qemu/hw/rtc/mc146818rtc.c
<<
>>
Prefs
   1/*
   2 * QEMU MC146818 RTC emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu-common.h"
  27#include "qemu/cutils.h"
  28#include "qemu/module.h"
  29#include "qemu/bcd.h"
  30#include "hw/acpi/aml-build.h"
  31#include "hw/irq.h"
  32#include "hw/qdev-properties.h"
  33#include "hw/qdev-properties-system.h"
  34#include "qemu/timer.h"
  35#include "sysemu/sysemu.h"
  36#include "sysemu/replay.h"
  37#include "sysemu/reset.h"
  38#include "sysemu/runstate.h"
  39#include "hw/rtc/mc146818rtc.h"
  40#include "hw/rtc/mc146818rtc_regs.h"
  41#include "migration/vmstate.h"
  42#include "qapi/error.h"
  43#include "qapi/qapi-events-misc-target.h"
  44#include "qapi/visitor.h"
  45#include "hw/rtc/mc146818rtc_regs.h"
  46
  47#ifdef TARGET_I386
  48#include "qapi/qapi-commands-misc-target.h"
  49#include "hw/i386/apic.h"
  50#endif
  51
  52//#define DEBUG_CMOS
  53//#define DEBUG_COALESCED
  54
  55#ifdef DEBUG_CMOS
  56# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
  57#else
  58# define CMOS_DPRINTF(format, ...)      do { } while (0)
  59#endif
  60
  61#ifdef DEBUG_COALESCED
  62# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
  63#else
  64# define DPRINTF_C(format, ...)      do { } while (0)
  65#endif
  66
  67#define SEC_PER_MIN     60
  68#define MIN_PER_HOUR    60
  69#define SEC_PER_HOUR    3600
  70#define HOUR_PER_DAY    24
  71#define SEC_PER_DAY     86400
  72
  73#define RTC_REINJECT_ON_ACK_COUNT 20
  74#define RTC_CLOCK_RATE            32768
  75#define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768)
  76
  77static void rtc_set_time(RTCState *s);
  78static void rtc_update_time(RTCState *s);
  79static void rtc_set_cmos(RTCState *s, const struct tm *tm);
  80static inline int rtc_from_bcd(RTCState *s, int a);
  81static uint64_t get_next_alarm(RTCState *s);
  82
  83static inline bool rtc_running(RTCState *s)
  84{
  85    return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
  86            (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
  87}
  88
  89static uint64_t get_guest_rtc_ns(RTCState *s)
  90{
  91    uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
  92
  93    return s->base_rtc * NANOSECONDS_PER_SECOND +
  94        guest_clock - s->last_update + s->offset;
  95}
  96
  97static void rtc_coalesced_timer_update(RTCState *s)
  98{
  99    if (s->irq_coalesced == 0) {
 100        timer_del(s->coalesced_timer);
 101    } else {
 102        /* divide each RTC interval to 2 - 8 smaller intervals */
 103        int c = MIN(s->irq_coalesced, 7) + 1;
 104        int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
 105            periodic_clock_to_ns(s->period / c);
 106        timer_mod(s->coalesced_timer, next_clock);
 107    }
 108}
 109
 110static QLIST_HEAD(, RTCState) rtc_devices =
 111    QLIST_HEAD_INITIALIZER(rtc_devices);
 112
 113#ifdef TARGET_I386
 114void qmp_rtc_reset_reinjection(Error **errp)
 115{
 116    RTCState *s;
 117
 118    QLIST_FOREACH(s, &rtc_devices, link) {
 119        s->irq_coalesced = 0;
 120    }
 121}
 122
 123static bool rtc_policy_slew_deliver_irq(RTCState *s)
 124{
 125    apic_reset_irq_delivered();
 126    qemu_irq_raise(s->irq);
 127    return apic_get_irq_delivered();
 128}
 129
 130static void rtc_coalesced_timer(void *opaque)
 131{
 132    RTCState *s = opaque;
 133
 134    if (s->irq_coalesced != 0) {
 135        s->cmos_data[RTC_REG_C] |= 0xc0;
 136        DPRINTF_C("cmos: injecting from timer\n");
 137        if (rtc_policy_slew_deliver_irq(s)) {
 138            s->irq_coalesced--;
 139            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 140                      s->irq_coalesced);
 141        }
 142    }
 143
 144    rtc_coalesced_timer_update(s);
 145}
 146#else
 147static bool rtc_policy_slew_deliver_irq(RTCState *s)
 148{
 149    assert(0);
 150    return false;
 151}
 152#endif
 153
 154static uint32_t rtc_periodic_clock_ticks(RTCState *s)
 155{
 156    int period_code;
 157
 158    if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
 159        return 0;
 160     }
 161
 162    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
 163
 164    return periodic_period_to_clock(period_code);
 165}
 166
 167/*
 168 * handle periodic timer. @old_period indicates the periodic timer update
 169 * is just due to period adjustment.
 170 */
 171static void
 172periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change)
 173{
 174    uint32_t period;
 175    int64_t cur_clock, next_irq_clock, lost_clock = 0;
 176
 177    period = rtc_periodic_clock_ticks(s);
 178    s->period = period;
 179
 180    if (!period) {
 181        s->irq_coalesced = 0;
 182        timer_del(s->periodic_timer);
 183        return;
 184    }
 185
 186    /* compute 32 khz clock */
 187    cur_clock =
 188        muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
 189
 190    /*
 191     * if the periodic timer's update is due to period re-configuration,
 192     * we should count the clock since last interrupt.
 193     */
 194    if (old_period && period_change) {
 195        int64_t last_periodic_clock, next_periodic_clock;
 196
 197        next_periodic_clock = muldiv64(s->next_periodic_time,
 198                                RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
 199        last_periodic_clock = next_periodic_clock - old_period;
 200        lost_clock = cur_clock - last_periodic_clock;
 201        assert(lost_clock >= 0);
 202    }
 203
 204    /*
 205     * s->irq_coalesced can change for two reasons:
 206     *
 207     * a) if one or more periodic timer interrupts have been lost,
 208     *    lost_clock will be more that a period.
 209     *
 210     * b) when the period may be reconfigured, we expect the OS to
 211     *    treat delayed tick as the new period.  So, when switching
 212     *    from a shorter to a longer period, scale down the missing,
 213     *    because the OS will treat past delayed ticks as longer
 214     *    (leftovers are put back into lost_clock).  When switching
 215     *    to a shorter period, scale up the missing ticks since the
 216     *    OS handler will treat past delayed ticks as shorter.
 217     */
 218    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 219        uint32_t old_irq_coalesced = s->irq_coalesced;
 220
 221        lost_clock += old_irq_coalesced * old_period;
 222        s->irq_coalesced = lost_clock / s->period;
 223        lost_clock %= s->period;
 224        if (old_irq_coalesced != s->irq_coalesced ||
 225            old_period != s->period) {
 226            DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
 227                      "period scaled from %d to %d\n", old_irq_coalesced,
 228                      s->irq_coalesced, old_period, s->period);
 229            rtc_coalesced_timer_update(s);
 230        }
 231    } else {
 232        /*
 233         * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
 234         * is not used, we should make the time progress anyway.
 235         */
 236        lost_clock = MIN(lost_clock, period);
 237    }
 238
 239    assert(lost_clock >= 0 && lost_clock <= period);
 240
 241    next_irq_clock = cur_clock + period - lost_clock;
 242    s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
 243    timer_mod(s->periodic_timer, s->next_periodic_time);
 244}
 245
 246static void rtc_periodic_timer(void *opaque)
 247{
 248    RTCState *s = opaque;
 249
 250    periodic_timer_update(s, s->next_periodic_time, s->period, false);
 251    s->cmos_data[RTC_REG_C] |= REG_C_PF;
 252    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
 253        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 254        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 255            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
 256                s->irq_reinject_on_ack_count = 0;
 257            if (!rtc_policy_slew_deliver_irq(s)) {
 258                s->irq_coalesced++;
 259                rtc_coalesced_timer_update(s);
 260                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
 261                          s->irq_coalesced);
 262            }
 263        } else
 264            qemu_irq_raise(s->irq);
 265    }
 266}
 267
 268/* handle update-ended timer */
 269static void check_update_timer(RTCState *s)
 270{
 271    uint64_t next_update_time;
 272    uint64_t guest_nsec;
 273    int next_alarm_sec;
 274
 275    /* From the data sheet: "Holding the dividers in reset prevents
 276     * interrupts from operating, while setting the SET bit allows"
 277     * them to occur.
 278     */
 279    if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
 280        assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
 281        timer_del(s->update_timer);
 282        return;
 283    }
 284
 285    guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 286    next_update_time = qemu_clock_get_ns(rtc_clock)
 287        + NANOSECONDS_PER_SECOND - guest_nsec;
 288
 289    /* Compute time of next alarm.  One second is already accounted
 290     * for in next_update_time.
 291     */
 292    next_alarm_sec = get_next_alarm(s);
 293    s->next_alarm_time = next_update_time +
 294                         (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
 295
 296    /* If update_in_progress latched the UIP bit, we must keep the timer
 297     * programmed to the next second, so that UIP is cleared.  Otherwise,
 298     * if UF is already set, we might be able to optimize.
 299     */
 300    if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
 301        (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
 302        /* If AF cannot change (i.e. either it is set already, or
 303         * SET=1 and then the time is not updated), nothing to do.
 304         */
 305        if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
 306            (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
 307            timer_del(s->update_timer);
 308            return;
 309        }
 310
 311        /* UF is set, but AF is clear.  Program the timer to target
 312         * the alarm time.  */
 313        next_update_time = s->next_alarm_time;
 314    }
 315    if (next_update_time != timer_expire_time_ns(s->update_timer)) {
 316        timer_mod(s->update_timer, next_update_time);
 317    }
 318}
 319
 320static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
 321{
 322    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 323        hour %= 12;
 324        if (s->cmos_data[RTC_HOURS] & 0x80) {
 325            hour += 12;
 326        }
 327    }
 328    return hour;
 329}
 330
 331static uint64_t get_next_alarm(RTCState *s)
 332{
 333    int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
 334    int32_t hour, min, sec;
 335
 336    rtc_update_time(s);
 337
 338    alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
 339    alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
 340    alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
 341    alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
 342
 343    cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 344    cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 345    cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
 346    cur_hour = convert_hour(s, cur_hour);
 347
 348    if (alarm_hour == -1) {
 349        alarm_hour = cur_hour;
 350        if (alarm_min == -1) {
 351            alarm_min = cur_min;
 352            if (alarm_sec == -1) {
 353                alarm_sec = cur_sec + 1;
 354            } else if (cur_sec > alarm_sec) {
 355                alarm_min++;
 356            }
 357        } else if (cur_min == alarm_min) {
 358            if (alarm_sec == -1) {
 359                alarm_sec = cur_sec + 1;
 360            } else {
 361                if (cur_sec > alarm_sec) {
 362                    alarm_hour++;
 363                }
 364            }
 365            if (alarm_sec == SEC_PER_MIN) {
 366                /* wrap to next hour, minutes is not in don't care mode */
 367                alarm_sec = 0;
 368                alarm_hour++;
 369            }
 370        } else if (cur_min > alarm_min) {
 371            alarm_hour++;
 372        }
 373    } else if (cur_hour == alarm_hour) {
 374        if (alarm_min == -1) {
 375            alarm_min = cur_min;
 376            if (alarm_sec == -1) {
 377                alarm_sec = cur_sec + 1;
 378            } else if (cur_sec > alarm_sec) {
 379                alarm_min++;
 380            }
 381
 382            if (alarm_sec == SEC_PER_MIN) {
 383                alarm_sec = 0;
 384                alarm_min++;
 385            }
 386            /* wrap to next day, hour is not in don't care mode */
 387            alarm_min %= MIN_PER_HOUR;
 388        } else if (cur_min == alarm_min) {
 389            if (alarm_sec == -1) {
 390                alarm_sec = cur_sec + 1;
 391            }
 392            /* wrap to next day, hours+minutes not in don't care mode */
 393            alarm_sec %= SEC_PER_MIN;
 394        }
 395    }
 396
 397    /* values that are still don't care fire at the next min/sec */
 398    if (alarm_min == -1) {
 399        alarm_min = 0;
 400    }
 401    if (alarm_sec == -1) {
 402        alarm_sec = 0;
 403    }
 404
 405    /* keep values in range */
 406    if (alarm_sec == SEC_PER_MIN) {
 407        alarm_sec = 0;
 408        alarm_min++;
 409    }
 410    if (alarm_min == MIN_PER_HOUR) {
 411        alarm_min = 0;
 412        alarm_hour++;
 413    }
 414    alarm_hour %= HOUR_PER_DAY;
 415
 416    hour = alarm_hour - cur_hour;
 417    min = hour * MIN_PER_HOUR + alarm_min - cur_min;
 418    sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
 419    return sec <= 0 ? sec + SEC_PER_DAY : sec;
 420}
 421
 422static void rtc_update_timer(void *opaque)
 423{
 424    RTCState *s = opaque;
 425    int32_t irqs = REG_C_UF;
 426    int32_t new_irqs;
 427
 428    assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
 429
 430    /* UIP might have been latched, update time and clear it.  */
 431    rtc_update_time(s);
 432    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 433
 434    if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
 435        irqs |= REG_C_AF;
 436        if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
 437            qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
 438        }
 439    }
 440
 441    new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
 442    s->cmos_data[RTC_REG_C] |= irqs;
 443    if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
 444        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 445        qemu_irq_raise(s->irq);
 446    }
 447    check_update_timer(s);
 448}
 449
 450static void cmos_ioport_write(void *opaque, hwaddr addr,
 451                              uint64_t data, unsigned size)
 452{
 453    RTCState *s = opaque;
 454    uint32_t old_period;
 455    bool update_periodic_timer;
 456
 457    if ((addr & 1) == 0) {
 458        s->cmos_index = data & 0x7f;
 459    } else {
 460        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
 461                     s->cmos_index, data);
 462        switch(s->cmos_index) {
 463        case RTC_SECONDS_ALARM:
 464        case RTC_MINUTES_ALARM:
 465        case RTC_HOURS_ALARM:
 466            s->cmos_data[s->cmos_index] = data;
 467            check_update_timer(s);
 468            break;
 469        case RTC_IBM_PS2_CENTURY_BYTE:
 470            s->cmos_index = RTC_CENTURY;
 471            /* fall through */
 472        case RTC_CENTURY:
 473        case RTC_SECONDS:
 474        case RTC_MINUTES:
 475        case RTC_HOURS:
 476        case RTC_DAY_OF_WEEK:
 477        case RTC_DAY_OF_MONTH:
 478        case RTC_MONTH:
 479        case RTC_YEAR:
 480            s->cmos_data[s->cmos_index] = data;
 481            /* if in set mode, do not update the time */
 482            if (rtc_running(s)) {
 483                rtc_set_time(s);
 484                check_update_timer(s);
 485            }
 486            break;
 487        case RTC_REG_A:
 488            update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
 489            old_period = rtc_periodic_clock_ticks(s);
 490
 491            if ((data & 0x60) == 0x60) {
 492                if (rtc_running(s)) {
 493                    rtc_update_time(s);
 494                }
 495                /* What happens to UIP when divider reset is enabled is
 496                 * unclear from the datasheet.  Shouldn't matter much
 497                 * though.
 498                 */
 499                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 500            } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
 501                    (data & 0x70)  <= 0x20) {
 502                /* when the divider reset is removed, the first update cycle
 503                 * begins one-half second later*/
 504                if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 505                    s->offset = 500000000;
 506                    rtc_set_time(s);
 507                }
 508                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 509            }
 510            /* UIP bit is read only */
 511            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
 512                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
 513
 514            if (update_periodic_timer) {
 515                periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
 516                                      old_period, true);
 517            }
 518
 519            check_update_timer(s);
 520            break;
 521        case RTC_REG_B:
 522            update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
 523                                       & REG_B_PIE;
 524            old_period = rtc_periodic_clock_ticks(s);
 525
 526            if (data & REG_B_SET) {
 527                /* update cmos to when the rtc was stopping */
 528                if (rtc_running(s)) {
 529                    rtc_update_time(s);
 530                }
 531                /* set mode: reset UIP mode */
 532                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 533                data &= ~REG_B_UIE;
 534            } else {
 535                /* if disabling set mode, update the time */
 536                if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 537                    (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
 538                    s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 539                    rtc_set_time(s);
 540                }
 541            }
 542            /* if an interrupt flag is already set when the interrupt
 543             * becomes enabled, raise an interrupt immediately.  */
 544            if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
 545                s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 546                qemu_irq_raise(s->irq);
 547            } else {
 548                s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
 549                qemu_irq_lower(s->irq);
 550            }
 551            s->cmos_data[RTC_REG_B] = data;
 552
 553            if (update_periodic_timer) {
 554                periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
 555                                      old_period, true);
 556            }
 557
 558            check_update_timer(s);
 559            break;
 560        case RTC_REG_C:
 561        case RTC_REG_D:
 562            /* cannot write to them */
 563            break;
 564        default:
 565            s->cmos_data[s->cmos_index] = data;
 566            break;
 567        }
 568    }
 569}
 570
 571static inline int rtc_to_bcd(RTCState *s, int a)
 572{
 573    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 574        return a;
 575    } else {
 576        return ((a / 10) << 4) | (a % 10);
 577    }
 578}
 579
 580static inline int rtc_from_bcd(RTCState *s, int a)
 581{
 582    if ((a & 0xc0) == 0xc0) {
 583        return -1;
 584    }
 585    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 586        return a;
 587    } else {
 588        return ((a >> 4) * 10) + (a & 0x0f);
 589    }
 590}
 591
 592static void rtc_get_time(RTCState *s, struct tm *tm)
 593{
 594    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 595    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 596    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
 597    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 598        tm->tm_hour %= 12;
 599        if (s->cmos_data[RTC_HOURS] & 0x80) {
 600            tm->tm_hour += 12;
 601        }
 602    }
 603    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
 604    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
 605    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
 606    tm->tm_year =
 607        rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
 608        rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
 609}
 610
 611static void rtc_set_time(RTCState *s)
 612{
 613    struct tm tm;
 614
 615    rtc_get_time(s, &tm);
 616    s->base_rtc = mktimegm(&tm);
 617    s->last_update = qemu_clock_get_ns(rtc_clock);
 618
 619    qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
 620}
 621
 622static void rtc_set_cmos(RTCState *s, const struct tm *tm)
 623{
 624    int year;
 625
 626    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
 627    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
 628    if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
 629        /* 24 hour format */
 630        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
 631    } else {
 632        /* 12 hour format */
 633        int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
 634        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
 635        if (tm->tm_hour >= 12)
 636            s->cmos_data[RTC_HOURS] |= 0x80;
 637    }
 638    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
 639    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
 640    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
 641    year = tm->tm_year + 1900 - s->base_year;
 642    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
 643    s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
 644}
 645
 646static void rtc_update_time(RTCState *s)
 647{
 648    struct tm ret;
 649    time_t guest_sec;
 650    int64_t guest_nsec;
 651
 652    guest_nsec = get_guest_rtc_ns(s);
 653    guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
 654    gmtime_r(&guest_sec, &ret);
 655
 656    /* Is SET flag of Register B disabled? */
 657    if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
 658        rtc_set_cmos(s, &ret);
 659    }
 660}
 661
 662static int update_in_progress(RTCState *s)
 663{
 664    int64_t guest_nsec;
 665
 666    if (!rtc_running(s)) {
 667        return 0;
 668    }
 669    if (timer_pending(s->update_timer)) {
 670        int64_t next_update_time = timer_expire_time_ns(s->update_timer);
 671        /* Latch UIP until the timer expires.  */
 672        if (qemu_clock_get_ns(rtc_clock) >=
 673            (next_update_time - UIP_HOLD_LENGTH)) {
 674            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
 675            return 1;
 676        }
 677    }
 678
 679    guest_nsec = get_guest_rtc_ns(s);
 680    /* UIP bit will be set at last 244us of every second. */
 681    if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
 682        (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
 683        return 1;
 684    }
 685    return 0;
 686}
 687
 688static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
 689                                 unsigned size)
 690{
 691    RTCState *s = opaque;
 692    int ret;
 693    if ((addr & 1) == 0) {
 694        return 0xff;
 695    } else {
 696        switch(s->cmos_index) {
 697        case RTC_IBM_PS2_CENTURY_BYTE:
 698            s->cmos_index = RTC_CENTURY;
 699            /* fall through */
 700        case RTC_CENTURY:
 701        case RTC_SECONDS:
 702        case RTC_MINUTES:
 703        case RTC_HOURS:
 704        case RTC_DAY_OF_WEEK:
 705        case RTC_DAY_OF_MONTH:
 706        case RTC_MONTH:
 707        case RTC_YEAR:
 708            /* if not in set mode, calibrate cmos before
 709             * reading*/
 710            if (rtc_running(s)) {
 711                rtc_update_time(s);
 712            }
 713            ret = s->cmos_data[s->cmos_index];
 714            break;
 715        case RTC_REG_A:
 716            ret = s->cmos_data[s->cmos_index];
 717            if (update_in_progress(s)) {
 718                ret |= REG_A_UIP;
 719            }
 720            break;
 721        case RTC_REG_C:
 722            ret = s->cmos_data[s->cmos_index];
 723            qemu_irq_lower(s->irq);
 724            s->cmos_data[RTC_REG_C] = 0x00;
 725            if (ret & (REG_C_UF | REG_C_AF)) {
 726                check_update_timer(s);
 727            }
 728
 729            if(s->irq_coalesced &&
 730                    (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
 731                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
 732                s->irq_reinject_on_ack_count++;
 733                s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
 734                DPRINTF_C("cmos: injecting on ack\n");
 735                if (rtc_policy_slew_deliver_irq(s)) {
 736                    s->irq_coalesced--;
 737                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 738                              s->irq_coalesced);
 739                }
 740            }
 741            break;
 742        default:
 743            ret = s->cmos_data[s->cmos_index];
 744            break;
 745        }
 746        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
 747                     s->cmos_index, ret);
 748        return ret;
 749    }
 750}
 751
 752void rtc_set_memory(ISADevice *dev, int addr, int val)
 753{
 754    RTCState *s = MC146818_RTC(dev);
 755    if (addr >= 0 && addr <= 127)
 756        s->cmos_data[addr] = val;
 757}
 758
 759int rtc_get_memory(ISADevice *dev, int addr)
 760{
 761    RTCState *s = MC146818_RTC(dev);
 762    assert(addr >= 0 && addr <= 127);
 763    return s->cmos_data[addr];
 764}
 765
 766static void rtc_set_date_from_host(ISADevice *dev)
 767{
 768    RTCState *s = MC146818_RTC(dev);
 769    struct tm tm;
 770
 771    qemu_get_timedate(&tm, 0);
 772
 773    s->base_rtc = mktimegm(&tm);
 774    s->last_update = qemu_clock_get_ns(rtc_clock);
 775    s->offset = 0;
 776
 777    /* set the CMOS date */
 778    rtc_set_cmos(s, &tm);
 779}
 780
 781static int rtc_pre_save(void *opaque)
 782{
 783    RTCState *s = opaque;
 784
 785    rtc_update_time(s);
 786
 787    return 0;
 788}
 789
 790static int rtc_post_load(void *opaque, int version_id)
 791{
 792    RTCState *s = opaque;
 793
 794    if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
 795        rtc_set_time(s);
 796        s->offset = 0;
 797        check_update_timer(s);
 798    }
 799    s->period = rtc_periodic_clock_ticks(s);
 800
 801    /* The periodic timer is deterministic in record/replay mode,
 802     * so there is no need to update it after loading the vmstate.
 803     * Reading RTC here would misalign record and replay.
 804     */
 805    if (replay_mode == REPLAY_MODE_NONE) {
 806        uint64_t now = qemu_clock_get_ns(rtc_clock);
 807        if (now < s->next_periodic_time ||
 808            now > (s->next_periodic_time + get_max_clock_jump())) {
 809            periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false);
 810        }
 811    }
 812
 813    if (version_id >= 2) {
 814        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 815            rtc_coalesced_timer_update(s);
 816        }
 817    }
 818    return 0;
 819}
 820
 821static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
 822{
 823    RTCState *s = (RTCState *)opaque;
 824    return s->irq_reinject_on_ack_count != 0;
 825}
 826
 827static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
 828    .name = "mc146818rtc/irq_reinject_on_ack_count",
 829    .version_id = 1,
 830    .minimum_version_id = 1,
 831    .needed = rtc_irq_reinject_on_ack_count_needed,
 832    .fields = (VMStateField[]) {
 833        VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
 834        VMSTATE_END_OF_LIST()
 835    }
 836};
 837
 838static const VMStateDescription vmstate_rtc = {
 839    .name = "mc146818rtc",
 840    .version_id = 3,
 841    .minimum_version_id = 1,
 842    .pre_save = rtc_pre_save,
 843    .post_load = rtc_post_load,
 844    .fields = (VMStateField[]) {
 845        VMSTATE_BUFFER(cmos_data, RTCState),
 846        VMSTATE_UINT8(cmos_index, RTCState),
 847        VMSTATE_UNUSED(7*4),
 848        VMSTATE_TIMER_PTR(periodic_timer, RTCState),
 849        VMSTATE_INT64(next_periodic_time, RTCState),
 850        VMSTATE_UNUSED(3*8),
 851        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
 852        VMSTATE_UINT32_V(period, RTCState, 2),
 853        VMSTATE_UINT64_V(base_rtc, RTCState, 3),
 854        VMSTATE_UINT64_V(last_update, RTCState, 3),
 855        VMSTATE_INT64_V(offset, RTCState, 3),
 856        VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
 857        VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
 858        VMSTATE_END_OF_LIST()
 859    },
 860    .subsections = (const VMStateDescription*[]) {
 861        &vmstate_rtc_irq_reinject_on_ack_count,
 862        NULL
 863    }
 864};
 865
 866/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
 867   BIOS will read it and start S3 resume at POST Entry */
 868static void rtc_notify_suspend(Notifier *notifier, void *data)
 869{
 870    RTCState *s = container_of(notifier, RTCState, suspend_notifier);
 871    rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
 872}
 873
 874static const MemoryRegionOps cmos_ops = {
 875    .read = cmos_ioport_read,
 876    .write = cmos_ioport_write,
 877    .impl = {
 878        .min_access_size = 1,
 879        .max_access_size = 1,
 880    },
 881    .endianness = DEVICE_LITTLE_ENDIAN,
 882};
 883
 884static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
 885{
 886    RTCState *s = MC146818_RTC(obj);
 887
 888    rtc_update_time(s);
 889    rtc_get_time(s, current_tm);
 890}
 891
 892static void rtc_realizefn(DeviceState *dev, Error **errp)
 893{
 894    ISADevice *isadev = ISA_DEVICE(dev);
 895    RTCState *s = MC146818_RTC(dev);
 896
 897    s->cmos_data[RTC_REG_A] = 0x26;
 898    s->cmos_data[RTC_REG_B] = 0x02;
 899    s->cmos_data[RTC_REG_C] = 0x00;
 900    s->cmos_data[RTC_REG_D] = 0x80;
 901
 902    /* This is for historical reasons.  The default base year qdev property
 903     * was set to 2000 for most machine types before the century byte was
 904     * implemented.
 905     *
 906     * This if statement means that the century byte will be always 0
 907     * (at least until 2079...) for base_year = 1980, but will be set
 908     * correctly for base_year = 2000.
 909     */
 910    if (s->base_year == 2000) {
 911        s->base_year = 0;
 912    }
 913
 914    rtc_set_date_from_host(isadev);
 915
 916    switch (s->lost_tick_policy) {
 917#ifdef TARGET_I386
 918    case LOST_TICK_POLICY_SLEW:
 919        s->coalesced_timer =
 920            timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
 921        break;
 922#endif
 923    case LOST_TICK_POLICY_DISCARD:
 924        break;
 925    default:
 926        error_setg(errp, "Invalid lost tick policy.");
 927        return;
 928    }
 929
 930    s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
 931    s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
 932    check_update_timer(s);
 933
 934    s->suspend_notifier.notify = rtc_notify_suspend;
 935    qemu_register_suspend_notifier(&s->suspend_notifier);
 936
 937    memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
 938    isa_register_ioport(isadev, &s->io, RTC_ISA_BASE);
 939
 940    /* register rtc 0x70 port for coalesced_pio */
 941    memory_region_set_flush_coalesced(&s->io);
 942    memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
 943                          s, "rtc-index", 1);
 944    memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
 945    memory_region_add_coalescing(&s->coalesced_io, 0, 1);
 946
 947    qdev_set_legacy_instance_id(dev, RTC_ISA_BASE, 3);
 948
 949    object_property_add_tm(OBJECT(s), "date", rtc_get_date);
 950
 951    qdev_init_gpio_out(dev, &s->irq, 1);
 952    QLIST_INSERT_HEAD(&rtc_devices, s, link);
 953}
 954
 955ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
 956{
 957    DeviceState *dev;
 958    ISADevice *isadev;
 959
 960    isadev = isa_new(TYPE_MC146818_RTC);
 961    dev = DEVICE(isadev);
 962    qdev_prop_set_int32(dev, "base_year", base_year);
 963    isa_realize_and_unref(isadev, bus, &error_fatal);
 964    if (intercept_irq) {
 965        qdev_connect_gpio_out(dev, 0, intercept_irq);
 966    } else {
 967        isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
 968    }
 969
 970    object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev),
 971                              "date");
 972
 973    return isadev;
 974}
 975
 976static Property mc146818rtc_properties[] = {
 977    DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
 978    DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
 979                               lost_tick_policy, LOST_TICK_POLICY_DISCARD),
 980    DEFINE_PROP_END_OF_LIST(),
 981};
 982
 983static void rtc_reset_enter(Object *obj, ResetType type)
 984{
 985    RTCState *s = MC146818_RTC(obj);
 986
 987    /* Reason: VM do suspend self will set 0xfe
 988     * Reset any values other than 0xfe(Guest suspend case) */
 989    if (s->cmos_data[0x0f] != 0xfe) {
 990        s->cmos_data[0x0f] = 0x00;
 991    }
 992
 993    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
 994    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
 995    check_update_timer(s);
 996
 997
 998    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 999        s->irq_coalesced = 0;
1000        s->irq_reinject_on_ack_count = 0;
1001    }
1002}
1003
1004static void rtc_reset_hold(Object *obj)
1005{
1006    RTCState *s = MC146818_RTC(obj);
1007
1008    qemu_irq_lower(s->irq);
1009}
1010
1011static void rtc_build_aml(ISADevice *isadev, Aml *scope)
1012{
1013    Aml *dev;
1014    Aml *crs;
1015
1016    /*
1017     * Reserving 8 io ports here, following what physical hardware
1018     * does, even though qemu only responds to the first two ports.
1019     */
1020    crs = aml_resource_template();
1021    aml_append(crs, aml_io(AML_DECODE16, RTC_ISA_BASE, RTC_ISA_BASE,
1022                           0x01, 0x08));
1023    aml_append(crs, aml_irq_no_flags(RTC_ISA_IRQ));
1024
1025    dev = aml_device("RTC");
1026    aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1027    aml_append(dev, aml_name_decl("_CRS", crs));
1028
1029    aml_append(scope, dev);
1030}
1031
1032static void rtc_class_initfn(ObjectClass *klass, void *data)
1033{
1034    DeviceClass *dc = DEVICE_CLASS(klass);
1035    ResettableClass *rc = RESETTABLE_CLASS(klass);
1036    ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
1037
1038    dc->realize = rtc_realizefn;
1039    dc->vmsd = &vmstate_rtc;
1040    rc->phases.enter = rtc_reset_enter;
1041    rc->phases.hold = rtc_reset_hold;
1042    isa->build_aml = rtc_build_aml;
1043    device_class_set_props(dc, mc146818rtc_properties);
1044    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
1045}
1046
1047static const TypeInfo mc146818rtc_info = {
1048    .name          = TYPE_MC146818_RTC,
1049    .parent        = TYPE_ISA_DEVICE,
1050    .instance_size = sizeof(RTCState),
1051    .class_init    = rtc_class_initfn,
1052};
1053
1054static void mc146818rtc_register_types(void)
1055{
1056    type_register_static(&mc146818rtc_info);
1057}
1058
1059type_init(mc146818rtc_register_types)
1060