qemu/hw/intc/pnv_xive.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC XIVE interrupt controller model
   3 *
   4 * Copyright (c) 2017-2019, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/log.h"
  12#include "qemu/module.h"
  13#include "qapi/error.h"
  14#include "target/ppc/cpu.h"
  15#include "sysemu/cpus.h"
  16#include "sysemu/dma.h"
  17#include "sysemu/reset.h"
  18#include "monitor/monitor.h"
  19#include "hw/ppc/fdt.h"
  20#include "hw/ppc/pnv.h"
  21#include "hw/ppc/pnv_core.h"
  22#include "hw/ppc/pnv_xscom.h"
  23#include "hw/ppc/pnv_xive.h"
  24#include "hw/ppc/xive_regs.h"
  25#include "hw/qdev-properties.h"
  26#include "hw/ppc/ppc.h"
  27#include "trace.h"
  28
  29#include <libfdt.h>
  30
  31#include "pnv_xive_regs.h"
  32
  33#undef XIVE_DEBUG
  34
  35/*
  36 * Virtual structures table (VST)
  37 */
  38#define SBE_PER_BYTE   4
  39
  40typedef struct XiveVstInfo {
  41    const char *name;
  42    uint32_t    size;
  43    uint32_t    max_blocks;
  44} XiveVstInfo;
  45
  46static const XiveVstInfo vst_infos[] = {
  47    [VST_TSEL_IVT]  = { "EAT",  sizeof(XiveEAS), 16 },
  48    [VST_TSEL_SBE]  = { "SBE",  1,               16 },
  49    [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
  50    [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
  51
  52    /*
  53     *  Interrupt fifo backing store table (not modeled) :
  54     *
  55     * 0 - IPI,
  56     * 1 - HWD,
  57     * 2 - First escalate,
  58     * 3 - Second escalate,
  59     * 4 - Redistribution,
  60     * 5 - IPI cascaded queue ?
  61     */
  62    [VST_TSEL_IRQ]  = { "IRQ",  1,               6  },
  63};
  64
  65#define xive_error(xive, fmt, ...)                                      \
  66    qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n",              \
  67                  (xive)->chip->chip_id, ## __VA_ARGS__);
  68
  69/*
  70 * QEMU version of the GETFIELD/SETFIELD macros
  71 *
  72 * TODO: It might be better to use the existing extract64() and
  73 * deposit64() but this means that all the register definitions will
  74 * change and become incompatible with the ones found in skiboot.
  75 *
  76 * Keep it as it is for now until we find a common ground.
  77 */
  78static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
  79{
  80    return (word & mask) >> ctz64(mask);
  81}
  82
  83static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
  84                                uint64_t value)
  85{
  86    return (word & ~mask) | ((value << ctz64(mask)) & mask);
  87}
  88
  89/*
  90 * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
  91 * field overrides the hardwired chip ID in the Powerbus operations
  92 * and for CAM compares
  93 */
  94static uint8_t pnv_xive_block_id(PnvXive *xive)
  95{
  96    uint8_t blk = xive->chip->chip_id;
  97    uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
  98
  99    if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
 100        blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
 101    }
 102
 103    return blk;
 104}
 105
 106/*
 107 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
 108 * of the chips is good enough.
 109 *
 110 * TODO: Block scope support
 111 */
 112static PnvXive *pnv_xive_get_remote(uint8_t blk)
 113{
 114    PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
 115    int i;
 116
 117    for (i = 0; i < pnv->num_chips; i++) {
 118        Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
 119        PnvXive *xive = &chip9->xive;
 120
 121        if (pnv_xive_block_id(xive) == blk) {
 122            return xive;
 123        }
 124    }
 125    return NULL;
 126}
 127
 128/*
 129 * VST accessors for SBE, EAT, ENDT, NVT
 130 *
 131 * Indirect VST tables are arrays of VSDs pointing to a page (of same
 132 * size). Each page is a direct VST table.
 133 */
 134
 135#define XIVE_VSD_SIZE 8
 136
 137/* Indirect page size can be 4K, 64K, 2M, 16M. */
 138static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
 139{
 140     return page_shift == 12 || page_shift == 16 ||
 141         page_shift == 21 || page_shift == 24;
 142}
 143
 144static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
 145                                         uint64_t vsd, uint32_t idx)
 146{
 147    const XiveVstInfo *info = &vst_infos[type];
 148    uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
 149    uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
 150    uint32_t idx_max;
 151
 152    idx_max = vst_tsize / info->size - 1;
 153    if (idx > idx_max) {
 154#ifdef XIVE_DEBUG
 155        xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
 156                   info->name, idx, idx_max);
 157#endif
 158        return 0;
 159    }
 160
 161    return vst_addr + idx * info->size;
 162}
 163
 164static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
 165                                           uint64_t vsd, uint32_t idx)
 166{
 167    const XiveVstInfo *info = &vst_infos[type];
 168    uint64_t vsd_addr;
 169    uint32_t vsd_idx;
 170    uint32_t page_shift;
 171    uint32_t vst_per_page;
 172
 173    /* Get the page size of the indirect table. */
 174    vsd_addr = vsd & VSD_ADDRESS_MASK;
 175    vsd = ldq_be_dma(&address_space_memory, vsd_addr);
 176
 177    if (!(vsd & VSD_ADDRESS_MASK)) {
 178#ifdef XIVE_DEBUG
 179        xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
 180#endif
 181        return 0;
 182    }
 183
 184    page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
 185
 186    if (!pnv_xive_vst_page_size_allowed(page_shift)) {
 187        xive_error(xive, "VST: invalid %s page shift %d", info->name,
 188                   page_shift);
 189        return 0;
 190    }
 191
 192    vst_per_page = (1ull << page_shift) / info->size;
 193    vsd_idx = idx / vst_per_page;
 194
 195    /* Load the VSD we are looking for, if not already done */
 196    if (vsd_idx) {
 197        vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
 198        vsd = ldq_be_dma(&address_space_memory, vsd_addr);
 199
 200        if (!(vsd & VSD_ADDRESS_MASK)) {
 201#ifdef XIVE_DEBUG
 202            xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
 203#endif
 204            return 0;
 205        }
 206
 207        /*
 208         * Check that the pages have a consistent size across the
 209         * indirect table
 210         */
 211        if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
 212            xive_error(xive, "VST: %s entry %x indirect page size differ !?",
 213                       info->name, idx);
 214            return 0;
 215        }
 216    }
 217
 218    return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
 219}
 220
 221static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
 222                                  uint32_t idx)
 223{
 224    const XiveVstInfo *info = &vst_infos[type];
 225    uint64_t vsd;
 226
 227    if (blk >= info->max_blocks) {
 228        xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
 229                   blk, info->name, idx);
 230        return 0;
 231    }
 232
 233    vsd = xive->vsds[type][blk];
 234
 235    /* Remote VST access */
 236    if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
 237        xive = pnv_xive_get_remote(blk);
 238
 239        return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
 240    }
 241
 242    if (VSD_INDIRECT & vsd) {
 243        return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
 244    }
 245
 246    return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
 247}
 248
 249static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
 250                             uint32_t idx, void *data)
 251{
 252    const XiveVstInfo *info = &vst_infos[type];
 253    uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
 254
 255    if (!addr) {
 256        return -1;
 257    }
 258
 259    cpu_physical_memory_read(addr, data, info->size);
 260    return 0;
 261}
 262
 263#define XIVE_VST_WORD_ALL -1
 264
 265static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
 266                              uint32_t idx, void *data, uint32_t word_number)
 267{
 268    const XiveVstInfo *info = &vst_infos[type];
 269    uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
 270
 271    if (!addr) {
 272        return -1;
 273    }
 274
 275    if (word_number == XIVE_VST_WORD_ALL) {
 276        cpu_physical_memory_write(addr, data, info->size);
 277    } else {
 278        cpu_physical_memory_write(addr + word_number * 4,
 279                                  data + word_number * 4, 4);
 280    }
 281    return 0;
 282}
 283
 284static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 285                            XiveEND *end)
 286{
 287    return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
 288}
 289
 290static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 291                              XiveEND *end, uint8_t word_number)
 292{
 293    return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
 294                              word_number);
 295}
 296
 297static int pnv_xive_end_update(PnvXive *xive)
 298{
 299    uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
 300                           xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
 301    uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
 302                           xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
 303    int i;
 304    uint64_t eqc_watch[4];
 305
 306    for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
 307        eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
 308    }
 309
 310    return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
 311                              XIVE_VST_WORD_ALL);
 312}
 313
 314static void pnv_xive_end_cache_load(PnvXive *xive)
 315{
 316    uint8_t  blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
 317                           xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
 318    uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
 319                           xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
 320    uint64_t eqc_watch[4] = { 0 };
 321    int i;
 322
 323    if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
 324        xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
 325    }
 326
 327    for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
 328        xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
 329    }
 330}
 331
 332static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 333                            XiveNVT *nvt)
 334{
 335    return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
 336}
 337
 338static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 339                              XiveNVT *nvt, uint8_t word_number)
 340{
 341    return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
 342                              word_number);
 343}
 344
 345static int pnv_xive_nvt_update(PnvXive *xive)
 346{
 347    uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
 348                           xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
 349    uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
 350                           xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
 351    int i;
 352    uint64_t vpc_watch[8];
 353
 354    for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
 355        vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
 356    }
 357
 358    return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
 359                              XIVE_VST_WORD_ALL);
 360}
 361
 362static void pnv_xive_nvt_cache_load(PnvXive *xive)
 363{
 364    uint8_t  blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
 365                           xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
 366    uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
 367                           xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
 368    uint64_t vpc_watch[8] = { 0 };
 369    int i;
 370
 371    if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
 372        xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
 373    }
 374
 375    for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
 376        xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
 377    }
 378}
 379
 380static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 381                            XiveEAS *eas)
 382{
 383    PnvXive *xive = PNV_XIVE(xrtr);
 384
 385    /*
 386     * EAT lookups should be local to the IC
 387     */
 388    if (pnv_xive_block_id(xive) != blk) {
 389        xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
 390        return -1;
 391    }
 392
 393    return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
 394}
 395
 396/*
 397 * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
 398 * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
 399 * second register covers cores 16-23 (normal) or 8-11 (fused).
 400 */
 401static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
 402{
 403    int pir = ppc_cpu_pir(cpu);
 404    uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
 405    uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
 406    uint32_t bit = pir & 0x3f;
 407
 408    return xive->regs[reg >> 3] & PPC_BIT(bit);
 409}
 410
 411static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
 412                              uint8_t nvt_blk, uint32_t nvt_idx,
 413                              bool cam_ignore, uint8_t priority,
 414                              uint32_t logic_serv, XiveTCTXMatch *match)
 415{
 416    PnvXive *xive = PNV_XIVE(xptr);
 417    PnvChip *chip = xive->chip;
 418    int count = 0;
 419    int i, j;
 420
 421    for (i = 0; i < chip->nr_cores; i++) {
 422        PnvCore *pc = chip->cores[i];
 423        CPUCore *cc = CPU_CORE(pc);
 424
 425        for (j = 0; j < cc->nr_threads; j++) {
 426            PowerPCCPU *cpu = pc->threads[j];
 427            XiveTCTX *tctx;
 428            int ring;
 429
 430            if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
 431                continue;
 432            }
 433
 434            tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
 435
 436            /*
 437             * Check the thread context CAM lines and record matches.
 438             */
 439            ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
 440                                             nvt_idx, cam_ignore, logic_serv);
 441            /*
 442             * Save the context and follow on to catch duplicates, that we
 443             * don't support yet.
 444             */
 445            if (ring != -1) {
 446                if (match->tctx) {
 447                    qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
 448                                  "thread context NVT %x/%x\n",
 449                                  nvt_blk, nvt_idx);
 450                    return -1;
 451                }
 452
 453                match->ring = ring;
 454                match->tctx = tctx;
 455                count++;
 456            }
 457        }
 458    }
 459
 460    return count;
 461}
 462
 463static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
 464{
 465    return pnv_xive_block_id(PNV_XIVE(xrtr));
 466}
 467
 468/*
 469 * The TIMA MMIO space is shared among the chips and to identify the
 470 * chip from which the access is being done, we extract the chip id
 471 * from the PIR.
 472 */
 473static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
 474{
 475    int pir = ppc_cpu_pir(cpu);
 476    XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
 477    PnvXive *xive = PNV_XIVE(xptr);
 478
 479    if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
 480        xive_error(xive, "IC: CPU %x is not enabled", pir);
 481    }
 482    return xive;
 483}
 484
 485/*
 486 * The internal sources (IPIs) of the interrupt controller have no
 487 * knowledge of the XIVE chip on which they reside. Encode the block
 488 * id in the source interrupt number before forwarding the source
 489 * event notification to the Router. This is required on a multichip
 490 * system.
 491 */
 492static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
 493{
 494    PnvXive *xive = PNV_XIVE(xn);
 495    uint8_t blk = pnv_xive_block_id(xive);
 496
 497    xive_router_notify(xn, XIVE_EAS(blk, srcno));
 498}
 499
 500/*
 501 * XIVE helpers
 502 */
 503
 504static uint64_t pnv_xive_vc_size(PnvXive *xive)
 505{
 506    return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
 507}
 508
 509static uint64_t pnv_xive_edt_shift(PnvXive *xive)
 510{
 511    return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
 512}
 513
 514static uint64_t pnv_xive_pc_size(PnvXive *xive)
 515{
 516    return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
 517}
 518
 519static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
 520{
 521    uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
 522    uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
 523
 524    return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
 525}
 526
 527/*
 528 * Compute the number of entries per indirect subpage.
 529 */
 530static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
 531{
 532    uint8_t blk = pnv_xive_block_id(xive);
 533    uint64_t vsd = xive->vsds[type][blk];
 534    const XiveVstInfo *info = &vst_infos[type];
 535    uint64_t vsd_addr;
 536    uint32_t page_shift;
 537
 538    /* For direct tables, fake a valid value */
 539    if (!(VSD_INDIRECT & vsd)) {
 540        return 1;
 541    }
 542
 543    /* Get the page size of the indirect table. */
 544    vsd_addr = vsd & VSD_ADDRESS_MASK;
 545    vsd = ldq_be_dma(&address_space_memory, vsd_addr);
 546
 547    if (!(vsd & VSD_ADDRESS_MASK)) {
 548#ifdef XIVE_DEBUG
 549        xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
 550#endif
 551        return 0;
 552    }
 553
 554    page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
 555
 556    if (!pnv_xive_vst_page_size_allowed(page_shift)) {
 557        xive_error(xive, "VST: invalid %s page shift %d", info->name,
 558                   page_shift);
 559        return 0;
 560    }
 561
 562    return (1ull << page_shift) / info->size;
 563}
 564
 565/*
 566 * EDT Table
 567 *
 568 * The Virtualization Controller MMIO region containing the IPI ESB
 569 * pages and END ESB pages is sub-divided into "sets" which map
 570 * portions of the VC region to the different ESB pages. It is
 571 * configured at runtime through the EDT "Domain Table" to let the
 572 * firmware decide how to split the VC address space between IPI ESB
 573 * pages and END ESB pages.
 574 */
 575
 576/*
 577 * Computes the overall size of the IPI or the END ESB pages
 578 */
 579static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
 580{
 581    uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
 582    uint64_t size = 0;
 583    int i;
 584
 585    for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
 586        uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
 587
 588        if (edt_type == type) {
 589            size += edt_size;
 590        }
 591    }
 592
 593    return size;
 594}
 595
 596/*
 597 * Maps an offset of the VC region in the IPI or END region using the
 598 * layout defined by the EDT "Domaine Table"
 599 */
 600static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
 601                                              uint64_t type)
 602{
 603    int i;
 604    uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
 605    uint64_t edt_offset = vc_offset;
 606
 607    for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
 608        uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
 609
 610        if (edt_type != type) {
 611            edt_offset -= edt_size;
 612        }
 613    }
 614
 615    return edt_offset;
 616}
 617
 618static void pnv_xive_edt_resize(PnvXive *xive)
 619{
 620    uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
 621    uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
 622
 623    memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
 624    memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
 625
 626    memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
 627    memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
 628}
 629
 630/*
 631 * XIVE Table configuration. Only EDT is supported.
 632 */
 633static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
 634{
 635    uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
 636    uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
 637    uint64_t *xive_table;
 638    uint8_t max_index;
 639
 640    switch (tsel) {
 641    case CQ_TAR_TSEL_BLK:
 642        max_index = ARRAY_SIZE(xive->blk);
 643        xive_table = xive->blk;
 644        break;
 645    case CQ_TAR_TSEL_MIG:
 646        max_index = ARRAY_SIZE(xive->mig);
 647        xive_table = xive->mig;
 648        break;
 649    case CQ_TAR_TSEL_EDT:
 650        max_index = ARRAY_SIZE(xive->edt);
 651        xive_table = xive->edt;
 652        break;
 653    case CQ_TAR_TSEL_VDT:
 654        max_index = ARRAY_SIZE(xive->vdt);
 655        xive_table = xive->vdt;
 656        break;
 657    default:
 658        xive_error(xive, "IC: invalid table %d", (int) tsel);
 659        return -1;
 660    }
 661
 662    if (tsel_index >= max_index) {
 663        xive_error(xive, "IC: invalid index %d", (int) tsel_index);
 664        return -1;
 665    }
 666
 667    xive_table[tsel_index] = val;
 668
 669    if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
 670        xive->regs[CQ_TAR >> 3] =
 671            SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
 672    }
 673
 674    /*
 675     * EDT configuration is complete. Resize the MMIO windows exposing
 676     * the IPI and the END ESBs in the VC region.
 677     */
 678    if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
 679        pnv_xive_edt_resize(xive);
 680    }
 681
 682    return 0;
 683}
 684
 685/*
 686 * Virtual Structure Tables (VST) configuration
 687 */
 688static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
 689                                       uint8_t blk, uint64_t vsd)
 690{
 691    XiveENDSource *end_xsrc = &xive->end_source;
 692    XiveSource *xsrc = &xive->ipi_source;
 693    const XiveVstInfo *info = &vst_infos[type];
 694    uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
 695    uint64_t vst_tsize = 1ull << page_shift;
 696    uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
 697
 698    /* Basic checks */
 699
 700    if (VSD_INDIRECT & vsd) {
 701        if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
 702            xive_error(xive, "VST: %s indirect tables are not enabled",
 703                       info->name);
 704            return;
 705        }
 706
 707        if (!pnv_xive_vst_page_size_allowed(page_shift)) {
 708            xive_error(xive, "VST: invalid %s page shift %d", info->name,
 709                       page_shift);
 710            return;
 711        }
 712    }
 713
 714    if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
 715        xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
 716                   " page shift %d", info->name, vst_addr, page_shift);
 717        return;
 718    }
 719
 720    /* Record the table configuration (in SRAM on HW) */
 721    xive->vsds[type][blk] = vsd;
 722
 723    /* Now tune the models with the configuration provided by the FW */
 724
 725    switch (type) {
 726    case VST_TSEL_IVT:  /* Nothing to be done */
 727        break;
 728
 729    case VST_TSEL_EQDT:
 730        /*
 731         * Backing store pages for the END.
 732         *
 733         * If the table is direct, we can compute the number of PQ
 734         * entries provisioned by FW (such as skiboot) and resize the
 735         * END ESB window accordingly.
 736         */
 737        if (!(VSD_INDIRECT & vsd)) {
 738            memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
 739                                   * (1ull << xsrc->esb_shift));
 740        }
 741        memory_region_add_subregion(&xive->end_edt_mmio, 0,
 742                                    &end_xsrc->esb_mmio);
 743        break;
 744
 745    case VST_TSEL_SBE:
 746        /*
 747         * Backing store pages for the source PQ bits. The model does
 748         * not use these PQ bits backed in RAM because the XiveSource
 749         * model has its own.
 750         *
 751         * If the table is direct, we can compute the number of PQ
 752         * entries provisioned by FW (such as skiboot) and resize the
 753         * ESB window accordingly.
 754         */
 755        if (!(VSD_INDIRECT & vsd)) {
 756            memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
 757                                   * (1ull << xsrc->esb_shift));
 758        }
 759        memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
 760        break;
 761
 762    case VST_TSEL_VPDT: /* Not modeled */
 763    case VST_TSEL_IRQ:  /* Not modeled */
 764        /*
 765         * These tables contains the backing store pages for the
 766         * interrupt fifos of the VC sub-engine in case of overflow.
 767         */
 768        break;
 769
 770    default:
 771        g_assert_not_reached();
 772    }
 773}
 774
 775/*
 776 * Both PC and VC sub-engines are configured as each use the Virtual
 777 * Structure Tables : SBE, EAS, END and NVT.
 778 */
 779static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
 780{
 781    uint8_t mode = GETFIELD(VSD_MODE, vsd);
 782    uint8_t type = GETFIELD(VST_TABLE_SELECT,
 783                            xive->regs[VC_VSD_TABLE_ADDR >> 3]);
 784    uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
 785                           xive->regs[VC_VSD_TABLE_ADDR >> 3]);
 786    uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
 787
 788    if (type > VST_TSEL_IRQ) {
 789        xive_error(xive, "VST: invalid table type %d", type);
 790        return;
 791    }
 792
 793    if (blk >= vst_infos[type].max_blocks) {
 794        xive_error(xive, "VST: invalid block id %d for"
 795                      " %s table", blk, vst_infos[type].name);
 796        return;
 797    }
 798
 799    /*
 800     * Only take the VC sub-engine configuration into account because
 801     * the XiveRouter model combines both VC and PC sub-engines
 802     */
 803    if (pc_engine) {
 804        return;
 805    }
 806
 807    if (!vst_addr) {
 808        xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
 809        return;
 810    }
 811
 812    switch (mode) {
 813    case VSD_MODE_FORWARD:
 814        xive->vsds[type][blk] = vsd;
 815        break;
 816
 817    case VSD_MODE_EXCLUSIVE:
 818        pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
 819        break;
 820
 821    default:
 822        xive_error(xive, "VST: unsupported table mode %d", mode);
 823        return;
 824    }
 825}
 826
 827/*
 828 * Interrupt controller MMIO region. The layout is compatible between
 829 * 4K and 64K pages :
 830 *
 831 * Page 0           sub-engine BARs
 832 *  0x000 - 0x3FF   IC registers
 833 *  0x400 - 0x7FF   PC registers
 834 *  0x800 - 0xFFF   VC registers
 835 *
 836 * Page 1           Notify page (writes only)
 837 *  0x000 - 0x7FF   HW interrupt triggers (PSI, PHB)
 838 *  0x800 - 0xFFF   forwards and syncs
 839 *
 840 * Page 2           LSI Trigger page (writes only) (not modeled)
 841 * Page 3           LSI SB EOI page (reads only) (not modeled)
 842 *
 843 * Page 4-7         indirect TIMA
 844 */
 845
 846/*
 847 * IC - registers MMIO
 848 */
 849static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
 850                                  uint64_t val, unsigned size)
 851{
 852    PnvXive *xive = PNV_XIVE(opaque);
 853    MemoryRegion *sysmem = get_system_memory();
 854    uint32_t reg = offset >> 3;
 855    bool is_chip0 = xive->chip->chip_id == 0;
 856
 857    switch (offset) {
 858
 859    /*
 860     * XIVE CQ (PowerBus bridge) settings
 861     */
 862    case CQ_MSGSND:     /* msgsnd for doorbells */
 863    case CQ_FIRMASK_OR: /* FIR error reporting */
 864        break;
 865    case CQ_PBI_CTL:
 866        if (val & CQ_PBI_PC_64K) {
 867            xive->pc_shift = 16;
 868        }
 869        if (val & CQ_PBI_VC_64K) {
 870            xive->vc_shift = 16;
 871        }
 872        break;
 873    case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
 874        /*
 875         * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
 876         */
 877        break;
 878
 879    /*
 880     * XIVE Virtualization Controller settings
 881     */
 882    case VC_GLOBAL_CONFIG:
 883        break;
 884
 885    /*
 886     * XIVE Presenter Controller settings
 887     */
 888    case PC_GLOBAL_CONFIG:
 889        /*
 890         * PC_GCONF_CHIPID_OVR
 891         *   Overrides Int command Chip ID with the Chip ID field (DEBUG)
 892         */
 893        break;
 894    case PC_TCTXT_CFG:
 895        /*
 896         * TODO: block group support
 897         */
 898        break;
 899    case PC_TCTXT_TRACK:
 900        /*
 901         * PC_TCTXT_TRACK_EN:
 902         *   enable block tracking and exchange of block ownership
 903         *   information between Interrupt controllers
 904         */
 905        break;
 906
 907    /*
 908     * Misc settings
 909     */
 910    case VC_SBC_CONFIG: /* Store EOI configuration */
 911        /*
 912         * Configure store EOI if required by firwmare (skiboot has removed
 913         * support recently though)
 914         */
 915        if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
 916            xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
 917        }
 918        break;
 919
 920    case VC_EQC_CONFIG: /* TODO: silent escalation */
 921    case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
 922        break;
 923
 924    /*
 925     * XIVE BAR settings (XSCOM only)
 926     */
 927    case CQ_RST_CTL:
 928        /* bit4: resets all BAR registers */
 929        break;
 930
 931    case CQ_IC_BAR: /* IC BAR. 8 pages */
 932        xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
 933        if (!(val & CQ_IC_BAR_VALID)) {
 934            xive->ic_base = 0;
 935            if (xive->regs[reg] & CQ_IC_BAR_VALID) {
 936                memory_region_del_subregion(&xive->ic_mmio,
 937                                            &xive->ic_reg_mmio);
 938                memory_region_del_subregion(&xive->ic_mmio,
 939                                            &xive->ic_notify_mmio);
 940                memory_region_del_subregion(&xive->ic_mmio,
 941                                            &xive->ic_lsi_mmio);
 942                memory_region_del_subregion(&xive->ic_mmio,
 943                                            &xive->tm_indirect_mmio);
 944
 945                memory_region_del_subregion(sysmem, &xive->ic_mmio);
 946            }
 947        } else {
 948            xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
 949            if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
 950                memory_region_add_subregion(sysmem, xive->ic_base,
 951                                            &xive->ic_mmio);
 952
 953                memory_region_add_subregion(&xive->ic_mmio,  0,
 954                                            &xive->ic_reg_mmio);
 955                memory_region_add_subregion(&xive->ic_mmio,
 956                                            1ul << xive->ic_shift,
 957                                            &xive->ic_notify_mmio);
 958                memory_region_add_subregion(&xive->ic_mmio,
 959                                            2ul << xive->ic_shift,
 960                                            &xive->ic_lsi_mmio);
 961                memory_region_add_subregion(&xive->ic_mmio,
 962                                            4ull << xive->ic_shift,
 963                                            &xive->tm_indirect_mmio);
 964            }
 965        }
 966        break;
 967
 968    case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
 969    case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
 970        xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
 971        if (!(val & CQ_TM_BAR_VALID)) {
 972            xive->tm_base = 0;
 973            if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
 974                memory_region_del_subregion(sysmem, &xive->tm_mmio);
 975            }
 976        } else {
 977            xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
 978            if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
 979                memory_region_add_subregion(sysmem, xive->tm_base,
 980                                            &xive->tm_mmio);
 981            }
 982        }
 983        break;
 984
 985    case CQ_PC_BARM:
 986        xive->regs[reg] = val;
 987        memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
 988        break;
 989    case CQ_PC_BAR: /* From 32M to 512G */
 990        if (!(val & CQ_PC_BAR_VALID)) {
 991            xive->pc_base = 0;
 992            if (xive->regs[reg] & CQ_PC_BAR_VALID) {
 993                memory_region_del_subregion(sysmem, &xive->pc_mmio);
 994            }
 995        } else {
 996            xive->pc_base = val & ~(CQ_PC_BAR_VALID);
 997            if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
 998                memory_region_add_subregion(sysmem, xive->pc_base,
 999                                            &xive->pc_mmio);
1000            }
1001        }
1002        break;
1003
1004    case CQ_VC_BARM:
1005        xive->regs[reg] = val;
1006        memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
1007        break;
1008    case CQ_VC_BAR: /* From 64M to 4TB */
1009        if (!(val & CQ_VC_BAR_VALID)) {
1010            xive->vc_base = 0;
1011            if (xive->regs[reg] & CQ_VC_BAR_VALID) {
1012                memory_region_del_subregion(sysmem, &xive->vc_mmio);
1013            }
1014        } else {
1015            xive->vc_base = val & ~(CQ_VC_BAR_VALID);
1016            if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
1017                memory_region_add_subregion(sysmem, xive->vc_base,
1018                                            &xive->vc_mmio);
1019            }
1020        }
1021        break;
1022
1023    /*
1024     * XIVE Table settings.
1025     */
1026    case CQ_TAR: /* Table Address */
1027        break;
1028    case CQ_TDR: /* Table Data */
1029        pnv_xive_table_set_data(xive, val);
1030        break;
1031
1032    /*
1033     * XIVE VC & PC Virtual Structure Table settings
1034     */
1035    case VC_VSD_TABLE_ADDR:
1036    case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1037        break;
1038    case VC_VSD_TABLE_DATA: /* Virtual table setting */
1039    case PC_VSD_TABLE_DATA:
1040        pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1041        break;
1042
1043    /*
1044     * Interrupt fifo overflow in memory backing store (Not modeled)
1045     */
1046    case VC_IRQ_CONFIG_IPI:
1047    case VC_IRQ_CONFIG_HW:
1048    case VC_IRQ_CONFIG_CASCADE1:
1049    case VC_IRQ_CONFIG_CASCADE2:
1050    case VC_IRQ_CONFIG_REDIST:
1051    case VC_IRQ_CONFIG_IPI_CASC:
1052        break;
1053
1054    /*
1055     * XIVE hardware thread enablement
1056     */
1057    case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1058    case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1059        break;
1060
1061    case PC_THREAD_EN_REG0_SET:
1062        xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1063        break;
1064    case PC_THREAD_EN_REG1_SET:
1065        xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1066        break;
1067    case PC_THREAD_EN_REG0_CLR:
1068        xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1069        break;
1070    case PC_THREAD_EN_REG1_CLR:
1071        xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1072        break;
1073
1074    /*
1075     * Indirect TIMA access set up. Defines the PIR of the HW thread
1076     * to use.
1077     */
1078    case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1079        break;
1080
1081    /*
1082     * XIVE PC & VC cache updates for EAS, NVT and END
1083     */
1084    case VC_IVC_SCRUB_MASK:
1085    case VC_IVC_SCRUB_TRIG:
1086        break;
1087
1088    case VC_EQC_CWATCH_SPEC:
1089        val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1090        break;
1091    case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1092        break;
1093    case VC_EQC_CWATCH_DAT0:
1094        /* writing to DATA0 triggers the cache write */
1095        xive->regs[reg] = val;
1096        pnv_xive_end_update(xive);
1097        break;
1098    case VC_EQC_SCRUB_MASK:
1099    case VC_EQC_SCRUB_TRIG:
1100        /*
1101         * The scrubbing registers flush the cache in RAM and can also
1102         * invalidate.
1103         */
1104        break;
1105
1106    case PC_VPC_CWATCH_SPEC:
1107        val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1108        break;
1109    case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1110        break;
1111    case PC_VPC_CWATCH_DAT0:
1112        /* writing to DATA0 triggers the cache write */
1113        xive->regs[reg] = val;
1114        pnv_xive_nvt_update(xive);
1115        break;
1116    case PC_VPC_SCRUB_MASK:
1117    case PC_VPC_SCRUB_TRIG:
1118        /*
1119         * The scrubbing registers flush the cache in RAM and can also
1120         * invalidate.
1121         */
1122        break;
1123
1124
1125    /*
1126     * XIVE PC & VC cache invalidation
1127     */
1128    case PC_AT_KILL:
1129        break;
1130    case VC_AT_MACRO_KILL:
1131        break;
1132    case PC_AT_KILL_MASK:
1133    case VC_AT_MACRO_KILL_MASK:
1134        break;
1135
1136    default:
1137        xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1138        return;
1139    }
1140
1141    xive->regs[reg] = val;
1142}
1143
1144static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1145{
1146    PnvXive *xive = PNV_XIVE(opaque);
1147    uint64_t val = 0;
1148    uint32_t reg = offset >> 3;
1149
1150    switch (offset) {
1151    case CQ_CFG_PB_GEN:
1152    case CQ_IC_BAR:
1153    case CQ_TM1_BAR:
1154    case CQ_TM2_BAR:
1155    case CQ_PC_BAR:
1156    case CQ_PC_BARM:
1157    case CQ_VC_BAR:
1158    case CQ_VC_BARM:
1159    case CQ_TAR:
1160    case CQ_TDR:
1161    case CQ_PBI_CTL:
1162
1163    case PC_TCTXT_CFG:
1164    case PC_TCTXT_TRACK:
1165    case PC_TCTXT_INDIR0:
1166    case PC_TCTXT_INDIR1:
1167    case PC_TCTXT_INDIR2:
1168    case PC_TCTXT_INDIR3:
1169    case PC_GLOBAL_CONFIG:
1170
1171    case PC_VPC_SCRUB_MASK:
1172
1173    case VC_GLOBAL_CONFIG:
1174    case VC_AIB_TX_ORDER_TAG2:
1175
1176    case VC_IRQ_CONFIG_IPI:
1177    case VC_IRQ_CONFIG_HW:
1178    case VC_IRQ_CONFIG_CASCADE1:
1179    case VC_IRQ_CONFIG_CASCADE2:
1180    case VC_IRQ_CONFIG_REDIST:
1181    case VC_IRQ_CONFIG_IPI_CASC:
1182
1183    case VC_EQC_SCRUB_MASK:
1184    case VC_IVC_SCRUB_MASK:
1185    case VC_SBC_CONFIG:
1186    case VC_AT_MACRO_KILL_MASK:
1187    case VC_VSD_TABLE_ADDR:
1188    case PC_VSD_TABLE_ADDR:
1189    case VC_VSD_TABLE_DATA:
1190    case PC_VSD_TABLE_DATA:
1191    case PC_THREAD_EN_REG0:
1192    case PC_THREAD_EN_REG1:
1193        val = xive->regs[reg];
1194        break;
1195
1196    /*
1197     * XIVE hardware thread enablement
1198     */
1199    case PC_THREAD_EN_REG0_SET:
1200    case PC_THREAD_EN_REG0_CLR:
1201        val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1202        break;
1203    case PC_THREAD_EN_REG1_SET:
1204    case PC_THREAD_EN_REG1_CLR:
1205        val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1206        break;
1207
1208    case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1209        val = 0xffffff0000000000;
1210        break;
1211
1212    /*
1213     * XIVE PC & VC cache updates for EAS, NVT and END
1214     */
1215    case VC_EQC_CWATCH_SPEC:
1216        xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1217        val = xive->regs[reg];
1218        break;
1219    case VC_EQC_CWATCH_DAT0:
1220        /*
1221         * Load DATA registers from cache with data requested by the
1222         * SPEC register
1223         */
1224        pnv_xive_end_cache_load(xive);
1225        val = xive->regs[reg];
1226        break;
1227    case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1228        val = xive->regs[reg];
1229        break;
1230
1231    case PC_VPC_CWATCH_SPEC:
1232        xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1233        val = xive->regs[reg];
1234        break;
1235    case PC_VPC_CWATCH_DAT0:
1236        /*
1237         * Load DATA registers from cache with data requested by the
1238         * SPEC register
1239         */
1240        pnv_xive_nvt_cache_load(xive);
1241        val = xive->regs[reg];
1242        break;
1243    case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1244        val = xive->regs[reg];
1245        break;
1246
1247    case PC_VPC_SCRUB_TRIG:
1248    case VC_IVC_SCRUB_TRIG:
1249    case VC_EQC_SCRUB_TRIG:
1250        xive->regs[reg] &= ~VC_SCRUB_VALID;
1251        val = xive->regs[reg];
1252        break;
1253
1254    /*
1255     * XIVE PC & VC cache invalidation
1256     */
1257    case PC_AT_KILL:
1258        xive->regs[reg] &= ~PC_AT_KILL_VALID;
1259        val = xive->regs[reg];
1260        break;
1261    case VC_AT_MACRO_KILL:
1262        xive->regs[reg] &= ~VC_KILL_VALID;
1263        val = xive->regs[reg];
1264        break;
1265
1266    /*
1267     * XIVE synchronisation
1268     */
1269    case VC_EQC_CONFIG:
1270        val = VC_EQC_SYNC_MASK;
1271        break;
1272
1273    default:
1274        xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1275    }
1276
1277    return val;
1278}
1279
1280static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1281    .read = pnv_xive_ic_reg_read,
1282    .write = pnv_xive_ic_reg_write,
1283    .endianness = DEVICE_BIG_ENDIAN,
1284    .valid = {
1285        .min_access_size = 8,
1286        .max_access_size = 8,
1287    },
1288    .impl = {
1289        .min_access_size = 8,
1290        .max_access_size = 8,
1291    },
1292};
1293
1294/*
1295 * IC - Notify MMIO port page (write only)
1296 */
1297#define PNV_XIVE_FORWARD_IPI        0x800 /* Forward IPI */
1298#define PNV_XIVE_FORWARD_HW         0x880 /* Forward HW */
1299#define PNV_XIVE_FORWARD_OS_ESC     0x900 /* Forward OS escalation */
1300#define PNV_XIVE_FORWARD_HW_ESC     0x980 /* Forward Hyp escalation */
1301#define PNV_XIVE_FORWARD_REDIS      0xa00 /* Forward Redistribution */
1302#define PNV_XIVE_RESERVED5          0xa80 /* Cache line 5 PowerBUS operation */
1303#define PNV_XIVE_RESERVED6          0xb00 /* Cache line 6 PowerBUS operation */
1304#define PNV_XIVE_RESERVED7          0xb80 /* Cache line 7 PowerBUS operation */
1305
1306/* VC synchronisation */
1307#define PNV_XIVE_SYNC_IPI           0xc00 /* Sync IPI */
1308#define PNV_XIVE_SYNC_HW            0xc80 /* Sync HW */
1309#define PNV_XIVE_SYNC_OS_ESC        0xd00 /* Sync OS escalation */
1310#define PNV_XIVE_SYNC_HW_ESC        0xd80 /* Sync Hyp escalation */
1311#define PNV_XIVE_SYNC_REDIS         0xe00 /* Sync Redistribution */
1312
1313/* PC synchronisation */
1314#define PNV_XIVE_SYNC_PULL          0xe80 /* Sync pull context */
1315#define PNV_XIVE_SYNC_PUSH          0xf00 /* Sync push context */
1316#define PNV_XIVE_SYNC_VPC           0xf80 /* Sync remove VPC store */
1317
1318static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1319{
1320    uint8_t blk;
1321    uint32_t idx;
1322
1323    trace_pnv_xive_ic_hw_trigger(addr, val);
1324
1325    if (val & XIVE_TRIGGER_END) {
1326        xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1327                   addr, val);
1328        return;
1329    }
1330
1331    /*
1332     * Forward the source event notification directly to the Router.
1333     * The source interrupt number should already be correctly encoded
1334     * with the chip block id by the sending device (PHB, PSI).
1335     */
1336    blk = XIVE_EAS_BLOCK(val);
1337    idx = XIVE_EAS_INDEX(val);
1338
1339    xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1340}
1341
1342static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1343                                     unsigned size)
1344{
1345    PnvXive *xive = PNV_XIVE(opaque);
1346
1347    /* VC: HW triggers */
1348    switch (addr) {
1349    case 0x000 ... 0x7FF:
1350        pnv_xive_ic_hw_trigger(opaque, addr, val);
1351        break;
1352
1353    /* VC: Forwarded IRQs */
1354    case PNV_XIVE_FORWARD_IPI:
1355    case PNV_XIVE_FORWARD_HW:
1356    case PNV_XIVE_FORWARD_OS_ESC:
1357    case PNV_XIVE_FORWARD_HW_ESC:
1358    case PNV_XIVE_FORWARD_REDIS:
1359        /* TODO: forwarded IRQs. Should be like HW triggers */
1360        xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1361                   addr, val);
1362        break;
1363
1364    /* VC syncs */
1365    case PNV_XIVE_SYNC_IPI:
1366    case PNV_XIVE_SYNC_HW:
1367    case PNV_XIVE_SYNC_OS_ESC:
1368    case PNV_XIVE_SYNC_HW_ESC:
1369    case PNV_XIVE_SYNC_REDIS:
1370        break;
1371
1372    /* PC syncs */
1373    case PNV_XIVE_SYNC_PULL:
1374    case PNV_XIVE_SYNC_PUSH:
1375    case PNV_XIVE_SYNC_VPC:
1376        break;
1377
1378    default:
1379        xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1380    }
1381}
1382
1383static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1384                                        unsigned size)
1385{
1386    PnvXive *xive = PNV_XIVE(opaque);
1387
1388    /* loads are invalid */
1389    xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1390    return -1;
1391}
1392
1393static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1394    .read = pnv_xive_ic_notify_read,
1395    .write = pnv_xive_ic_notify_write,
1396    .endianness = DEVICE_BIG_ENDIAN,
1397    .valid = {
1398        .min_access_size = 8,
1399        .max_access_size = 8,
1400    },
1401    .impl = {
1402        .min_access_size = 8,
1403        .max_access_size = 8,
1404    },
1405};
1406
1407/*
1408 * IC - LSI MMIO handlers (not modeled)
1409 */
1410
1411static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1412                              uint64_t val, unsigned size)
1413{
1414    PnvXive *xive = PNV_XIVE(opaque);
1415
1416    xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1417}
1418
1419static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1420{
1421    PnvXive *xive = PNV_XIVE(opaque);
1422
1423    xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1424    return -1;
1425}
1426
1427static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1428    .read = pnv_xive_ic_lsi_read,
1429    .write = pnv_xive_ic_lsi_write,
1430    .endianness = DEVICE_BIG_ENDIAN,
1431    .valid = {
1432        .min_access_size = 8,
1433        .max_access_size = 8,
1434    },
1435    .impl = {
1436        .min_access_size = 8,
1437        .max_access_size = 8,
1438    },
1439};
1440
1441/*
1442 * IC - Indirect TIMA MMIO handlers
1443 */
1444
1445/*
1446 * When the TIMA is accessed from the indirect page, the thread id of
1447 * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1448 * use. This is used for resets and for debug purpose also.
1449 */
1450static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1451{
1452    PnvChip *chip = xive->chip;
1453    uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1454    PowerPCCPU *cpu = NULL;
1455    int pir;
1456
1457    if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1458        xive_error(xive, "IC: no indirect TIMA access in progress");
1459        return NULL;
1460    }
1461
1462    pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1463    cpu = pnv_chip_find_cpu(chip, pir);
1464    if (!cpu) {
1465        xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1466        return NULL;
1467    }
1468
1469    /* Check that HW thread is XIVE enabled */
1470    if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1471        xive_error(xive, "IC: CPU %x is not enabled", pir);
1472    }
1473
1474    return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1475}
1476
1477static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1478                                   uint64_t value, unsigned size)
1479{
1480    XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1481
1482    xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1483}
1484
1485static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1486                                      unsigned size)
1487{
1488    XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1489
1490    return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1491}
1492
1493static const MemoryRegionOps xive_tm_indirect_ops = {
1494    .read = xive_tm_indirect_read,
1495    .write = xive_tm_indirect_write,
1496    .endianness = DEVICE_BIG_ENDIAN,
1497    .valid = {
1498        .min_access_size = 1,
1499        .max_access_size = 8,
1500    },
1501    .impl = {
1502        .min_access_size = 1,
1503        .max_access_size = 8,
1504    },
1505};
1506
1507static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1508                              uint64_t value, unsigned size)
1509{
1510    PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1511    PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1512    XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1513
1514    xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1515}
1516
1517static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1518{
1519    PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1520    PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1521    XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1522
1523    return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1524}
1525
1526const MemoryRegionOps pnv_xive_tm_ops = {
1527    .read = pnv_xive_tm_read,
1528    .write = pnv_xive_tm_write,
1529    .endianness = DEVICE_BIG_ENDIAN,
1530    .valid = {
1531        .min_access_size = 1,
1532        .max_access_size = 8,
1533    },
1534    .impl = {
1535        .min_access_size = 1,
1536        .max_access_size = 8,
1537    },
1538};
1539
1540/*
1541 * Interrupt controller XSCOM region.
1542 */
1543static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1544{
1545    switch (addr >> 3) {
1546    case X_VC_EQC_CONFIG:
1547        /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1548        return VC_EQC_SYNC_MASK;
1549    default:
1550        return pnv_xive_ic_reg_read(opaque, addr, size);
1551    }
1552}
1553
1554static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1555                                uint64_t val, unsigned size)
1556{
1557    pnv_xive_ic_reg_write(opaque, addr, val, size);
1558}
1559
1560static const MemoryRegionOps pnv_xive_xscom_ops = {
1561    .read = pnv_xive_xscom_read,
1562    .write = pnv_xive_xscom_write,
1563    .endianness = DEVICE_BIG_ENDIAN,
1564    .valid = {
1565        .min_access_size = 8,
1566        .max_access_size = 8,
1567    },
1568    .impl = {
1569        .min_access_size = 8,
1570        .max_access_size = 8,
1571    }
1572};
1573
1574/*
1575 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1576 */
1577static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1578                                 unsigned size)
1579{
1580    PnvXive *xive = PNV_XIVE(opaque);
1581    uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1582    uint64_t edt_type = 0;
1583    uint64_t edt_offset;
1584    MemTxResult result;
1585    AddressSpace *edt_as = NULL;
1586    uint64_t ret = -1;
1587
1588    if (edt_index < XIVE_TABLE_EDT_MAX) {
1589        edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1590    }
1591
1592    switch (edt_type) {
1593    case CQ_TDR_EDT_IPI:
1594        edt_as = &xive->ipi_as;
1595        break;
1596    case CQ_TDR_EDT_EQ:
1597        edt_as = &xive->end_as;
1598        break;
1599    default:
1600        xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1601        return -1;
1602    }
1603
1604    /* Remap the offset for the targeted address space */
1605    edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1606
1607    ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1608                            &result);
1609
1610    if (result != MEMTX_OK) {
1611        xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1612                   HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1613                   offset, edt_offset);
1614        return -1;
1615    }
1616
1617    return ret;
1618}
1619
1620static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1621                              uint64_t val, unsigned size)
1622{
1623    PnvXive *xive = PNV_XIVE(opaque);
1624    uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1625    uint64_t edt_type = 0;
1626    uint64_t edt_offset;
1627    MemTxResult result;
1628    AddressSpace *edt_as = NULL;
1629
1630    if (edt_index < XIVE_TABLE_EDT_MAX) {
1631        edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1632    }
1633
1634    switch (edt_type) {
1635    case CQ_TDR_EDT_IPI:
1636        edt_as = &xive->ipi_as;
1637        break;
1638    case CQ_TDR_EDT_EQ:
1639        edt_as = &xive->end_as;
1640        break;
1641    default:
1642        xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1643                   offset);
1644        return;
1645    }
1646
1647    /* Remap the offset for the targeted address space */
1648    edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1649
1650    address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1651    if (result != MEMTX_OK) {
1652        xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1653    }
1654}
1655
1656static const MemoryRegionOps pnv_xive_vc_ops = {
1657    .read = pnv_xive_vc_read,
1658    .write = pnv_xive_vc_write,
1659    .endianness = DEVICE_BIG_ENDIAN,
1660    .valid = {
1661        .min_access_size = 8,
1662        .max_access_size = 8,
1663    },
1664    .impl = {
1665        .min_access_size = 8,
1666        .max_access_size = 8,
1667    },
1668};
1669
1670/*
1671 * Presenter Controller MMIO region. The Virtualization Controller
1672 * updates the IPB in the NVT table when required. Not modeled.
1673 */
1674static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1675                                 unsigned size)
1676{
1677    PnvXive *xive = PNV_XIVE(opaque);
1678
1679    xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1680    return -1;
1681}
1682
1683static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1684                              uint64_t value, unsigned size)
1685{
1686    PnvXive *xive = PNV_XIVE(opaque);
1687
1688    xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1689}
1690
1691static const MemoryRegionOps pnv_xive_pc_ops = {
1692    .read = pnv_xive_pc_read,
1693    .write = pnv_xive_pc_write,
1694    .endianness = DEVICE_BIG_ENDIAN,
1695    .valid = {
1696        .min_access_size = 8,
1697        .max_access_size = 8,
1698    },
1699    .impl = {
1700        .min_access_size = 8,
1701        .max_access_size = 8,
1702    },
1703};
1704
1705static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
1706                                    Monitor *mon)
1707{
1708    uint8_t  eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
1709    uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
1710
1711    if (!xive_nvt_is_valid(nvt)) {
1712        return;
1713    }
1714
1715    monitor_printf(mon, "  %08x end:%02x/%04x IPB:%02x\n", nvt_idx,
1716                   eq_blk, eq_idx,
1717                   xive_get_field32(NVT_W4_IPB, nvt->w4));
1718}
1719
1720void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1721{
1722    XiveRouter *xrtr = XIVE_ROUTER(xive);
1723    uint8_t blk = pnv_xive_block_id(xive);
1724    uint8_t chip_id = xive->chip->chip_id;
1725    uint32_t srcno0 = XIVE_EAS(blk, 0);
1726    uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1727    XiveEAS eas;
1728    XiveEND end;
1729    XiveNVT nvt;
1730    int i;
1731    uint64_t xive_nvt_per_subpage;
1732
1733    monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
1734                   srcno0, srcno0 + nr_ipis - 1);
1735    xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1736
1737    monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
1738                   srcno0, srcno0 + nr_ipis - 1);
1739    for (i = 0; i < nr_ipis; i++) {
1740        if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1741            break;
1742        }
1743        if (!xive_eas_is_masked(&eas)) {
1744            xive_eas_pic_print_info(&eas, i, mon);
1745        }
1746    }
1747
1748    monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1749    i = 0;
1750    while (!xive_router_get_end(xrtr, blk, i, &end)) {
1751        xive_end_pic_print_info(&end, i++, mon);
1752    }
1753
1754    monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
1755    i = 0;
1756    while (!xive_router_get_end(xrtr, blk, i, &end)) {
1757        xive_end_eas_pic_print_info(&end, i++, mon);
1758    }
1759
1760    monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk,
1761                   0, XIVE_NVT_COUNT - 1);
1762    xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
1763    for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
1764        while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
1765            xive_nvt_pic_print_info(&nvt, i++, mon);
1766        }
1767    }
1768}
1769
1770static void pnv_xive_reset(void *dev)
1771{
1772    PnvXive *xive = PNV_XIVE(dev);
1773    XiveSource *xsrc = &xive->ipi_source;
1774    XiveENDSource *end_xsrc = &xive->end_source;
1775
1776    /* Default page size (Should be changed at runtime to 64k) */
1777    xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1778
1779    /* Clear subregions */
1780    if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1781        memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1782    }
1783
1784    if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1785        memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1786    }
1787
1788    if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1789        memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1790    }
1791
1792    if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1793        memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1794    }
1795}
1796
1797static void pnv_xive_init(Object *obj)
1798{
1799    PnvXive *xive = PNV_XIVE(obj);
1800
1801    object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1802                            TYPE_XIVE_SOURCE);
1803    object_initialize_child(obj, "end_source", &xive->end_source,
1804                            TYPE_XIVE_END_SOURCE);
1805}
1806
1807/*
1808 *  Maximum number of IRQs and ENDs supported by HW
1809 */
1810#define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1811#define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1812
1813static void pnv_xive_realize(DeviceState *dev, Error **errp)
1814{
1815    PnvXive *xive = PNV_XIVE(dev);
1816    PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev);
1817    XiveSource *xsrc = &xive->ipi_source;
1818    XiveENDSource *end_xsrc = &xive->end_source;
1819    Error *local_err = NULL;
1820
1821    pxc->parent_realize(dev, &local_err);
1822    if (local_err) {
1823        error_propagate(errp, local_err);
1824        return;
1825    }
1826
1827    assert(xive->chip);
1828
1829    /*
1830     * The XiveSource and XiveENDSource objects are realized with the
1831     * maximum allowed HW configuration. The ESB MMIO regions will be
1832     * resized dynamically when the controller is configured by the FW
1833     * to limit accesses to resources not provisioned.
1834     */
1835    object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE_NR_IRQS,
1836                            &error_fatal);
1837    object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
1838    if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1839        return;
1840    }
1841
1842    object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE_NR_ENDS,
1843                            &error_fatal);
1844    object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1845                             &error_abort);
1846    if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
1847        return;
1848    }
1849
1850    /* Default page size. Generally changed at runtime to 64k */
1851    xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1852
1853    /* XSCOM region, used for initial configuration of the BARs */
1854    memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1855                          xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1856
1857    /* Interrupt controller MMIO regions */
1858    memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1859                       PNV9_XIVE_IC_SIZE);
1860
1861    memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1862                          xive, "xive-ic-reg", 1 << xive->ic_shift);
1863    memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1864                          &pnv_xive_ic_notify_ops,
1865                          xive, "xive-ic-notify", 1 << xive->ic_shift);
1866
1867    /* The Pervasive LSI trigger and EOI pages (not modeled) */
1868    memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1869                          xive, "xive-ic-lsi", 2 << xive->ic_shift);
1870
1871    /* Thread Interrupt Management Area (Indirect) */
1872    memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1873                          &xive_tm_indirect_ops,
1874                          xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1875    /*
1876     * Overall Virtualization Controller MMIO region containing the
1877     * IPI ESB pages and END ESB pages. The layout is defined by the
1878     * EDT "Domain table" and the accesses are dispatched using
1879     * address spaces for each.
1880     */
1881    memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1882                          "xive-vc", PNV9_XIVE_VC_SIZE);
1883
1884    memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1885                       PNV9_XIVE_VC_SIZE);
1886    address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1887    memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1888                       PNV9_XIVE_VC_SIZE);
1889    address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1890
1891    /*
1892     * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1893     * VC region. Their size is configured by the FW in the EDT table.
1894     */
1895    memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1896    memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1897
1898    /* Presenter Controller MMIO region (not modeled) */
1899    memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1900                          "xive-pc", PNV9_XIVE_PC_SIZE);
1901
1902    /* Thread Interrupt Management Area (Direct) */
1903    memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
1904                          xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1905
1906    qemu_register_reset(pnv_xive_reset, dev);
1907}
1908
1909static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1910                             int xscom_offset)
1911{
1912    const char compat[] = "ibm,power9-xive-x";
1913    char *name;
1914    int offset;
1915    uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1916    uint32_t reg[] = {
1917        cpu_to_be32(lpc_pcba),
1918        cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1919    };
1920
1921    name = g_strdup_printf("xive@%x", lpc_pcba);
1922    offset = fdt_add_subnode(fdt, xscom_offset, name);
1923    _FDT(offset);
1924    g_free(name);
1925
1926    _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1927    _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1928                      sizeof(compat))));
1929    return 0;
1930}
1931
1932static Property pnv_xive_properties[] = {
1933    DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1934    DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1935    DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1936    DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1937    /* The PnvChip id identifies the XIVE interrupt controller. */
1938    DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1939    DEFINE_PROP_END_OF_LIST(),
1940};
1941
1942static void pnv_xive_class_init(ObjectClass *klass, void *data)
1943{
1944    DeviceClass *dc = DEVICE_CLASS(klass);
1945    PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1946    XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1947    XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1948    XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1949    PnvXiveClass *pxc = PNV_XIVE_CLASS(klass);
1950
1951    xdc->dt_xscom = pnv_xive_dt_xscom;
1952
1953    dc->desc = "PowerNV XIVE Interrupt Controller";
1954    device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize);
1955    dc->realize = pnv_xive_realize;
1956    device_class_set_props(dc, pnv_xive_properties);
1957
1958    xrc->get_eas = pnv_xive_get_eas;
1959    xrc->get_end = pnv_xive_get_end;
1960    xrc->write_end = pnv_xive_write_end;
1961    xrc->get_nvt = pnv_xive_get_nvt;
1962    xrc->write_nvt = pnv_xive_write_nvt;
1963    xrc->get_block_id = pnv_xive_get_block_id;
1964
1965    xnc->notify = pnv_xive_notify;
1966    xpc->match_nvt  = pnv_xive_match_nvt;
1967};
1968
1969static const TypeInfo pnv_xive_info = {
1970    .name          = TYPE_PNV_XIVE,
1971    .parent        = TYPE_XIVE_ROUTER,
1972    .instance_init = pnv_xive_init,
1973    .instance_size = sizeof(PnvXive),
1974    .class_init    = pnv_xive_class_init,
1975    .class_size    = sizeof(PnvXiveClass),
1976    .interfaces    = (InterfaceInfo[]) {
1977        { TYPE_PNV_XSCOM_INTERFACE },
1978        { }
1979    }
1980};
1981
1982static void pnv_xive_register_types(void)
1983{
1984    type_register_static(&pnv_xive_info);
1985}
1986
1987type_init(pnv_xive_register_types)
1988