qemu/block/qed.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "block/qdict.h"
  17#include "qapi/error.h"
  18#include "qemu/timer.h"
  19#include "qemu/bswap.h"
  20#include "qemu/main-loop.h"
  21#include "qemu/module.h"
  22#include "qemu/option.h"
  23#include "trace.h"
  24#include "qed.h"
  25#include "sysemu/block-backend.h"
  26#include "qapi/qmp/qdict.h"
  27#include "qapi/qobject-input-visitor.h"
  28#include "qapi/qapi-visit-block-core.h"
  29
  30static QemuOptsList qed_create_opts;
  31
  32static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
  33                          const char *filename)
  34{
  35    const QEDHeader *header = (const QEDHeader *)buf;
  36
  37    if (buf_size < sizeof(*header)) {
  38        return 0;
  39    }
  40    if (le32_to_cpu(header->magic) != QED_MAGIC) {
  41        return 0;
  42    }
  43    return 100;
  44}
  45
  46/**
  47 * Check whether an image format is raw
  48 *
  49 * @fmt:    Backing file format, may be NULL
  50 */
  51static bool qed_fmt_is_raw(const char *fmt)
  52{
  53    return fmt && strcmp(fmt, "raw") == 0;
  54}
  55
  56static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
  57{
  58    cpu->magic = le32_to_cpu(le->magic);
  59    cpu->cluster_size = le32_to_cpu(le->cluster_size);
  60    cpu->table_size = le32_to_cpu(le->table_size);
  61    cpu->header_size = le32_to_cpu(le->header_size);
  62    cpu->features = le64_to_cpu(le->features);
  63    cpu->compat_features = le64_to_cpu(le->compat_features);
  64    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
  65    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
  66    cpu->image_size = le64_to_cpu(le->image_size);
  67    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
  68    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
  69}
  70
  71static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
  72{
  73    le->magic = cpu_to_le32(cpu->magic);
  74    le->cluster_size = cpu_to_le32(cpu->cluster_size);
  75    le->table_size = cpu_to_le32(cpu->table_size);
  76    le->header_size = cpu_to_le32(cpu->header_size);
  77    le->features = cpu_to_le64(cpu->features);
  78    le->compat_features = cpu_to_le64(cpu->compat_features);
  79    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
  80    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
  81    le->image_size = cpu_to_le64(cpu->image_size);
  82    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
  83    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
  84}
  85
  86int qed_write_header_sync(BDRVQEDState *s)
  87{
  88    QEDHeader le;
  89    int ret;
  90
  91    qed_header_cpu_to_le(&s->header, &le);
  92    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
  93    if (ret != sizeof(le)) {
  94        return ret;
  95    }
  96    return 0;
  97}
  98
  99/**
 100 * Update header in-place (does not rewrite backing filename or other strings)
 101 *
 102 * This function only updates known header fields in-place and does not affect
 103 * extra data after the QED header.
 104 *
 105 * No new allocating reqs can start while this function runs.
 106 */
 107static int coroutine_fn qed_write_header(BDRVQEDState *s)
 108{
 109    /* We must write full sectors for O_DIRECT but cannot necessarily generate
 110     * the data following the header if an unrecognized compat feature is
 111     * active.  Therefore, first read the sectors containing the header, update
 112     * them, and write back.
 113     */
 114
 115    int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
 116    size_t len = nsectors * BDRV_SECTOR_SIZE;
 117    uint8_t *buf;
 118    int ret;
 119
 120    assert(s->allocating_acb || s->allocating_write_reqs_plugged);
 121
 122    buf = qemu_blockalign(s->bs, len);
 123
 124    ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
 125    if (ret < 0) {
 126        goto out;
 127    }
 128
 129    /* Update header */
 130    qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
 131
 132    ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
 133    if (ret < 0) {
 134        goto out;
 135    }
 136
 137    ret = 0;
 138out:
 139    qemu_vfree(buf);
 140    return ret;
 141}
 142
 143static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
 144{
 145    uint64_t table_entries;
 146    uint64_t l2_size;
 147
 148    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
 149    l2_size = table_entries * cluster_size;
 150
 151    return l2_size * table_entries;
 152}
 153
 154static bool qed_is_cluster_size_valid(uint32_t cluster_size)
 155{
 156    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
 157        cluster_size > QED_MAX_CLUSTER_SIZE) {
 158        return false;
 159    }
 160    if (cluster_size & (cluster_size - 1)) {
 161        return false; /* not power of 2 */
 162    }
 163    return true;
 164}
 165
 166static bool qed_is_table_size_valid(uint32_t table_size)
 167{
 168    if (table_size < QED_MIN_TABLE_SIZE ||
 169        table_size > QED_MAX_TABLE_SIZE) {
 170        return false;
 171    }
 172    if (table_size & (table_size - 1)) {
 173        return false; /* not power of 2 */
 174    }
 175    return true;
 176}
 177
 178static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
 179                                    uint32_t table_size)
 180{
 181    if (image_size % BDRV_SECTOR_SIZE != 0) {
 182        return false; /* not multiple of sector size */
 183    }
 184    if (image_size > qed_max_image_size(cluster_size, table_size)) {
 185        return false; /* image is too large */
 186    }
 187    return true;
 188}
 189
 190/**
 191 * Read a string of known length from the image file
 192 *
 193 * @file:       Image file
 194 * @offset:     File offset to start of string, in bytes
 195 * @n:          String length in bytes
 196 * @buf:        Destination buffer
 197 * @buflen:     Destination buffer length in bytes
 198 * @ret:        0 on success, -errno on failure
 199 *
 200 * The string is NUL-terminated.
 201 */
 202static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
 203                           char *buf, size_t buflen)
 204{
 205    int ret;
 206    if (n >= buflen) {
 207        return -EINVAL;
 208    }
 209    ret = bdrv_pread(file, offset, buf, n);
 210    if (ret < 0) {
 211        return ret;
 212    }
 213    buf[n] = '\0';
 214    return 0;
 215}
 216
 217/**
 218 * Allocate new clusters
 219 *
 220 * @s:          QED state
 221 * @n:          Number of contiguous clusters to allocate
 222 * @ret:        Offset of first allocated cluster
 223 *
 224 * This function only produces the offset where the new clusters should be
 225 * written.  It updates BDRVQEDState but does not make any changes to the image
 226 * file.
 227 *
 228 * Called with table_lock held.
 229 */
 230static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
 231{
 232    uint64_t offset = s->file_size;
 233    s->file_size += n * s->header.cluster_size;
 234    return offset;
 235}
 236
 237QEDTable *qed_alloc_table(BDRVQEDState *s)
 238{
 239    /* Honor O_DIRECT memory alignment requirements */
 240    return qemu_blockalign(s->bs,
 241                           s->header.cluster_size * s->header.table_size);
 242}
 243
 244/**
 245 * Allocate a new zeroed L2 table
 246 *
 247 * Called with table_lock held.
 248 */
 249static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
 250{
 251    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
 252
 253    l2_table->table = qed_alloc_table(s);
 254    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
 255
 256    memset(l2_table->table->offsets, 0,
 257           s->header.cluster_size * s->header.table_size);
 258    return l2_table;
 259}
 260
 261static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
 262{
 263    qemu_co_mutex_lock(&s->table_lock);
 264
 265    /* No reentrancy is allowed.  */
 266    assert(!s->allocating_write_reqs_plugged);
 267    if (s->allocating_acb != NULL) {
 268        /* Another allocating write came concurrently.  This cannot happen
 269         * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
 270         */
 271        qemu_co_mutex_unlock(&s->table_lock);
 272        return false;
 273    }
 274
 275    s->allocating_write_reqs_plugged = true;
 276    qemu_co_mutex_unlock(&s->table_lock);
 277    return true;
 278}
 279
 280static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
 281{
 282    qemu_co_mutex_lock(&s->table_lock);
 283    assert(s->allocating_write_reqs_plugged);
 284    s->allocating_write_reqs_plugged = false;
 285    qemu_co_queue_next(&s->allocating_write_reqs);
 286    qemu_co_mutex_unlock(&s->table_lock);
 287}
 288
 289static void coroutine_fn qed_need_check_timer_entry(void *opaque)
 290{
 291    BDRVQEDState *s = opaque;
 292    int ret;
 293
 294    trace_qed_need_check_timer_cb(s);
 295
 296    if (!qed_plug_allocating_write_reqs(s)) {
 297        return;
 298    }
 299
 300    /* Ensure writes are on disk before clearing flag */
 301    ret = bdrv_co_flush(s->bs->file->bs);
 302    if (ret < 0) {
 303        qed_unplug_allocating_write_reqs(s);
 304        return;
 305    }
 306
 307    s->header.features &= ~QED_F_NEED_CHECK;
 308    ret = qed_write_header(s);
 309    (void) ret;
 310
 311    qed_unplug_allocating_write_reqs(s);
 312
 313    ret = bdrv_co_flush(s->bs);
 314    (void) ret;
 315}
 316
 317static void qed_need_check_timer_cb(void *opaque)
 318{
 319    Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
 320    qemu_coroutine_enter(co);
 321}
 322
 323static void qed_start_need_check_timer(BDRVQEDState *s)
 324{
 325    trace_qed_start_need_check_timer(s);
 326
 327    /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
 328     * migration.
 329     */
 330    timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 331                   NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
 332}
 333
 334/* It's okay to call this multiple times or when no timer is started */
 335static void qed_cancel_need_check_timer(BDRVQEDState *s)
 336{
 337    trace_qed_cancel_need_check_timer(s);
 338    timer_del(s->need_check_timer);
 339}
 340
 341static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
 342{
 343    BDRVQEDState *s = bs->opaque;
 344
 345    qed_cancel_need_check_timer(s);
 346    timer_free(s->need_check_timer);
 347}
 348
 349static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
 350                                        AioContext *new_context)
 351{
 352    BDRVQEDState *s = bs->opaque;
 353
 354    s->need_check_timer = aio_timer_new(new_context,
 355                                        QEMU_CLOCK_VIRTUAL, SCALE_NS,
 356                                        qed_need_check_timer_cb, s);
 357    if (s->header.features & QED_F_NEED_CHECK) {
 358        qed_start_need_check_timer(s);
 359    }
 360}
 361
 362static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
 363{
 364    BDRVQEDState *s = bs->opaque;
 365
 366    /* Fire the timer immediately in order to start doing I/O as soon as the
 367     * header is flushed.
 368     */
 369    if (s->need_check_timer && timer_pending(s->need_check_timer)) {
 370        qed_cancel_need_check_timer(s);
 371        qed_need_check_timer_entry(s);
 372    }
 373}
 374
 375static void bdrv_qed_init_state(BlockDriverState *bs)
 376{
 377    BDRVQEDState *s = bs->opaque;
 378
 379    memset(s, 0, sizeof(BDRVQEDState));
 380    s->bs = bs;
 381    qemu_co_mutex_init(&s->table_lock);
 382    qemu_co_queue_init(&s->allocating_write_reqs);
 383}
 384
 385/* Called with table_lock held.  */
 386static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
 387                                         int flags, Error **errp)
 388{
 389    BDRVQEDState *s = bs->opaque;
 390    QEDHeader le_header;
 391    int64_t file_size;
 392    int ret;
 393
 394    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
 395    if (ret < 0) {
 396        error_setg(errp, "Failed to read QED header");
 397        return ret;
 398    }
 399    qed_header_le_to_cpu(&le_header, &s->header);
 400
 401    if (s->header.magic != QED_MAGIC) {
 402        error_setg(errp, "Image not in QED format");
 403        return -EINVAL;
 404    }
 405    if (s->header.features & ~QED_FEATURE_MASK) {
 406        /* image uses unsupported feature bits */
 407        error_setg(errp, "Unsupported QED features: %" PRIx64,
 408                   s->header.features & ~QED_FEATURE_MASK);
 409        return -ENOTSUP;
 410    }
 411    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
 412        error_setg(errp, "QED cluster size is invalid");
 413        return -EINVAL;
 414    }
 415
 416    /* Round down file size to the last cluster */
 417    file_size = bdrv_getlength(bs->file->bs);
 418    if (file_size < 0) {
 419        error_setg(errp, "Failed to get file length");
 420        return file_size;
 421    }
 422    s->file_size = qed_start_of_cluster(s, file_size);
 423
 424    if (!qed_is_table_size_valid(s->header.table_size)) {
 425        error_setg(errp, "QED table size is invalid");
 426        return -EINVAL;
 427    }
 428    if (!qed_is_image_size_valid(s->header.image_size,
 429                                 s->header.cluster_size,
 430                                 s->header.table_size)) {
 431        error_setg(errp, "QED image size is invalid");
 432        return -EINVAL;
 433    }
 434    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
 435        error_setg(errp, "QED table offset is invalid");
 436        return -EINVAL;
 437    }
 438
 439    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
 440                      sizeof(uint64_t);
 441    s->l2_shift = ctz32(s->header.cluster_size);
 442    s->l2_mask = s->table_nelems - 1;
 443    s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
 444
 445    /* Header size calculation must not overflow uint32_t */
 446    if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
 447        error_setg(errp, "QED header size is too large");
 448        return -EINVAL;
 449    }
 450
 451    if ((s->header.features & QED_F_BACKING_FILE)) {
 452        if ((uint64_t)s->header.backing_filename_offset +
 453            s->header.backing_filename_size >
 454            s->header.cluster_size * s->header.header_size) {
 455            error_setg(errp, "QED backing filename offset is invalid");
 456            return -EINVAL;
 457        }
 458
 459        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
 460                              s->header.backing_filename_size,
 461                              bs->auto_backing_file,
 462                              sizeof(bs->auto_backing_file));
 463        if (ret < 0) {
 464            error_setg(errp, "Failed to read backing filename");
 465            return ret;
 466        }
 467        pstrcpy(bs->backing_file, sizeof(bs->backing_file),
 468                bs->auto_backing_file);
 469
 470        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
 471            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
 472        }
 473    }
 474
 475    /* Reset unknown autoclear feature bits.  This is a backwards
 476     * compatibility mechanism that allows images to be opened by older
 477     * programs, which "knock out" unknown feature bits.  When an image is
 478     * opened by a newer program again it can detect that the autoclear
 479     * feature is no longer valid.
 480     */
 481    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
 482        !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
 483        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
 484
 485        ret = qed_write_header_sync(s);
 486        if (ret) {
 487            error_setg(errp, "Failed to update header");
 488            return ret;
 489        }
 490
 491        /* From here on only known autoclear feature bits are valid */
 492        bdrv_flush(bs->file->bs);
 493    }
 494
 495    s->l1_table = qed_alloc_table(s);
 496    qed_init_l2_cache(&s->l2_cache);
 497
 498    ret = qed_read_l1_table_sync(s);
 499    if (ret) {
 500        error_setg(errp, "Failed to read L1 table");
 501        goto out;
 502    }
 503
 504    /* If image was not closed cleanly, check consistency */
 505    if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
 506        /* Read-only images cannot be fixed.  There is no risk of corruption
 507         * since write operations are not possible.  Therefore, allow
 508         * potentially inconsistent images to be opened read-only.  This can
 509         * aid data recovery from an otherwise inconsistent image.
 510         */
 511        if (!bdrv_is_read_only(bs->file->bs) &&
 512            !(flags & BDRV_O_INACTIVE)) {
 513            BdrvCheckResult result = {0};
 514
 515            ret = qed_check(s, &result, true);
 516            if (ret) {
 517                error_setg(errp, "Image corrupted");
 518                goto out;
 519            }
 520        }
 521    }
 522
 523    bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
 524
 525out:
 526    if (ret) {
 527        qed_free_l2_cache(&s->l2_cache);
 528        qemu_vfree(s->l1_table);
 529    }
 530    return ret;
 531}
 532
 533typedef struct QEDOpenCo {
 534    BlockDriverState *bs;
 535    QDict *options;
 536    int flags;
 537    Error **errp;
 538    int ret;
 539} QEDOpenCo;
 540
 541static void coroutine_fn bdrv_qed_open_entry(void *opaque)
 542{
 543    QEDOpenCo *qoc = opaque;
 544    BDRVQEDState *s = qoc->bs->opaque;
 545
 546    qemu_co_mutex_lock(&s->table_lock);
 547    qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
 548    qemu_co_mutex_unlock(&s->table_lock);
 549}
 550
 551static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
 552                         Error **errp)
 553{
 554    QEDOpenCo qoc = {
 555        .bs = bs,
 556        .options = options,
 557        .flags = flags,
 558        .errp = errp,
 559        .ret = -EINPROGRESS
 560    };
 561
 562    bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds,
 563                               BDRV_CHILD_IMAGE, false, errp);
 564    if (!bs->file) {
 565        return -EINVAL;
 566    }
 567
 568    bdrv_qed_init_state(bs);
 569    if (qemu_in_coroutine()) {
 570        bdrv_qed_open_entry(&qoc);
 571    } else {
 572        assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 573        qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
 574        BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 575    }
 576    BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 577    return qoc.ret;
 578}
 579
 580static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
 581{
 582    BDRVQEDState *s = bs->opaque;
 583
 584    bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
 585}
 586
 587/* We have nothing to do for QED reopen, stubs just return
 588 * success */
 589static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
 590                                   BlockReopenQueue *queue, Error **errp)
 591{
 592    return 0;
 593}
 594
 595static void bdrv_qed_close(BlockDriverState *bs)
 596{
 597    BDRVQEDState *s = bs->opaque;
 598
 599    bdrv_qed_detach_aio_context(bs);
 600
 601    /* Ensure writes reach stable storage */
 602    bdrv_flush(bs->file->bs);
 603
 604    /* Clean shutdown, no check required on next open */
 605    if (s->header.features & QED_F_NEED_CHECK) {
 606        s->header.features &= ~QED_F_NEED_CHECK;
 607        qed_write_header_sync(s);
 608    }
 609
 610    qed_free_l2_cache(&s->l2_cache);
 611    qemu_vfree(s->l1_table);
 612}
 613
 614static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
 615                                           Error **errp)
 616{
 617    BlockdevCreateOptionsQed *qed_opts;
 618    BlockBackend *blk = NULL;
 619    BlockDriverState *bs = NULL;
 620
 621    QEDHeader header;
 622    QEDHeader le_header;
 623    uint8_t *l1_table = NULL;
 624    size_t l1_size;
 625    int ret = 0;
 626
 627    assert(opts->driver == BLOCKDEV_DRIVER_QED);
 628    qed_opts = &opts->u.qed;
 629
 630    /* Validate options and set default values */
 631    if (!qed_opts->has_cluster_size) {
 632        qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
 633    }
 634    if (!qed_opts->has_table_size) {
 635        qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
 636    }
 637
 638    if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
 639        error_setg(errp, "QED cluster size must be within range [%u, %u] "
 640                         "and power of 2",
 641                   QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
 642        return -EINVAL;
 643    }
 644    if (!qed_is_table_size_valid(qed_opts->table_size)) {
 645        error_setg(errp, "QED table size must be within range [%u, %u] "
 646                         "and power of 2",
 647                   QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
 648        return -EINVAL;
 649    }
 650    if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
 651                                 qed_opts->table_size))
 652    {
 653        error_setg(errp, "QED image size must be a non-zero multiple of "
 654                         "cluster size and less than %" PRIu64 " bytes",
 655                   qed_max_image_size(qed_opts->cluster_size,
 656                                      qed_opts->table_size));
 657        return -EINVAL;
 658    }
 659
 660    /* Create BlockBackend to write to the image */
 661    bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
 662    if (bs == NULL) {
 663        return -EIO;
 664    }
 665
 666    blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
 667                          errp);
 668    if (!blk) {
 669        ret = -EPERM;
 670        goto out;
 671    }
 672    blk_set_allow_write_beyond_eof(blk, true);
 673
 674    /* Prepare image format */
 675    header = (QEDHeader) {
 676        .magic = QED_MAGIC,
 677        .cluster_size = qed_opts->cluster_size,
 678        .table_size = qed_opts->table_size,
 679        .header_size = 1,
 680        .features = 0,
 681        .compat_features = 0,
 682        .l1_table_offset = qed_opts->cluster_size,
 683        .image_size = qed_opts->size,
 684    };
 685
 686    l1_size = header.cluster_size * header.table_size;
 687
 688    /*
 689     * The QED format associates file length with allocation status,
 690     * so a new file (which is empty) must have a length of 0.
 691     */
 692    ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
 693    if (ret < 0) {
 694        goto out;
 695    }
 696
 697    if (qed_opts->has_backing_file) {
 698        header.features |= QED_F_BACKING_FILE;
 699        header.backing_filename_offset = sizeof(le_header);
 700        header.backing_filename_size = strlen(qed_opts->backing_file);
 701
 702        if (qed_opts->has_backing_fmt) {
 703            const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
 704            if (qed_fmt_is_raw(backing_fmt)) {
 705                header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
 706            }
 707        }
 708    }
 709
 710    qed_header_cpu_to_le(&header, &le_header);
 711    ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
 712    if (ret < 0) {
 713        goto out;
 714    }
 715    ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
 716                     header.backing_filename_size, 0);
 717    if (ret < 0) {
 718        goto out;
 719    }
 720
 721    l1_table = g_malloc0(l1_size);
 722    ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
 723    if (ret < 0) {
 724        goto out;
 725    }
 726
 727    ret = 0; /* success */
 728out:
 729    g_free(l1_table);
 730    blk_unref(blk);
 731    bdrv_unref(bs);
 732    return ret;
 733}
 734
 735static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
 736                                                const char *filename,
 737                                                QemuOpts *opts,
 738                                                Error **errp)
 739{
 740    BlockdevCreateOptions *create_options = NULL;
 741    QDict *qdict;
 742    Visitor *v;
 743    BlockDriverState *bs = NULL;
 744    int ret;
 745
 746    static const QDictRenames opt_renames[] = {
 747        { BLOCK_OPT_BACKING_FILE,       "backing-file" },
 748        { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
 749        { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
 750        { BLOCK_OPT_TABLE_SIZE,         "table-size" },
 751        { NULL, NULL },
 752    };
 753
 754    /* Parse options and convert legacy syntax */
 755    qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
 756
 757    if (!qdict_rename_keys(qdict, opt_renames, errp)) {
 758        ret = -EINVAL;
 759        goto fail;
 760    }
 761
 762    /* Create and open the file (protocol layer) */
 763    ret = bdrv_create_file(filename, opts, errp);
 764    if (ret < 0) {
 765        goto fail;
 766    }
 767
 768    bs = bdrv_open(filename, NULL, NULL,
 769                   BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
 770    if (bs == NULL) {
 771        ret = -EIO;
 772        goto fail;
 773    }
 774
 775    /* Now get the QAPI type BlockdevCreateOptions */
 776    qdict_put_str(qdict, "driver", "qed");
 777    qdict_put_str(qdict, "file", bs->node_name);
 778
 779    v = qobject_input_visitor_new_flat_confused(qdict, errp);
 780    if (!v) {
 781        ret = -EINVAL;
 782        goto fail;
 783    }
 784
 785    visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
 786    visit_free(v);
 787    if (!create_options) {
 788        ret = -EINVAL;
 789        goto fail;
 790    }
 791
 792    /* Silently round up size */
 793    assert(create_options->driver == BLOCKDEV_DRIVER_QED);
 794    create_options->u.qed.size =
 795        ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
 796
 797    /* Create the qed image (format layer) */
 798    ret = bdrv_qed_co_create(create_options, errp);
 799
 800fail:
 801    qobject_unref(qdict);
 802    bdrv_unref(bs);
 803    qapi_free_BlockdevCreateOptions(create_options);
 804    return ret;
 805}
 806
 807static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
 808                                                 bool want_zero,
 809                                                 int64_t pos, int64_t bytes,
 810                                                 int64_t *pnum, int64_t *map,
 811                                                 BlockDriverState **file)
 812{
 813    BDRVQEDState *s = bs->opaque;
 814    size_t len = MIN(bytes, SIZE_MAX);
 815    int status;
 816    QEDRequest request = { .l2_table = NULL };
 817    uint64_t offset;
 818    int ret;
 819
 820    qemu_co_mutex_lock(&s->table_lock);
 821    ret = qed_find_cluster(s, &request, pos, &len, &offset);
 822
 823    *pnum = len;
 824    switch (ret) {
 825    case QED_CLUSTER_FOUND:
 826        *map = offset | qed_offset_into_cluster(s, pos);
 827        status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
 828        *file = bs->file->bs;
 829        break;
 830    case QED_CLUSTER_ZERO:
 831        status = BDRV_BLOCK_ZERO;
 832        break;
 833    case QED_CLUSTER_L2:
 834    case QED_CLUSTER_L1:
 835        status = 0;
 836        break;
 837    default:
 838        assert(ret < 0);
 839        status = ret;
 840        break;
 841    }
 842
 843    qed_unref_l2_cache_entry(request.l2_table);
 844    qemu_co_mutex_unlock(&s->table_lock);
 845
 846    return status;
 847}
 848
 849static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
 850{
 851    return acb->bs->opaque;
 852}
 853
 854/**
 855 * Read from the backing file or zero-fill if no backing file
 856 *
 857 * @s:              QED state
 858 * @pos:            Byte position in device
 859 * @qiov:           Destination I/O vector
 860 *
 861 * This function reads qiov->size bytes starting at pos from the backing file.
 862 * If there is no backing file then zeroes are read.
 863 */
 864static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
 865                                              QEMUIOVector *qiov)
 866{
 867    if (s->bs->backing) {
 868        BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
 869        return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
 870    }
 871    qemu_iovec_memset(qiov, 0, 0, qiov->size);
 872    return 0;
 873}
 874
 875/**
 876 * Copy data from backing file into the image
 877 *
 878 * @s:          QED state
 879 * @pos:        Byte position in device
 880 * @len:        Number of bytes
 881 * @offset:     Byte offset in image file
 882 */
 883static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
 884                                                   uint64_t pos, uint64_t len,
 885                                                   uint64_t offset)
 886{
 887    QEMUIOVector qiov;
 888    int ret;
 889
 890    /* Skip copy entirely if there is no work to do */
 891    if (len == 0) {
 892        return 0;
 893    }
 894
 895    qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
 896
 897    ret = qed_read_backing_file(s, pos, &qiov);
 898
 899    if (ret) {
 900        goto out;
 901    }
 902
 903    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
 904    ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
 905    if (ret < 0) {
 906        goto out;
 907    }
 908    ret = 0;
 909out:
 910    qemu_vfree(qemu_iovec_buf(&qiov));
 911    return ret;
 912}
 913
 914/**
 915 * Link one or more contiguous clusters into a table
 916 *
 917 * @s:              QED state
 918 * @table:          L2 table
 919 * @index:          First cluster index
 920 * @n:              Number of contiguous clusters
 921 * @cluster:        First cluster offset
 922 *
 923 * The cluster offset may be an allocated byte offset in the image file, the
 924 * zero cluster marker, or the unallocated cluster marker.
 925 *
 926 * Called with table_lock held.
 927 */
 928static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
 929                                             int index, unsigned int n,
 930                                             uint64_t cluster)
 931{
 932    int i;
 933    for (i = index; i < index + n; i++) {
 934        table->offsets[i] = cluster;
 935        if (!qed_offset_is_unalloc_cluster(cluster) &&
 936            !qed_offset_is_zero_cluster(cluster)) {
 937            cluster += s->header.cluster_size;
 938        }
 939    }
 940}
 941
 942/* Called with table_lock held.  */
 943static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
 944{
 945    BDRVQEDState *s = acb_to_s(acb);
 946
 947    /* Free resources */
 948    qemu_iovec_destroy(&acb->cur_qiov);
 949    qed_unref_l2_cache_entry(acb->request.l2_table);
 950
 951    /* Free the buffer we may have allocated for zero writes */
 952    if (acb->flags & QED_AIOCB_ZERO) {
 953        qemu_vfree(acb->qiov->iov[0].iov_base);
 954        acb->qiov->iov[0].iov_base = NULL;
 955    }
 956
 957    /* Start next allocating write request waiting behind this one.  Note that
 958     * requests enqueue themselves when they first hit an unallocated cluster
 959     * but they wait until the entire request is finished before waking up the
 960     * next request in the queue.  This ensures that we don't cycle through
 961     * requests multiple times but rather finish one at a time completely.
 962     */
 963    if (acb == s->allocating_acb) {
 964        s->allocating_acb = NULL;
 965        if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
 966            qemu_co_queue_next(&s->allocating_write_reqs);
 967        } else if (s->header.features & QED_F_NEED_CHECK) {
 968            qed_start_need_check_timer(s);
 969        }
 970    }
 971}
 972
 973/**
 974 * Update L1 table with new L2 table offset and write it out
 975 *
 976 * Called with table_lock held.
 977 */
 978static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
 979{
 980    BDRVQEDState *s = acb_to_s(acb);
 981    CachedL2Table *l2_table = acb->request.l2_table;
 982    uint64_t l2_offset = l2_table->offset;
 983    int index, ret;
 984
 985    index = qed_l1_index(s, acb->cur_pos);
 986    s->l1_table->offsets[index] = l2_table->offset;
 987
 988    ret = qed_write_l1_table(s, index, 1);
 989
 990    /* Commit the current L2 table to the cache */
 991    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
 992
 993    /* This is guaranteed to succeed because we just committed the entry to the
 994     * cache.
 995     */
 996    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
 997    assert(acb->request.l2_table != NULL);
 998
 999    return ret;
1000}
1001
1002
1003/**
1004 * Update L2 table with new cluster offsets and write them out
1005 *
1006 * Called with table_lock held.
1007 */
1008static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1009{
1010    BDRVQEDState *s = acb_to_s(acb);
1011    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1012    int index, ret;
1013
1014    if (need_alloc) {
1015        qed_unref_l2_cache_entry(acb->request.l2_table);
1016        acb->request.l2_table = qed_new_l2_table(s);
1017    }
1018
1019    index = qed_l2_index(s, acb->cur_pos);
1020    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1021                         offset);
1022
1023    if (need_alloc) {
1024        /* Write out the whole new L2 table */
1025        ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1026        if (ret) {
1027            return ret;
1028        }
1029        return qed_aio_write_l1_update(acb);
1030    } else {
1031        /* Write out only the updated part of the L2 table */
1032        ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1033                                 false);
1034        if (ret) {
1035            return ret;
1036        }
1037    }
1038    return 0;
1039}
1040
1041/**
1042 * Write data to the image file
1043 *
1044 * Called with table_lock *not* held.
1045 */
1046static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1047{
1048    BDRVQEDState *s = acb_to_s(acb);
1049    uint64_t offset = acb->cur_cluster +
1050                      qed_offset_into_cluster(s, acb->cur_pos);
1051
1052    trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1053
1054    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1055    return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1056                           &acb->cur_qiov, 0);
1057}
1058
1059/**
1060 * Populate untouched regions of new data cluster
1061 *
1062 * Called with table_lock held.
1063 */
1064static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1065{
1066    BDRVQEDState *s = acb_to_s(acb);
1067    uint64_t start, len, offset;
1068    int ret;
1069
1070    qemu_co_mutex_unlock(&s->table_lock);
1071
1072    /* Populate front untouched region of new data cluster */
1073    start = qed_start_of_cluster(s, acb->cur_pos);
1074    len = qed_offset_into_cluster(s, acb->cur_pos);
1075
1076    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1077    ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1078    if (ret < 0) {
1079        goto out;
1080    }
1081
1082    /* Populate back untouched region of new data cluster */
1083    start = acb->cur_pos + acb->cur_qiov.size;
1084    len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1085    offset = acb->cur_cluster +
1086             qed_offset_into_cluster(s, acb->cur_pos) +
1087             acb->cur_qiov.size;
1088
1089    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1090    ret = qed_copy_from_backing_file(s, start, len, offset);
1091    if (ret < 0) {
1092        goto out;
1093    }
1094
1095    ret = qed_aio_write_main(acb);
1096    if (ret < 0) {
1097        goto out;
1098    }
1099
1100    if (s->bs->backing) {
1101        /*
1102         * Flush new data clusters before updating the L2 table
1103         *
1104         * This flush is necessary when a backing file is in use.  A crash
1105         * during an allocating write could result in empty clusters in the
1106         * image.  If the write only touched a subregion of the cluster,
1107         * then backing image sectors have been lost in the untouched
1108         * region.  The solution is to flush after writing a new data
1109         * cluster and before updating the L2 table.
1110         */
1111        ret = bdrv_co_flush(s->bs->file->bs);
1112    }
1113
1114out:
1115    qemu_co_mutex_lock(&s->table_lock);
1116    return ret;
1117}
1118
1119/**
1120 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1121 */
1122static bool qed_should_set_need_check(BDRVQEDState *s)
1123{
1124    /* The flush before L2 update path ensures consistency */
1125    if (s->bs->backing) {
1126        return false;
1127    }
1128
1129    return !(s->header.features & QED_F_NEED_CHECK);
1130}
1131
1132/**
1133 * Write new data cluster
1134 *
1135 * @acb:        Write request
1136 * @len:        Length in bytes
1137 *
1138 * This path is taken when writing to previously unallocated clusters.
1139 *
1140 * Called with table_lock held.
1141 */
1142static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1143{
1144    BDRVQEDState *s = acb_to_s(acb);
1145    int ret;
1146
1147    /* Cancel timer when the first allocating request comes in */
1148    if (s->allocating_acb == NULL) {
1149        qed_cancel_need_check_timer(s);
1150    }
1151
1152    /* Freeze this request if another allocating write is in progress */
1153    if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1154        if (s->allocating_acb != NULL) {
1155            qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1156            assert(s->allocating_acb == NULL);
1157        }
1158        s->allocating_acb = acb;
1159        return -EAGAIN; /* start over with looking up table entries */
1160    }
1161
1162    acb->cur_nclusters = qed_bytes_to_clusters(s,
1163            qed_offset_into_cluster(s, acb->cur_pos) + len);
1164    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1165
1166    if (acb->flags & QED_AIOCB_ZERO) {
1167        /* Skip ahead if the clusters are already zero */
1168        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1169            return 0;
1170        }
1171        acb->cur_cluster = 1;
1172    } else {
1173        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1174    }
1175
1176    if (qed_should_set_need_check(s)) {
1177        s->header.features |= QED_F_NEED_CHECK;
1178        ret = qed_write_header(s);
1179        if (ret < 0) {
1180            return ret;
1181        }
1182    }
1183
1184    if (!(acb->flags & QED_AIOCB_ZERO)) {
1185        ret = qed_aio_write_cow(acb);
1186        if (ret < 0) {
1187            return ret;
1188        }
1189    }
1190
1191    return qed_aio_write_l2_update(acb, acb->cur_cluster);
1192}
1193
1194/**
1195 * Write data cluster in place
1196 *
1197 * @acb:        Write request
1198 * @offset:     Cluster offset in bytes
1199 * @len:        Length in bytes
1200 *
1201 * This path is taken when writing to already allocated clusters.
1202 *
1203 * Called with table_lock held.
1204 */
1205static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1206                                              size_t len)
1207{
1208    BDRVQEDState *s = acb_to_s(acb);
1209    int r;
1210
1211    qemu_co_mutex_unlock(&s->table_lock);
1212
1213    /* Allocate buffer for zero writes */
1214    if (acb->flags & QED_AIOCB_ZERO) {
1215        struct iovec *iov = acb->qiov->iov;
1216
1217        if (!iov->iov_base) {
1218            iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1219            if (iov->iov_base == NULL) {
1220                r = -ENOMEM;
1221                goto out;
1222            }
1223            memset(iov->iov_base, 0, iov->iov_len);
1224        }
1225    }
1226
1227    /* Calculate the I/O vector */
1228    acb->cur_cluster = offset;
1229    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1230
1231    /* Do the actual write.  */
1232    r = qed_aio_write_main(acb);
1233out:
1234    qemu_co_mutex_lock(&s->table_lock);
1235    return r;
1236}
1237
1238/**
1239 * Write data cluster
1240 *
1241 * @opaque:     Write request
1242 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1243 * @offset:     Cluster offset in bytes
1244 * @len:        Length in bytes
1245 *
1246 * Called with table_lock held.
1247 */
1248static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1249                                           uint64_t offset, size_t len)
1250{
1251    QEDAIOCB *acb = opaque;
1252
1253    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1254
1255    acb->find_cluster_ret = ret;
1256
1257    switch (ret) {
1258    case QED_CLUSTER_FOUND:
1259        return qed_aio_write_inplace(acb, offset, len);
1260
1261    case QED_CLUSTER_L2:
1262    case QED_CLUSTER_L1:
1263    case QED_CLUSTER_ZERO:
1264        return qed_aio_write_alloc(acb, len);
1265
1266    default:
1267        g_assert_not_reached();
1268    }
1269}
1270
1271/**
1272 * Read data cluster
1273 *
1274 * @opaque:     Read request
1275 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1276 * @offset:     Cluster offset in bytes
1277 * @len:        Length in bytes
1278 *
1279 * Called with table_lock held.
1280 */
1281static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1282                                          uint64_t offset, size_t len)
1283{
1284    QEDAIOCB *acb = opaque;
1285    BDRVQEDState *s = acb_to_s(acb);
1286    BlockDriverState *bs = acb->bs;
1287    int r;
1288
1289    qemu_co_mutex_unlock(&s->table_lock);
1290
1291    /* Adjust offset into cluster */
1292    offset += qed_offset_into_cluster(s, acb->cur_pos);
1293
1294    trace_qed_aio_read_data(s, acb, ret, offset, len);
1295
1296    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1297
1298    /* Handle zero cluster and backing file reads, otherwise read
1299     * data cluster directly.
1300     */
1301    if (ret == QED_CLUSTER_ZERO) {
1302        qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1303        r = 0;
1304    } else if (ret != QED_CLUSTER_FOUND) {
1305        r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1306    } else {
1307        BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1308        r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1309                           &acb->cur_qiov, 0);
1310    }
1311
1312    qemu_co_mutex_lock(&s->table_lock);
1313    return r;
1314}
1315
1316/**
1317 * Begin next I/O or complete the request
1318 */
1319static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1320{
1321    BDRVQEDState *s = acb_to_s(acb);
1322    uint64_t offset;
1323    size_t len;
1324    int ret;
1325
1326    qemu_co_mutex_lock(&s->table_lock);
1327    while (1) {
1328        trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1329
1330        acb->qiov_offset += acb->cur_qiov.size;
1331        acb->cur_pos += acb->cur_qiov.size;
1332        qemu_iovec_reset(&acb->cur_qiov);
1333
1334        /* Complete request */
1335        if (acb->cur_pos >= acb->end_pos) {
1336            ret = 0;
1337            break;
1338        }
1339
1340        /* Find next cluster and start I/O */
1341        len = acb->end_pos - acb->cur_pos;
1342        ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1343        if (ret < 0) {
1344            break;
1345        }
1346
1347        if (acb->flags & QED_AIOCB_WRITE) {
1348            ret = qed_aio_write_data(acb, ret, offset, len);
1349        } else {
1350            ret = qed_aio_read_data(acb, ret, offset, len);
1351        }
1352
1353        if (ret < 0 && ret != -EAGAIN) {
1354            break;
1355        }
1356    }
1357
1358    trace_qed_aio_complete(s, acb, ret);
1359    qed_aio_complete(acb);
1360    qemu_co_mutex_unlock(&s->table_lock);
1361    return ret;
1362}
1363
1364static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1365                                       QEMUIOVector *qiov, int nb_sectors,
1366                                       int flags)
1367{
1368    QEDAIOCB acb = {
1369        .bs         = bs,
1370        .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1371        .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1372        .qiov       = qiov,
1373        .flags      = flags,
1374    };
1375    qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1376
1377    trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1378
1379    /* Start request */
1380    return qed_aio_next_io(&acb);
1381}
1382
1383static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1384                                          int64_t sector_num, int nb_sectors,
1385                                          QEMUIOVector *qiov)
1386{
1387    return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1388}
1389
1390static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1391                                           int64_t sector_num, int nb_sectors,
1392                                           QEMUIOVector *qiov, int flags)
1393{
1394    assert(!flags);
1395    return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1396}
1397
1398static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1399                                                  int64_t offset,
1400                                                  int bytes,
1401                                                  BdrvRequestFlags flags)
1402{
1403    BDRVQEDState *s = bs->opaque;
1404
1405    /*
1406     * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1407     * then it will be allocated during request processing.
1408     */
1409    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1410
1411    /* Fall back if the request is not aligned */
1412    if (qed_offset_into_cluster(s, offset) ||
1413        qed_offset_into_cluster(s, bytes)) {
1414        return -ENOTSUP;
1415    }
1416
1417    return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1418                          bytes >> BDRV_SECTOR_BITS,
1419                          QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1420}
1421
1422static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1423                                             int64_t offset,
1424                                             bool exact,
1425                                             PreallocMode prealloc,
1426                                             BdrvRequestFlags flags,
1427                                             Error **errp)
1428{
1429    BDRVQEDState *s = bs->opaque;
1430    uint64_t old_image_size;
1431    int ret;
1432
1433    if (prealloc != PREALLOC_MODE_OFF) {
1434        error_setg(errp, "Unsupported preallocation mode '%s'",
1435                   PreallocMode_str(prealloc));
1436        return -ENOTSUP;
1437    }
1438
1439    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1440                                 s->header.table_size)) {
1441        error_setg(errp, "Invalid image size specified");
1442        return -EINVAL;
1443    }
1444
1445    if ((uint64_t)offset < s->header.image_size) {
1446        error_setg(errp, "Shrinking images is currently not supported");
1447        return -ENOTSUP;
1448    }
1449
1450    old_image_size = s->header.image_size;
1451    s->header.image_size = offset;
1452    ret = qed_write_header_sync(s);
1453    if (ret < 0) {
1454        s->header.image_size = old_image_size;
1455        error_setg_errno(errp, -ret, "Failed to update the image size");
1456    }
1457    return ret;
1458}
1459
1460static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1461{
1462    BDRVQEDState *s = bs->opaque;
1463    return s->header.image_size;
1464}
1465
1466static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1467{
1468    BDRVQEDState *s = bs->opaque;
1469
1470    memset(bdi, 0, sizeof(*bdi));
1471    bdi->cluster_size = s->header.cluster_size;
1472    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1473    return 0;
1474}
1475
1476static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1477                                        const char *backing_file,
1478                                        const char *backing_fmt)
1479{
1480    BDRVQEDState *s = bs->opaque;
1481    QEDHeader new_header, le_header;
1482    void *buffer;
1483    size_t buffer_len, backing_file_len;
1484    int ret;
1485
1486    /* Refuse to set backing filename if unknown compat feature bits are
1487     * active.  If the image uses an unknown compat feature then we may not
1488     * know the layout of data following the header structure and cannot safely
1489     * add a new string.
1490     */
1491    if (backing_file && (s->header.compat_features &
1492                         ~QED_COMPAT_FEATURE_MASK)) {
1493        return -ENOTSUP;
1494    }
1495
1496    memcpy(&new_header, &s->header, sizeof(new_header));
1497
1498    new_header.features &= ~(QED_F_BACKING_FILE |
1499                             QED_F_BACKING_FORMAT_NO_PROBE);
1500
1501    /* Adjust feature flags */
1502    if (backing_file) {
1503        new_header.features |= QED_F_BACKING_FILE;
1504
1505        if (qed_fmt_is_raw(backing_fmt)) {
1506            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1507        }
1508    }
1509
1510    /* Calculate new header size */
1511    backing_file_len = 0;
1512
1513    if (backing_file) {
1514        backing_file_len = strlen(backing_file);
1515    }
1516
1517    buffer_len = sizeof(new_header);
1518    new_header.backing_filename_offset = buffer_len;
1519    new_header.backing_filename_size = backing_file_len;
1520    buffer_len += backing_file_len;
1521
1522    /* Make sure we can rewrite header without failing */
1523    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1524        return -ENOSPC;
1525    }
1526
1527    /* Prepare new header */
1528    buffer = g_malloc(buffer_len);
1529
1530    qed_header_cpu_to_le(&new_header, &le_header);
1531    memcpy(buffer, &le_header, sizeof(le_header));
1532    buffer_len = sizeof(le_header);
1533
1534    if (backing_file) {
1535        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1536        buffer_len += backing_file_len;
1537    }
1538
1539    /* Write new header */
1540    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1541    g_free(buffer);
1542    if (ret == 0) {
1543        memcpy(&s->header, &new_header, sizeof(new_header));
1544    }
1545    return ret;
1546}
1547
1548static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1549                                                      Error **errp)
1550{
1551    BDRVQEDState *s = bs->opaque;
1552    int ret;
1553
1554    bdrv_qed_close(bs);
1555
1556    bdrv_qed_init_state(bs);
1557    qemu_co_mutex_lock(&s->table_lock);
1558    ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1559    qemu_co_mutex_unlock(&s->table_lock);
1560    if (ret < 0) {
1561        error_prepend(errp, "Could not reopen qed layer: ");
1562    }
1563}
1564
1565static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1566                                          BdrvCheckResult *result,
1567                                          BdrvCheckMode fix)
1568{
1569    BDRVQEDState *s = bs->opaque;
1570    int ret;
1571
1572    qemu_co_mutex_lock(&s->table_lock);
1573    ret = qed_check(s, result, !!fix);
1574    qemu_co_mutex_unlock(&s->table_lock);
1575
1576    return ret;
1577}
1578
1579static QemuOptsList qed_create_opts = {
1580    .name = "qed-create-opts",
1581    .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1582    .desc = {
1583        {
1584            .name = BLOCK_OPT_SIZE,
1585            .type = QEMU_OPT_SIZE,
1586            .help = "Virtual disk size"
1587        },
1588        {
1589            .name = BLOCK_OPT_BACKING_FILE,
1590            .type = QEMU_OPT_STRING,
1591            .help = "File name of a base image"
1592        },
1593        {
1594            .name = BLOCK_OPT_BACKING_FMT,
1595            .type = QEMU_OPT_STRING,
1596            .help = "Image format of the base image"
1597        },
1598        {
1599            .name = BLOCK_OPT_CLUSTER_SIZE,
1600            .type = QEMU_OPT_SIZE,
1601            .help = "Cluster size (in bytes)",
1602            .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1603        },
1604        {
1605            .name = BLOCK_OPT_TABLE_SIZE,
1606            .type = QEMU_OPT_SIZE,
1607            .help = "L1/L2 table size (in clusters)"
1608        },
1609        { /* end of list */ }
1610    }
1611};
1612
1613static BlockDriver bdrv_qed = {
1614    .format_name              = "qed",
1615    .instance_size            = sizeof(BDRVQEDState),
1616    .create_opts              = &qed_create_opts,
1617    .is_format                = true,
1618    .supports_backing         = true,
1619
1620    .bdrv_probe               = bdrv_qed_probe,
1621    .bdrv_open                = bdrv_qed_open,
1622    .bdrv_close               = bdrv_qed_close,
1623    .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1624    .bdrv_child_perm          = bdrv_default_perms,
1625    .bdrv_co_create           = bdrv_qed_co_create,
1626    .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1627    .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1628    .bdrv_co_block_status     = bdrv_qed_co_block_status,
1629    .bdrv_co_readv            = bdrv_qed_co_readv,
1630    .bdrv_co_writev           = bdrv_qed_co_writev,
1631    .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1632    .bdrv_co_truncate         = bdrv_qed_co_truncate,
1633    .bdrv_getlength           = bdrv_qed_getlength,
1634    .bdrv_get_info            = bdrv_qed_get_info,
1635    .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1636    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1637    .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1638    .bdrv_co_check            = bdrv_qed_co_check,
1639    .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1640    .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1641    .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1642};
1643
1644static void bdrv_qed_init(void)
1645{
1646    bdrv_register(&bdrv_qed);
1647}
1648
1649block_init(bdrv_qed_init);
1650