx_SE10_1_PAN:
10560        return ARMMMUIdx_Stage1_SE1_PAN;
10561    case ARMMMUIdx_E10_0:
10562        return ARMMMUIdx_Stage1_E0;
10563    case ARMMMUIdx_E10_1:
10564        return ARMMMUIdx_Stage1_E1;
10565    case ARMMMUIdx_E10_1_PAN:
10566        return ARMMMUIdx_Stage1_E1_PAN;
10567    default:
10568        return mmu_idx;
10569    }
10570}
10571
10572/* Return true if the translation regime is using LPAE format page tables */
10573static inline bool regime_using_lpae_format(CPUARMState *env,
10574                                            ARMMMUIdx mmu_idx)
10575{
10576    int el = regime_el(env, mmu_idx);
10577    if (el == 2 || arm_el_is_aa64(env, el)) {
10578        return true;
10579    }
10580    if (arm_feature(env, ARM_FEATURE_LPAE)
10581        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10582        return true;
10583    }
10584    return false;
10585}
10586
10587/* Returns true if the stage 1 translation regime is using LPAE format page
10588 * tables. Used when raising alignment exceptions, whose FSR changes depending
10589 * on whether the long or short descriptor format is in use. */
10590bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10591{
10592    mmu_idx = stage_1_mmu_idx(mmu_idx);
10593
10594    return regime_using_lpae_format(env, mmu_idx);
10595}
10596
10597#ifndef CONFIG_USER_ONLY
10598static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10599{
10600    switch (mmu_idx) {
10601    case ARMMMUIdx_SE10_0:
10602    case ARMMMUIdx_E20_0:
10603    case ARMMMUIdx_SE20_0:
10604    case ARMMMUIdx_Stage1_E0:
10605    case ARMMMUIdx_Stage1_SE0:
10606    case ARMMMUIdx_MUser:
10607    case ARMMMUIdx_MSUser:
10608    case ARMMMUIdx_MUserNegPri:
10609    case ARMMMUIdx_MSUserNegPri:
10610        return true;
10611    default:
10612        return false;
10613    case ARMMMUIdx_E10_0:
10614    case ARMMMUIdx_E10_1:
10615    case ARMMMUIdx_E10_1_PAN:
10616        g_assert_not_reached();
10617    }
10618}
10619
10620/* Translate section/page access permissions to page
10621 * R/W protection flags
10622 *
10623 * @env:         CPUARMState
10624 * @mmu_idx:     MMU index indicating required translation regime
10625 * @ap:          The 3-bit access permissions (AP[2:0])
10626 * @domain_prot: The 2-bit domain access permissions
10627 */
10628static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10629                                int ap, int domain_prot)
10630{
10631    bool is_user = regime_is_user(env, mmu_idx);
10632
10633    if (domain_prot == 3) {
10634        return PAGE_READ | PAGE_WRITE;
10635    }
10636
10637    switch (ap) {
10638    case 0:
10639        if (arm_feature(env, ARM_FEATURE_V7)) {
10640            return 0;
10641        }
10642        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10643        case SCTLR_S:
10644            return is_user ? 0 : PAGE_READ;
10645        case SCTLR_R:
10646            return PAGE_READ;
10647        default:
10648            return 0;
10649        }
10650    case 1:
10651        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10652    case 2:
10653        if (is_user) {
10654            return PAGE_READ;
10655        } else {
10656            return PAGE_READ | PAGE_WRITE;
10657        }
10658    case 3:
10659        return PAGE_READ | PAGE_WRITE;
10660    case 4: /* Reserved.  */
10661        return 0;
10662    case 5:
10663        return is_user ? 0 : PAGE_READ;
10664    case 6:
10665        return PAGE_READ;
10666    case 7:
10667        if (!arm_feature(env, ARM_FEATURE_V6K)) {
10668            return 0;
10669        }
10670        return PAGE_READ;
10671    default:
10672        g_assert_not_reached();
10673    }
10674}
10675
10676/* Translate section/page access permissions to page
10677 * R/W protection flags.
10678 *
10679 * @ap:      The 2-bit simple AP (AP[2:1])
10680 * @is_user: TRUE if accessing from PL0
10681 */
10682static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10683{
10684    switch (ap) {
10685    case 0:
10686        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10687    case 1:
10688        return PAGE_READ | PAGE_WRITE;
10689    case 2:
10690        return is_user ? 0 : PAGE_READ;
10691    case 3:
10692        return PAGE_READ;
10693    default:
10694        g_assert_not_reached();
10695    }
10696}
10697
10698static inline int
10699simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10700{
10701    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10702}
10703
10704/* Translate S2 section/page access permissions to protection flags
10705 *
10706 * @env:     CPUARMState
10707 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10708 * @xn:      XN (execute-never) bits
10709 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10710 */
10711static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10712{
10713    int prot = 0;
10714
10715    if (s2ap & 1) {
10716        prot |= PAGE_READ;
10717    }
10718    if (s2ap & 2) {
10719        prot |= PAGE_WRITE;
10720    }
10721
10722    if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10723        switch (xn) {
10724        case 0:
10725            prot |= PAGE_EXEC;
10726            break;
10727        case 1:
10728            if (s1_is_el0) {
10729                prot |= PAGE_EXEC;
10730            }
10731            break;
10732        case 2:
10733            break;
10734        case 3:
10735            if (!s1_is_el0) {
10736                prot |= PAGE_EXEC;
10737            }
10738            break;
10739        default:
10740            g_assert_not_reached();
10741        }
10742    } else {
10743        if (!extract32(xn, 1, 1)) {
10744            if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10745                prot |= PAGE_EXEC;
10746            }
10747        }
10748    }
10749    return prot;
10750}
10751
10752/* Translate section/page access permissions to protection flags
10753 *
10754 * @env:     CPUARMState
10755 * @mmu_idx: MMU index indicating required translation regime
10756 * @is_aa64: TRUE if AArch64
10757 * @ap:      The 2-bit simple AP (AP[2:1])
10758 * @ns:      NS (non-secure) bit
10759 * @xn:      XN (execute-never) bit
10760 * @pxn:     PXN (privileged execute-never) bit
10761 */
10762static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10763                      int ap, int ns, int xn, int pxn)
10764{
10765    bool is_user = regime_is_user(env, mmu_idx);
10766    int prot_rw, user_rw;
10767    bool have_wxn;
10768    int wxn = 0;
10769
10770    assert(mmu_idx != ARMMMUIdx_Stage2);
10771    assert(mmu_idx != ARMMMUIdx_Stage2_S);
10772
10773    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10774    if (is_user) {
10775        prot_rw = user_rw;
10776    } else {
10777        if (user_rw && regime_is_pan(env, mmu_idx)) {
10778            /* PAN forbids data accesses but doesn't affect insn fetch */
10779            prot_rw = 0;
10780        } else {
10781            prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10782        }
10783    }
10784
10785    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10786        return prot_rw;
10787    }
10788
10789    /* TODO have_wxn should be replaced with
10790     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10791     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10792     * compatible processors have EL2, which is required for [U]WXN.
10793     */
10794    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10795
10796    if (have_wxn) {
10797        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10798    }
10799
10800    if (is_aa64) {
10801        if (regime_has_2_ranges(mmu_idx) && !is_user) {
10802            xn = pxn || (user_rw & PAGE_WRITE);
10803        }
10804    } else if (arm_feature(env, ARM_FEATURE_V7)) {
10805        switch (regime_el(env, mmu_idx)) {
10806        case 1:
10807        case 3:
10808            if (is_user) {
10809                xn = xn || !(user_rw & PAGE_READ);
10810            } else {
10811                int uwxn = 0;
10812                if (have_wxn) {
10813                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10814                }
10815                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10816                     (uwxn && (user_rw & PAGE_WRITE));
10817            }
10818            break;
10819        case 2:
10820            break;
10821        }
10822    } else {
10823        xn = wxn = 0;
10824    }
10825
10826    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10827        return prot_rw;
10828    }
10829    return prot_rw | PAGE_EXEC;
10830}
10831
10832static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10833                                     uint32_t *table, uint32_t address)
10834{
10835    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10836    TCR *tcr = regime_tcr(env, mmu_idx);
10837
10838    if (address & tcr->mask) {
10839        if (tcr->raw_tcr & TTBCR_PD1) {
10840            /* Translation table walk disabled for TTBR1 */
10841            return false;
10842        }
10843        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10844    } else {
10845        if (tcr->raw_tcr & TTBCR_PD0) {
10846            /* Translation table walk disabled for TTBR0 */
10847            return false;
10848        }
10849        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10850    }
10851    *table |= (address >> 18) & 0x3ffc;
10852    return true;
10853}
10854
10855/* Translate a S1 pagetable walk through S2 if needed.  */
10856static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10857                               hwaddr addr, bool *is_secure,
10858                               ARMMMUFaultInfo *fi)
10859{
10860    if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10861        !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10862        target_ulong s2size;
10863        hwaddr s2pa;
10864        int s2prot;
10865        int ret;
10866        ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10867                                          : ARMMMUIdx_Stage2;
10868        ARMCacheAttrs cacheattrs = {};
10869        MemTxAttrs txattrs = {};
10870
10871        ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10872                                 &s2pa, &txattrs, &s2prot, &s2size, fi,
10873                                 &cacheattrs);
10874        if (ret) {
10875            assert(fi->type != ARMFault_None);
10876            fi->s2addr = addr;
10877            fi->stage2 = true;
10878            fi->s1ptw = true;
10879            fi->s1ns = !*is_secure;
10880            return ~0;
10881        }
10882        if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10883            (cacheattrs.attrs & 0xf0) == 0) {
10884            /*
10885             * PTW set and S1 walk touched S2 Device memory:
10886             * generate Permission fault.
10887             */
10888            fi->type = ARMFault_Permission;
10889            fi->s2addr = addr;
10890            fi->stage2 = true;
10891            fi->s1ptw = true;
10892            fi->s1ns = !*is_secure;
10893            return ~0;
10894        }
10895
10896        if (arm_is_secure_below_el3(env)) {
10897            /* Check if page table walk is to secure or non-secure PA space. */
10898            if (*is_secure) {
10899                *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10900            } else {
10901                *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10902            }
10903        } else {
10904            assert(!*is_secure);
10905        }
10906
10907        addr = s2pa;
10908    }
10909    return addr;
10910}
10911
10912/* All loads done in the course of a page table walk go through here. */
10913static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10914                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10915{
10916    ARMCPU *cpu = ARM_CPU(cs);
10917    CPUARMState *env = &cpu->env;
10918    MemTxAttrs attrs = {};
10919    MemTxResult result = MEMTX_OK;
10920    AddressSpace *as;
10921    uint32_t data;
10922
10923    addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10924    attrs.secure = is_secure;
10925    as = arm_addressspace(cs, attrs);
10926    if (fi->s1ptw) {
10927        return 0;
10928    }
10929    if (regime_translation_big_endian(env, mmu_idx)) {
10930        data = address_space_ldl_be(as, addr, attrs, &result);
10931    } else {
10932        data = address_space_ldl_le(as, addr, attrs, &result);
10933    }
10934    if (result == MEMTX_OK) {
10935        return data;
10936    }
10937    fi->type = ARMFault_SyncExternalOnWalk;
10938    fi->ea = arm_extabort_type(result);
10939    return 0;
10940}
10941
10942static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10943                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10944{
10945    ARMCPU *cpu = ARM_CPU(cs);
10946    CPUARMState *env = &cpu->env;
10947    MemTxAttrs attrs = {};
10948    MemTxResult result = MEMTX_OK;
10949    AddressSpace *as;
10950    uint64_t data;
10951
10952    addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10953    attrs.secure = is_secure;
10954    as = arm_addressspace(cs, attrs);
10955    if (fi->s1ptw) {
10956        return 0;
10957    }
10958    if (regime_translation_big_endian(env, mmu_idx)) {
10959        data = address_space_ldq_be(as, addr, attrs, &result);
10960    } else {
10961        data = address_space_ldq_le(as, addr, attrs, &result);
10962    }
10963    if (result == MEMTX_OK) {
10964        return data;
10965    }
10966    fi->type = ARMFault_SyncExternalOnWalk;
10967    fi->ea = arm_extabort_type(result);
10968    return 0;
10969}
10970
10971static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10972                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
10973                             hwaddr *phys_ptr, int *prot,
10974                             target_ulong *page_size,
10975                             ARMMMUFaultInfo *fi)
10976{
10977    CPUState *cs = env_cpu(env);
10978    int level = 1;
10979    uint32_t table;
10980    uint32_t desc;
10981    int type;
10982    int ap;
10983    int domain = 0;
10984    int domain_prot;
10985    hwaddr phys_addr;
10986    uint32_t dacr;
10987
10988    /* Pagetable walk.  */
10989    /* Lookup l1 descriptor.  */
10990    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10991        /* Section translation fault if page walk is disabled by PD0 or PD1 */
10992        fi->type = ARMFault_Translation;
10993        goto do_fault;
10994    }
10995    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10996                       mmu_idx, fi);
10997    if (fi->type != ARMFault_None) {
10998        goto do_fault;
10999    }
11000    type = (desc & 3);
11001    domain = (desc >> 5) & 0x0f;
11002    if (regime_el(env, mmu_idx) == 1) {
11003        dacr = env->cp15.dacr_ns;
11004    } else {
11005        dacr = env->cp15.dacr_s;
11006    }
11007    domain_prot = (dacr >> (domain * 2)) & 3;
11008    if (type == 0) {
11009        /* Section translation fault.  */
11010        fi->type = ARMFault_Translation;
11011        goto do_fault;
11012    }
11013    if (type != 2) {
11014        level = 2;
11015    }
11016    if (domain_prot == 0 || domain_prot == 2) {
11017        fi->type = ARMFault_Domain;
11018        goto do_fault;
11019    }
11020    if (type == 2) {
11021        /* 1Mb section.  */
11022        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11023        ap = (desc >> 10) & 3;
11024        *page_size = 1024 * 1024;
11025    } else {
11026        /* Lookup l2 entry.  */
11027        if (type == 1) {
11028            /* Coarse pagetable.  */
11029            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11030        } else {
11031            /* Fine pagetable.  */
11032            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11033        }
11034        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11035                           mmu_idx, fi);
11036        if (fi->type != ARMFault_None) {
11037            goto do_fault;
11038        }
11039        switch (desc & 3) {
11040        case 0: /* Page translation fault.  */
11041            fi->type = ARMFault_Translation;
11042            goto do_fault;
11043        case 1: /* 64k page.  */
11044            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11045            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11046            *page_size = 0x10000;
11047            break;
11048        case 2: /* 4k page.  */
11049            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11050            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11051            *page_size = 0x1000;
11052            break;
11053        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11054            if (type == 1) {
11055                /* ARMv6/XScale extended small page format */
11056                if (arm_feature(env, ARM_FEATURE_XSCALE)
11057                    || arm_feature(env, ARM_FEATURE_V6)) {
11058                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11059                    *page_size = 0x1000;
11060                } else {
11061                    /* UNPREDICTABLE in ARMv5; we choose to take a
11062                     * page translation fault.
11063                     */
11064                    fi->type = ARMFault_Translation;
11065                    goto do_fault;
11066                }
11067            } else {
11068                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11069                *page_size = 0x400;
11070            }
11071            ap = (desc >> 4) & 3;
11072            break;
11073        default:
11074            /* Never happens, but compiler isn't smart enough to tell.  */
11075            abort();
11076        }
11077    }
11078    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11079    *prot |= *prot ? PAGE_EXEC : 0;
11080    if (!(*prot & (1 << access_type))) {
11081        /* Access permission fault.  */
11082        fi->type = ARMFault_Permission;
11083        goto do_fault;
11084    }
11085    *phys_ptr = phys_addr;
11086    return false;
11087do_fault:
11088    fi->domain = domain;
11089    fi->level = level;
11090    return true;
11091}
11092
11093static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11094                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
11095                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11096                             target_ulong *page_size, ARMMMUFaultInfo *fi)
11097{
11098    CPUState *cs = env_cpu(env);
11099    ARMCPU *cpu = env_archcpu(env);
11100    int level = 1;
11101    uint32_t table;
11102    uint32_t desc;
11103    uint32_t xn;
11104    uint32_t pxn = 0;
11105    int type;
11106    int ap;
11107    int domain = 0;
11108    int domain_prot;
11109    hwaddr phys_addr;
11110    uint32_t dacr;
11111    bool ns;
11112
11113    /* Pagetable walk.  */
11114    /* Lookup l1 descriptor.  */
11115    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11116        /* Section translation fault if page walk is disabled by PD0 or PD1 */
11117        fi->type = ARMFault_Translation;
11118        goto do_fault;
11119    }
11120    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11121                       mmu_idx, fi);
11122    if (fi->type != ARMFault_None) {
11123        goto do_fault;
11124    }
11125    type = (desc & 3);
11126    if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
11127        /* Section translation fault, or attempt to use the encoding
11128         * which is Reserved on implementations without PXN.
11129         */
11130        fi->type = ARMFault_Translation;
11131        goto do_fault;
11132    }
11133    if ((type == 1) || !(desc & (1 << 18))) {
11134        /* Page or Section.  */
11135        domain = (desc >> 5) & 0x0f;
11136    }
11137    if (regime_el(env, mmu_idx) == 1) {
11138        dacr = env->cp15.dacr_ns;
11139    } else {
11140        dacr = env->cp15.dacr_s;
11141    }
11142    if (type == 1) {
11143        level = 2;
11144    }
11145    domain_prot = (dacr >> (domain * 2)) & 3;
11146    if (domain_prot == 0 || domain_prot == 2) {
11147        /* Section or Page domain fault */
11148        fi->type = ARMFault_Domain;
11149        goto do_fault;
11150    }
11151    if (type != 1) {
11152        if (desc & (1 << 18)) {
11153            /* Supersection.  */
11154            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11155            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11156            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11157            *page_size = 0x1000000;
11158        } else {
11159            /* Section.  */
11160            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11161            *page_size = 0x100000;
11162        }
11163        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11164        xn = desc & (1 << 4);
11165        pxn = desc & 1;
11166        ns = extract32(desc, 19, 1);
11167    } else {
11168        if (cpu_isar_feature(aa32_pxn, cpu)) {
11169            pxn = (desc >> 2) & 1;
11170        }
11171        ns = extract32(desc, 3, 1);
11172        /* Lookup l2 entry.  */
11173        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11174        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11175                           mmu_idx, fi);
11176        if (fi->type != ARMFault_None) {
11177            goto do_fault;
11178        }
11179        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11180        switch (desc & 3) {
11181        case 0: /* Page translation fault.  */
11182            fi->type = ARMFault_Translation;
11183            goto do_fault;
11184        case 1: /* 64k page.  */
11185            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11186            xn = desc & (1 << 15);
11187            *page_size = 0x10000;
11188            break;
11189        case 2: case 3: /* 4k page.  */
11190            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11191            xn = desc & 1;
11192            *page_size = 0x1000;
11193            break;
11194        default:
11195            /* Never happens, but compiler isn't smart enough to tell.  */
11196            abort();
11197        }
11198    }
11199    if (domain_prot == 3) {
11200        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11201    } else {
11202        if (pxn && !regime_is_user(env, mmu_idx)) {
11203            xn = 1;
11204        }
11205        if (xn && access_type == MMU_INST_FETCH) {
11206            fi->type = ARMFault_Permission;
11207            goto do_fault;
11208        }
11209
11210        if (arm_feature(env, ARM_FEATURE_V6K) &&
11211                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11212            /* The simplified model uses AP[0] as an access control bit.  */
11213            if ((ap & 1) == 0) {
11214                /* Access flag fault.  */
11215                fi->type = ARMFault_AccessFlag;
11216                goto do_fault;
11217            }
11218            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11219        } else {
11220            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11221        }
11222        if (*prot && !xn) {
11223            *prot |= PAGE_EXEC;
11224        }
11225        if (!(*prot & (1 << access_type))) {
11226            /* Access permission fault.  */
11227            fi->type = ARMFault_Permission;
11228            goto do_fault;
11229        }
11230    }
11231    if (ns) {
11232        /* The NS bit will (as required by the architecture) have no effect if
11233         * the CPU doesn't support TZ or this is a non-secure translation
11234         * regime, because the attribute will already be non-secure.
11235         */
11236        attrs->secure = false;
11237    }
11238    *phys_ptr = phys_addr;
11239    return false;
11240do_fault:
11241    fi->domain = domain;
11242    fi->level = level;
11243    return true;
11244}
11245
11246/*
11247 * check_s2_mmu_setup
11248 * @cpu:        ARMCPU
11249 * @is_aa64:    True if the translation regime is in AArch64 state
11250 * @startlevel: Suggested starting level
11251 * @inputsize:  Bitsize of IPAs
11252 * @stride:     Page-table stride (See the ARM ARM)
11253 *
11254 * Returns true if the suggested S2 translation parameters are OK and
11255 * false otherwise.
11256 */
11257static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11258                               int inputsize, int stride)
11259{
11260    const int grainsize = stride + 3;
11261    int startsizecheck;
11262
11263    /* Negative levels are never allowed.  */
11264    if (level < 0) {
11265        return false;
11266    }
11267
11268    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11269    if (startsizecheck < 1 || startsizecheck > stride + 4) {
11270        return false;
11271    }
11272
11273    if (is_aa64) {
11274        CPUARMState *env = &cpu->env;
11275        unsigned int pamax = arm_pamax(cpu);
11276
11277        switch (stride) {
11278        case 13: /* 64KB Pages.  */
11279            if (level == 0 || (level == 1 && pamax <= 42)) {
11280                return false;
11281            }
11282            break;
11283        case 11: /* 16KB Pages.  */
11284            if (level == 0 || (level == 1 && pamax <= 40)) {
11285                return false;
11286            }
11287            break;
11288        case 9: /* 4KB Pages.  */
11289            if (level == 0 && pamax <= 42) {
11290                return false;
11291            }
11292            break;
11293        default:
11294            g_assert_not_reached();
11295        }
11296
11297        /* Inputsize checks.  */
11298        if (inputsize > pamax &&
11299            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11300            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11301            return false;
11302        }
11303    } else {
11304        /* AArch32 only supports 4KB pages. Assert on that.  */
11305        assert(stride == 9);
11306
11307        if (level == 0) {
11308            return false;
11309        }
11310    }
11311    return true;
11312}
11313
11314/* Translate from the 4-bit stage 2 representation of
11315 * memory attributes (without cache-allocation hints) to
11316 * the 8-bit representation of the stage 1 MAIR registers
11317 * (which includes allocation hints).
11318 *
11319 * ref: shared/translation/attrs/S2AttrDecode()
11320 *      .../S2ConvertAttrsHints()
11321 */
11322static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11323{
11324    uint8_t hiattr = extract32(s2attrs, 2, 2);
11325    uint8_t loattr = extract32(s2attrs, 0, 2);
11326    uint8_t hihint = 0, lohint = 0;
11327
11328    if (hiattr != 0) { /* normal memory */
11329        if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11330            hiattr = loattr = 1; /* non-cacheable */
11331        } else {
11332            if (hiattr != 1) { /* Write-through or write-back */
11333                hihint = 3; /* RW allocate */
11334            }
11335            if (loattr != 1) { /* Write-through or write-back */
11336                lohint = 3; /* RW allocate */
11337            }
11338        }
11339    }
11340
11341    return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11342}
11343#endif /* !CONFIG_USER_ONLY */
11344
11345static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11346{
11347    if (regime_has_2_ranges(mmu_idx)) {
11348        return extract64(tcr, 37, 2);
11349    } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11350        return 0; /* VTCR_EL2 */
11351    } else {
11352        /* Replicate the single TBI bit so we always have 2 bits.  */
11353        return extract32(tcr, 20, 1) * 3;
11354    }
11355}
11356
11357static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11358{
11359    if (regime_has_2_ranges(mmu_idx)) {
11360        return extract64(tcr, 51, 2);
11361    } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11362        return 0; /* VTCR_EL2 */
11363    } else {
11364        /* Replicate the single TBID bit so we always have 2 bits.  */
11365        return extract32(tcr, 29, 1) * 3;
11366    }
11367}
11368
11369static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11370{
11371    if (regime_has_2_ranges(mmu_idx)) {
11372        return extract64(tcr, 57, 2);
11373    } else {
11374        /* Replicate the single TCMA bit so we always have 2 bits.  */
11375        return extract32(tcr, 30, 1) * 3;
11376    }
11377}
11378
11379ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11380                                   ARMMMUIdx mmu_idx, bool data)
11381{
11382    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11383    bool epd, hpd, using16k, using64k;
11384    int select, tsz, tbi, max_tsz;
11385
11386    if (!regime_has_2_ranges(mmu_idx)) {
11387        select = 0;
11388        tsz = extract32(tcr, 0, 6);
11389        using64k = extract32(tcr, 14, 1);
11390        using16k = extract32(tcr, 15, 1);
11391        if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11392            /* VTCR_EL2 */
11393            hpd = false;
11394        } else {
11395            hpd = extract32(tcr, 24, 1);
11396        }
11397        epd = false;
11398    } else {
11399        /*
11400         * Bit 55 is always between the two regions, and is canonical for
11401         * determining if address tagging is enabled.
11402         */
11403        select = extract64(va, 55, 1);
11404        if (!select) {
11405            tsz = extract32(tcr, 0, 6);
11406            epd = extract32(tcr, 7, 1);
11407            using64k = extract32(tcr, 14, 1);
11408            using16k = extract32(tcr, 15, 1);
11409            hpd = extract64(tcr, 41, 1);
11410        } else {
11411            int tg = extract32(tcr, 30, 2);
11412            using16k = tg == 1;
11413            using64k = tg == 3;
11414            tsz = extract32(tcr, 16, 6);
11415            epd = extract32(tcr, 23, 1);
11416            hpd = extract64(tcr, 42, 1);
11417        }
11418    }
11419
11420    if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11421        max_tsz = 48 - using64k;
11422    } else {
11423        max_tsz = 39;
11424    }
11425
11426    tsz = MIN(tsz, max_tsz);
11427    tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11428
11429    /* Present TBI as a composite with TBID.  */
11430    tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11431    if (!data) {
11432        tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11433    }
11434    tbi = (tbi >> select) & 1;
11435
11436    return (ARMVAParameters) {
11437        .tsz = tsz,
11438        .select = select,
11439        .tbi = tbi,
11440        .epd = epd,
11441        .hpd = hpd,
11442        .using16k = using16k,
11443        .using64k = using64k,
11444    };
11445}
11446
11447#ifndef CONFIG_USER_ONLY
11448static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11449                                          ARMMMUIdx mmu_idx)
11450{
11451    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11452    uint32_t el = regime_el(env, mmu_idx);
11453    int select, tsz;
11454    bool epd, hpd;
11455
11456    assert(mmu_idx != ARMMMUIdx_Stage2_S);
11457
11458    if (mmu_idx == ARMMMUIdx_Stage2) {
11459        /* VTCR */
11460        bool sext = extract32(tcr, 4, 1);
11461        bool sign = extract32(tcr, 3, 1);
11462
11463        /*
11464         * If the sign-extend bit is not the same as t0sz[3], the result
11465         * is unpredictable. Flag this as a guest error.
11466         */
11467        if (sign != sext) {
11468            qemu_log_mask(LOG_GUEST_ERROR,
11469                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11470        }
11471        tsz = sextract32(tcr, 0, 4) + 8;
11472        select = 0;
11473        hpd = false;
11474        epd = false;
11475    } else if (el == 2) {
11476        /* HTCR */
11477        tsz = extract32(tcr, 0, 3);
11478        select = 0;
11479        hpd = extract64(tcr, 24, 1);
11480        epd = false;
11481    } else {
11482        int t0sz = extract32(tcr, 0, 3);
11483        int t1sz = extract32(tcr, 16, 3);
11484
11485        if (t1sz == 0) {
11486            select = va > (0xffffffffu >> t0sz);
11487        } else {
11488            /* Note that we will detect errors later.  */
11489            select = va >= ~(0xffffffffu >> t1sz);
11490        }
11491        if (!select) {
11492            tsz = t0sz;
11493            epd = extract32(tcr, 7, 1);
11494            hpd = extract64(tcr, 41, 1);
11495        } else {
11496            tsz = t1sz;
11497            epd = extract32(tcr, 23, 1);
11498            hpd = extract64(tcr, 42, 1);
11499        }
11500        /* For aarch32, hpd0 is not enabled without t2e as well.  */
11501        hpd &= extract32(tcr, 6, 1);
11502    }
11503
11504    return (ARMVAParameters) {
11505        .tsz = tsz,
11506        .select = select,
11507        .epd = epd,
11508        .hpd = hpd,
11509    };
11510}
11511
11512/**
11513 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11514 *
11515 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11516 * prot and page_size may not be filled in, and the populated fsr value provides
11517 * information on why the translation aborted, in the format of a long-format
11518 * DFSR/IFSR fault register, with the following caveats:
11519 *  * the WnR bit is never set (the caller must do this).
11520 *
11521 * @env: CPUARMState
11522 * @address: virtual address to get physical address for
11523 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11524 * @mmu_idx: MMU index indicating required translation regime
11525 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11526 *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11527 *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11528 * @phys_ptr: set to the physical address corresponding to the virtual address
11529 * @attrs: set to the memory transaction attributes to use
11530 * @prot: set to the permissions for the page containing phys_ptr
11531 * @page_size_ptr: set to the size of the page containing phys_ptr
11532 * @fi: set to fault info if the translation fails
11533 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11534 */
11535static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11536                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11537                               bool s1_is_el0,
11538                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11539                               target_ulong *page_size_ptr,
11540                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11541{
11542    ARMCPU *cpu = env_archcpu(env);
11543    CPUState *cs = CPU(cpu);
11544    /* Read an LPAE long-descriptor translation table. */
11545    ARMFaultType fault_type = ARMFault_Translation;
11546    uint32_t level;
11547    ARMVAParameters param;
11548    uint64_t ttbr;
11549    hwaddr descaddr, indexmask, indexmask_grainsize;
11550    uint32_t tableattrs;
11551    target_ulong page_size;
11552    uint32_t attrs;
11553    int32_t stride;
11554    int addrsize, inputsize;
11555    TCR *tcr = regime_tcr(env, mmu_idx);
11556    int ap, ns, xn, pxn;
11557    uint32_t el = regime_el(env, mmu_idx);
11558    uint64_t descaddrmask;
11559    bool aarch64 = arm_el_is_aa64(env, el);
11560    bool guarded = false;
11561
11562    /* TODO: This code does not support shareability levels. */
11563    if (aarch64) {
11564        param = aa64_va_parameters(env, address, mmu_idx,
11565                                   access_type != MMU_INST_FETCH);
11566        level = 0;
11567        addrsize = 64 - 8 * param.tbi;
11568        inputsize = 64 - param.tsz;
11569    } else {
11570        param = aa32_va_parameters(env, address, mmu_idx);
11571        level = 1;
11572        addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11573        inputsize = addrsize - param.tsz;
11574    }
11575
11576    /*
11577     * We determined the region when collecting the parameters, but we
11578     * have not yet validated that the address is valid for the region.
11579     * Extract the top bits and verify that they all match select.
11580     *
11581     * For aa32, if inputsize == addrsize, then we have selected the
11582     * region by exclusion in aa32_va_parameters and there is no more
11583     * validation to do here.
11584     */
11585    if (inputsize < addrsize) {
11586        target_ulong top_bits = sextract64(address, inputsize,
11587                                           addrsize - inputsize);
11588        if (-top_bits != param.select) {
11589            /* The gap between the two regions is a Translation fault */
11590            fault_type = ARMFault_Translation;
11591            goto do_fault;
11592        }
11593    }
11594
11595    if (param.using64k) {
11596        stride = 13;
11597    } else if (param.using16k) {
11598        stride = 11;
11599    } else {
11600        stride = 9;
11601    }
11602
11603    /* Note that QEMU ignores shareability and cacheability attributes,
11604     * so we don't need to do anything with the SH, ORGN, IRGN fields
11605     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11606     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11607     * implement any ASID-like capability so we can ignore it (instead
11608     * we will always flush the TLB any time the ASID is changed).
11609     */
11610    ttbr = regime_ttbr(env, mmu_idx, param.select);
11611
11612    /* Here we should have set up all the parameters for the translation:
11613     * inputsize, ttbr, epd, stride, tbi
11614     */
11615
11616    if (param.epd) {
11617        /* Translation table walk disabled => Translation fault on TLB miss
11618         * Note: This is always 0 on 64-bit EL2 and EL3.
11619         */
11620        goto do_fault;
11621    }
11622
11623    if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11624        /* The starting level depends on the virtual address size (which can
11625         * be up to 48 bits) and the translation granule size. It indicates
11626         * the number of strides (stride bits at a time) needed to
11627         * consume the bits of the input address. In the pseudocode this is:
11628         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11629         * where their 'inputsize' is our 'inputsize', 'grainsize' is
11630         * our 'stride + 3' and 'stride' is our 'stride'.
11631         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11632         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11633         * = 4 - (inputsize - 4) / stride;
11634         */
11635        level = 4 - (inputsize - 4) / stride;
11636    } else {
11637        /* For stage 2 translations the starting level is specified by the
11638         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11639         */
11640        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11641        uint32_t startlevel;
11642        bool ok;
11643
11644        if (!aarch64 || stride == 9) {
11645            /* AArch32 or 4KB pages */
11646            startlevel = 2 - sl0;
11647
11648            if (cpu_isar_feature(aa64_st, cpu)) {
11649                startlevel &= 3;
11650            }
11651        } else {
11652            /* 16KB or 64KB pages */
11653            startlevel = 3 - sl0;
11654        }
11655
11656        /* Check that the starting level is valid. */
11657        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11658                                inputsize, stride);
11659        if (!ok) {
11660            fault_type = ARMFault_Translation;
11661            goto do_fault;
11662        }
11663        level = startlevel;
11664    }
11665
11666    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11667    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11668
11669    /* Now we can extract the actual base address from the TTBR */
11670    descaddr = extract64(ttbr, 0, 48);
11671    /*
11672     * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11673     * and also to mask out CnP (bit 0) which could validly be non-zero.
11674     */
11675    descaddr &= ~indexmask;
11676
11677    /* The address field in the descriptor goes up to bit 39 for ARMv7
11678     * but up to bit 47 for ARMv8, but we use the descaddrmask
11679     * up to bit 39 for AArch32, because we don't need other bits in that case
11680     * to construct next descriptor address (anyway they should be all zeroes).
11681     */
11682    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11683                   ~indexmask_grainsize;
11684
11685    /* Secure accesses start with the page table in secure memory and
11686     * can be downgraded to non-secure at any step. Non-secure accesses
11687     * remain non-secure. We implement this by just ORing in the NSTable/NS
11688     * bits at each step.
11689     */
11690    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11691    for (;;) {
11692        uint64_t descriptor;
11693        bool nstable;
11694
11695        descaddr |= (address >> (stride * (4 - level))) & indexmask;
11696        descaddr &= ~7ULL;
11697        nstable = extract32(tableattrs, 4, 1);
11698        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11699        if (fi->type != ARMFault_None) {
11700            goto do_fault;
11701        }
11702
11703        if (!(descriptor & 1) ||
11704            (!(descriptor & 2) && (level == 3))) {
11705            /* Invalid, or the Reserved level 3 encoding */
11706            goto do_fault;
11707        }
11708        descaddr = descriptor & descaddrmask;
11709
11710        if ((descriptor & 2) && (level < 3)) {
11711            /* Table entry. The top five bits are attributes which may
11712             * propagate down through lower levels of the table (and
11713             * which are all arranged so that 0 means "no effect", so
11714             * we can gather them up by ORing in the bits at each level).
11715             */
11716            tableattrs |= extract64(descriptor, 59, 5);
11717            level++;
11718            indexmask = indexmask_grainsize;
11719            continue;
11720        }
11721        /* Block entry at level 1 or 2, or page entry at level 3.
11722         * These are basically the same thing, although the number
11723         * of bits we pull in from the vaddr varies.
11724         */
11725        page_size = (1ULL << ((stride * (4 - level)) + 3));
11726        descaddr |= (address & (page_size - 1));
11727        /* Extract attributes from the descriptor */
11728        attrs = extract64(descriptor, 2, 10)
11729            | (extract64(descriptor, 52, 12) << 10);
11730
11731        if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11732            /* Stage 2 table descriptors do not include any attribute fields */
11733            break;
11734        }
11735        /* Merge in attributes from table descriptors */
11736        attrs |= nstable << 3; /* NS */
11737        guarded = extract64(descriptor, 50, 1);  /* GP */
11738        if (param.hpd) {
11739            /* HPD disables all the table attributes except NSTable.  */
11740            break;
11741        }
11742        attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11743        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11744         * means "force PL1 access only", which means forcing AP[1] to 0.
11745         */
11746        attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11747        attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11748        break;
11749    }
11750    /* Here descaddr is the final physical address, and attributes
11751     * are all in attrs.
11752     */
11753    fault_type = ARMFault_AccessFlag;
11754    if ((attrs & (1 << 8)) == 0) {
11755        /* Access flag */
11756        goto do_fault;
11757    }
11758
11759    ap = extract32(attrs, 4, 2);
11760
11761    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11762        ns = mmu_idx == ARMMMUIdx_Stage2;
11763        xn = extract32(attrs, 11, 2);
11764        *prot = get_S2prot(env, ap, xn, s1_is_el0);
11765    } else {
11766        ns = extract32(attrs, 3, 1);
11767        xn = extract32(attrs, 12, 1);
11768        pxn = extract32(attrs, 11, 1);
11769        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11770    }
11771
11772    fault_type = ARMFault_Permission;
11773    if (!(*prot & (1 << access_type))) {
11774        goto do_fault;
11775    }
11776
11777    if (ns) {
11778        /* The NS bit will (as required by the architecture) have no effect if
11779         * the CPU doesn't support TZ or this is a non-secure translation
11780         * regime, because the attribute will already be non-secure.
11781         */
11782        txattrs->secure = false;
11783    }
11784    /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11785    if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11786        arm_tlb_bti_gp(txattrs) = true;
11787    }
11788
11789    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11790        cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11791    } else {
11792        /* Index into MAIR registers for cache attributes */
11793        uint8_t attrindx = extract32(attrs, 0, 3);
11794        uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11795        assert(attrindx <= 7);
11796        cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11797    }
11798    cacheattrs->shareability = extract32(attrs, 6, 2);
11799
11800    *phys_ptr = descaddr;
11801    *page_size_ptr = page_size;
11802    return false;
11803
11804do_fault:
11805    fi->type = fault_type;
11806    fi->level = level;
11807    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11808    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11809                               mmu_idx == ARMMMUIdx_Stage2_S);
11810    fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11811    return true;
11812}
11813
11814static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11815                                                ARMMMUIdx mmu_idx,
11816                                                int32_t address, int *prot)
11817{
11818    if (!arm_feature(env, ARM_FEATURE_M)) {
11819        *prot = PAGE_READ | PAGE_WRITE;
11820        switch (address) {
11821        case 0xF0000000 ... 0xFFFFFFFF:
11822            if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11823                /* hivecs execing is ok */
11824                *prot |= PAGE_EXEC;
11825            }
11826            break;
11827        case 0x00000000 ... 0x7FFFFFFF:
11828            *prot |= PAGE_EXEC;
11829            break;
11830        }
11831    } else {
11832        /* Default system address map for M profile cores.
11833         * The architecture specifies which regions are execute-never;
11834         * at the MPU level no other checks are defined.
11835         */
11836        switch (address) {
11837        case 0x00000000 ... 0x1fffffff: /* ROM */
11838        case 0x20000000 ... 0x3fffffff: /* SRAM */
11839        case 0x60000000 ... 0x7fffffff: /* RAM */
11840        case 0x80000000 ... 0x9fffffff: /* RAM */
11841            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11842            break;
11843        case 0x40000000 ... 0x5fffffff: /* Peripheral */
11844        case 0xa0000000 ... 0xbfffffff: /* Device */
11845        case 0xc0000000 ... 0xdfffffff: /* Device */
11846        case 0xe0000000 ... 0xffffffff: /* System */
11847            *prot = PAGE_READ | PAGE_WRITE;
11848            break;
11849        default:
11850            g_assert_not_reached();
11851        }
11852    }
11853}
11854
11855static bool pmsav7_use_background_region(ARMCPU *cpu,
11856                                         ARMMMUIdx mmu_idx, bool is_user)
11857{
11858    /* Return true if we should use the default memory map as a
11859     * "background" region if there are no hits against any MPU regions.
11860     */
11861    CPUARMState *env = &cpu->env;
11862
11863    if (is_user) {
11864        return false;
11865    }
11866
11867    if (arm_feature(env, ARM_FEATURE_M)) {
11868        return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11869            & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11870    } else {
11871        return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11872    }
11873}
11874
11875static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11876{
11877    /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11878    return arm_feature(env, ARM_FEATURE_M) &&
11879        extract32(address, 20, 12) == 0xe00;
11880}
11881
11882static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11883{
11884    /* True if address is in the M profile system region
11885     * 0xe0000000 - 0xffffffff
11886     */
11887    return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11888}
11889
11890static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11891                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11892                                 hwaddr *phys_ptr, int *prot,
11893                                 target_ulong *page_size,
11894                                 ARMMMUFaultInfo *fi)
11895{
11896    ARMCPU *cpu = env_archcpu(env);
11897    int n;
11898    bool is_user = regime_is_user(env, mmu_idx);
11899
11900    *phys_ptr = address;
11901    *page_size = TARGET_PAGE_SIZE;
11902    *prot = 0;
11903
11904    if (regime_translation_disabled(env, mmu_idx) ||
11905        m_is_ppb_region(env, address)) {
11906        /* MPU disabled or M profile PPB access: use default memory map.
11907         * The other case which uses the default memory map in the
11908         * v7M ARM ARM pseudocode is exception vector reads from the vector
11909         * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11910         * which always does a direct read using address_space_ldl(), rather
11911         * than going via this function, so we don't need to check that here.
11912         */
11913        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11914    } else { /* MPU enabled */
11915        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11916            /* region search */
11917            uint32_t base = env->pmsav7.drbar[n];
11918            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11919            uint32_t rmask;
11920            bool srdis = false;
11921
11922            if (!(env->pmsav7.drsr[n] & 0x1)) {
11923                continue;
11924            }
11925
11926            if (!rsize) {
11927                qemu_log_mask(LOG_GUEST_ERROR,
11928                              "DRSR[%d]: Rsize field cannot be 0\n", n);
11929                continue;
11930            }
11931            rsize++;
11932            rmask = (1ull << rsize) - 1;
11933
11934            if (base & rmask) {
11935                qemu_log_mask(LOG_GUEST_ERROR,
11936                              "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11937                              "to DRSR region size, mask = 0x%" PRIx32 "\n",
11938                              n, base, rmask);
11939                continue;
11940            }
11941
11942            if (address < base || address > base + rmask) {
11943                /*
11944                 * Address not in this region. We must check whether the
11945                 * region covers addresses in the same page as our address.
11946                 * In that case we must not report a size that covers the
11947                 * whole page for a subsequent hit against a different MPU
11948                 * region or the background region, because it would result in
11949                 * incorrect TLB hits for subsequent accesses to addresses that
11950                 * are in this MPU region.
11951                 */
11952                if (ranges_overlap(base, rmask,
11953                                   address & TARGET_PAGE_MASK,
11954                                   TARGET_PAGE_SIZE)) {
11955                    *page_size = 1;
11956                }
11957                continue;
11958            }
11959
11960            /* Region matched */
11961
11962            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11963                int i, snd;
11964                uint32_t srdis_mask;
11965
11966                rsize -= 3; /* sub region size (power of 2) */
11967                snd = ((address - base) >> rsize) & 0x7;
11968                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11969
11970                srdis_mask = srdis ? 0x3 : 0x0;
11971                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11972                    /* This will check in groups of 2, 4 and then 8, whether
11973                     * the subregion bits are consistent. rsize is incremented
11974                     * back up to give the region size, considering consistent
11975                     * adjacent subregions as one region. Stop testing if rsize
11976                     * is already big enough for an entire QEMU page.
11977                     */
11978                    int snd_rounded = snd & ~(i - 1);
11979                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11980                                                     snd_rounded + 8, i);
11981                    if (srdis_mask ^ srdis_multi) {
11982                        break;
11983                    }
11984                    srdis_mask = (srdis_mask << i) | srdis_mask;
11985                    rsize++;
11986                }
11987            }
11988            if (srdis) {
11989                continue;
11990            }
11991            if (rsize < TARGET_PAGE_BITS) {
11992                *page_size = 1 << rsize;
11993            }
11994            break;
11995        }
11996
11997        if (n == -1) { /* no hits */
11998            if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11999                /* background fault */
12000                fi->type = ARMFault_Background;
12001                return true;
12002            }
12003            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12004        } else { /* a MPU hit! */
12005            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12006            uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12007
12008            if (m_is_system_region(env, address)) {
12009                /* System space is always execute never */
12010                xn = 1;
12011            }
12012
12013            if (is_user) { /* User mode AP bit decoding */
12014                switch (ap) {
12015                case 0:
12016                case 1:
12017                case 5:
12018                    break; /* no access */
12019                case 3:
12020                    *prot |= PAGE_WRITE;
12021                    /* fall through */
12022                case 2:
12023                case 6:
12024                    *prot |= PAGE_READ | PAGE_EXEC;
12025                    break;
12026                case 7:
12027                    /* for v7M, same as 6; for R profile a reserved value */
12028                    if (arm_feature(env, ARM_FEATURE_M)) {
12029                        *prot |= PAGE_READ | PAGE_EXEC;
12030                        break;
12031                    }
12032                    /* fall through */
12033                default:
12034                    qemu_log_mask(LOG_GUEST_ERROR,
12035                                  "DRACR[%d]: Bad value for AP bits: 0x%"
12036                                  PRIx32 "\n", n, ap);
12037                }
12038            } else { /* Priv. mode AP bits decoding */
12039                switch (ap) {
12040                case 0:
12041                    break; /* no access */
12042                case 1:
12043                case 2:
12044                case 3:
12045                    *prot |= PAGE_WRITE;
12046                    /* fall through */
12047                case 5:
12048                case 6:
12049                    *prot |= PAGE_READ | PAGE_EXEC;
12050                    break;
12051                case 7:
12052                    /* for v7M, same as 6; for R profile a reserved value */
12053                    if (arm_feature(env, ARM_FEATURE_M)) {
12054                        *prot |= PAGE_READ | PAGE_EXEC;
12055                        break;
12056                    }
12057                    /* fall through */
12058                default:
12059                    qemu_log_mask(LOG_GUEST_ERROR,
12060                                  "DRACR[%d]: Bad value for AP bits: 0x%"
12061                                  PRIx32 "\n", n, ap);
12062                }
12063            }
12064
12065            /* execute never */
12066            if (xn) {
12067                *prot &= ~PAGE_EXEC;
12068            }
12069        }
12070    }
12071
12072    fi->type = ARMFault_Permission;
12073    fi->level = 1;
12074    return !(*prot & (1 << access_type));
12075}
12076
12077static bool v8m_is_sau_exempt(CPUARMState *env,
12078                              uint32_t address, MMUAccessType access_type)
12079{
12080    /* The architecture specifies that certain address ranges are
12081     * exempt from v8M SAU/IDAU checks.
12082     */
12083    return
12084        (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12085        (address >= 0xe0000000 && address <= 0xe0002fff) ||
12086        (address >= 0xe000e000 && address <= 0xe000efff) ||
12087        (address >= 0xe002e000 && address <= 0xe002efff) ||
12088        (address >= 0xe0040000 && address <= 0xe0041fff) ||
12089        (address >= 0xe00ff000 && address <= 0xe00fffff);
12090}
12091
12092void v8m_security_lookup(CPUARMState *env, uint32_t address,
12093                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
12094                                V8M_SAttributes *sattrs)
12095{
12096    /* Look up the security attributes for this address. Compare the
12097     * pseudocode SecurityCheck() function.
12098     * We assume the caller has zero-initialized *sattrs.
12099     */
12100    ARMCPU *cpu = env_archcpu(env);
12101    int r;
12102    bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12103    int idau_region = IREGION_NOTVALID;
12104    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12105    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12106
12107    if (cpu->idau) {
12108        IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12109        IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12110
12111        iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12112                   &idau_nsc);
12113    }
12114
12115    if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12116        /* 0xf0000000..0xffffffff is always S for insn fetches */
12117        return;
12118    }
12119
12120    if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12121        sattrs->ns = !regime_is_secure(env, mmu_idx);
12122        return;
12123    }
12124
12125    if (idau_region != IREGION_NOTVALID) {
12126        sattrs->irvalid = true;
12127        sattrs->iregion = idau_region;
12128    }
12129
12130    switch (env->sau.ctrl & 3) {
12131    case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12132        break;
12133    case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12134        sattrs->ns = true;
12135        break;
12136    default: /* SAU.ENABLE == 1 */
12137        for (r = 0; r < cpu->sau_sregion; r++) {
12138            if (env->sau.rlar[r] & 1) {
12139                uint32_t base = env->sau.rbar[r] & ~0x1f;
12140                uint32_t limit = env->sau.rlar[r] | 0x1f;
12141
12142                if (base <= address && limit >= address) {
12143                    if (base > addr_page_base || limit < addr_page_limit) {
12144                        sattrs->subpage = true;
12145                    }
12146                    if (sattrs->srvalid) {
12147                        /* If we hit in more than one region then we must report
12148                         * as Secure, not NS-Callable, with no valid region
12149                         * number info.
12150                         */
12151                        sattrs->ns = false;
12152                        sattrs->nsc = false;
12153                        sattrs->sregion = 0;
12154                        sattrs->srvalid = false;
12155                        break;
12156                    } else {
12157                        if (env->sau.rlar[r] & 2) {
12158                            sattrs->nsc = true;
12159                        } else {
12160                            sattrs->ns = true;
12161                        }
12162                        sattrs->srvalid = true;
12163                        sattrs->sregion = r;
12164                    }
12165                } else {
12166                    /*
12167                     * Address not in this region. We must check whether the
12168                     * region covers addresses in the same page as our address.
12169                     * In that case we must not report a size that covers the
12170                     * whole page for a subsequent hit against a different MPU
12171                     * region or the background region, because it would result
12172                     * in incorrect TLB hits for subsequent accesses to
12173                     * addresses that are in this MPU region.
12174                     */
12175                    if (limit >= base &&
12176                        ranges_overlap(base, limit - base + 1,
12177                                       addr_page_base,
12178                                       TARGET_PAGE_SIZE)) {
12179                        sattrs->subpage = true;
12180                    }
12181                }
12182            }
12183        }
12184        break;
12185    }
12186
12187    /*
12188     * The IDAU will override the SAU lookup results if it specifies
12189     * higher security than the SAU does.
12190     */
12191    if (!idau_ns) {
12192        if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12193            sattrs->ns = false;
12194            sattrs->nsc = idau_nsc;
12195        }
12196    }
12197}
12198
12199bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12200                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
12201                              hwaddr *phys_ptr, MemTxAttrs *txattrs,
12202                              int *prot, bool *is_subpage,
12203                              ARMMMUFaultInfo *fi, uint32_t *mregion)
12204{
12205    /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12206     * that a full phys-to-virt translation does).
12207     * mregion is (if not NULL) set to the region number which matched,
12208     * or -1 if no region number is returned (MPU off, address did not
12209     * hit a region, address hit in multiple regions).
12210     * We set is_subpage to true if the region hit doesn't cover the
12211     * entire TARGET_PAGE the address is within.
12212     */
12213    ARMCPU *cpu = env_archcpu(env);
12214    bool is_user = regime_is_user(env, mmu_idx);
12215    uint32_t secure = regime_is_secure(env, mmu_idx);
12216    int n;
12217    int matchregion = -1;
12218    bool hit = false;
12219    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12220    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12221
12222    *is_subpage = false;
12223    *phys_ptr = address;
12224    *prot = 0;
12225    if (mregion) {
12226        *mregion = -1;
12227    }
12228
12229    /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12230     * was an exception vector read from the vector table (which is always
12231     * done using the default system address map), because those accesses
12232     * are done in arm_v7m_load_vector(), which always does a direct
12233     * read using address_space_ldl(), rather than going via this function.
12234     */
12235    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12236        hit = true;
12237    } else if (m_is_ppb_region(env, address)) {
12238        hit = true;
12239    } else {
12240        if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12241            hit = true;
12242        }
12243
12244        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12245            /* region search */
12246            /* Note that the base address is bits [31:5] from the register
12247             * with bits [4:0] all zeroes, but the limit address is bits
12248             * [31:5] from the register with bits [4:0] all ones.
12249             */
12250            uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12251            uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12252
12253            if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12254                /* Region disabled */
12255                continue;
12256            }
12257
12258            if (address < base || address > limit) {
12259                /*
12260                 * Address not in this region. We must check whether the
12261                 * region covers addresses in the same page as our address.
12262                 * In that case we must not report a size that covers the
12263                 * whole page for a subsequent hit against a different MPU
12264                 * region or the background region, because it would result in
12265                 * incorrect TLB hits for subsequent accesses to addresses that
12266                 * are in this MPU region.
12267                 */
12268                if (limit >= base &&
12269                    ranges_overlap(base, limit - base + 1,
12270                                   addr_page_base,
12271                                   TARGET_PAGE_SIZE)) {
12272                    *is_subpage = true;
12273                }
12274                continue;
12275            }
12276
12277            if (base > addr_page_base || limit < addr_page_limit) {
12278                *is_subpage = true;
12279            }
12280
12281            if (matchregion != -1) {
12282                /* Multiple regions match -- always a failure (unlike
12283                 * PMSAv7 where highest-numbered-region wins)
12284                 */
12285                fi->type = ARMFault_Permission;
12286                fi->level = 1;
12287                return true;
12288            }
12289
12290            matchregion = n;
12291            hit = true;
12292        }
12293    }
12294
12295    if (!hit) {
12296        /* background fault */
12297        fi->type = ARMFault_Background;
12298        return true;
12299    }
12300
12301    if (matchregion == -1) {
12302        /* hit using the background region */
12303        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12304    } else {
12305        uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12306        uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12307        bool pxn = false;
12308
12309        if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12310            pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12311        }
12312
12313        if (m_is_system_region(env, address)) {
12314            /* System space is always execute never */
12315            xn = 1;
12316        }
12317
12318        *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12319        if (*prot && !xn && !(pxn && !is_user)) {
12320            *prot |= PAGE_EXEC;
12321        }
12322        /* We don't need to look the attribute up in the MAIR0/MAIR1
12323         * registers because that only tells us about cacheability.
12324         */
12325        if (mregion) {
12326            *mregion = matchregion;
12327        }
12328    }
12329
12330    fi->type = ARMFault_Permission;
12331    fi->level = 1;
12332    return !(*prot & (1 << access_type));
12333}
12334
12335
12336static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12337                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12338                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12339                                 int *prot, target_ulong *page_size,
12340                                 ARMMMUFaultInfo *fi)
12341{
12342    uint32_t secure = regime_is_secure(env, mmu_idx);
12343    V8M_SAttributes sattrs = {};
12344    bool ret;
12345    bool mpu_is_subpage;
12346
12347    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12348        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12349        if (access_type == MMU_INST_FETCH) {
12350            /* Instruction fetches always use the MMU bank and the
12351             * transaction attribute determined by the fetch address,
12352             * regardless of CPU state. This is painful for QEMU
12353             * to handle, because it would mean we need to encode
12354             * into the mmu_idx not just the (user, negpri) information
12355             * for the current security state but also that for the
12356             * other security state, which would balloon the number
12357             * of mmu_idx values needed alarmingly.
12358             * Fortunately we can avoid this because it's not actually
12359             * possible to arbitrarily execute code from memory with
12360             * the wrong security attribute: it will always generate
12361             * an exception of some kind or another, apart from the
12362             * special case of an NS CPU executing an SG instruction
12363             * in S&NSC memory. So we always just fail the translation
12364             * here and sort things out in the exception handler
12365             * (including possibly emulating an SG instruction).
12366             */
12367            if (sattrs.ns != !secure) {
12368                if (sattrs.nsc) {
12369                    fi->type = ARMFault_QEMU_NSCExec;
12370                } else {
12371                    fi->type = ARMFault_QEMU_SFault;
12372                }
12373                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12374                *phys_ptr = address;
12375                *prot = 0;
12376                return true;
12377            }
12378        } else {
12379            /* For data accesses we always use the MMU bank indicated
12380             * by the current CPU state, but the security attributes
12381             * might downgrade a secure access to nonsecure.
12382             */
12383            if (sattrs.ns) {
12384                txattrs->secure = false;
12385            } else if (!secure) {
12386                /* NS access to S memory must fault.
12387                 * Architecturally we should first check whether the
12388                 * MPU information for this address indicates that we
12389                 * are doing an unaligned access to Device memory, which
12390                 * should generate a UsageFault instead. QEMU does not
12391                 * currently check for that kind of unaligned access though.
12392                 * If we added it we would need to do so as a special case
12393                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12394                 */
12395                fi->type = ARMFault_QEMU_SFault;
12396                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12397                *phys_ptr = address;
12398                *prot = 0;
12399                return true;
12400            }
12401        }
12402    }
12403
12404    ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12405                            txattrs, prot, &mpu_is_subpage, fi, NULL);
12406    *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12407    return ret;
12408}
12409
12410static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12411                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12412                                 hwaddr *phys_ptr, int *prot,
12413                                 ARMMMUFaultInfo *fi)
12414{
12415    int n;
12416    uint32_t mask;
12417    uint32_t base;
12418    bool is_user = regime_is_user(env, mmu_idx);
12419
12420    if (regime_translation_disabled(env, mmu_idx)) {
12421        /* MPU disabled.  */
12422        *phys_ptr = address;
12423        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12424        return false;
12425    }
12426
12427    *phys_ptr = address;
12428    for (n = 7; n >= 0; n--) {
12429        base = env->cp15.c6_region[n];
12430        if ((base & 1) == 0) {
12431            continue;
12432        }
12433        mask = 1 << ((base >> 1) & 0x1f);
12434        /* Keep this shift separate from the above to avoid an
12435           (undefined) << 32.  */
12436        mask = (mask << 1) - 1;
12437        if (((base ^ address) & ~mask) == 0) {
12438            break;
12439        }
12440    }
12441    if (n < 0) {
12442        fi->type = ARMFault_Background;
12443        return true;
12444    }
12445
12446    if (access_type == MMU_INST_FETCH) {
12447        mask = env->cp15.pmsav5_insn_ap;
12448    } else {
12449        mask = env->cp15.pmsav5_data_ap;
12450    }
12451    mask = (mask >> (n * 4)) & 0xf;
12452    switch (mask) {
12453    case 0:
12454        fi->type = ARMFault_Permission;
12455        fi->level = 1;
12456        return true;
12457    case 1:
12458        if (is_user) {
12459            fi->type = ARMFault_Permission;
12460            fi->level = 1;
12461            return true;
12462        }
12463        *prot = PAGE_READ | PAGE_WRITE;
12464        break;
12465    case 2:
12466        *prot = PAGE_READ;
12467        if (!is_user) {
12468            *prot |= PAGE_WRITE;
12469        }
12470        break;
12471    case 3:
12472        *prot = PAGE_READ | PAGE_WRITE;
12473        break;
12474    case 5:
12475        if (is_user) {
12476            fi->type = ARMFault_Permission;
12477            fi->level = 1;
12478            return true;
12479        }
12480        *prot = PAGE_READ;
12481        break;
12482    case 6:
12483        *prot = PAGE_READ;
12484        break;
12485    default:
12486        /* Bad permission.  */
12487        fi->type = ARMFault_Permission;
12488        fi->level = 1;
12489        return true;
12490    }
12491    *prot |= PAGE_EXEC;
12492    return false;
12493}
12494
12495/* Combine either inner or outer cacheability attributes for normal
12496 * memory, according to table D4-42 and pseudocode procedure
12497 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12498 *
12499 * NB: only stage 1 includes allocation hints (RW bits), leading to
12500 * some asymmetry.
12501 */
12502static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12503{
12504    if (s1 == 4 || s2 == 4) {
12505        /* non-cacheable has precedence */
12506        return 4;
12507    } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12508        /* stage 1 write-through takes precedence */
12509        return s1;
12510    } else if (extract32(s2, 2, 2) == 2) {
12511        /* stage 2 write-through takes precedence, but the allocation hint
12512         * is still taken from stage 1
12513         */
12514        return (2 << 2) | extract32(s1, 0, 2);
12515    } else { /* write-back */
12516        return s1;
12517    }
12518}
12519
12520/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12521 * and CombineS1S2Desc()
12522 *
12523 * @s1:      Attributes from stage 1 walk
12524 * @s2:      Attributes from stage 2 walk
12525 */
12526static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12527{
12528    uint8_t s1lo, s2lo, s1hi, s2hi;
12529    ARMCacheAttrs ret;
12530    bool tagged = false;
12531
12532    if (s1.attrs == 0xf0) {
12533        tagged = true;
12534        s1.attrs = 0xff;
12535    }
12536
12537    s1lo = extract32(s1.attrs, 0, 4);
12538    s2lo = extract32(s2.attrs, 0, 4);
12539    s1hi = extract32(s1.attrs, 4, 4);
12540    s2hi = extract32(s2.attrs, 4, 4);
12541
12542    /* Combine shareability attributes (table D4-43) */
12543    if (s1.shareability == 2 || s2.shareability == 2) {
12544        /* if either are outer-shareable, the result is outer-shareable */
12545        ret.shareability = 2;
12546    } else if (s1.shareability == 3 || s2.shareability == 3) {
12547        /* if either are inner-shareable, the result is inner-shareable */
12548        ret.shareability = 3;
12549    } else {
12550        /* both non-shareable */
12551        ret.shareability = 0;
12552    }
12553
12554    /* Combine memory type and cacheability attributes */
12555    if (s1hi == 0 || s2hi == 0) {
12556        /* Device has precedence over normal */
12557        if (s1lo == 0 || s2lo == 0) {
12558            /* nGnRnE has precedence over anything */
12559            ret.attrs = 0;
12560        } else if (s1lo == 4 || s2lo == 4) {
12561            /* non-Reordering has precedence over Reordering */
12562            ret.attrs = 4;  /* nGnRE */
12563        } else if (s1lo == 8 || s2lo == 8) {
12564            /* non-Gathering has precedence over Gathering */
12565            ret.attrs = 8;  /* nGRE */
12566        } else {
12567            ret.attrs = 0xc; /* GRE */
12568        }
12569
12570        /* Any location for which the resultant memory type is any
12571         * type of Device memory is always treated as Outer Shareable.
12572         */
12573        ret.shareability = 2;
12574    } else { /* Normal memory */
12575        /* Outer/inner cacheability combine independently */
12576        ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12577                  | combine_cacheattr_nibble(s1lo, s2lo);
12578
12579        if (ret.attrs == 0x44) {
12580            /* Any location for which the resultant memory type is Normal
12581             * Inner Non-cacheable, Outer Non-cacheable is always treated
12582             * as Outer Shareable.
12583             */
12584            ret.shareability = 2;
12585        }
12586    }
12587
12588    /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12589    if (tagged && ret.attrs == 0xff) {
12590        ret.attrs = 0xf0;
12591    }
12592
12593    return ret;
12594}
12595
12596
12597/* get_phys_addr - get the physical address for this virtual address
12598 *
12599 * Find the physical address corresponding to the given virtual address,
12600 * by doing a translation table walk on MMU based systems or using the
12601 * MPU state on MPU based systems.
12602 *
12603 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12604 * prot and page_size may not be filled in, and the populated fsr value provides
12605 * information on why the translation aborted, in the format of a
12606 * DFSR/IFSR fault register, with the following caveats:
12607 *  * we honour the short vs long DFSR format differences.
12608 *  * the WnR bit is never set (the caller must do this).
12609 *  * for PSMAv5 based systems we don't bother to return a full FSR format
12610 *    value.
12611 *
12612 * @env: CPUARMState
12613 * @address: virtual address to get physical address for
12614 * @access_type: 0 for read, 1 for write, 2 for execute
12615 * @mmu_idx: MMU index indicating required translation regime
12616 * @phys_ptr: set to the physical address corresponding to the virtual address
12617 * @attrs: set to the memory transaction attributes to use
12618 * @prot: set to the permissions for the page containing phys_ptr
12619 * @page_size: set to the size of the page containing phys_ptr
12620 * @fi: set to fault info if the translation fails
12621 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12622 */
12623bool get_phys_addr(CPUARMState *env, target_ulong address,
12624                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
12625                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12626                   target_ulong *page_size,
12627                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12628{
12629    ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12630
12631    if (mmu_idx != s1_mmu_idx) {
12632        /* Call ourselves recursively to do the stage 1 and then stage 2
12633         * translations if mmu_idx is a two-stage regime.
12634         */
12635        if (arm_feature(env, ARM_FEATURE_EL2)) {
12636            hwaddr ipa;
12637            int s2_prot;
12638            int ret;
12639            ARMCacheAttrs cacheattrs2 = {};
12640            ARMMMUIdx s2_mmu_idx;
12641            bool is_el0;
12642
12643            ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12644                                attrs, prot, page_size, fi, cacheattrs);
12645
12646            /* If S1 fails or S2 is disabled, return early.  */
12647            if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12648                *phys_ptr = ipa;
12649                return ret;
12650            }
12651
12652            s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12653            is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12654
12655            /* S1 is done. Now do S2 translation.  */
12656            ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12657                                     phys_ptr, attrs, &s2_prot,
12658                                     page_size, fi, &cacheattrs2);
12659            fi->s2addr = ipa;
12660            /* Combine the S1 and S2 perms.  */
12661            *prot &= s2_prot;
12662
12663            /* If S2 fails, return early.  */
12664            if (ret) {
12665                return ret;
12666            }
12667
12668            /* Combine the S1 and S2 cache attributes. */
12669            if (arm_hcr_el2_eff(env) & HCR_DC) {
12670                /*
12671                 * HCR.DC forces the first stage attributes to
12672                 *  Normal Non-Shareable,
12673                 *  Inner Write-Back Read-Allocate Write-Allocate,
12674                 *  Outer Write-Back Read-Allocate Write-Allocate.
12675                 * Do not overwrite Tagged within attrs.
12676                 */
12677                if (cacheattrs->attrs != 0xf0) {
12678                    cacheattrs->attrs = 0xff;
12679                }
12680                cacheattrs->shareability = 0;
12681            }
12682            *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12683
12684            /* Check if IPA translates to secure or non-secure PA space. */
12685            if (arm_is_secure_below_el3(env)) {
12686                if (attrs->secure) {
12687                    attrs->secure =
12688                        !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12689                } else {
12690                    attrs->secure =
12691                        !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12692                        || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12693                }
12694            }
12695            return 0;
12696        } else {
12697            /*
12698             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12699             */
12700            mmu_idx = stage_1_mmu_idx(mmu_idx);
12701        }
12702    }
12703
12704    /* The page table entries may downgrade secure to non-secure, but
12705     * cannot upgrade an non-secure translation regime's attributes
12706     * to secure.
12707     */
12708    attrs->secure = regime_is_secure(env, mmu_idx);
12709    attrs->user = regime_is_user(env, mmu_idx);
12710
12711    /* Fast Context Switch Extension. This doesn't exist at all in v8.
12712     * In v7 and earlier it affects all stage 1 translations.
12713     */
12714    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12715        && !arm_feature(env, ARM_FEATURE_V8)) {
12716        if (regime_el(env, mmu_idx) == 3) {
12717            address += env->cp15.fcseidr_s;
12718        } else {
12719            address += env->cp15.fcseidr_ns;
12720        }
12721    }
12722
12723    if (arm_feature(env, ARM_FEATURE_PMSA)) {
12724        bool ret;
12725        *page_size = TARGET_PAGE_SIZE;
12726
12727        if (arm_feature(env, ARM_FEATURE_V8)) {
12728            /* PMSAv8 */
12729            ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12730                                       phys_ptr, attrs, prot, page_size, fi);
12731        } else if (arm_feature(env, ARM_FEATURE_V7)) {
12732            /* PMSAv7 */
12733            ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12734                                       phys_ptr, prot, page_size, fi);
12735        } else {
12736            /* Pre-v7 MPU */
12737            ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12738                                       phys_ptr, prot, fi);
12739        }
12740        qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12741                      " mmu_idx %u -> %s (prot %c%c%c)\n",
12742                      access_type == MMU_DATA_LOAD ? "reading" :
12743                      (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12744                      (uint32_t)address, mmu_idx,
12745                      ret ? "Miss" : "Hit",
12746                      *prot & PAGE_READ ? 'r' : '-',
12747                      *prot & PAGE_WRITE ? 'w' : '-',
12748                      *prot & PAGE_EXEC ? 'x' : '-');
12749
12750        return ret;
12751    }
12752
12753    /* Definitely a real MMU, not an MPU */
12754
12755    if (regime_translation_disabled(env, mmu_idx)) {
12756        uint64_t hcr;
12757        uint8_t memattr;
12758
12759        /*
12760         * MMU disabled.  S1 addresses within aa64 translation regimes are
12761         * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12762         */
12763        if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12764            int r_el = regime_el(env, mmu_idx);
12765            if (arm_el_is_aa64(env, r_el)) {
12766                int pamax = arm_pamax(env_archcpu(env));
12767                uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12768                int addrtop, tbi;
12769
12770                tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12771                if (access_type == MMU_INST_FETCH) {
12772                    tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12773                }
12774                tbi = (tbi >> extract64(address, 55, 1)) & 1;
12775                addrtop = (tbi ? 55 : 63);
12776
12777                if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12778                    fi->type = ARMFault_AddressSize;
12779                    fi->level = 0;
12780                    fi->stage2 = false;
12781                    return 1;
12782                }
12783
12784                /*
12785                 * When TBI is disabled, we've just validated that all of the
12786                 * bits above PAMax are zero, so logically we only need to
12787                 * clear the top byte for TBI.  But it's clearer to follow
12788                 * the pseudocode set of addrdesc.paddress.
12789                 */
12790                address = extract64(address, 0, 52);
12791            }
12792        }
12793        *phys_ptr = address;
12794        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12795        *page_size = TARGET_PAGE_SIZE;
12796
12797        /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12798        hcr = arm_hcr_el2_eff(env);
12799        cacheattrs->shareability = 0;
12800        if (hcr & HCR_DC) {
12801            if (hcr & HCR_DCT) {
12802                memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12803            } else {
12804                memattr = 0xff;  /* Normal, WB, RWA */
12805            }
12806        } else if (access_type == MMU_INST_FETCH) {
12807            if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12808                memattr = 0xee;  /* Normal, WT, RA, NT */
12809            } else {
12810                memattr = 0x44;  /* Normal, NC, No */
12811            }
12812            cacheattrs->shareability = 2; /* outer sharable */
12813        } else {
12814            memattr = 0x00;      /* Device, nGnRnE */
12815        }
12816        cacheattrs->attrs = memattr;
12817        return 0;
12818    }
12819
12820    if (regime_using_lpae_format(env, mmu_idx)) {
12821        return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12822                                  phys_ptr, attrs, prot, page_size,
12823                                  fi, cacheattrs);
12824    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12825        return get_phys_addr_v6(env, address, access_type, mmu_idx,
12826                                phys_ptr, attrs, prot, page_size, fi);
12827    } else {
12828        return get_phys_addr_v5(env, address, access_type, mmu_idx,
12829                                    phys_ptr, prot, page_size, fi);
12830    }
12831}
12832
12833hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12834                                         MemTxAttrs *attrs)
12835{
12836    ARMCPU *cpu = ARM_CPU(cs);
12837    CPUARMState *env = &cpu->env;
12838    hwaddr phys_addr;
12839    target_ulong page_size;
12840    int prot;
12841    bool ret;
12842    ARMMMUFaultInfo fi = {};
12843    ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12844    ARMCacheAttrs cacheattrs = {};
12845
12846    *attrs = (MemTxAttrs) {};
12847
12848    ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12849                        attrs, &prot, &page_size, &fi, &cacheattrs);
12850
12851    if (ret) {
12852        return -1;
12853    }
12854    return phys_addr;
12855}
12856
12857#endif
12858
12859/* Note that signed overflow is undefined in C.  The following routines are
12860   careful to use unsigned types where modulo arithmetic is required.
12861   Failure to do so _will_ break on newer gcc.  */
12862
12863/* Signed saturating arithmetic.  */
12864
12865/* Perform 16-bit signed saturating addition.  */
12866static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12867{
12868    uint16_t res;
12869
12870    res = a + b;
12871    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12872        if (a & 0x8000)
12873            res = 0x8000;
12874        else
12875            res = 0x7fff;
12876    }
12877    return res;
12878}
12879
12880/* Perform 8-bit signed saturating addition.  */
12881static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12882{
12883    uint8_t res;
12884
12885    res = a + b;
12886    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12887        if (a & 0x80)
12888            res = 0x80;
12889        else
12890            res = 0x7f;
12891    }
12892    return res;
12893}
12894
12895/* Perform 16-bit signed saturating subtraction.  */
12896static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12897{
12898    uint16_t res;
12899
12900    res = a - b;
12901    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12902        if (a & 0x8000)
12903            res = 0x8000;
12904        else
12905            res = 0x7fff;
12906    }
12907    return res;
12908}
12909
12910/* Perform 8-bit signed saturating subtraction.  */
12911static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12912{
12913    uint8_t res;
12914
12915    res = a - b;
12916    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12917        if (a & 0x80)
12918            res = 0x80;
12919        else
12920            res = 0x7f;
12921    }
12922    return res;
12923}
12924
12925#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12926#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12927#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12928#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12929#define PFX q
12930
12931#include "op_addsub.h"
12932
12933/* Unsigned saturating arithmetic.  */
12934static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12935{
12936    uint16_t res;
12937    res = a + b;
12938    if (res < a)
12939        res = 0xffff;
12940    return res;
12941}
12942
12943static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12944{
12945    if (a > b)
12946        return a - b;
12947    else
12948        return 0;
12949}
12950
12951static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12952{
12953    uint8_t res;
12954    res = a + b;
12955    if (res < a)
12956        res = 0xff;
12957    return res;
12958}
12959
12960static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12961{
12962    if (a > b)
12963        return a - b;
12964    else
12965        return 0;
12966}
12967
12968#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12969#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12970#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12971#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12972#define PFX uq
12973
12974#include "op_addsub.h"
12975
12976/* Signed modulo arithmetic.  */
12977#define SARITH16(a, b, n, op) do { \
12978    int32_t sum; \
12979    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12980    RESULT(sum, n, 16); \
12981    if (sum >= 0) \
12982        ge |= 3 << (n * 2); \
12983    } while(0)
12984
12985#define SARITH8(a, b, n, op) do { \
12986    int32_t sum; \
12987    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12988    RESULT(sum, n, 8); \
12989    if (sum >= 0) \
12990        ge |= 1 << n; \
12991    } while(0)
12992
12993
12994#define ADD16(a, b, n) SARITH16(a, b, n, +)
12995#define SUB16(a, b, n) SARITH16(a, b, n, -)
12996#define ADD8(a, b, n)  SARITH8(a, b, n, +)
12997#define SUB8(a, b, n)  SARITH8(a, b, n, -)
12998#define PFX s
12999#define ARITH_GE
13000
13001#include "op_addsub.h"
13002
13003/* Unsigned modulo arithmetic.  */
13004#define ADD16(a, b, n) do { \
13005    uint32_t sum; \
13006    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13007    RESULT(sum, n, 16); \
13008    if ((sum >> 16) == 1) \
13009        ge |= 3 << (n * 2); \
13010    } while(0)
13011
13012#define ADD8(a, b, n) do { \
13013    uint32_t sum; \
13014    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13015    RESULT(sum, n, 8); \
13016    if ((sum >> 8) == 1) \
13017        ge |= 1 << n; \
13018    } while(0)
13019
13020#define SUB16(a, b, n) do { \
13021    uint32_t sum; \
13022    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13023    RESULT(sum, n, 16); \
13024    if ((sum >> 16) == 0) \
13025        ge |= 3 << (n * 2); \
13026    } while(0)
13027
13028#define SUB8(a, b, n) do { \
13029    uint32_t sum; \
13030    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13031    RESULT(sum, n, 8); \
13032    if ((sum >> 8) == 0) \
13033        ge |= 1 << n; \
13034    } while(0)
13035
13036#define PFX u
13037#define ARITH_GE
13038
13039#include "op_addsub.h"
13040
13041/* Halved signed arithmetic.  */
13042#define ADD16(a, b, n) \
13043  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13044#define SUB16(a, b, n) \
13045  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13046#define ADD8(a, b, n) \
13047  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13048#define SUB8(a, b, n) \
13049  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13050#define PFX sh
13051
13052#include "op_addsub.h"
13053
13054/* Halved unsigned arithmetic.  */
13055#define ADD16(a, b, n) \
13056  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13057#define SUB16(a, b, n) \
13058  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13059#define ADD8(a, b, n) \
13060  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13061#define SUB8(a, b, n) \
13062  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13063#define PFX uh
13064
13065#include "op_addsub.h"
13066
13067static inline uint8_t do_usad(uint8_t a, uint8_t b)
13068{
13069    if (a > b)
13070        return a - b;
13071    else
13072        return b - a;
13073}
13074
13075/* Unsigned sum of absolute byte differences.  */
13076uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13077{
13078    uint32_t sum;
13079    sum = do_usad(a, b);
13080    sum += do_usad(a >> 8, b >> 8);
13081    sum += do_usad(a >> 16, b >> 16);
13082    sum += do_usad(a >> 24, b >> 24);
13083    return sum;
13084}
13085
13086/* For ARMv6 SEL instruction.  */
13087uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13088{
13089    uint32_t mask;
13090
13091    mask = 0;
13092    if (flags & 1)
13093        mask |= 0xff;
13094    if (flags & 2)
13095        mask |= 0xff00;
13096    if (flags & 4)
13097        mask |= 0xff0000;
13098    if (flags & 8)
13099        mask |= 0xff000000;
13100    return (a & mask) | (b & ~mask);
13101}
13102
13103/* CRC helpers.
13104 * The upper bytes of val (above the number specified by 'bytes') must have
13105 * been zeroed out by the caller.
13106 */
13107uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13108{
13109    uint8_t buf[4];
13110
13111    stl_le_p(buf, val);
13112
13113    /* zlib crc32 converts the accumulator and output to one's complement.  */
13114    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13115}
13116
13117uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13118{
13119    uint8_t buf[4];
13120
13121    stl_le_p(buf, val);
13122
13123    /* Linux crc32c converts the output to one's complement.  */
13124    return crc32c(acc, buf, bytes) ^ 0xffffffff;
13125}
13126
13127/* Return the exception level to which FP-disabled exceptions should
13128 * be taken, or 0 if FP is enabled.
13129 */
13130int fp_exception_el(CPUARMState *env, int cur_el)
13131{
13132#ifndef CONFIG_USER_ONLY
13133    /* CPACR and the CPTR registers don't exist before v6, so FP is
13134     * always accessible
13135     */
13136    if (!arm_feature(env, ARM_FEATURE_V6)) {
13137        return 0;
13138    }
13139
13140    if (arm_feature(env, ARM_FEATURE_M)) {
13141        /* CPACR can cause a NOCP UsageFault taken to current security state */
13142        if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13143            return 1;
13144        }
13145
13146        if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13147            if (!extract32(env->v7m.nsacr, 10, 1)) {
13148                /* FP insns cause a NOCP UsageFault taken to Secure */
13149                return 3;
13150            }
13151        }
13152
13153        return 0;
13154    }
13155
13156    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13157     * 0, 2 : trap EL0 and EL1/PL1 accesses
13158     * 1    : trap only EL0 accesses
13159     * 3    : trap no accesses
13160     * This register is ignored if E2H+TGE are both set.
13161     */
13162    if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13163        int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13164
13165        switch (fpen) {
13166        case 0:
13167        case 2:
13168            if (cur_el == 0 || cur_el == 1) {
13169                /* Trap to PL1, which might be EL1 or EL3 */
13170                if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13171                    return 3;
13172                }
13173                return 1;
13174            }
13175            if (cur_el == 3 && !is_a64(env)) {
13176                /* Secure PL1 running at EL3 */
13177                return 3;
13178            }
13179            break;
13180        case 1:
13181            if (cur_el == 0) {
13182                return 1;
13183            }
13184            break;
13185        case 3:
13186            break;
13187        }
13188    }
13189
13190    /*
13191     * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13192     * to control non-secure access to the FPU. It doesn't have any
13193     * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13194     */
13195    if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13196         cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13197        if (!extract32(env->cp15.nsacr, 10, 1)) {
13198            /* FP insns act as UNDEF */
13199            return cur_el == 2 ? 2 : 1;
13200        }
13201    }
13202
13203    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13204     * check because zero bits in the registers mean "don't trap".
13205     */
13206
13207    /* CPTR_EL2 : present in v7VE or v8 */
13208    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13209        && arm_is_el2_enabled(env)) {
13210        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13211        return 2;
13212    }
13213
13214    /* CPTR_EL3 : present in v8 */
13215    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13216        /* Trap all FP ops to EL3 */
13217        return 3;
13218    }
13219#endif
13220    return 0;
13221}
13222
13223/* Return the exception level we're running at if this is our mmu_idx */
13224int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13225{
13226    if (mmu_idx & ARM_MMU_IDX_M) {
13227        return mmu_idx & ARM_MMU_IDX_M_PRIV;
13228    }
13229
13230    switch (mmu_idx) {
13231    case ARMMMUIdx_E10_0:
13232    case ARMMMUIdx_E20_0:
13233    case ARMMMUIdx_SE10_0:
13234    case ARMMMUIdx_SE20_0:
13235        return 0;
13236    case ARMMMUIdx_E10_1:
13237    case ARMMMUIdx_E10_1_PAN:
13238    case ARMMMUIdx_SE10_1:
13239    case ARMMMUIdx_SE10_1_PAN:
13240        return 1;
13241    case ARMMMUIdx_E2:
13242    case ARMMMUIdx_E20_2:
13243    case ARMMMUIdx_E20_2_PAN:
13244    case ARMMMUIdx_SE2:
13245    case ARMMMUIdx_SE20_2:
13246    case ARMMMUIdx_SE20_2_PAN:
13247        return 2;
13248    case ARMMMUIdx_SE3:
13249        return 3;
13250    default:
13251        g_assert_not_reached();
13252    }
13253}
13254
13255#ifndef CONFIG_TCG
13256ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13257{
13258    g_assert_not_reached();
13259}
13260#endif
13261
13262ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13263{
13264    ARMMMUIdx idx;
13265    uint64_t hcr;
13266
13267    if (arm_feature(env, ARM_FEATURE_M)) {
13268        return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13269    }
13270
13271    /* See ARM pseudo-function ELIsInHost.  */
13272    switch (el) {
13273    case 0:
13274        hcr = arm_hcr_el2_eff(env);
13275        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13276            idx = ARMMMUIdx_E20_0;
13277        } else {
13278            idx = ARMMMUIdx_E10_0;
13279        }
13280        break;
13281    case 1:
13282        if (env->pstate & PSTATE_PAN) {
13283            idx = ARMMMUIdx_E10_1_PAN;
13284        } else {
13285            idx = ARMMMUIdx_E10_1;
13286        }
13287        break;
13288    case 2:
13289        /* Note that TGE does not apply at EL2.  */
13290        if (arm_hcr_el2_eff(env) & HCR_E2H) {
13291            if (env->pstate & PSTATE_PAN) {
13292                idx = ARMMMUIdx_E20_2_PAN;
13293            } else {
13294                idx = ARMMMUIdx_E20_2;
13295            }
13296        } else {
13297            idx = ARMMMUIdx_E2;
13298        }
13299        break;
13300    case 3:
13301        return ARMMMUIdx_SE3;
13302    default:
13303        g_assert_not_reached();
13304    }
13305
13306    if (arm_is_secure_below_el3(env)) {
13307        idx &= ~ARM_MMU_IDX_A_NS;
13308    }
13309
13310    return idx;
13311}
13312
13313ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13314{
13315    return arm_mmu_idx_el(env, arm_current_el(env));
13316}
13317
13318#ifndef CONFIG_USER_ONLY
13319ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13320{
13321    return stage_1_mmu_idx(arm_mmu_idx(env));
13322}
13323#endif
13324
13325static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13326                                           ARMMMUIdx mmu_idx,
13327                                           CPUARMTBFlags flags)
13328{
13329    DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13330    DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13331
13332    if (arm_singlestep_active(env)) {
13333        DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13334    }
13335    return flags;
13336}
13337
13338static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13339                                              ARMMMUIdx mmu_idx,
13340                                              CPUARMTBFlags flags)
13341{
13342    bool sctlr_b = arm_sctlr_b(env);
13343
13344    if (sctlr_b) {
13345        DP_TBFLAG_A32(flags, SCTLR__B, 1);
13346    }
13347    if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13348        DP_TBFLAG_ANY(flags, BE_DATA, 1);
13349    }
13350    DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13351
13352    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13353}
13354
13355static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13356                                        ARMMMUIdx mmu_idx)
13357{
13358    CPUARMTBFlags flags = {};
13359    uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13360
13361    /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13362    if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13363        DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13364    }
13365
13366    if (arm_v7m_is_handler_mode(env)) {
13367        DP_TBFLAG_M32(flags, HANDLER, 1);
13368    }
13369
13370    /*
13371     * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13372     * is suppressing them because the requested execution priority
13373     * is less than 0.
13374     */
13375    if (arm_feature(env, ARM_FEATURE_V8) &&
13376        !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13377          (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13378        DP_TBFLAG_M32(flags, STACKCHECK, 1);
13379    }
13380
13381    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13382}
13383
13384static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13385{
13386    CPUARMTBFlags flags = {};
13387
13388    DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13389    return flags;
13390}
13391
13392static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13393                                        ARMMMUIdx mmu_idx)
13394{
13395    CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13396    int el = arm_current_el(env);
13397
13398    if (arm_sctlr(env, el) & SCTLR_A) {
13399        DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13400    }
13401
13402    if (arm_el_is_aa64(env, 1)) {
13403        DP_TBFLAG_A32(flags, VFPEN, 1);
13404    }
13405
13406    if (el < 2 && env->cp15.hstr_el2 &&
13407        (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13408        DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13409    }
13410
13411    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13412}
13413
13414static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13415                                        ARMMMUIdx mmu_idx)
13416{
13417    CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13418    ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13419    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13420    uint64_t sctlr;
13421    int tbii, tbid;
13422
13423    DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13424
13425    /* Get control bits for tagged addresses.  */
13426    tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13427    tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13428
13429    DP_TBFLAG_A64(flags, TBII, tbii);
13430    DP_TBFLAG_A64(flags, TBID, tbid);
13431
13432    if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13433        int sve_el = sve_exception_el(env, el);
13434        uint32_t zcr_len;
13435
13436        /*
13437         * If SVE is disabled, but FP is enabled,
13438         * then the effective len is 0.
13439         */
13440        if (sve_el != 0 && fp_el == 0) {
13441            zcr_len = 0;
13442        } else {
13443            zcr_len = sve_zcr_len_for_el(env, el);
13444        }
13445        DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13446        DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13447    }
13448
13449    sctlr = regime_sctlr(env, stage1);
13450
13451    if (sctlr & SCTLR_A) {
13452        DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13453    }
13454
13455    if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13456        DP_TBFLAG_ANY(flags, BE_DATA, 1);
13457    }
13458
13459    if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13460        /*
13461         * In order to save space in flags, we record only whether
13462         * pauth is "inactive", meaning all insns are implemented as
13463         * a nop, or "active" when some action must be performed.
13464         * The decision of which action to take is left to a helper.
13465         */
13466        if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13467            DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13468        }
13469    }
13470
13471    if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13472        /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13473        if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13474            DP_TBFLAG_A64(flags, BT, 1);
13475        }
13476    }
13477
13478    /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13479    if (!(env->pstate & PSTATE_UAO)) {
13480        switch (mmu_idx) {
13481        case ARMMMUIdx_E10_1:
13482        case ARMMMUIdx_E10_1_PAN:
13483        case ARMMMUIdx_SE10_1:
13484        case ARMMMUIdx_SE10_1_PAN:
13485            /* TODO: ARMv8.3-NV */
13486            DP_TBFLAG_A64(flags, UNPRIV, 1);
13487            break;
13488        case ARMMMUIdx_E20_2:
13489        case ARMMMUIdx_E20_2_PAN:
13490        case ARMMMUIdx_SE20_2:
13491        case ARMMMUIdx_SE20_2_PAN:
13492            /*
13493             * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13494             * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13495             */
13496            if (env->cp15.hcr_el2 & HCR_TGE) {
13497                DP_TBFLAG_A64(flags, UNPRIV, 1);
13498            }
13499            break;
13500        default:
13501            break;
13502        }
13503    }
13504
13505    if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13506        /*
13507         * Set MTE_ACTIVE if any access may be Checked, and leave clear
13508         * if all accesses must be Unchecked:
13509         * 1) If no TBI, then there are no tags in the address to check,
13510         * 2) If Tag Check Override, then all accesses are Unchecked,
13511         * 3) If Tag Check Fail == 0, then Checked access have no effect,
13512         * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13513         */
13514        if (allocation_tag_access_enabled(env, el, sctlr)) {
13515            DP_TBFLAG_A64(flags, ATA, 1);
13516            if (tbid
13517                && !(env->pstate & PSTATE_TCO)
13518                && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13519                DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13520            }
13521        }
13522        /* And again for unprivileged accesses, if required.  */
13523        if (EX_TBFLAG_A64(flags, UNPRIV)
13524            && tbid
13525            && !(env->pstate & PSTATE_TCO)
13526            && (sctlr & SCTLR_TCF0)
13527            && allocation_tag_access_enabled(env, 0, sctlr)) {
13528            DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13529        }
13530        /* Cache TCMA as well as TBI. */
13531        DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13532    }
13533
13534    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13535}
13536
13537static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13538{
13539    int el = arm_current_el(env);
13540    int fp_el = fp_exception_el(env, el);
13541    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13542
13543    if (is_a64(env)) {
13544        return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13545    } else if (arm_feature(env, ARM_FEATURE_M)) {
13546        return rebuild_hflags_m32(env, fp_el, mmu_idx);
13547    } else {
13548        return rebuild_hflags_a32(env, fp_el, mmu_idx);
13549    }
13550}
13551
13552void arm_rebuild_hflags(CPUARMState *env)
13553{
13554    env->hflags = rebuild_hflags_internal(env);
13555}
13556
13557/*
13558 * If we have triggered a EL state change we can't rely on the
13559 * translator having passed it to us, we need to recompute.
13560 */
13561void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13562{
13563    int el = arm_current_el(env);
13564    int fp_el = fp_exception_el(env, el);
13565    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13566
13567    env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13568}
13569
13570void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13571{
13572    int fp_el = fp_exception_el(env, el);
13573    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13574
13575    env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13576}
13577
13578/*
13579 * If we have triggered a EL state change we can't rely on the
13580 * translator having passed it to us, we need to recompute.
13581 */
13582void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13583{
13584    int el = arm_current_el(env);
13585    int fp_el = fp_exception_el(env, el);
13586    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13587    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13588}
13589
13590void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13591{
13592    int fp_el = fp_exception_el(env, el);
13593    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13594
13595    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13596}
13597
13598void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13599{
13600    int fp_el = fp_exception_el(env, el);
13601    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13602
13603    env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13604}
13605
13606static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13607{
13608#ifdef CONFIG_DEBUG_TCG
13609    CPUARMTBFlags c = env->hflags;
13610    CPUARMTBFlags r = rebuild_hflags_internal(env);
13611
13612    if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13613        fprintf(stderr, "TCG hflags mismatch "
13614                        "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13615                        " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13616                c.flags, c.flags2, r.flags, r.flags2);
13617        abort();
13618    }
13619#endif
13620}
13621
13622void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13623                          target_ulong *cs_base, uint32_t *pflags)
13624{
13625    CPUARMTBFlags flags;
13626
13627    assert_hflags_rebuild_correctly(env);
13628    flags = env->hflags;
13629
13630    if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13631        *pc = env->pc;
13632        if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13633            DP_TBFLAG_A64(flags, BTYPE, env->btype);
13634        }
13635    } else {
13636        *pc = env->regs[15];
13637
13638        if (arm_feature(env, ARM_FEATURE_M)) {
13639            if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13640                FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13641                != env->v7m.secure) {
13642                DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13643            }
13644
13645            if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13646                (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13647                 (env->v7m.secure &&
13648                  !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13649                /*
13650                 * ASPEN is set, but FPCA/SFPA indicate that there is no
13651                 * active FP context; we must create a new FP context before
13652                 * executing any FP insn.
13653                 */
13654                DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13655            }
13656
13657            bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13658            if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13659                DP_TBFLAG_M32(flags, LSPACT, 1);
13660            }
13661        } else {
13662            /*
13663             * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13664             * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13665             */
13666            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13667                DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13668            } else {
13669                DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13670                DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13671            }
13672            if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13673                DP_TBFLAG_A32(flags, VFPEN, 1);
13674            }
13675        }
13676
13677        DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13678        DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13679    }
13680
13681    /*
13682     * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13683     * states defined in the ARM ARM for software singlestep:
13684     *  SS_ACTIVE   PSTATE.SS   State
13685     *     0            x       Inactive (the TB flag for SS is always 0)
13686     *     1            0       Active-pending
13687     *     1            1       Active-not-pending
13688     * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13689     */
13690    if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13691        DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13692    }
13693
13694    *pflags = flags.flags;
13695    *cs_base = flags.flags2;
13696}
13697
13698#ifdef TARGET_AARCH64
13699/*
13700 * The manual says that when SVE is enabled and VQ is widened the
13701 * implementation is allowed to zero the previously inaccessible
13702 * portion of the registers.  The corollary to that is that when
13703 * SVE is enabled and VQ is narrowed we are also allowed to zero
13704 * the now inaccessible portion of the registers.
13705 *
13706 * The intent of this is that no predicate bit beyond VQ is ever set.
13707 * Which means that some operations on predicate registers themselves
13708 * may operate on full uint64_t or even unrolled across the maximum
13709 * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13710 * may well be cheaper than conditionals to restrict the operation
13711 * to the relevant portion of a uint16_t[16].
13712 */
13713void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13714{
13715    int i, j;
13716    uint64_t pmask;
13717
13718    assert(vq >= 1 && vq <= ARM_MAX_VQ);
13719    assert(vq <= env_archcpu(env)->sve_max_vq);
13720
13721    /* Zap the high bits of the zregs.  */
13722    for (i = 0; i < 32; i++) {
13723        memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13724    }
13725
13726    /* Zap the high bits of the pregs and ffr.  */
13727    pmask = 0;
13728    if (vq & 3) {
13729        pmask = ~(-1ULL << (16 * (vq & 3)));
13730    }
13731    for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13732        for (i = 0; i < 17; ++i) {
13733            env->vfp.pregs[i].p[j] &= pmask;
13734        }
13735        pmask = 0;
13736    }
13737}
13738
13739/*
13740 * Notice a change in SVE vector size when changing EL.
13741 */
13742void aarch64_sve_change_el(CPUARMState *env, int old_el,
13743                           int new_el, bool el0_a64)
13744{
13745    ARMCPU *cpu = env_archcpu(env);
13746    int old_len, new_len;
13747    bool old_a64, new_a64;
13748
13749    /* Nothing to do if no SVE.  */
13750    if (!cpu_isar_feature(aa64_sve, cpu)) {
13751        return;
13752    }
13753
13754    /* Nothing to do if FP is disabled in either EL.  */
13755    if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13756        return;
13757    }
13758
13759    /*
13760     * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13761     * at ELx, or not available because the EL is in AArch32 state, then
13762     * for all purposes other than a direct read, the ZCR_ELx.LEN field
13763     * has an effective value of 0".
13764     *
13765     * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13766     * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13767     * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13768     * we already have the correct register contents when encountering the
13769     * vq0->vq0 transition between EL0->EL1.
13770     */
13771    old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13772    old_len = (old_a64 && !sve_exception_el(env, old_el)
13773               ? sve_zcr_len_for_el(env, old_el) : 0);
13774    new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13775    new_len = (new_a64 && !sve_exception_el(env, new_el)
13776               ? sve_zcr_len_for_el(env, new_el) : 0);
13777
13778    /* When changing vector length, clear inaccessible state.  */
13779    if (new_len < old_len) {
13780        aarch64_sve_narrow_vq(env, new_len + 1);
13781    }
13782}
13783#endif
13784