qemu/include/qemu/host-utils.h
<<
>>
Prefs
   1/*
   2 * Utility compute operations used by translated code.
   3 *
   4 * Copyright (c) 2007 Thiemo Seufer
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25
  26#ifndef HOST_UTILS_H
  27#define HOST_UTILS_H
  28
  29#include "qemu/compiler.h"
  30#include "qemu/bswap.h"
  31
  32#ifdef CONFIG_INT128
  33static inline void mulu64(uint64_t *plow, uint64_t *phigh,
  34                          uint64_t a, uint64_t b)
  35{
  36    __uint128_t r = (__uint128_t)a * b;
  37    *plow = r;
  38    *phigh = r >> 64;
  39}
  40
  41static inline void muls64(uint64_t *plow, uint64_t *phigh,
  42                          int64_t a, int64_t b)
  43{
  44    __int128_t r = (__int128_t)a * b;
  45    *plow = r;
  46    *phigh = r >> 64;
  47}
  48
  49/* compute with 96 bit intermediate result: (a*b)/c */
  50static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
  51{
  52    return (__int128_t)a * b / c;
  53}
  54
  55static inline int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor)
  56{
  57    if (divisor == 0) {
  58        return 1;
  59    } else {
  60        __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow;
  61        __uint128_t result = dividend / divisor;
  62        *plow = result;
  63        *phigh = dividend % divisor;
  64        return result > UINT64_MAX;
  65    }
  66}
  67
  68static inline int divs128(int64_t *plow, int64_t *phigh, int64_t divisor)
  69{
  70    if (divisor == 0) {
  71        return 1;
  72    } else {
  73        __int128_t dividend = ((__int128_t)*phigh << 64) | *plow;
  74        __int128_t result = dividend / divisor;
  75        *plow = result;
  76        *phigh = dividend % divisor;
  77        return result != *plow;
  78    }
  79}
  80#else
  81void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b);
  82void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b);
  83int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor);
  84int divs128(int64_t *plow, int64_t *phigh, int64_t divisor);
  85
  86static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
  87{
  88    union {
  89        uint64_t ll;
  90        struct {
  91#ifdef HOST_WORDS_BIGENDIAN
  92            uint32_t high, low;
  93#else
  94            uint32_t low, high;
  95#endif
  96        } l;
  97    } u, res;
  98    uint64_t rl, rh;
  99
 100    u.ll = a;
 101    rl = (uint64_t)u.l.low * (uint64_t)b;
 102    rh = (uint64_t)u.l.high * (uint64_t)b;
 103    rh += (rl >> 32);
 104    res.l.high = rh / c;
 105    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
 106    return res.ll;
 107}
 108#endif
 109
 110/**
 111 * clz32 - count leading zeros in a 32-bit value.
 112 * @val: The value to search
 113 *
 114 * Returns 32 if the value is zero.  Note that the GCC builtin is
 115 * undefined if the value is zero.
 116 */
 117static inline int clz32(uint32_t val)
 118{
 119    return val ? __builtin_clz(val) : 32;
 120}
 121
 122/**
 123 * clo32 - count leading ones in a 32-bit value.
 124 * @val: The value to search
 125 *
 126 * Returns 32 if the value is -1.
 127 */
 128static inline int clo32(uint32_t val)
 129{
 130    return clz32(~val);
 131}
 132
 133/**
 134 * clz64 - count leading zeros in a 64-bit value.
 135 * @val: The value to search
 136 *
 137 * Returns 64 if the value is zero.  Note that the GCC builtin is
 138 * undefined if the value is zero.
 139 */
 140static inline int clz64(uint64_t val)
 141{
 142    return val ? __builtin_clzll(val) : 64;
 143}
 144
 145/**
 146 * clo64 - count leading ones in a 64-bit value.
 147 * @val: The value to search
 148 *
 149 * Returns 64 if the value is -1.
 150 */
 151static inline int clo64(uint64_t val)
 152{
 153    return clz64(~val);
 154}
 155
 156/**
 157 * ctz32 - count trailing zeros in a 32-bit value.
 158 * @val: The value to search
 159 *
 160 * Returns 32 if the value is zero.  Note that the GCC builtin is
 161 * undefined if the value is zero.
 162 */
 163static inline int ctz32(uint32_t val)
 164{
 165    return val ? __builtin_ctz(val) : 32;
 166}
 167
 168/**
 169 * cto32 - count trailing ones in a 32-bit value.
 170 * @val: The value to search
 171 *
 172 * Returns 32 if the value is -1.
 173 */
 174static inline int cto32(uint32_t val)
 175{
 176    return ctz32(~val);
 177}
 178
 179/**
 180 * ctz64 - count trailing zeros in a 64-bit value.
 181 * @val: The value to search
 182 *
 183 * Returns 64 if the value is zero.  Note that the GCC builtin is
 184 * undefined if the value is zero.
 185 */
 186static inline int ctz64(uint64_t val)
 187{
 188    return val ? __builtin_ctzll(val) : 64;
 189}
 190
 191/**
 192 * cto64 - count trailing ones in a 64-bit value.
 193 * @val: The value to search
 194 *
 195 * Returns 64 if the value is -1.
 196 */
 197static inline int cto64(uint64_t val)
 198{
 199    return ctz64(~val);
 200}
 201
 202/**
 203 * clrsb32 - count leading redundant sign bits in a 32-bit value.
 204 * @val: The value to search
 205 *
 206 * Returns the number of bits following the sign bit that are equal to it.
 207 * No special cases; output range is [0-31].
 208 */
 209static inline int clrsb32(uint32_t val)
 210{
 211#if __has_builtin(__builtin_clrsb) || !defined(__clang__)
 212    return __builtin_clrsb(val);
 213#else
 214    return clz32(val ^ ((int32_t)val >> 1)) - 1;
 215#endif
 216}
 217
 218/**
 219 * clrsb64 - count leading redundant sign bits in a 64-bit value.
 220 * @val: The value to search
 221 *
 222 * Returns the number of bits following the sign bit that are equal to it.
 223 * No special cases; output range is [0-63].
 224 */
 225static inline int clrsb64(uint64_t val)
 226{
 227#if __has_builtin(__builtin_clrsbll) || !defined(__clang__)
 228    return __builtin_clrsbll(val);
 229#else
 230    return clz64(val ^ ((int64_t)val >> 1)) - 1;
 231#endif
 232}
 233
 234/**
 235 * ctpop8 - count the population of one bits in an 8-bit value.
 236 * @val: The value to search
 237 */
 238static inline int ctpop8(uint8_t val)
 239{
 240    return __builtin_popcount(val);
 241}
 242
 243/**
 244 * ctpop16 - count the population of one bits in a 16-bit value.
 245 * @val: The value to search
 246 */
 247static inline int ctpop16(uint16_t val)
 248{
 249    return __builtin_popcount(val);
 250}
 251
 252/**
 253 * ctpop32 - count the population of one bits in a 32-bit value.
 254 * @val: The value to search
 255 */
 256static inline int ctpop32(uint32_t val)
 257{
 258    return __builtin_popcount(val);
 259}
 260
 261/**
 262 * ctpop64 - count the population of one bits in a 64-bit value.
 263 * @val: The value to search
 264 */
 265static inline int ctpop64(uint64_t val)
 266{
 267    return __builtin_popcountll(val);
 268}
 269
 270/**
 271 * revbit8 - reverse the bits in an 8-bit value.
 272 * @x: The value to modify.
 273 */
 274static inline uint8_t revbit8(uint8_t x)
 275{
 276#if __has_builtin(__builtin_bitreverse8)
 277    return __builtin_bitreverse8(x);
 278#else
 279    /* Assign the correct nibble position.  */
 280    x = ((x & 0xf0) >> 4)
 281      | ((x & 0x0f) << 4);
 282    /* Assign the correct bit position.  */
 283    x = ((x & 0x88) >> 3)
 284      | ((x & 0x44) >> 1)
 285      | ((x & 0x22) << 1)
 286      | ((x & 0x11) << 3);
 287    return x;
 288#endif
 289}
 290
 291/**
 292 * revbit16 - reverse the bits in a 16-bit value.
 293 * @x: The value to modify.
 294 */
 295static inline uint16_t revbit16(uint16_t x)
 296{
 297#if __has_builtin(__builtin_bitreverse16)
 298    return __builtin_bitreverse16(x);
 299#else
 300    /* Assign the correct byte position.  */
 301    x = bswap16(x);
 302    /* Assign the correct nibble position.  */
 303    x = ((x & 0xf0f0) >> 4)
 304      | ((x & 0x0f0f) << 4);
 305    /* Assign the correct bit position.  */
 306    x = ((x & 0x8888) >> 3)
 307      | ((x & 0x4444) >> 1)
 308      | ((x & 0x2222) << 1)
 309      | ((x & 0x1111) << 3);
 310    return x;
 311#endif
 312}
 313
 314/**
 315 * revbit32 - reverse the bits in a 32-bit value.
 316 * @x: The value to modify.
 317 */
 318static inline uint32_t revbit32(uint32_t x)
 319{
 320#if __has_builtin(__builtin_bitreverse32)
 321    return __builtin_bitreverse32(x);
 322#else
 323    /* Assign the correct byte position.  */
 324    x = bswap32(x);
 325    /* Assign the correct nibble position.  */
 326    x = ((x & 0xf0f0f0f0u) >> 4)
 327      | ((x & 0x0f0f0f0fu) << 4);
 328    /* Assign the correct bit position.  */
 329    x = ((x & 0x88888888u) >> 3)
 330      | ((x & 0x44444444u) >> 1)
 331      | ((x & 0x22222222u) << 1)
 332      | ((x & 0x11111111u) << 3);
 333    return x;
 334#endif
 335}
 336
 337/**
 338 * revbit64 - reverse the bits in a 64-bit value.
 339 * @x: The value to modify.
 340 */
 341static inline uint64_t revbit64(uint64_t x)
 342{
 343#if __has_builtin(__builtin_bitreverse64)
 344    return __builtin_bitreverse64(x);
 345#else
 346    /* Assign the correct byte position.  */
 347    x = bswap64(x);
 348    /* Assign the correct nibble position.  */
 349    x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4)
 350      | ((x & 0x0f0f0f0f0f0f0f0full) << 4);
 351    /* Assign the correct bit position.  */
 352    x = ((x & 0x8888888888888888ull) >> 3)
 353      | ((x & 0x4444444444444444ull) >> 1)
 354      | ((x & 0x2222222222222222ull) << 1)
 355      | ((x & 0x1111111111111111ull) << 3);
 356    return x;
 357#endif
 358}
 359
 360/**
 361 * sadd32_overflow - addition with overflow indication
 362 * @x, @y: addends
 363 * @ret: Output for sum
 364 *
 365 * Computes *@ret = @x + @y, and returns true if and only if that
 366 * value has been truncated.
 367 */
 368static inline bool sadd32_overflow(int32_t x, int32_t y, int32_t *ret)
 369{
 370#if __has_builtin(__builtin_add_overflow) || __GNUC__ >= 5
 371    return __builtin_add_overflow(x, y, ret);
 372#else
 373    *ret = x + y;
 374    return ((*ret ^ x) & ~(x ^ y)) < 0;
 375#endif
 376}
 377
 378/**
 379 * sadd64_overflow - addition with overflow indication
 380 * @x, @y: addends
 381 * @ret: Output for sum
 382 *
 383 * Computes *@ret = @x + @y, and returns true if and only if that
 384 * value has been truncated.
 385 */
 386static inline bool sadd64_overflow(int64_t x, int64_t y, int64_t *ret)
 387{
 388#if __has_builtin(__builtin_add_overflow) || __GNUC__ >= 5
 389    return __builtin_add_overflow(x, y, ret);
 390#else
 391    *ret = x + y;
 392    return ((*ret ^ x) & ~(x ^ y)) < 0;
 393#endif
 394}
 395
 396/**
 397 * uadd32_overflow - addition with overflow indication
 398 * @x, @y: addends
 399 * @ret: Output for sum
 400 *
 401 * Computes *@ret = @x + @y, and returns true if and only if that
 402 * value has been truncated.
 403 */
 404static inline bool uadd32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
 405{
 406#if __has_builtin(__builtin_add_overflow) || __GNUC__ >= 5
 407    return __builtin_add_overflow(x, y, ret);
 408#else
 409    *ret = x + y;
 410    return *ret < x;
 411#endif
 412}
 413
 414/**
 415 * uadd64_overflow - addition with overflow indication
 416 * @x, @y: addends
 417 * @ret: Output for sum
 418 *
 419 * Computes *@ret = @x + @y, and returns true if and only if that
 420 * value has been truncated.
 421 */
 422static inline bool uadd64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
 423{
 424#if __has_builtin(__builtin_add_overflow) || __GNUC__ >= 5
 425    return __builtin_add_overflow(x, y, ret);
 426#else
 427    *ret = x + y;
 428    return *ret < x;
 429#endif
 430}
 431
 432/**
 433 * ssub32_overflow - subtraction with overflow indication
 434 * @x: Minuend
 435 * @y: Subtrahend
 436 * @ret: Output for difference
 437 *
 438 * Computes *@ret = @x - @y, and returns true if and only if that
 439 * value has been truncated.
 440 */
 441static inline bool ssub32_overflow(int32_t x, int32_t y, int32_t *ret)
 442{
 443#if __has_builtin(__builtin_sub_overflow) || __GNUC__ >= 5
 444    return __builtin_sub_overflow(x, y, ret);
 445#else
 446    *ret = x - y;
 447    return ((*ret ^ x) & (x ^ y)) < 0;
 448#endif
 449}
 450
 451/**
 452 * ssub64_overflow - subtraction with overflow indication
 453 * @x: Minuend
 454 * @y: Subtrahend
 455 * @ret: Output for sum
 456 *
 457 * Computes *@ret = @x - @y, and returns true if and only if that
 458 * value has been truncated.
 459 */
 460static inline bool ssub64_overflow(int64_t x, int64_t y, int64_t *ret)
 461{
 462#if __has_builtin(__builtin_sub_overflow) || __GNUC__ >= 5
 463    return __builtin_sub_overflow(x, y, ret);
 464#else
 465    *ret = x - y;
 466    return ((*ret ^ x) & (x ^ y)) < 0;
 467#endif
 468}
 469
 470/**
 471 * usub32_overflow - subtraction with overflow indication
 472 * @x: Minuend
 473 * @y: Subtrahend
 474 * @ret: Output for sum
 475 *
 476 * Computes *@ret = @x - @y, and returns true if and only if that
 477 * value has been truncated.
 478 */
 479static inline bool usub32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
 480{
 481#if __has_builtin(__builtin_sub_overflow) || __GNUC__ >= 5
 482    return __builtin_sub_overflow(x, y, ret);
 483#else
 484    *ret = x - y;
 485    return x < y;
 486#endif
 487}
 488
 489/**
 490 * usub64_overflow - subtraction with overflow indication
 491 * @x: Minuend
 492 * @y: Subtrahend
 493 * @ret: Output for sum
 494 *
 495 * Computes *@ret = @x - @y, and returns true if and only if that
 496 * value has been truncated.
 497 */
 498static inline bool usub64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
 499{
 500#if __has_builtin(__builtin_sub_overflow) || __GNUC__ >= 5
 501    return __builtin_sub_overflow(x, y, ret);
 502#else
 503    *ret = x - y;
 504    return x < y;
 505#endif
 506}
 507
 508/**
 509 * smul32_overflow - multiplication with overflow indication
 510 * @x, @y: Input multipliers
 511 * @ret: Output for product
 512 *
 513 * Computes *@ret = @x * @y, and returns true if and only if that
 514 * value has been truncated.
 515 */
 516static inline bool smul32_overflow(int32_t x, int32_t y, int32_t *ret)
 517{
 518#if __has_builtin(__builtin_mul_overflow) || __GNUC__ >= 5
 519    return __builtin_mul_overflow(x, y, ret);
 520#else
 521    int64_t z = (int64_t)x * y;
 522    *ret = z;
 523    return *ret != z;
 524#endif
 525}
 526
 527/**
 528 * smul64_overflow - multiplication with overflow indication
 529 * @x, @y: Input multipliers
 530 * @ret: Output for product
 531 *
 532 * Computes *@ret = @x * @y, and returns true if and only if that
 533 * value has been truncated.
 534 */
 535static inline bool smul64_overflow(int64_t x, int64_t y, int64_t *ret)
 536{
 537#if __has_builtin(__builtin_mul_overflow) || __GNUC__ >= 5
 538    return __builtin_mul_overflow(x, y, ret);
 539#else
 540    uint64_t hi, lo;
 541    muls64(&lo, &hi, x, y);
 542    *ret = lo;
 543    return hi != ((int64_t)lo >> 63);
 544#endif
 545}
 546
 547/**
 548 * umul32_overflow - multiplication with overflow indication
 549 * @x, @y: Input multipliers
 550 * @ret: Output for product
 551 *
 552 * Computes *@ret = @x * @y, and returns true if and only if that
 553 * value has been truncated.
 554 */
 555static inline bool umul32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
 556{
 557#if __has_builtin(__builtin_mul_overflow) || __GNUC__ >= 5
 558    return __builtin_mul_overflow(x, y, ret);
 559#else
 560    uint64_t z = (uint64_t)x * y;
 561    *ret = z;
 562    return z > UINT32_MAX;
 563#endif
 564}
 565
 566/**
 567 * umul64_overflow - multiplication with overflow indication
 568 * @x, @y: Input multipliers
 569 * @ret: Output for product
 570 *
 571 * Computes *@ret = @x * @y, and returns true if and only if that
 572 * value has been truncated.
 573 */
 574static inline bool umul64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
 575{
 576#if __has_builtin(__builtin_mul_overflow) || __GNUC__ >= 5
 577    return __builtin_mul_overflow(x, y, ret);
 578#else
 579    uint64_t hi;
 580    mulu64(ret, &hi, x, y);
 581    return hi != 0;
 582#endif
 583}
 584
 585/**
 586 * uadd64_carry - addition with carry-in and carry-out
 587 * @x, @y: addends
 588 * @pcarry: in-out carry value
 589 *
 590 * Computes @x + @y + *@pcarry, placing the carry-out back
 591 * into *@pcarry and returning the 64-bit sum.
 592 */
 593static inline uint64_t uadd64_carry(uint64_t x, uint64_t y, bool *pcarry)
 594{
 595#if __has_builtin(__builtin_addcll)
 596    unsigned long long c = *pcarry;
 597    x = __builtin_addcll(x, y, c, &c);
 598    *pcarry = c & 1;
 599    return x;
 600#else
 601    bool c = *pcarry;
 602    /* This is clang's internal expansion of __builtin_addc. */
 603    c = uadd64_overflow(x, c, &x);
 604    c |= uadd64_overflow(x, y, &x);
 605    *pcarry = c;
 606    return x;
 607#endif
 608}
 609
 610/**
 611 * usub64_borrow - subtraction with borrow-in and borrow-out
 612 * @x, @y: addends
 613 * @pborrow: in-out borrow value
 614 *
 615 * Computes @x - @y - *@pborrow, placing the borrow-out back
 616 * into *@pborrow and returning the 64-bit sum.
 617 */
 618static inline uint64_t usub64_borrow(uint64_t x, uint64_t y, bool *pborrow)
 619{
 620#if __has_builtin(__builtin_subcll)
 621    unsigned long long b = *pborrow;
 622    x = __builtin_subcll(x, y, b, &b);
 623    *pborrow = b & 1;
 624    return x;
 625#else
 626    bool b = *pborrow;
 627    b = usub64_overflow(x, b, &x);
 628    b |= usub64_overflow(x, y, &x);
 629    *pborrow = b;
 630    return x;
 631#endif
 632}
 633
 634/* Host type specific sizes of these routines.  */
 635
 636#if ULONG_MAX == UINT32_MAX
 637# define clzl   clz32
 638# define ctzl   ctz32
 639# define clol   clo32
 640# define ctol   cto32
 641# define ctpopl ctpop32
 642# define revbitl revbit32
 643#elif ULONG_MAX == UINT64_MAX
 644# define clzl   clz64
 645# define ctzl   ctz64
 646# define clol   clo64
 647# define ctol   cto64
 648# define ctpopl ctpop64
 649# define revbitl revbit64
 650#else
 651# error Unknown sizeof long
 652#endif
 653
 654static inline bool is_power_of_2(uint64_t value)
 655{
 656    if (!value) {
 657        return false;
 658    }
 659
 660    return !(value & (value - 1));
 661}
 662
 663/**
 664 * Return @value rounded down to the nearest power of two or zero.
 665 */
 666static inline uint64_t pow2floor(uint64_t value)
 667{
 668    if (!value) {
 669        /* Avoid undefined shift by 64 */
 670        return 0;
 671    }
 672    return 0x8000000000000000ull >> clz64(value);
 673}
 674
 675/*
 676 * Return @value rounded up to the nearest power of two modulo 2^64.
 677 * This is *zero* for @value > 2^63, so be careful.
 678 */
 679static inline uint64_t pow2ceil(uint64_t value)
 680{
 681    int n = clz64(value - 1);
 682
 683    if (!n) {
 684        /*
 685         * @value - 1 has no leading zeroes, thus @value - 1 >= 2^63
 686         * Therefore, either @value == 0 or @value > 2^63.
 687         * If it's 0, return 1, else return 0.
 688         */
 689        return !value;
 690    }
 691    return 0x8000000000000000ull >> (n - 1);
 692}
 693
 694static inline uint32_t pow2roundup32(uint32_t x)
 695{
 696    x |= (x >> 1);
 697    x |= (x >> 2);
 698    x |= (x >> 4);
 699    x |= (x >> 8);
 700    x |= (x >> 16);
 701    return x + 1;
 702}
 703
 704/**
 705 * urshift - 128-bit Unsigned Right Shift.
 706 * @plow: in/out - lower 64-bit integer.
 707 * @phigh: in/out - higher 64-bit integer.
 708 * @shift: in - bytes to shift, between 0 and 127.
 709 *
 710 * Result is zero-extended and stored in plow/phigh, which are
 711 * input/output variables. Shift values outside the range will
 712 * be mod to 128. In other words, the caller is responsible to
 713 * verify/assert both the shift range and plow/phigh pointers.
 714 */
 715void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift);
 716
 717/**
 718 * ulshift - 128-bit Unsigned Left Shift.
 719 * @plow: in/out - lower 64-bit integer.
 720 * @phigh: in/out - higher 64-bit integer.
 721 * @shift: in - bytes to shift, between 0 and 127.
 722 * @overflow: out - true if any 1-bit is shifted out.
 723 *
 724 * Result is zero-extended and stored in plow/phigh, which are
 725 * input/output variables. Shift values outside the range will
 726 * be mod to 128. In other words, the caller is responsible to
 727 * verify/assert both the shift range and plow/phigh pointers.
 728 */
 729void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow);
 730
 731#endif
 732