qemu/linux-user/elfload.c
<<
>>
Prefs
   1/* This is the Linux kernel elf-loading code, ported into user space */
   2#include "qemu/osdep.h"
   3#include <sys/param.h>
   4
   5#include <sys/resource.h>
   6#include <sys/shm.h>
   7
   8#include "qemu.h"
   9#include "disas/disas.h"
  10#include "qemu/bitops.h"
  11#include "qemu/path.h"
  12#include "qemu/queue.h"
  13#include "qemu/guest-random.h"
  14#include "qemu/units.h"
  15#include "qemu/selfmap.h"
  16#include "qapi/error.h"
  17
  18#ifdef _ARCH_PPC64
  19#undef ARCH_DLINFO
  20#undef ELF_PLATFORM
  21#undef ELF_HWCAP
  22#undef ELF_HWCAP2
  23#undef ELF_CLASS
  24#undef ELF_DATA
  25#undef ELF_ARCH
  26#endif
  27
  28#define ELF_OSABI   ELFOSABI_SYSV
  29
  30/* from personality.h */
  31
  32/*
  33 * Flags for bug emulation.
  34 *
  35 * These occupy the top three bytes.
  36 */
  37enum {
  38    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
  39    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
  40                                           descriptors (signal handling) */
  41    MMAP_PAGE_ZERO =    0x0100000,
  42    ADDR_COMPAT_LAYOUT = 0x0200000,
  43    READ_IMPLIES_EXEC = 0x0400000,
  44    ADDR_LIMIT_32BIT =  0x0800000,
  45    SHORT_INODE =       0x1000000,
  46    WHOLE_SECONDS =     0x2000000,
  47    STICKY_TIMEOUTS =   0x4000000,
  48    ADDR_LIMIT_3GB =    0x8000000,
  49};
  50
  51/*
  52 * Personality types.
  53 *
  54 * These go in the low byte.  Avoid using the top bit, it will
  55 * conflict with error returns.
  56 */
  57enum {
  58    PER_LINUX =         0x0000,
  59    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
  60    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
  61    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  62    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  63    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  64    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  65    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  66    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
  67    PER_BSD =           0x0006,
  68    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
  69    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  70    PER_LINUX32 =       0x0008,
  71    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
  72    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  73    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  74    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  75    PER_RISCOS =        0x000c,
  76    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
  77    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  78    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
  79    PER_HPUX =          0x0010,
  80    PER_MASK =          0x00ff,
  81};
  82
  83/*
  84 * Return the base personality without flags.
  85 */
  86#define personality(pers)       (pers & PER_MASK)
  87
  88int info_is_fdpic(struct image_info *info)
  89{
  90    return info->personality == PER_LINUX_FDPIC;
  91}
  92
  93/* this flag is uneffective under linux too, should be deleted */
  94#ifndef MAP_DENYWRITE
  95#define MAP_DENYWRITE 0
  96#endif
  97
  98/* should probably go in elf.h */
  99#ifndef ELIBBAD
 100#define ELIBBAD 80
 101#endif
 102
 103#ifdef TARGET_WORDS_BIGENDIAN
 104#define ELF_DATA        ELFDATA2MSB
 105#else
 106#define ELF_DATA        ELFDATA2LSB
 107#endif
 108
 109#ifdef TARGET_ABI_MIPSN32
 110typedef abi_ullong      target_elf_greg_t;
 111#define tswapreg(ptr)   tswap64(ptr)
 112#else
 113typedef abi_ulong       target_elf_greg_t;
 114#define tswapreg(ptr)   tswapal(ptr)
 115#endif
 116
 117#ifdef USE_UID16
 118typedef abi_ushort      target_uid_t;
 119typedef abi_ushort      target_gid_t;
 120#else
 121typedef abi_uint        target_uid_t;
 122typedef abi_uint        target_gid_t;
 123#endif
 124typedef abi_int         target_pid_t;
 125
 126#ifdef TARGET_I386
 127
 128#define ELF_PLATFORM get_elf_platform()
 129
 130static const char *get_elf_platform(void)
 131{
 132    static char elf_platform[] = "i386";
 133    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 134    if (family > 6)
 135        family = 6;
 136    if (family >= 3)
 137        elf_platform[1] = '0' + family;
 138    return elf_platform;
 139}
 140
 141#define ELF_HWCAP get_elf_hwcap()
 142
 143static uint32_t get_elf_hwcap(void)
 144{
 145    X86CPU *cpu = X86_CPU(thread_cpu);
 146
 147    return cpu->env.features[FEAT_1_EDX];
 148}
 149
 150#ifdef TARGET_X86_64
 151#define ELF_START_MMAP 0x2aaaaab000ULL
 152
 153#define ELF_CLASS      ELFCLASS64
 154#define ELF_ARCH       EM_X86_64
 155
 156static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 157{
 158    regs->rax = 0;
 159    regs->rsp = infop->start_stack;
 160    regs->rip = infop->entry;
 161}
 162
 163#define ELF_NREG    27
 164typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 165
 166/*
 167 * Note that ELF_NREG should be 29 as there should be place for
 168 * TRAPNO and ERR "registers" as well but linux doesn't dump
 169 * those.
 170 *
 171 * See linux kernel: arch/x86/include/asm/elf.h
 172 */
 173static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 174{
 175    (*regs)[0] = tswapreg(env->regs[15]);
 176    (*regs)[1] = tswapreg(env->regs[14]);
 177    (*regs)[2] = tswapreg(env->regs[13]);
 178    (*regs)[3] = tswapreg(env->regs[12]);
 179    (*regs)[4] = tswapreg(env->regs[R_EBP]);
 180    (*regs)[5] = tswapreg(env->regs[R_EBX]);
 181    (*regs)[6] = tswapreg(env->regs[11]);
 182    (*regs)[7] = tswapreg(env->regs[10]);
 183    (*regs)[8] = tswapreg(env->regs[9]);
 184    (*regs)[9] = tswapreg(env->regs[8]);
 185    (*regs)[10] = tswapreg(env->regs[R_EAX]);
 186    (*regs)[11] = tswapreg(env->regs[R_ECX]);
 187    (*regs)[12] = tswapreg(env->regs[R_EDX]);
 188    (*regs)[13] = tswapreg(env->regs[R_ESI]);
 189    (*regs)[14] = tswapreg(env->regs[R_EDI]);
 190    (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
 191    (*regs)[16] = tswapreg(env->eip);
 192    (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
 193    (*regs)[18] = tswapreg(env->eflags);
 194    (*regs)[19] = tswapreg(env->regs[R_ESP]);
 195    (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
 196    (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
 197    (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
 198    (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
 199    (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
 200    (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
 201    (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
 202}
 203
 204#else
 205
 206#define ELF_START_MMAP 0x80000000
 207
 208/*
 209 * This is used to ensure we don't load something for the wrong architecture.
 210 */
 211#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 212
 213/*
 214 * These are used to set parameters in the core dumps.
 215 */
 216#define ELF_CLASS       ELFCLASS32
 217#define ELF_ARCH        EM_386
 218
 219static inline void init_thread(struct target_pt_regs *regs,
 220                               struct image_info *infop)
 221{
 222    regs->esp = infop->start_stack;
 223    regs->eip = infop->entry;
 224
 225    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 226       starts %edx contains a pointer to a function which might be
 227       registered using `atexit'.  This provides a mean for the
 228       dynamic linker to call DT_FINI functions for shared libraries
 229       that have been loaded before the code runs.
 230
 231       A value of 0 tells we have no such handler.  */
 232    regs->edx = 0;
 233}
 234
 235#define ELF_NREG    17
 236typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 237
 238/*
 239 * Note that ELF_NREG should be 19 as there should be place for
 240 * TRAPNO and ERR "registers" as well but linux doesn't dump
 241 * those.
 242 *
 243 * See linux kernel: arch/x86/include/asm/elf.h
 244 */
 245static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 246{
 247    (*regs)[0] = tswapreg(env->regs[R_EBX]);
 248    (*regs)[1] = tswapreg(env->regs[R_ECX]);
 249    (*regs)[2] = tswapreg(env->regs[R_EDX]);
 250    (*regs)[3] = tswapreg(env->regs[R_ESI]);
 251    (*regs)[4] = tswapreg(env->regs[R_EDI]);
 252    (*regs)[5] = tswapreg(env->regs[R_EBP]);
 253    (*regs)[6] = tswapreg(env->regs[R_EAX]);
 254    (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
 255    (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
 256    (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
 257    (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
 258    (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
 259    (*regs)[12] = tswapreg(env->eip);
 260    (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
 261    (*regs)[14] = tswapreg(env->eflags);
 262    (*regs)[15] = tswapreg(env->regs[R_ESP]);
 263    (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
 264}
 265#endif
 266
 267#define USE_ELF_CORE_DUMP
 268#define ELF_EXEC_PAGESIZE       4096
 269
 270#endif
 271
 272#ifdef TARGET_ARM
 273
 274#ifndef TARGET_AARCH64
 275/* 32 bit ARM definitions */
 276
 277#define ELF_START_MMAP 0x80000000
 278
 279#define ELF_ARCH        EM_ARM
 280#define ELF_CLASS       ELFCLASS32
 281
 282static inline void init_thread(struct target_pt_regs *regs,
 283                               struct image_info *infop)
 284{
 285    abi_long stack = infop->start_stack;
 286    memset(regs, 0, sizeof(*regs));
 287
 288    regs->uregs[16] = ARM_CPU_MODE_USR;
 289    if (infop->entry & 1) {
 290        regs->uregs[16] |= CPSR_T;
 291    }
 292    regs->uregs[15] = infop->entry & 0xfffffffe;
 293    regs->uregs[13] = infop->start_stack;
 294    /* FIXME - what to for failure of get_user()? */
 295    get_user_ual(regs->uregs[2], stack + 8); /* envp */
 296    get_user_ual(regs->uregs[1], stack + 4); /* envp */
 297    /* XXX: it seems that r0 is zeroed after ! */
 298    regs->uregs[0] = 0;
 299    /* For uClinux PIC binaries.  */
 300    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 301    regs->uregs[10] = infop->start_data;
 302
 303    /* Support ARM FDPIC.  */
 304    if (info_is_fdpic(infop)) {
 305        /* As described in the ABI document, r7 points to the loadmap info
 306         * prepared by the kernel. If an interpreter is needed, r8 points
 307         * to the interpreter loadmap and r9 points to the interpreter
 308         * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
 309         * r9 points to the main program PT_DYNAMIC info.
 310         */
 311        regs->uregs[7] = infop->loadmap_addr;
 312        if (infop->interpreter_loadmap_addr) {
 313            /* Executable is dynamically loaded.  */
 314            regs->uregs[8] = infop->interpreter_loadmap_addr;
 315            regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
 316        } else {
 317            regs->uregs[8] = 0;
 318            regs->uregs[9] = infop->pt_dynamic_addr;
 319        }
 320    }
 321}
 322
 323#define ELF_NREG    18
 324typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 325
 326static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 327{
 328    (*regs)[0] = tswapreg(env->regs[0]);
 329    (*regs)[1] = tswapreg(env->regs[1]);
 330    (*regs)[2] = tswapreg(env->regs[2]);
 331    (*regs)[3] = tswapreg(env->regs[3]);
 332    (*regs)[4] = tswapreg(env->regs[4]);
 333    (*regs)[5] = tswapreg(env->regs[5]);
 334    (*regs)[6] = tswapreg(env->regs[6]);
 335    (*regs)[7] = tswapreg(env->regs[7]);
 336    (*regs)[8] = tswapreg(env->regs[8]);
 337    (*regs)[9] = tswapreg(env->regs[9]);
 338    (*regs)[10] = tswapreg(env->regs[10]);
 339    (*regs)[11] = tswapreg(env->regs[11]);
 340    (*regs)[12] = tswapreg(env->regs[12]);
 341    (*regs)[13] = tswapreg(env->regs[13]);
 342    (*regs)[14] = tswapreg(env->regs[14]);
 343    (*regs)[15] = tswapreg(env->regs[15]);
 344
 345    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 346    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 347}
 348
 349#define USE_ELF_CORE_DUMP
 350#define ELF_EXEC_PAGESIZE       4096
 351
 352enum
 353{
 354    ARM_HWCAP_ARM_SWP       = 1 << 0,
 355    ARM_HWCAP_ARM_HALF      = 1 << 1,
 356    ARM_HWCAP_ARM_THUMB     = 1 << 2,
 357    ARM_HWCAP_ARM_26BIT     = 1 << 3,
 358    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 359    ARM_HWCAP_ARM_FPA       = 1 << 5,
 360    ARM_HWCAP_ARM_VFP       = 1 << 6,
 361    ARM_HWCAP_ARM_EDSP      = 1 << 7,
 362    ARM_HWCAP_ARM_JAVA      = 1 << 8,
 363    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 364    ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 365    ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 366    ARM_HWCAP_ARM_NEON      = 1 << 12,
 367    ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 368    ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 369    ARM_HWCAP_ARM_TLS       = 1 << 15,
 370    ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 371    ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 372    ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 373    ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 374    ARM_HWCAP_ARM_LPAE      = 1 << 20,
 375    ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 376};
 377
 378enum {
 379    ARM_HWCAP2_ARM_AES      = 1 << 0,
 380    ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 381    ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 382    ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 383    ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 384};
 385
 386/* The commpage only exists for 32 bit kernels */
 387
 388#define ARM_COMMPAGE (intptr_t)0xffff0f00u
 389
 390static bool init_guest_commpage(void)
 391{
 392    void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
 393    void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
 394                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
 395
 396    if (addr == MAP_FAILED) {
 397        perror("Allocating guest commpage");
 398        exit(EXIT_FAILURE);
 399    }
 400    if (addr != want) {
 401        return false;
 402    }
 403
 404    /* Set kernel helper versions; rest of page is 0.  */
 405    __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
 406
 407    if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
 408        perror("Protecting guest commpage");
 409        exit(EXIT_FAILURE);
 410    }
 411    return true;
 412}
 413
 414#define ELF_HWCAP get_elf_hwcap()
 415#define ELF_HWCAP2 get_elf_hwcap2()
 416
 417static uint32_t get_elf_hwcap(void)
 418{
 419    ARMCPU *cpu = ARM_CPU(thread_cpu);
 420    uint32_t hwcaps = 0;
 421
 422    hwcaps |= ARM_HWCAP_ARM_SWP;
 423    hwcaps |= ARM_HWCAP_ARM_HALF;
 424    hwcaps |= ARM_HWCAP_ARM_THUMB;
 425    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 426
 427    /* probe for the extra features */
 428#define GET_FEATURE(feat, hwcap) \
 429    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 430
 431#define GET_FEATURE_ID(feat, hwcap) \
 432    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 433
 434    /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 435    GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 436    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 437    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 438    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 439    GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 440    GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 441    GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
 442    GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
 443    GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
 444
 445    if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
 446        cpu_isar_feature(aa32_fpdp_v3, cpu)) {
 447        hwcaps |= ARM_HWCAP_ARM_VFPv3;
 448        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
 449            hwcaps |= ARM_HWCAP_ARM_VFPD32;
 450        } else {
 451            hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
 452        }
 453    }
 454    GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
 455
 456    return hwcaps;
 457}
 458
 459static uint32_t get_elf_hwcap2(void)
 460{
 461    ARMCPU *cpu = ARM_CPU(thread_cpu);
 462    uint32_t hwcaps = 0;
 463
 464    GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
 465    GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
 466    GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
 467    GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
 468    GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
 469    return hwcaps;
 470}
 471
 472#undef GET_FEATURE
 473#undef GET_FEATURE_ID
 474
 475#define ELF_PLATFORM get_elf_platform()
 476
 477static const char *get_elf_platform(void)
 478{
 479    CPUARMState *env = thread_cpu->env_ptr;
 480
 481#ifdef TARGET_WORDS_BIGENDIAN
 482# define END  "b"
 483#else
 484# define END  "l"
 485#endif
 486
 487    if (arm_feature(env, ARM_FEATURE_V8)) {
 488        return "v8" END;
 489    } else if (arm_feature(env, ARM_FEATURE_V7)) {
 490        if (arm_feature(env, ARM_FEATURE_M)) {
 491            return "v7m" END;
 492        } else {
 493            return "v7" END;
 494        }
 495    } else if (arm_feature(env, ARM_FEATURE_V6)) {
 496        return "v6" END;
 497    } else if (arm_feature(env, ARM_FEATURE_V5)) {
 498        return "v5" END;
 499    } else {
 500        return "v4" END;
 501    }
 502
 503#undef END
 504}
 505
 506#else
 507/* 64 bit ARM definitions */
 508#define ELF_START_MMAP 0x80000000
 509
 510#define ELF_ARCH        EM_AARCH64
 511#define ELF_CLASS       ELFCLASS64
 512#ifdef TARGET_WORDS_BIGENDIAN
 513# define ELF_PLATFORM    "aarch64_be"
 514#else
 515# define ELF_PLATFORM    "aarch64"
 516#endif
 517
 518static inline void init_thread(struct target_pt_regs *regs,
 519                               struct image_info *infop)
 520{
 521    abi_long stack = infop->start_stack;
 522    memset(regs, 0, sizeof(*regs));
 523
 524    regs->pc = infop->entry & ~0x3ULL;
 525    regs->sp = stack;
 526}
 527
 528#define ELF_NREG    34
 529typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 530
 531static void elf_core_copy_regs(target_elf_gregset_t *regs,
 532                               const CPUARMState *env)
 533{
 534    int i;
 535
 536    for (i = 0; i < 32; i++) {
 537        (*regs)[i] = tswapreg(env->xregs[i]);
 538    }
 539    (*regs)[32] = tswapreg(env->pc);
 540    (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 541}
 542
 543#define USE_ELF_CORE_DUMP
 544#define ELF_EXEC_PAGESIZE       4096
 545
 546enum {
 547    ARM_HWCAP_A64_FP            = 1 << 0,
 548    ARM_HWCAP_A64_ASIMD         = 1 << 1,
 549    ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 550    ARM_HWCAP_A64_AES           = 1 << 3,
 551    ARM_HWCAP_A64_PMULL         = 1 << 4,
 552    ARM_HWCAP_A64_SHA1          = 1 << 5,
 553    ARM_HWCAP_A64_SHA2          = 1 << 6,
 554    ARM_HWCAP_A64_CRC32         = 1 << 7,
 555    ARM_HWCAP_A64_ATOMICS       = 1 << 8,
 556    ARM_HWCAP_A64_FPHP          = 1 << 9,
 557    ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
 558    ARM_HWCAP_A64_CPUID         = 1 << 11,
 559    ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
 560    ARM_HWCAP_A64_JSCVT         = 1 << 13,
 561    ARM_HWCAP_A64_FCMA          = 1 << 14,
 562    ARM_HWCAP_A64_LRCPC         = 1 << 15,
 563    ARM_HWCAP_A64_DCPOP         = 1 << 16,
 564    ARM_HWCAP_A64_SHA3          = 1 << 17,
 565    ARM_HWCAP_A64_SM3           = 1 << 18,
 566    ARM_HWCAP_A64_SM4           = 1 << 19,
 567    ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
 568    ARM_HWCAP_A64_SHA512        = 1 << 21,
 569    ARM_HWCAP_A64_SVE           = 1 << 22,
 570    ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
 571    ARM_HWCAP_A64_DIT           = 1 << 24,
 572    ARM_HWCAP_A64_USCAT         = 1 << 25,
 573    ARM_HWCAP_A64_ILRCPC        = 1 << 26,
 574    ARM_HWCAP_A64_FLAGM         = 1 << 27,
 575    ARM_HWCAP_A64_SSBS          = 1 << 28,
 576    ARM_HWCAP_A64_SB            = 1 << 29,
 577    ARM_HWCAP_A64_PACA          = 1 << 30,
 578    ARM_HWCAP_A64_PACG          = 1UL << 31,
 579
 580    ARM_HWCAP2_A64_DCPODP       = 1 << 0,
 581    ARM_HWCAP2_A64_SVE2         = 1 << 1,
 582    ARM_HWCAP2_A64_SVEAES       = 1 << 2,
 583    ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
 584    ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
 585    ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
 586    ARM_HWCAP2_A64_SVESM4       = 1 << 6,
 587    ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
 588    ARM_HWCAP2_A64_FRINT        = 1 << 8,
 589    ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
 590    ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
 591    ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
 592    ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
 593    ARM_HWCAP2_A64_I8MM         = 1 << 13,
 594    ARM_HWCAP2_A64_BF16         = 1 << 14,
 595    ARM_HWCAP2_A64_DGH          = 1 << 15,
 596    ARM_HWCAP2_A64_RNG          = 1 << 16,
 597    ARM_HWCAP2_A64_BTI          = 1 << 17,
 598    ARM_HWCAP2_A64_MTE          = 1 << 18,
 599};
 600
 601#define ELF_HWCAP   get_elf_hwcap()
 602#define ELF_HWCAP2  get_elf_hwcap2()
 603
 604#define GET_FEATURE_ID(feat, hwcap) \
 605    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 606
 607static uint32_t get_elf_hwcap(void)
 608{
 609    ARMCPU *cpu = ARM_CPU(thread_cpu);
 610    uint32_t hwcaps = 0;
 611
 612    hwcaps |= ARM_HWCAP_A64_FP;
 613    hwcaps |= ARM_HWCAP_A64_ASIMD;
 614    hwcaps |= ARM_HWCAP_A64_CPUID;
 615
 616    /* probe for the extra features */
 617
 618    GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
 619    GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
 620    GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
 621    GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
 622    GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
 623    GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
 624    GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
 625    GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
 626    GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
 627    GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
 628    GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
 629    GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
 630    GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
 631    GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
 632    GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
 633    GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
 634    GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
 635    GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
 636    GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
 637    GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
 638    GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
 639    GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
 640    GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
 641
 642    return hwcaps;
 643}
 644
 645static uint32_t get_elf_hwcap2(void)
 646{
 647    ARMCPU *cpu = ARM_CPU(thread_cpu);
 648    uint32_t hwcaps = 0;
 649
 650    GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
 651    GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
 652    GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
 653    GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
 654    GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
 655    GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
 656    GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
 657    GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
 658    GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
 659    GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
 660    GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
 661    GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
 662    GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
 663    GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
 664    GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
 665    GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
 666    GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
 667    GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
 668
 669    return hwcaps;
 670}
 671
 672#undef GET_FEATURE_ID
 673
 674#endif /* not TARGET_AARCH64 */
 675#endif /* TARGET_ARM */
 676
 677#ifdef TARGET_SPARC
 678#ifdef TARGET_SPARC64
 679
 680#define ELF_START_MMAP 0x80000000
 681#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 682                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 683#ifndef TARGET_ABI32
 684#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 685#else
 686#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 687#endif
 688
 689#define ELF_CLASS   ELFCLASS64
 690#define ELF_ARCH    EM_SPARCV9
 691#else
 692#define ELF_START_MMAP 0x80000000
 693#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 694                    | HWCAP_SPARC_MULDIV)
 695#define ELF_CLASS   ELFCLASS32
 696#define ELF_ARCH    EM_SPARC
 697#endif /* TARGET_SPARC64 */
 698
 699static inline void init_thread(struct target_pt_regs *regs,
 700                               struct image_info *infop)
 701{
 702    /* Note that target_cpu_copy_regs does not read psr/tstate. */
 703    regs->pc = infop->entry;
 704    regs->npc = regs->pc + 4;
 705    regs->y = 0;
 706    regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
 707                        - TARGET_STACK_BIAS);
 708}
 709#endif /* TARGET_SPARC */
 710
 711#ifdef TARGET_PPC
 712
 713#define ELF_MACHINE    PPC_ELF_MACHINE
 714#define ELF_START_MMAP 0x80000000
 715
 716#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 717
 718#define elf_check_arch(x) ( (x) == EM_PPC64 )
 719
 720#define ELF_CLASS       ELFCLASS64
 721
 722#else
 723
 724#define ELF_CLASS       ELFCLASS32
 725
 726#endif
 727
 728#define ELF_ARCH        EM_PPC
 729
 730/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 731   See arch/powerpc/include/asm/cputable.h.  */
 732enum {
 733    QEMU_PPC_FEATURE_32 = 0x80000000,
 734    QEMU_PPC_FEATURE_64 = 0x40000000,
 735    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 736    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 737    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 738    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 739    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 740    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 741    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 742    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 743    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 744    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 745    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 746    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 747    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 748    QEMU_PPC_FEATURE_CELL = 0x00010000,
 749    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 750    QEMU_PPC_FEATURE_SMT = 0x00004000,
 751    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 752    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 753    QEMU_PPC_FEATURE_PA6T = 0x00000800,
 754    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 755    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 756    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 757    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 758    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 759
 760    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 761    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 762
 763    /* Feature definitions in AT_HWCAP2.  */
 764    QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 765    QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 766    QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 767    QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 768    QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 769    QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 770    QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
 771    QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
 772    QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
 773    QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
 774    QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
 775    QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
 776    QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
 777};
 778
 779#define ELF_HWCAP get_elf_hwcap()
 780
 781static uint32_t get_elf_hwcap(void)
 782{
 783    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 784    uint32_t features = 0;
 785
 786    /* We don't have to be terribly complete here; the high points are
 787       Altivec/FP/SPE support.  Anything else is just a bonus.  */
 788#define GET_FEATURE(flag, feature)                                      \
 789    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 790#define GET_FEATURE2(flags, feature) \
 791    do { \
 792        if ((cpu->env.insns_flags2 & flags) == flags) { \
 793            features |= feature; \
 794        } \
 795    } while (0)
 796    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 797    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 798    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 799    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 800    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 801    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 802    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 803    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 804    GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 805    GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 806    GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 807                  PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 808                  QEMU_PPC_FEATURE_ARCH_2_06);
 809#undef GET_FEATURE
 810#undef GET_FEATURE2
 811
 812    return features;
 813}
 814
 815#define ELF_HWCAP2 get_elf_hwcap2()
 816
 817static uint32_t get_elf_hwcap2(void)
 818{
 819    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 820    uint32_t features = 0;
 821
 822#define GET_FEATURE(flag, feature)                                      \
 823    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 824#define GET_FEATURE2(flag, feature)                                      \
 825    do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 826
 827    GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 828    GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 829    GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 830                  PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
 831                  QEMU_PPC_FEATURE2_VEC_CRYPTO);
 832    GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
 833                 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
 834
 835#undef GET_FEATURE
 836#undef GET_FEATURE2
 837
 838    return features;
 839}
 840
 841/*
 842 * The requirements here are:
 843 * - keep the final alignment of sp (sp & 0xf)
 844 * - make sure the 32-bit value at the first 16 byte aligned position of
 845 *   AUXV is greater than 16 for glibc compatibility.
 846 *   AT_IGNOREPPC is used for that.
 847 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 848 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 849 */
 850#define DLINFO_ARCH_ITEMS       5
 851#define ARCH_DLINFO                                     \
 852    do {                                                \
 853        PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 854        /*                                              \
 855         * Handle glibc compatibility: these magic entries must \
 856         * be at the lowest addresses in the final auxv.        \
 857         */                                             \
 858        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 859        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 860        NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 861        NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 862        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 863    } while (0)
 864
 865static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 866{
 867    _regs->gpr[1] = infop->start_stack;
 868#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 869    if (get_ppc64_abi(infop) < 2) {
 870        uint64_t val;
 871        get_user_u64(val, infop->entry + 8);
 872        _regs->gpr[2] = val + infop->load_bias;
 873        get_user_u64(val, infop->entry);
 874        infop->entry = val + infop->load_bias;
 875    } else {
 876        _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 877    }
 878#endif
 879    _regs->nip = infop->entry;
 880}
 881
 882/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 883#define ELF_NREG 48
 884typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 885
 886static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 887{
 888    int i;
 889    target_ulong ccr = 0;
 890
 891    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 892        (*regs)[i] = tswapreg(env->gpr[i]);
 893    }
 894
 895    (*regs)[32] = tswapreg(env->nip);
 896    (*regs)[33] = tswapreg(env->msr);
 897    (*regs)[35] = tswapreg(env->ctr);
 898    (*regs)[36] = tswapreg(env->lr);
 899    (*regs)[37] = tswapreg(env->xer);
 900
 901    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 902        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 903    }
 904    (*regs)[38] = tswapreg(ccr);
 905}
 906
 907#define USE_ELF_CORE_DUMP
 908#define ELF_EXEC_PAGESIZE       4096
 909
 910#endif
 911
 912#ifdef TARGET_MIPS
 913
 914#define ELF_START_MMAP 0x80000000
 915
 916#ifdef TARGET_MIPS64
 917#define ELF_CLASS   ELFCLASS64
 918#else
 919#define ELF_CLASS   ELFCLASS32
 920#endif
 921#define ELF_ARCH    EM_MIPS
 922
 923#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
 924
 925#ifdef TARGET_ABI_MIPSN32
 926#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
 927#else
 928#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
 929#endif
 930
 931static inline void init_thread(struct target_pt_regs *regs,
 932                               struct image_info *infop)
 933{
 934    regs->cp0_status = 2 << CP0St_KSU;
 935    regs->cp0_epc = infop->entry;
 936    regs->regs[29] = infop->start_stack;
 937}
 938
 939/* See linux kernel: arch/mips/include/asm/elf.h.  */
 940#define ELF_NREG 45
 941typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 942
 943/* See linux kernel: arch/mips/include/asm/reg.h.  */
 944enum {
 945#ifdef TARGET_MIPS64
 946    TARGET_EF_R0 = 0,
 947#else
 948    TARGET_EF_R0 = 6,
 949#endif
 950    TARGET_EF_R26 = TARGET_EF_R0 + 26,
 951    TARGET_EF_R27 = TARGET_EF_R0 + 27,
 952    TARGET_EF_LO = TARGET_EF_R0 + 32,
 953    TARGET_EF_HI = TARGET_EF_R0 + 33,
 954    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
 955    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
 956    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
 957    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
 958};
 959
 960/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 961static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
 962{
 963    int i;
 964
 965    for (i = 0; i < TARGET_EF_R0; i++) {
 966        (*regs)[i] = 0;
 967    }
 968    (*regs)[TARGET_EF_R0] = 0;
 969
 970    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
 971        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
 972    }
 973
 974    (*regs)[TARGET_EF_R26] = 0;
 975    (*regs)[TARGET_EF_R27] = 0;
 976    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
 977    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
 978    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
 979    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
 980    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
 981    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
 982}
 983
 984#define USE_ELF_CORE_DUMP
 985#define ELF_EXEC_PAGESIZE        4096
 986
 987/* See arch/mips/include/uapi/asm/hwcap.h.  */
 988enum {
 989    HWCAP_MIPS_R6           = (1 << 0),
 990    HWCAP_MIPS_MSA          = (1 << 1),
 991    HWCAP_MIPS_CRC32        = (1 << 2),
 992    HWCAP_MIPS_MIPS16       = (1 << 3),
 993    HWCAP_MIPS_MDMX         = (1 << 4),
 994    HWCAP_MIPS_MIPS3D       = (1 << 5),
 995    HWCAP_MIPS_SMARTMIPS    = (1 << 6),
 996    HWCAP_MIPS_DSP          = (1 << 7),
 997    HWCAP_MIPS_DSP2         = (1 << 8),
 998    HWCAP_MIPS_DSP3         = (1 << 9),
 999    HWCAP_MIPS_MIPS16E2     = (1 << 10),
1000    HWCAP_LOONGSON_MMI      = (1 << 11),
1001    HWCAP_LOONGSON_EXT      = (1 << 12),
1002    HWCAP_LOONGSON_EXT2     = (1 << 13),
1003    HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1004};
1005
1006#define ELF_HWCAP get_elf_hwcap()
1007
1008#define GET_FEATURE_INSN(_flag, _hwcap) \
1009    do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1010
1011#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1012    do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1013
1014#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1015    do { \
1016        if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1017            hwcaps |= _hwcap; \
1018        } \
1019    } while (0)
1020
1021static uint32_t get_elf_hwcap(void)
1022{
1023    MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1024    uint32_t hwcaps = 0;
1025
1026    GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1027                        2, HWCAP_MIPS_R6);
1028    GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1029    GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1030    GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1031
1032    return hwcaps;
1033}
1034
1035#undef GET_FEATURE_REG_EQU
1036#undef GET_FEATURE_REG_SET
1037#undef GET_FEATURE_INSN
1038
1039#endif /* TARGET_MIPS */
1040
1041#ifdef TARGET_MICROBLAZE
1042
1043#define ELF_START_MMAP 0x80000000
1044
1045#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1046
1047#define ELF_CLASS   ELFCLASS32
1048#define ELF_ARCH    EM_MICROBLAZE
1049
1050static inline void init_thread(struct target_pt_regs *regs,
1051                               struct image_info *infop)
1052{
1053    regs->pc = infop->entry;
1054    regs->r1 = infop->start_stack;
1055
1056}
1057
1058#define ELF_EXEC_PAGESIZE        4096
1059
1060#define USE_ELF_CORE_DUMP
1061#define ELF_NREG 38
1062typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1063
1064/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1065static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1066{
1067    int i, pos = 0;
1068
1069    for (i = 0; i < 32; i++) {
1070        (*regs)[pos++] = tswapreg(env->regs[i]);
1071    }
1072
1073    (*regs)[pos++] = tswapreg(env->pc);
1074    (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1075    (*regs)[pos++] = 0;
1076    (*regs)[pos++] = tswapreg(env->ear);
1077    (*regs)[pos++] = 0;
1078    (*regs)[pos++] = tswapreg(env->esr);
1079}
1080
1081#endif /* TARGET_MICROBLAZE */
1082
1083#ifdef TARGET_NIOS2
1084
1085#define ELF_START_MMAP 0x80000000
1086
1087#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1088
1089#define ELF_CLASS   ELFCLASS32
1090#define ELF_ARCH    EM_ALTERA_NIOS2
1091
1092static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1093{
1094    regs->ea = infop->entry;
1095    regs->sp = infop->start_stack;
1096    regs->estatus = 0x3;
1097}
1098
1099#define ELF_EXEC_PAGESIZE        4096
1100
1101#define USE_ELF_CORE_DUMP
1102#define ELF_NREG 49
1103typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1104
1105/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1106static void elf_core_copy_regs(target_elf_gregset_t *regs,
1107                               const CPUNios2State *env)
1108{
1109    int i;
1110
1111    (*regs)[0] = -1;
1112    for (i = 1; i < 8; i++)    /* r0-r7 */
1113        (*regs)[i] = tswapreg(env->regs[i + 7]);
1114
1115    for (i = 8; i < 16; i++)   /* r8-r15 */
1116        (*regs)[i] = tswapreg(env->regs[i - 8]);
1117
1118    for (i = 16; i < 24; i++)  /* r16-r23 */
1119        (*regs)[i] = tswapreg(env->regs[i + 7]);
1120    (*regs)[24] = -1;    /* R_ET */
1121    (*regs)[25] = -1;    /* R_BT */
1122    (*regs)[26] = tswapreg(env->regs[R_GP]);
1123    (*regs)[27] = tswapreg(env->regs[R_SP]);
1124    (*regs)[28] = tswapreg(env->regs[R_FP]);
1125    (*regs)[29] = tswapreg(env->regs[R_EA]);
1126    (*regs)[30] = -1;    /* R_SSTATUS */
1127    (*regs)[31] = tswapreg(env->regs[R_RA]);
1128
1129    (*regs)[32] = tswapreg(env->regs[R_PC]);
1130
1131    (*regs)[33] = -1; /* R_STATUS */
1132    (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1133
1134    for (i = 35; i < 49; i++)    /* ... */
1135        (*regs)[i] = -1;
1136}
1137
1138#endif /* TARGET_NIOS2 */
1139
1140#ifdef TARGET_OPENRISC
1141
1142#define ELF_START_MMAP 0x08000000
1143
1144#define ELF_ARCH EM_OPENRISC
1145#define ELF_CLASS ELFCLASS32
1146#define ELF_DATA  ELFDATA2MSB
1147
1148static inline void init_thread(struct target_pt_regs *regs,
1149                               struct image_info *infop)
1150{
1151    regs->pc = infop->entry;
1152    regs->gpr[1] = infop->start_stack;
1153}
1154
1155#define USE_ELF_CORE_DUMP
1156#define ELF_EXEC_PAGESIZE 8192
1157
1158/* See linux kernel arch/openrisc/include/asm/elf.h.  */
1159#define ELF_NREG 34 /* gprs and pc, sr */
1160typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1161
1162static void elf_core_copy_regs(target_elf_gregset_t *regs,
1163                               const CPUOpenRISCState *env)
1164{
1165    int i;
1166
1167    for (i = 0; i < 32; i++) {
1168        (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1169    }
1170    (*regs)[32] = tswapreg(env->pc);
1171    (*regs)[33] = tswapreg(cpu_get_sr(env));
1172}
1173#define ELF_HWCAP 0
1174#define ELF_PLATFORM NULL
1175
1176#endif /* TARGET_OPENRISC */
1177
1178#ifdef TARGET_SH4
1179
1180#define ELF_START_MMAP 0x80000000
1181
1182#define ELF_CLASS ELFCLASS32
1183#define ELF_ARCH  EM_SH
1184
1185static inline void init_thread(struct target_pt_regs *regs,
1186                               struct image_info *infop)
1187{
1188    /* Check other registers XXXXX */
1189    regs->pc = infop->entry;
1190    regs->regs[15] = infop->start_stack;
1191}
1192
1193/* See linux kernel: arch/sh/include/asm/elf.h.  */
1194#define ELF_NREG 23
1195typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1196
1197/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1198enum {
1199    TARGET_REG_PC = 16,
1200    TARGET_REG_PR = 17,
1201    TARGET_REG_SR = 18,
1202    TARGET_REG_GBR = 19,
1203    TARGET_REG_MACH = 20,
1204    TARGET_REG_MACL = 21,
1205    TARGET_REG_SYSCALL = 22
1206};
1207
1208static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1209                                      const CPUSH4State *env)
1210{
1211    int i;
1212
1213    for (i = 0; i < 16; i++) {
1214        (*regs)[i] = tswapreg(env->gregs[i]);
1215    }
1216
1217    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1218    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1219    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1220    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1221    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1222    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1223    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1224}
1225
1226#define USE_ELF_CORE_DUMP
1227#define ELF_EXEC_PAGESIZE        4096
1228
1229enum {
1230    SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1231    SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1232    SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1233    SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1234    SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1235    SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1236    SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1237    SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1238    SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1239    SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1240};
1241
1242#define ELF_HWCAP get_elf_hwcap()
1243
1244static uint32_t get_elf_hwcap(void)
1245{
1246    SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1247    uint32_t hwcap = 0;
1248
1249    hwcap |= SH_CPU_HAS_FPU;
1250
1251    if (cpu->env.features & SH_FEATURE_SH4A) {
1252        hwcap |= SH_CPU_HAS_LLSC;
1253    }
1254
1255    return hwcap;
1256}
1257
1258#endif
1259
1260#ifdef TARGET_CRIS
1261
1262#define ELF_START_MMAP 0x80000000
1263
1264#define ELF_CLASS ELFCLASS32
1265#define ELF_ARCH  EM_CRIS
1266
1267static inline void init_thread(struct target_pt_regs *regs,
1268                               struct image_info *infop)
1269{
1270    regs->erp = infop->entry;
1271}
1272
1273#define ELF_EXEC_PAGESIZE        8192
1274
1275#endif
1276
1277#ifdef TARGET_M68K
1278
1279#define ELF_START_MMAP 0x80000000
1280
1281#define ELF_CLASS       ELFCLASS32
1282#define ELF_ARCH        EM_68K
1283
1284/* ??? Does this need to do anything?
1285   #define ELF_PLAT_INIT(_r) */
1286
1287static inline void init_thread(struct target_pt_regs *regs,
1288                               struct image_info *infop)
1289{
1290    regs->usp = infop->start_stack;
1291    regs->sr = 0;
1292    regs->pc = infop->entry;
1293}
1294
1295/* See linux kernel: arch/m68k/include/asm/elf.h.  */
1296#define ELF_NREG 20
1297typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1298
1299static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1300{
1301    (*regs)[0] = tswapreg(env->dregs[1]);
1302    (*regs)[1] = tswapreg(env->dregs[2]);
1303    (*regs)[2] = tswapreg(env->dregs[3]);
1304    (*regs)[3] = tswapreg(env->dregs[4]);
1305    (*regs)[4] = tswapreg(env->dregs[5]);
1306    (*regs)[5] = tswapreg(env->dregs[6]);
1307    (*regs)[6] = tswapreg(env->dregs[7]);
1308    (*regs)[7] = tswapreg(env->aregs[0]);
1309    (*regs)[8] = tswapreg(env->aregs[1]);
1310    (*regs)[9] = tswapreg(env->aregs[2]);
1311    (*regs)[10] = tswapreg(env->aregs[3]);
1312    (*regs)[11] = tswapreg(env->aregs[4]);
1313    (*regs)[12] = tswapreg(env->aregs[5]);
1314    (*regs)[13] = tswapreg(env->aregs[6]);
1315    (*regs)[14] = tswapreg(env->dregs[0]);
1316    (*regs)[15] = tswapreg(env->aregs[7]);
1317    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1318    (*regs)[17] = tswapreg(env->sr);
1319    (*regs)[18] = tswapreg(env->pc);
1320    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1321}
1322
1323#define USE_ELF_CORE_DUMP
1324#define ELF_EXEC_PAGESIZE       8192
1325
1326#endif
1327
1328#ifdef TARGET_ALPHA
1329
1330#define ELF_START_MMAP (0x30000000000ULL)
1331
1332#define ELF_CLASS      ELFCLASS64
1333#define ELF_ARCH       EM_ALPHA
1334
1335static inline void init_thread(struct target_pt_regs *regs,
1336                               struct image_info *infop)
1337{
1338    regs->pc = infop->entry;
1339    regs->ps = 8;
1340    regs->usp = infop->start_stack;
1341}
1342
1343#define ELF_EXEC_PAGESIZE        8192
1344
1345#endif /* TARGET_ALPHA */
1346
1347#ifdef TARGET_S390X
1348
1349#define ELF_START_MMAP (0x20000000000ULL)
1350
1351#define ELF_CLASS       ELFCLASS64
1352#define ELF_DATA        ELFDATA2MSB
1353#define ELF_ARCH        EM_S390
1354
1355#include "elf.h"
1356
1357#define ELF_HWCAP get_elf_hwcap()
1358
1359#define GET_FEATURE(_feat, _hwcap) \
1360    do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1361
1362static uint32_t get_elf_hwcap(void)
1363{
1364    /*
1365     * Let's assume we always have esan3 and zarch.
1366     * 31-bit processes can use 64-bit registers (high gprs).
1367     */
1368    uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1369
1370    GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1371    GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1372    GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1373    GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1374    if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1375        s390_has_feat(S390_FEAT_ETF3_ENH)) {
1376        hwcap |= HWCAP_S390_ETF3EH;
1377    }
1378    GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1379    GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1380
1381    return hwcap;
1382}
1383
1384static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1385{
1386    regs->psw.addr = infop->entry;
1387    regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1388    regs->gprs[15] = infop->start_stack;
1389}
1390
1391/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1392#define ELF_NREG 27
1393typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1394
1395enum {
1396    TARGET_REG_PSWM = 0,
1397    TARGET_REG_PSWA = 1,
1398    TARGET_REG_GPRS = 2,
1399    TARGET_REG_ARS = 18,
1400    TARGET_REG_ORIG_R2 = 26,
1401};
1402
1403static void elf_core_copy_regs(target_elf_gregset_t *regs,
1404                               const CPUS390XState *env)
1405{
1406    int i;
1407    uint32_t *aregs;
1408
1409    (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1410    (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1411    for (i = 0; i < 16; i++) {
1412        (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1413    }
1414    aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1415    for (i = 0; i < 16; i++) {
1416        aregs[i] = tswap32(env->aregs[i]);
1417    }
1418    (*regs)[TARGET_REG_ORIG_R2] = 0;
1419}
1420
1421#define USE_ELF_CORE_DUMP
1422#define ELF_EXEC_PAGESIZE 4096
1423
1424#endif /* TARGET_S390X */
1425
1426#ifdef TARGET_RISCV
1427
1428#define ELF_START_MMAP 0x80000000
1429#define ELF_ARCH  EM_RISCV
1430
1431#ifdef TARGET_RISCV32
1432#define ELF_CLASS ELFCLASS32
1433#else
1434#define ELF_CLASS ELFCLASS64
1435#endif
1436
1437#define ELF_HWCAP get_elf_hwcap()
1438
1439static uint32_t get_elf_hwcap(void)
1440{
1441#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1442    RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1443    uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1444                    | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1445
1446    return cpu->env.misa & mask;
1447#undef MISA_BIT
1448}
1449
1450static inline void init_thread(struct target_pt_regs *regs,
1451                               struct image_info *infop)
1452{
1453    regs->sepc = infop->entry;
1454    regs->sp = infop->start_stack;
1455}
1456
1457#define ELF_EXEC_PAGESIZE 4096
1458
1459#endif /* TARGET_RISCV */
1460
1461#ifdef TARGET_HPPA
1462
1463#define ELF_START_MMAP  0x80000000
1464#define ELF_CLASS       ELFCLASS32
1465#define ELF_ARCH        EM_PARISC
1466#define ELF_PLATFORM    "PARISC"
1467#define STACK_GROWS_DOWN 0
1468#define STACK_ALIGNMENT  64
1469
1470static inline void init_thread(struct target_pt_regs *regs,
1471                               struct image_info *infop)
1472{
1473    regs->iaoq[0] = infop->entry;
1474    regs->iaoq[1] = infop->entry + 4;
1475    regs->gr[23] = 0;
1476    regs->gr[24] = infop->arg_start;
1477    regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1478    /* The top-of-stack contains a linkage buffer.  */
1479    regs->gr[30] = infop->start_stack + 64;
1480    regs->gr[31] = infop->entry;
1481}
1482
1483#endif /* TARGET_HPPA */
1484
1485#ifdef TARGET_XTENSA
1486
1487#define ELF_START_MMAP 0x20000000
1488
1489#define ELF_CLASS       ELFCLASS32
1490#define ELF_ARCH        EM_XTENSA
1491
1492static inline void init_thread(struct target_pt_regs *regs,
1493                               struct image_info *infop)
1494{
1495    regs->windowbase = 0;
1496    regs->windowstart = 1;
1497    regs->areg[1] = infop->start_stack;
1498    regs->pc = infop->entry;
1499}
1500
1501/* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1502#define ELF_NREG 128
1503typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1504
1505enum {
1506    TARGET_REG_PC,
1507    TARGET_REG_PS,
1508    TARGET_REG_LBEG,
1509    TARGET_REG_LEND,
1510    TARGET_REG_LCOUNT,
1511    TARGET_REG_SAR,
1512    TARGET_REG_WINDOWSTART,
1513    TARGET_REG_WINDOWBASE,
1514    TARGET_REG_THREADPTR,
1515    TARGET_REG_AR0 = 64,
1516};
1517
1518static void elf_core_copy_regs(target_elf_gregset_t *regs,
1519                               const CPUXtensaState *env)
1520{
1521    unsigned i;
1522
1523    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1524    (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1525    (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1526    (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1527    (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1528    (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1529    (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1530    (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1531    (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1532    xtensa_sync_phys_from_window((CPUXtensaState *)env);
1533    for (i = 0; i < env->config->nareg; ++i) {
1534        (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1535    }
1536}
1537
1538#define USE_ELF_CORE_DUMP
1539#define ELF_EXEC_PAGESIZE       4096
1540
1541#endif /* TARGET_XTENSA */
1542
1543#ifdef TARGET_HEXAGON
1544
1545#define ELF_START_MMAP 0x20000000
1546
1547#define ELF_CLASS       ELFCLASS32
1548#define ELF_ARCH        EM_HEXAGON
1549
1550static inline void init_thread(struct target_pt_regs *regs,
1551                               struct image_info *infop)
1552{
1553    regs->sepc = infop->entry;
1554    regs->sp = infop->start_stack;
1555}
1556
1557#endif /* TARGET_HEXAGON */
1558
1559#ifndef ELF_PLATFORM
1560#define ELF_PLATFORM (NULL)
1561#endif
1562
1563#ifndef ELF_MACHINE
1564#define ELF_MACHINE ELF_ARCH
1565#endif
1566
1567#ifndef elf_check_arch
1568#define elf_check_arch(x) ((x) == ELF_ARCH)
1569#endif
1570
1571#ifndef elf_check_abi
1572#define elf_check_abi(x) (1)
1573#endif
1574
1575#ifndef ELF_HWCAP
1576#define ELF_HWCAP 0
1577#endif
1578
1579#ifndef STACK_GROWS_DOWN
1580#define STACK_GROWS_DOWN 1
1581#endif
1582
1583#ifndef STACK_ALIGNMENT
1584#define STACK_ALIGNMENT 16
1585#endif
1586
1587#ifdef TARGET_ABI32
1588#undef ELF_CLASS
1589#define ELF_CLASS ELFCLASS32
1590#undef bswaptls
1591#define bswaptls(ptr) bswap32s(ptr)
1592#endif
1593
1594#include "elf.h"
1595
1596/* We must delay the following stanzas until after "elf.h". */
1597#if defined(TARGET_AARCH64)
1598
1599static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1600                                    const uint32_t *data,
1601                                    struct image_info *info,
1602                                    Error **errp)
1603{
1604    if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1605        if (pr_datasz != sizeof(uint32_t)) {
1606            error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1607            return false;
1608        }
1609        /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1610        info->note_flags = *data;
1611    }
1612    return true;
1613}
1614#define ARCH_USE_GNU_PROPERTY 1
1615
1616#else
1617
1618static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1619                                    const uint32_t *data,
1620                                    struct image_info *info,
1621                                    Error **errp)
1622{
1623    g_assert_not_reached();
1624}
1625#define ARCH_USE_GNU_PROPERTY 0
1626
1627#endif
1628
1629struct exec
1630{
1631    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1632    unsigned int a_text;   /* length of text, in bytes */
1633    unsigned int a_data;   /* length of data, in bytes */
1634    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1635    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1636    unsigned int a_entry;  /* start address */
1637    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1638    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1639};
1640
1641
1642#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1643#define OMAGIC 0407
1644#define NMAGIC 0410
1645#define ZMAGIC 0413
1646#define QMAGIC 0314
1647
1648/* Necessary parameters */
1649#define TARGET_ELF_EXEC_PAGESIZE \
1650        (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1651         TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1652#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1653#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1654                                 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1655#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1656
1657#define DLINFO_ITEMS 16
1658
1659static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1660{
1661    memcpy(to, from, n);
1662}
1663
1664#ifdef BSWAP_NEEDED
1665static void bswap_ehdr(struct elfhdr *ehdr)
1666{
1667    bswap16s(&ehdr->e_type);            /* Object file type */
1668    bswap16s(&ehdr->e_machine);         /* Architecture */
1669    bswap32s(&ehdr->e_version);         /* Object file version */
1670    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1671    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1672    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1673    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1674    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1675    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1676    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1677    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1678    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1679    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1680}
1681
1682static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1683{
1684    int i;
1685    for (i = 0; i < phnum; ++i, ++phdr) {
1686        bswap32s(&phdr->p_type);        /* Segment type */
1687        bswap32s(&phdr->p_flags);       /* Segment flags */
1688        bswaptls(&phdr->p_offset);      /* Segment file offset */
1689        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1690        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1691        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1692        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1693        bswaptls(&phdr->p_align);       /* Segment alignment */
1694    }
1695}
1696
1697static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1698{
1699    int i;
1700    for (i = 0; i < shnum; ++i, ++shdr) {
1701        bswap32s(&shdr->sh_name);
1702        bswap32s(&shdr->sh_type);
1703        bswaptls(&shdr->sh_flags);
1704        bswaptls(&shdr->sh_addr);
1705        bswaptls(&shdr->sh_offset);
1706        bswaptls(&shdr->sh_size);
1707        bswap32s(&shdr->sh_link);
1708        bswap32s(&shdr->sh_info);
1709        bswaptls(&shdr->sh_addralign);
1710        bswaptls(&shdr->sh_entsize);
1711    }
1712}
1713
1714static void bswap_sym(struct elf_sym *sym)
1715{
1716    bswap32s(&sym->st_name);
1717    bswaptls(&sym->st_value);
1718    bswaptls(&sym->st_size);
1719    bswap16s(&sym->st_shndx);
1720}
1721
1722#ifdef TARGET_MIPS
1723static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1724{
1725    bswap16s(&abiflags->version);
1726    bswap32s(&abiflags->ases);
1727    bswap32s(&abiflags->isa_ext);
1728    bswap32s(&abiflags->flags1);
1729    bswap32s(&abiflags->flags2);
1730}
1731#endif
1732#else
1733static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1734static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1735static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1736static inline void bswap_sym(struct elf_sym *sym) { }
1737#ifdef TARGET_MIPS
1738static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1739#endif
1740#endif
1741
1742#ifdef USE_ELF_CORE_DUMP
1743static int elf_core_dump(int, const CPUArchState *);
1744#endif /* USE_ELF_CORE_DUMP */
1745static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1746
1747/* Verify the portions of EHDR within E_IDENT for the target.
1748   This can be performed before bswapping the entire header.  */
1749static bool elf_check_ident(struct elfhdr *ehdr)
1750{
1751    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1752            && ehdr->e_ident[EI_MAG1] == ELFMAG1
1753            && ehdr->e_ident[EI_MAG2] == ELFMAG2
1754            && ehdr->e_ident[EI_MAG3] == ELFMAG3
1755            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1756            && ehdr->e_ident[EI_DATA] == ELF_DATA
1757            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1758}
1759
1760/* Verify the portions of EHDR outside of E_IDENT for the target.
1761   This has to wait until after bswapping the header.  */
1762static bool elf_check_ehdr(struct elfhdr *ehdr)
1763{
1764    return (elf_check_arch(ehdr->e_machine)
1765            && elf_check_abi(ehdr->e_flags)
1766            && ehdr->e_ehsize == sizeof(struct elfhdr)
1767            && ehdr->e_phentsize == sizeof(struct elf_phdr)
1768            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1769}
1770
1771/*
1772 * 'copy_elf_strings()' copies argument/envelope strings from user
1773 * memory to free pages in kernel mem. These are in a format ready
1774 * to be put directly into the top of new user memory.
1775 *
1776 */
1777static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1778                                  abi_ulong p, abi_ulong stack_limit)
1779{
1780    char *tmp;
1781    int len, i;
1782    abi_ulong top = p;
1783
1784    if (!p) {
1785        return 0;       /* bullet-proofing */
1786    }
1787
1788    if (STACK_GROWS_DOWN) {
1789        int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1790        for (i = argc - 1; i >= 0; --i) {
1791            tmp = argv[i];
1792            if (!tmp) {
1793                fprintf(stderr, "VFS: argc is wrong");
1794                exit(-1);
1795            }
1796            len = strlen(tmp) + 1;
1797            tmp += len;
1798
1799            if (len > (p - stack_limit)) {
1800                return 0;
1801            }
1802            while (len) {
1803                int bytes_to_copy = (len > offset) ? offset : len;
1804                tmp -= bytes_to_copy;
1805                p -= bytes_to_copy;
1806                offset -= bytes_to_copy;
1807                len -= bytes_to_copy;
1808
1809                memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1810
1811                if (offset == 0) {
1812                    memcpy_to_target(p, scratch, top - p);
1813                    top = p;
1814                    offset = TARGET_PAGE_SIZE;
1815                }
1816            }
1817        }
1818        if (p != top) {
1819            memcpy_to_target(p, scratch + offset, top - p);
1820        }
1821    } else {
1822        int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1823        for (i = 0; i < argc; ++i) {
1824            tmp = argv[i];
1825            if (!tmp) {
1826                fprintf(stderr, "VFS: argc is wrong");
1827                exit(-1);
1828            }
1829            len = strlen(tmp) + 1;
1830            if (len > (stack_limit - p)) {
1831                return 0;
1832            }
1833            while (len) {
1834                int bytes_to_copy = (len > remaining) ? remaining : len;
1835
1836                memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1837
1838                tmp += bytes_to_copy;
1839                remaining -= bytes_to_copy;
1840                p += bytes_to_copy;
1841                len -= bytes_to_copy;
1842
1843                if (remaining == 0) {
1844                    memcpy_to_target(top, scratch, p - top);
1845                    top = p;
1846                    remaining = TARGET_PAGE_SIZE;
1847                }
1848            }
1849        }
1850        if (p != top) {
1851            memcpy_to_target(top, scratch, p - top);
1852        }
1853    }
1854
1855    return p;
1856}
1857
1858/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1859 * argument/environment space. Newer kernels (>2.6.33) allow more,
1860 * dependent on stack size, but guarantee at least 32 pages for
1861 * backwards compatibility.
1862 */
1863#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1864
1865static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1866                                 struct image_info *info)
1867{
1868    abi_ulong size, error, guard;
1869
1870    size = guest_stack_size;
1871    if (size < STACK_LOWER_LIMIT) {
1872        size = STACK_LOWER_LIMIT;
1873    }
1874    guard = TARGET_PAGE_SIZE;
1875    if (guard < qemu_real_host_page_size) {
1876        guard = qemu_real_host_page_size;
1877    }
1878
1879    error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1880                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1881    if (error == -1) {
1882        perror("mmap stack");
1883        exit(-1);
1884    }
1885
1886    /* We reserve one extra page at the top of the stack as guard.  */
1887    if (STACK_GROWS_DOWN) {
1888        target_mprotect(error, guard, PROT_NONE);
1889        info->stack_limit = error + guard;
1890        return info->stack_limit + size - sizeof(void *);
1891    } else {
1892        target_mprotect(error + size, guard, PROT_NONE);
1893        info->stack_limit = error + size;
1894        return error;
1895    }
1896}
1897
1898/* Map and zero the bss.  We need to explicitly zero any fractional pages
1899   after the data section (i.e. bss).  */
1900static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1901{
1902    uintptr_t host_start, host_map_start, host_end;
1903
1904    last_bss = TARGET_PAGE_ALIGN(last_bss);
1905
1906    /* ??? There is confusion between qemu_real_host_page_size and
1907       qemu_host_page_size here and elsewhere in target_mmap, which
1908       may lead to the end of the data section mapping from the file
1909       not being mapped.  At least there was an explicit test and
1910       comment for that here, suggesting that "the file size must
1911       be known".  The comment probably pre-dates the introduction
1912       of the fstat system call in target_mmap which does in fact
1913       find out the size.  What isn't clear is if the workaround
1914       here is still actually needed.  For now, continue with it,
1915       but merge it with the "normal" mmap that would allocate the bss.  */
1916
1917    host_start = (uintptr_t) g2h_untagged(elf_bss);
1918    host_end = (uintptr_t) g2h_untagged(last_bss);
1919    host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1920
1921    if (host_map_start < host_end) {
1922        void *p = mmap((void *)host_map_start, host_end - host_map_start,
1923                       prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1924        if (p == MAP_FAILED) {
1925            perror("cannot mmap brk");
1926            exit(-1);
1927        }
1928    }
1929
1930    /* Ensure that the bss page(s) are valid */
1931    if ((page_get_flags(last_bss-1) & prot) != prot) {
1932        page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1933    }
1934
1935    if (host_start < host_map_start) {
1936        memset((void *)host_start, 0, host_map_start - host_start);
1937    }
1938}
1939
1940#ifdef TARGET_ARM
1941static int elf_is_fdpic(struct elfhdr *exec)
1942{
1943    return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1944}
1945#else
1946/* Default implementation, always false.  */
1947static int elf_is_fdpic(struct elfhdr *exec)
1948{
1949    return 0;
1950}
1951#endif
1952
1953static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1954{
1955    uint16_t n;
1956    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1957
1958    /* elf32_fdpic_loadseg */
1959    n = info->nsegs;
1960    while (n--) {
1961        sp -= 12;
1962        put_user_u32(loadsegs[n].addr, sp+0);
1963        put_user_u32(loadsegs[n].p_vaddr, sp+4);
1964        put_user_u32(loadsegs[n].p_memsz, sp+8);
1965    }
1966
1967    /* elf32_fdpic_loadmap */
1968    sp -= 4;
1969    put_user_u16(0, sp+0); /* version */
1970    put_user_u16(info->nsegs, sp+2); /* nsegs */
1971
1972    info->personality = PER_LINUX_FDPIC;
1973    info->loadmap_addr = sp;
1974
1975    return sp;
1976}
1977
1978static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1979                                   struct elfhdr *exec,
1980                                   struct image_info *info,
1981                                   struct image_info *interp_info)
1982{
1983    abi_ulong sp;
1984    abi_ulong u_argc, u_argv, u_envp, u_auxv;
1985    int size;
1986    int i;
1987    abi_ulong u_rand_bytes;
1988    uint8_t k_rand_bytes[16];
1989    abi_ulong u_platform;
1990    const char *k_platform;
1991    const int n = sizeof(elf_addr_t);
1992
1993    sp = p;
1994
1995    /* Needs to be before we load the env/argc/... */
1996    if (elf_is_fdpic(exec)) {
1997        /* Need 4 byte alignment for these structs */
1998        sp &= ~3;
1999        sp = loader_build_fdpic_loadmap(info, sp);
2000        info->other_info = interp_info;
2001        if (interp_info) {
2002            interp_info->other_info = info;
2003            sp = loader_build_fdpic_loadmap(interp_info, sp);
2004            info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2005            info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2006        } else {
2007            info->interpreter_loadmap_addr = 0;
2008            info->interpreter_pt_dynamic_addr = 0;
2009        }
2010    }
2011
2012    u_platform = 0;
2013    k_platform = ELF_PLATFORM;
2014    if (k_platform) {
2015        size_t len = strlen(k_platform) + 1;
2016        if (STACK_GROWS_DOWN) {
2017            sp -= (len + n - 1) & ~(n - 1);
2018            u_platform = sp;
2019            /* FIXME - check return value of memcpy_to_target() for failure */
2020            memcpy_to_target(sp, k_platform, len);
2021        } else {
2022            memcpy_to_target(sp, k_platform, len);
2023            u_platform = sp;
2024            sp += len + 1;
2025        }
2026    }
2027
2028    /* Provide 16 byte alignment for the PRNG, and basic alignment for
2029     * the argv and envp pointers.
2030     */
2031    if (STACK_GROWS_DOWN) {
2032        sp = QEMU_ALIGN_DOWN(sp, 16);
2033    } else {
2034        sp = QEMU_ALIGN_UP(sp, 16);
2035    }
2036
2037    /*
2038     * Generate 16 random bytes for userspace PRNG seeding.
2039     */
2040    qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2041    if (STACK_GROWS_DOWN) {
2042        sp -= 16;
2043        u_rand_bytes = sp;
2044        /* FIXME - check return value of memcpy_to_target() for failure */
2045        memcpy_to_target(sp, k_rand_bytes, 16);
2046    } else {
2047        memcpy_to_target(sp, k_rand_bytes, 16);
2048        u_rand_bytes = sp;
2049        sp += 16;
2050    }
2051
2052    size = (DLINFO_ITEMS + 1) * 2;
2053    if (k_platform)
2054        size += 2;
2055#ifdef DLINFO_ARCH_ITEMS
2056    size += DLINFO_ARCH_ITEMS * 2;
2057#endif
2058#ifdef ELF_HWCAP2
2059    size += 2;
2060#endif
2061    info->auxv_len = size * n;
2062
2063    size += envc + argc + 2;
2064    size += 1;  /* argc itself */
2065    size *= n;
2066
2067    /* Allocate space and finalize stack alignment for entry now.  */
2068    if (STACK_GROWS_DOWN) {
2069        u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2070        sp = u_argc;
2071    } else {
2072        u_argc = sp;
2073        sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2074    }
2075
2076    u_argv = u_argc + n;
2077    u_envp = u_argv + (argc + 1) * n;
2078    u_auxv = u_envp + (envc + 1) * n;
2079    info->saved_auxv = u_auxv;
2080    info->arg_start = u_argv;
2081    info->arg_end = u_argv + argc * n;
2082
2083    /* This is correct because Linux defines
2084     * elf_addr_t as Elf32_Off / Elf64_Off
2085     */
2086#define NEW_AUX_ENT(id, val) do {               \
2087        put_user_ual(id, u_auxv);  u_auxv += n; \
2088        put_user_ual(val, u_auxv); u_auxv += n; \
2089    } while(0)
2090
2091#ifdef ARCH_DLINFO
2092    /*
2093     * ARCH_DLINFO must come first so platform specific code can enforce
2094     * special alignment requirements on the AUXV if necessary (eg. PPC).
2095     */
2096    ARCH_DLINFO;
2097#endif
2098    /* There must be exactly DLINFO_ITEMS entries here, or the assert
2099     * on info->auxv_len will trigger.
2100     */
2101    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2102    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2103    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2104    if ((info->alignment & ~qemu_host_page_mask) != 0) {
2105        /* Target doesn't support host page size alignment */
2106        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2107    } else {
2108        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2109                                               qemu_host_page_size)));
2110    }
2111    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2112    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2113    NEW_AUX_ENT(AT_ENTRY, info->entry);
2114    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2115    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2116    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2117    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2118    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2119    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2120    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2121    NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2122    NEW_AUX_ENT(AT_EXECFN, info->file_string);
2123
2124#ifdef ELF_HWCAP2
2125    NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2126#endif
2127
2128    if (u_platform) {
2129        NEW_AUX_ENT(AT_PLATFORM, u_platform);
2130    }
2131    NEW_AUX_ENT (AT_NULL, 0);
2132#undef NEW_AUX_ENT
2133
2134    /* Check that our initial calculation of the auxv length matches how much
2135     * we actually put into it.
2136     */
2137    assert(info->auxv_len == u_auxv - info->saved_auxv);
2138
2139    put_user_ual(argc, u_argc);
2140
2141    p = info->arg_strings;
2142    for (i = 0; i < argc; ++i) {
2143        put_user_ual(p, u_argv);
2144        u_argv += n;
2145        p += target_strlen(p) + 1;
2146    }
2147    put_user_ual(0, u_argv);
2148
2149    p = info->env_strings;
2150    for (i = 0; i < envc; ++i) {
2151        put_user_ual(p, u_envp);
2152        u_envp += n;
2153        p += target_strlen(p) + 1;
2154    }
2155    put_user_ual(0, u_envp);
2156
2157    return sp;
2158}
2159
2160#ifndef ARM_COMMPAGE
2161#define ARM_COMMPAGE 0
2162#define init_guest_commpage() true
2163#endif
2164
2165static void pgb_fail_in_use(const char *image_name)
2166{
2167    error_report("%s: requires virtual address space that is in use "
2168                 "(omit the -B option or choose a different value)",
2169                 image_name);
2170    exit(EXIT_FAILURE);
2171}
2172
2173static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2174                                abi_ulong guest_hiaddr, long align)
2175{
2176    const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2177    void *addr, *test;
2178
2179    if (!QEMU_IS_ALIGNED(guest_base, align)) {
2180        fprintf(stderr, "Requested guest base %p does not satisfy "
2181                "host minimum alignment (0x%lx)\n",
2182                (void *)guest_base, align);
2183        exit(EXIT_FAILURE);
2184    }
2185
2186    /* Sanity check the guest binary. */
2187    if (reserved_va) {
2188        if (guest_hiaddr > reserved_va) {
2189            error_report("%s: requires more than reserved virtual "
2190                         "address space (0x%" PRIx64 " > 0x%lx)",
2191                         image_name, (uint64_t)guest_hiaddr, reserved_va);
2192            exit(EXIT_FAILURE);
2193        }
2194    } else {
2195#if HOST_LONG_BITS < TARGET_ABI_BITS
2196        if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2197            error_report("%s: requires more virtual address space "
2198                         "than the host can provide (0x%" PRIx64 ")",
2199                         image_name, (uint64_t)guest_hiaddr - guest_base);
2200            exit(EXIT_FAILURE);
2201        }
2202#endif
2203    }
2204
2205    /*
2206     * Expand the allocation to the entire reserved_va.
2207     * Exclude the mmap_min_addr hole.
2208     */
2209    if (reserved_va) {
2210        guest_loaddr = (guest_base >= mmap_min_addr ? 0
2211                        : mmap_min_addr - guest_base);
2212        guest_hiaddr = reserved_va;
2213    }
2214
2215    /* Reserve the address space for the binary, or reserved_va. */
2216    test = g2h_untagged(guest_loaddr);
2217    addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2218    if (test != addr) {
2219        pgb_fail_in_use(image_name);
2220    }
2221}
2222
2223/**
2224 * pgd_find_hole_fallback: potential mmap address
2225 * @guest_size: size of available space
2226 * @brk: location of break
2227 * @align: memory alignment
2228 *
2229 * This is a fallback method for finding a hole in the host address
2230 * space if we don't have the benefit of being able to access
2231 * /proc/self/map. It can potentially take a very long time as we can
2232 * only dumbly iterate up the host address space seeing if the
2233 * allocation would work.
2234 */
2235static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2236                                        long align, uintptr_t offset)
2237{
2238    uintptr_t base;
2239
2240    /* Start (aligned) at the bottom and work our way up */
2241    base = ROUND_UP(mmap_min_addr, align);
2242
2243    while (true) {
2244        uintptr_t align_start, end;
2245        align_start = ROUND_UP(base, align);
2246        end = align_start + guest_size + offset;
2247
2248        /* if brk is anywhere in the range give ourselves some room to grow. */
2249        if (align_start <= brk && brk < end) {
2250            base = brk + (16 * MiB);
2251            continue;
2252        } else if (align_start + guest_size < align_start) {
2253            /* we have run out of space */
2254            return -1;
2255        } else {
2256            int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2257                MAP_FIXED_NOREPLACE;
2258            void * mmap_start = mmap((void *) align_start, guest_size,
2259                                     PROT_NONE, flags, -1, 0);
2260            if (mmap_start != MAP_FAILED) {
2261                munmap(mmap_start, guest_size);
2262                if (mmap_start == (void *) align_start) {
2263                    return (uintptr_t) mmap_start + offset;
2264                }
2265            }
2266            base += qemu_host_page_size;
2267        }
2268    }
2269}
2270
2271/* Return value for guest_base, or -1 if no hole found. */
2272static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2273                               long align, uintptr_t offset)
2274{
2275    GSList *maps, *iter;
2276    uintptr_t this_start, this_end, next_start, brk;
2277    intptr_t ret = -1;
2278
2279    assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2280
2281    maps = read_self_maps();
2282
2283    /* Read brk after we've read the maps, which will malloc. */
2284    brk = (uintptr_t)sbrk(0);
2285
2286    if (!maps) {
2287        ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2288        return ret == -1 ? -1 : ret - guest_loaddr;
2289    }
2290
2291    /* The first hole is before the first map entry. */
2292    this_start = mmap_min_addr;
2293
2294    for (iter = maps; iter;
2295         this_start = next_start, iter = g_slist_next(iter)) {
2296        uintptr_t align_start, hole_size;
2297
2298        this_end = ((MapInfo *)iter->data)->start;
2299        next_start = ((MapInfo *)iter->data)->end;
2300        align_start = ROUND_UP(this_start + offset, align);
2301
2302        /* Skip holes that are too small. */
2303        if (align_start >= this_end) {
2304            continue;
2305        }
2306        hole_size = this_end - align_start;
2307        if (hole_size < guest_size) {
2308            continue;
2309        }
2310
2311        /* If this hole contains brk, give ourselves some room to grow. */
2312        if (this_start <= brk && brk < this_end) {
2313            hole_size -= guest_size;
2314            if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2315                align_start += 1 * GiB;
2316            } else if (hole_size >= 16 * MiB) {
2317                align_start += 16 * MiB;
2318            } else {
2319                align_start = (this_end - guest_size) & -align;
2320                if (align_start < this_start) {
2321                    continue;
2322                }
2323            }
2324        }
2325
2326        /* Record the lowest successful match. */
2327        if (ret < 0) {
2328            ret = align_start - guest_loaddr;
2329        }
2330        /* If this hole contains the identity map, select it. */
2331        if (align_start <= guest_loaddr &&
2332            guest_loaddr + guest_size <= this_end) {
2333            ret = 0;
2334        }
2335        /* If this hole ends above the identity map, stop looking. */
2336        if (this_end >= guest_loaddr) {
2337            break;
2338        }
2339    }
2340    free_self_maps(maps);
2341
2342    return ret;
2343}
2344
2345static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2346                       abi_ulong orig_hiaddr, long align)
2347{
2348    uintptr_t loaddr = orig_loaddr;
2349    uintptr_t hiaddr = orig_hiaddr;
2350    uintptr_t offset = 0;
2351    uintptr_t addr;
2352
2353    if (hiaddr != orig_hiaddr) {
2354        error_report("%s: requires virtual address space that the "
2355                     "host cannot provide (0x%" PRIx64 ")",
2356                     image_name, (uint64_t)orig_hiaddr);
2357        exit(EXIT_FAILURE);
2358    }
2359
2360    loaddr &= -align;
2361    if (ARM_COMMPAGE) {
2362        /*
2363         * Extend the allocation to include the commpage.
2364         * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2365         * need to ensure there is space bellow the guest_base so we
2366         * can map the commpage in the place needed when the address
2367         * arithmetic wraps around.
2368         */
2369        if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2370            hiaddr = (uintptr_t) 4 << 30;
2371        } else {
2372            offset = -(ARM_COMMPAGE & -align);
2373        }
2374    }
2375
2376    addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2377    if (addr == -1) {
2378        /*
2379         * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2380         * that can satisfy both.  But as the normal arm32 link base address
2381         * is ~32k, and we extend down to include the commpage, making the
2382         * overhead only ~96k, this is unlikely.
2383         */
2384        error_report("%s: Unable to allocate %#zx bytes of "
2385                     "virtual address space", image_name,
2386                     (size_t)(hiaddr - loaddr));
2387        exit(EXIT_FAILURE);
2388    }
2389
2390    guest_base = addr;
2391}
2392
2393static void pgb_dynamic(const char *image_name, long align)
2394{
2395    /*
2396     * The executable is dynamic and does not require a fixed address.
2397     * All we need is a commpage that satisfies align.
2398     * If we do not need a commpage, leave guest_base == 0.
2399     */
2400    if (ARM_COMMPAGE) {
2401        uintptr_t addr, commpage;
2402
2403        /* 64-bit hosts should have used reserved_va. */
2404        assert(sizeof(uintptr_t) == 4);
2405
2406        /*
2407         * By putting the commpage at the first hole, that puts guest_base
2408         * just above that, and maximises the positive guest addresses.
2409         */
2410        commpage = ARM_COMMPAGE & -align;
2411        addr = pgb_find_hole(commpage, -commpage, align, 0);
2412        assert(addr != -1);
2413        guest_base = addr;
2414    }
2415}
2416
2417static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2418                            abi_ulong guest_hiaddr, long align)
2419{
2420    int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2421    void *addr, *test;
2422
2423    if (guest_hiaddr > reserved_va) {
2424        error_report("%s: requires more than reserved virtual "
2425                     "address space (0x%" PRIx64 " > 0x%lx)",
2426                     image_name, (uint64_t)guest_hiaddr, reserved_va);
2427        exit(EXIT_FAILURE);
2428    }
2429
2430    /* Widen the "image" to the entire reserved address space. */
2431    pgb_static(image_name, 0, reserved_va, align);
2432
2433    /* osdep.h defines this as 0 if it's missing */
2434    flags |= MAP_FIXED_NOREPLACE;
2435
2436    /* Reserve the memory on the host. */
2437    assert(guest_base != 0);
2438    test = g2h_untagged(0);
2439    addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2440    if (addr == MAP_FAILED || addr != test) {
2441        error_report("Unable to reserve 0x%lx bytes of virtual address "
2442                     "space at %p (%s) for use as guest address space (check your"
2443                     "virtual memory ulimit setting, min_mmap_addr or reserve less "
2444                     "using -R option)", reserved_va, test, strerror(errno));
2445        exit(EXIT_FAILURE);
2446    }
2447}
2448
2449void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2450                      abi_ulong guest_hiaddr)
2451{
2452    /* In order to use host shmat, we must be able to honor SHMLBA.  */
2453    uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2454
2455    if (have_guest_base) {
2456        pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2457    } else if (reserved_va) {
2458        pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2459    } else if (guest_loaddr) {
2460        pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2461    } else {
2462        pgb_dynamic(image_name, align);
2463    }
2464
2465    /* Reserve and initialize the commpage. */
2466    if (!init_guest_commpage()) {
2467        /*
2468         * With have_guest_base, the user has selected the address and
2469         * we are trying to work with that.  Otherwise, we have selected
2470         * free space and init_guest_commpage must succeeded.
2471         */
2472        assert(have_guest_base);
2473        pgb_fail_in_use(image_name);
2474    }
2475
2476    assert(QEMU_IS_ALIGNED(guest_base, align));
2477    qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2478                  "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2479}
2480
2481enum {
2482    /* The string "GNU\0" as a magic number. */
2483    GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2484    NOTE_DATA_SZ = 1 * KiB,
2485    NOTE_NAME_SZ = 4,
2486    ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2487};
2488
2489/*
2490 * Process a single gnu_property entry.
2491 * Return false for error.
2492 */
2493static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2494                               struct image_info *info, bool have_prev_type,
2495                               uint32_t *prev_type, Error **errp)
2496{
2497    uint32_t pr_type, pr_datasz, step;
2498
2499    if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2500        goto error_data;
2501    }
2502    datasz -= *off;
2503    data += *off / sizeof(uint32_t);
2504
2505    if (datasz < 2 * sizeof(uint32_t)) {
2506        goto error_data;
2507    }
2508    pr_type = data[0];
2509    pr_datasz = data[1];
2510    data += 2;
2511    datasz -= 2 * sizeof(uint32_t);
2512    step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2513    if (step > datasz) {
2514        goto error_data;
2515    }
2516
2517    /* Properties are supposed to be unique and sorted on pr_type. */
2518    if (have_prev_type && pr_type <= *prev_type) {
2519        if (pr_type == *prev_type) {
2520            error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2521        } else {
2522            error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2523        }
2524        return false;
2525    }
2526    *prev_type = pr_type;
2527
2528    if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2529        return false;
2530    }
2531
2532    *off += 2 * sizeof(uint32_t) + step;
2533    return true;
2534
2535 error_data:
2536    error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2537    return false;
2538}
2539
2540/* Process NT_GNU_PROPERTY_TYPE_0. */
2541static bool parse_elf_properties(int image_fd,
2542                                 struct image_info *info,
2543                                 const struct elf_phdr *phdr,
2544                                 char bprm_buf[BPRM_BUF_SIZE],
2545                                 Error **errp)
2546{
2547    union {
2548        struct elf_note nhdr;
2549        uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2550    } note;
2551
2552    int n, off, datasz;
2553    bool have_prev_type;
2554    uint32_t prev_type;
2555
2556    /* Unless the arch requires properties, ignore them. */
2557    if (!ARCH_USE_GNU_PROPERTY) {
2558        return true;
2559    }
2560
2561    /* If the properties are crazy large, that's too bad. */
2562    n = phdr->p_filesz;
2563    if (n > sizeof(note)) {
2564        error_setg(errp, "PT_GNU_PROPERTY too large");
2565        return false;
2566    }
2567    if (n < sizeof(note.nhdr)) {
2568        error_setg(errp, "PT_GNU_PROPERTY too small");
2569        return false;
2570    }
2571
2572    if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2573        memcpy(&note, bprm_buf + phdr->p_offset, n);
2574    } else {
2575        ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2576        if (len != n) {
2577            error_setg_errno(errp, errno, "Error reading file header");
2578            return false;
2579        }
2580    }
2581
2582    /*
2583     * The contents of a valid PT_GNU_PROPERTY is a sequence
2584     * of uint32_t -- swap them all now.
2585     */
2586#ifdef BSWAP_NEEDED
2587    for (int i = 0; i < n / 4; i++) {
2588        bswap32s(note.data + i);
2589    }
2590#endif
2591
2592    /*
2593     * Note that nhdr is 3 words, and that the "name" described by namesz
2594     * immediately follows nhdr and is thus at the 4th word.  Further, all
2595     * of the inputs to the kernel's round_up are multiples of 4.
2596     */
2597    if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2598        note.nhdr.n_namesz != NOTE_NAME_SZ ||
2599        note.data[3] != GNU0_MAGIC) {
2600        error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2601        return false;
2602    }
2603    off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2604
2605    datasz = note.nhdr.n_descsz + off;
2606    if (datasz > n) {
2607        error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2608        return false;
2609    }
2610
2611    have_prev_type = false;
2612    prev_type = 0;
2613    while (1) {
2614        if (off == datasz) {
2615            return true;  /* end, exit ok */
2616        }
2617        if (!parse_elf_property(note.data, &off, datasz, info,
2618                                have_prev_type, &prev_type, errp)) {
2619            return false;
2620        }
2621        have_prev_type = true;
2622    }
2623}
2624
2625/* Load an ELF image into the address space.
2626
2627   IMAGE_NAME is the filename of the image, to use in error messages.
2628   IMAGE_FD is the open file descriptor for the image.
2629
2630   BPRM_BUF is a copy of the beginning of the file; this of course
2631   contains the elf file header at offset 0.  It is assumed that this
2632   buffer is sufficiently aligned to present no problems to the host
2633   in accessing data at aligned offsets within the buffer.
2634
2635   On return: INFO values will be filled in, as necessary or available.  */
2636
2637static void load_elf_image(const char *image_name, int image_fd,
2638                           struct image_info *info, char **pinterp_name,
2639                           char bprm_buf[BPRM_BUF_SIZE])
2640{
2641    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2642    struct elf_phdr *phdr;
2643    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2644    int i, retval, prot_exec;
2645    Error *err = NULL;
2646
2647    /* First of all, some simple consistency checks */
2648    if (!elf_check_ident(ehdr)) {
2649        error_setg(&err, "Invalid ELF image for this architecture");
2650        goto exit_errmsg;
2651    }
2652    bswap_ehdr(ehdr);
2653    if (!elf_check_ehdr(ehdr)) {
2654        error_setg(&err, "Invalid ELF image for this architecture");
2655        goto exit_errmsg;
2656    }
2657
2658    i = ehdr->e_phnum * sizeof(struct elf_phdr);
2659    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2660        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2661    } else {
2662        phdr = (struct elf_phdr *) alloca(i);
2663        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2664        if (retval != i) {
2665            goto exit_read;
2666        }
2667    }
2668    bswap_phdr(phdr, ehdr->e_phnum);
2669
2670    info->nsegs = 0;
2671    info->pt_dynamic_addr = 0;
2672
2673    mmap_lock();
2674
2675    /*
2676     * Find the maximum size of the image and allocate an appropriate
2677     * amount of memory to handle that.  Locate the interpreter, if any.
2678     */
2679    loaddr = -1, hiaddr = 0;
2680    info->alignment = 0;
2681    for (i = 0; i < ehdr->e_phnum; ++i) {
2682        struct elf_phdr *eppnt = phdr + i;
2683        if (eppnt->p_type == PT_LOAD) {
2684            abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2685            if (a < loaddr) {
2686                loaddr = a;
2687            }
2688            a = eppnt->p_vaddr + eppnt->p_memsz;
2689            if (a > hiaddr) {
2690                hiaddr = a;
2691            }
2692            ++info->nsegs;
2693            info->alignment |= eppnt->p_align;
2694        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2695            g_autofree char *interp_name = NULL;
2696
2697            if (*pinterp_name) {
2698                error_setg(&err, "Multiple PT_INTERP entries");
2699                goto exit_errmsg;
2700            }
2701
2702            interp_name = g_malloc(eppnt->p_filesz);
2703
2704            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2705                memcpy(interp_name, bprm_buf + eppnt->p_offset,
2706                       eppnt->p_filesz);
2707            } else {
2708                retval = pread(image_fd, interp_name, eppnt->p_filesz,
2709                               eppnt->p_offset);
2710                if (retval != eppnt->p_filesz) {
2711                    goto exit_read;
2712                }
2713            }
2714            if (interp_name[eppnt->p_filesz - 1] != 0) {
2715                error_setg(&err, "Invalid PT_INTERP entry");
2716                goto exit_errmsg;
2717            }
2718            *pinterp_name = g_steal_pointer(&interp_name);
2719        } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2720            if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2721                goto exit_errmsg;
2722            }
2723        }
2724    }
2725
2726    if (pinterp_name != NULL) {
2727        /*
2728         * This is the main executable.
2729         *
2730         * Reserve extra space for brk.
2731         * We hold on to this space while placing the interpreter
2732         * and the stack, lest they be placed immediately after
2733         * the data segment and block allocation from the brk.
2734         *
2735         * 16MB is chosen as "large enough" without being so large
2736         * as to allow the result to not fit with a 32-bit guest on
2737         * a 32-bit host.
2738         */
2739        info->reserve_brk = 16 * MiB;
2740        hiaddr += info->reserve_brk;
2741
2742        if (ehdr->e_type == ET_EXEC) {
2743            /*
2744             * Make sure that the low address does not conflict with
2745             * MMAP_MIN_ADDR or the QEMU application itself.
2746             */
2747            probe_guest_base(image_name, loaddr, hiaddr);
2748        } else {
2749            /*
2750             * The binary is dynamic, but we still need to
2751             * select guest_base.  In this case we pass a size.
2752             */
2753            probe_guest_base(image_name, 0, hiaddr - loaddr);
2754        }
2755    }
2756
2757    /*
2758     * Reserve address space for all of this.
2759     *
2760     * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2761     * exactly the address range that is required.
2762     *
2763     * Otherwise this is ET_DYN, and we are searching for a location
2764     * that can hold the memory space required.  If the image is
2765     * pre-linked, LOADDR will be non-zero, and the kernel should
2766     * honor that address if it happens to be free.
2767     *
2768     * In both cases, we will overwrite pages in this range with mappings
2769     * from the executable.
2770     */
2771    load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2772                            MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2773                            (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2774                            -1, 0);
2775    if (load_addr == -1) {
2776        goto exit_mmap;
2777    }
2778    load_bias = load_addr - loaddr;
2779
2780    if (elf_is_fdpic(ehdr)) {
2781        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2782            g_malloc(sizeof(*loadsegs) * info->nsegs);
2783
2784        for (i = 0; i < ehdr->e_phnum; ++i) {
2785            switch (phdr[i].p_type) {
2786            case PT_DYNAMIC:
2787                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2788                break;
2789            case PT_LOAD:
2790                loadsegs->addr = phdr[i].p_vaddr + load_bias;
2791                loadsegs->p_vaddr = phdr[i].p_vaddr;
2792                loadsegs->p_memsz = phdr[i].p_memsz;
2793                ++loadsegs;
2794                break;
2795            }
2796        }
2797    }
2798
2799    info->load_bias = load_bias;
2800    info->code_offset = load_bias;
2801    info->data_offset = load_bias;
2802    info->load_addr = load_addr;
2803    info->entry = ehdr->e_entry + load_bias;
2804    info->start_code = -1;
2805    info->end_code = 0;
2806    info->start_data = -1;
2807    info->end_data = 0;
2808    info->brk = 0;
2809    info->elf_flags = ehdr->e_flags;
2810
2811    prot_exec = PROT_EXEC;
2812#ifdef TARGET_AARCH64
2813    /*
2814     * If the BTI feature is present, this indicates that the executable
2815     * pages of the startup binary should be mapped with PROT_BTI, so that
2816     * branch targets are enforced.
2817     *
2818     * The startup binary is either the interpreter or the static executable.
2819     * The interpreter is responsible for all pages of a dynamic executable.
2820     *
2821     * Elf notes are backward compatible to older cpus.
2822     * Do not enable BTI unless it is supported.
2823     */
2824    if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2825        && (pinterp_name == NULL || *pinterp_name == 0)
2826        && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2827        prot_exec |= TARGET_PROT_BTI;
2828    }
2829#endif
2830
2831    for (i = 0; i < ehdr->e_phnum; i++) {
2832        struct elf_phdr *eppnt = phdr + i;
2833        if (eppnt->p_type == PT_LOAD) {
2834            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2835            int elf_prot = 0;
2836
2837            if (eppnt->p_flags & PF_R) {
2838                elf_prot |= PROT_READ;
2839            }
2840            if (eppnt->p_flags & PF_W) {
2841                elf_prot |= PROT_WRITE;
2842            }
2843            if (eppnt->p_flags & PF_X) {
2844                elf_prot |= prot_exec;
2845            }
2846
2847            vaddr = load_bias + eppnt->p_vaddr;
2848            vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2849            vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2850
2851            vaddr_ef = vaddr + eppnt->p_filesz;
2852            vaddr_em = vaddr + eppnt->p_memsz;
2853
2854            /*
2855             * Some segments may be completely empty, with a non-zero p_memsz
2856             * but no backing file segment.
2857             */
2858            if (eppnt->p_filesz != 0) {
2859                vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2860                error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2861                                    MAP_PRIVATE | MAP_FIXED,
2862                                    image_fd, eppnt->p_offset - vaddr_po);
2863
2864                if (error == -1) {
2865                    goto exit_mmap;
2866                }
2867
2868                /*
2869                 * If the load segment requests extra zeros (e.g. bss), map it.
2870                 */
2871                if (eppnt->p_filesz < eppnt->p_memsz) {
2872                    zero_bss(vaddr_ef, vaddr_em, elf_prot);
2873                }
2874            } else if (eppnt->p_memsz != 0) {
2875                vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2876                error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2877                                    MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2878                                    -1, 0);
2879
2880                if (error == -1) {
2881                    goto exit_mmap;
2882                }
2883            }
2884
2885            /* Find the full program boundaries.  */
2886            if (elf_prot & PROT_EXEC) {
2887                if (vaddr < info->start_code) {
2888                    info->start_code = vaddr;
2889                }
2890                if (vaddr_ef > info->end_code) {
2891                    info->end_code = vaddr_ef;
2892                }
2893            }
2894            if (elf_prot & PROT_WRITE) {
2895                if (vaddr < info->start_data) {
2896                    info->start_data = vaddr;
2897                }
2898                if (vaddr_ef > info->end_data) {
2899                    info->end_data = vaddr_ef;
2900                }
2901            }
2902            if (vaddr_em > info->brk) {
2903                info->brk = vaddr_em;
2904            }
2905#ifdef TARGET_MIPS
2906        } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2907            Mips_elf_abiflags_v0 abiflags;
2908            if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2909                error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2910                goto exit_errmsg;
2911            }
2912            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2913                memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2914                       sizeof(Mips_elf_abiflags_v0));
2915            } else {
2916                retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2917                               eppnt->p_offset);
2918                if (retval != sizeof(Mips_elf_abiflags_v0)) {
2919                    goto exit_read;
2920                }
2921            }
2922            bswap_mips_abiflags(&abiflags);
2923            info->fp_abi = abiflags.fp_abi;
2924#endif
2925        }
2926    }
2927
2928    if (info->end_data == 0) {
2929        info->start_data = info->end_code;
2930        info->end_data = info->end_code;
2931    }
2932
2933    if (qemu_log_enabled()) {
2934        load_symbols(ehdr, image_fd, load_bias);
2935    }
2936
2937    mmap_unlock();
2938
2939    close(image_fd);
2940    return;
2941
2942 exit_read:
2943    if (retval >= 0) {
2944        error_setg(&err, "Incomplete read of file header");
2945    } else {
2946        error_setg_errno(&err, errno, "Error reading file header");
2947    }
2948    goto exit_errmsg;
2949 exit_mmap:
2950    error_setg_errno(&err, errno, "Error mapping file");
2951    goto exit_errmsg;
2952 exit_errmsg:
2953    error_reportf_err(err, "%s: ", image_name);
2954    exit(-1);
2955}
2956
2957static void load_elf_interp(const char *filename, struct image_info *info,
2958                            char bprm_buf[BPRM_BUF_SIZE])
2959{
2960    int fd, retval;
2961    Error *err = NULL;
2962
2963    fd = open(path(filename), O_RDONLY);
2964    if (fd < 0) {
2965        error_setg_file_open(&err, errno, filename);
2966        error_report_err(err);
2967        exit(-1);
2968    }
2969
2970    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2971    if (retval < 0) {
2972        error_setg_errno(&err, errno, "Error reading file header");
2973        error_reportf_err(err, "%s: ", filename);
2974        exit(-1);
2975    }
2976
2977    if (retval < BPRM_BUF_SIZE) {
2978        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2979    }
2980
2981    load_elf_image(filename, fd, info, NULL, bprm_buf);
2982}
2983
2984static int symfind(const void *s0, const void *s1)
2985{
2986    target_ulong addr = *(target_ulong *)s0;
2987    struct elf_sym *sym = (struct elf_sym *)s1;
2988    int result = 0;
2989    if (addr < sym->st_value) {
2990        result = -1;
2991    } else if (addr >= sym->st_value + sym->st_size) {
2992        result = 1;
2993    }
2994    return result;
2995}
2996
2997static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2998{
2999#if ELF_CLASS == ELFCLASS32
3000    struct elf_sym *syms = s->disas_symtab.elf32;
3001#else
3002    struct elf_sym *syms = s->disas_symtab.elf64;
3003#endif
3004
3005    // binary search
3006    struct elf_sym *sym;
3007
3008    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3009    if (sym != NULL) {
3010        return s->disas_strtab + sym->st_name;
3011    }
3012
3013    return "";
3014}
3015
3016/* FIXME: This should use elf_ops.h  */
3017static int symcmp(const void *s0, const void *s1)
3018{
3019    struct elf_sym *sym0 = (struct elf_sym *)s0;
3020    struct elf_sym *sym1 = (struct elf_sym *)s1;
3021    return (sym0->st_value < sym1->st_value)
3022        ? -1
3023        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3024}
3025
3026/* Best attempt to load symbols from this ELF object. */
3027static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3028{
3029    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3030    uint64_t segsz;
3031    struct elf_shdr *shdr;
3032    char *strings = NULL;
3033    struct syminfo *s = NULL;
3034    struct elf_sym *new_syms, *syms = NULL;
3035
3036    shnum = hdr->e_shnum;
3037    i = shnum * sizeof(struct elf_shdr);
3038    shdr = (struct elf_shdr *)alloca(i);
3039    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3040        return;
3041    }
3042
3043    bswap_shdr(shdr, shnum);
3044    for (i = 0; i < shnum; ++i) {
3045        if (shdr[i].sh_type == SHT_SYMTAB) {
3046            sym_idx = i;
3047            str_idx = shdr[i].sh_link;
3048            goto found;
3049        }
3050    }
3051
3052    /* There will be no symbol table if the file was stripped.  */
3053    return;
3054
3055 found:
3056    /* Now know where the strtab and symtab are.  Snarf them.  */
3057    s = g_try_new(struct syminfo, 1);
3058    if (!s) {
3059        goto give_up;
3060    }
3061
3062    segsz = shdr[str_idx].sh_size;
3063    s->disas_strtab = strings = g_try_malloc(segsz);
3064    if (!strings ||
3065        pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3066        goto give_up;
3067    }
3068
3069    segsz = shdr[sym_idx].sh_size;
3070    syms = g_try_malloc(segsz);
3071    if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3072        goto give_up;
3073    }
3074
3075    if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3076        /* Implausibly large symbol table: give up rather than ploughing
3077         * on with the number of symbols calculation overflowing
3078         */
3079        goto give_up;
3080    }
3081    nsyms = segsz / sizeof(struct elf_sym);
3082    for (i = 0; i < nsyms; ) {
3083        bswap_sym(syms + i);
3084        /* Throw away entries which we do not need.  */
3085        if (syms[i].st_shndx == SHN_UNDEF
3086            || syms[i].st_shndx >= SHN_LORESERVE
3087            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3088            if (i < --nsyms) {
3089                syms[i] = syms[nsyms];
3090            }
3091        } else {
3092#if defined(TARGET_ARM) || defined (TARGET_MIPS)
3093            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3094            syms[i].st_value &= ~(target_ulong)1;
3095#endif
3096            syms[i].st_value += load_bias;
3097            i++;
3098        }
3099    }
3100
3101    /* No "useful" symbol.  */
3102    if (nsyms == 0) {
3103        goto give_up;
3104    }
3105
3106    /* Attempt to free the storage associated with the local symbols
3107       that we threw away.  Whether or not this has any effect on the
3108       memory allocation depends on the malloc implementation and how
3109       many symbols we managed to discard.  */
3110    new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3111    if (new_syms == NULL) {
3112        goto give_up;
3113    }
3114    syms = new_syms;
3115
3116    qsort(syms, nsyms, sizeof(*syms), symcmp);
3117
3118    s->disas_num_syms = nsyms;
3119#if ELF_CLASS == ELFCLASS32
3120    s->disas_symtab.elf32 = syms;
3121#else
3122    s->disas_symtab.elf64 = syms;
3123#endif
3124    s->lookup_symbol = lookup_symbolxx;
3125    s->next = syminfos;
3126    syminfos = s;
3127
3128    return;
3129
3130give_up:
3131    g_free(s);
3132    g_free(strings);
3133    g_free(syms);
3134}
3135
3136uint32_t get_elf_eflags(int fd)
3137{
3138    struct elfhdr ehdr;
3139    off_t offset;
3140    int ret;
3141
3142    /* Read ELF header */
3143    offset = lseek(fd, 0, SEEK_SET);
3144    if (offset == (off_t) -1) {
3145        return 0;
3146    }
3147    ret = read(fd, &ehdr, sizeof(ehdr));
3148    if (ret < sizeof(ehdr)) {
3149        return 0;
3150    }
3151    offset = lseek(fd, offset, SEEK_SET);
3152    if (offset == (off_t) -1) {
3153        return 0;
3154    }
3155
3156    /* Check ELF signature */
3157    if (!elf_check_ident(&ehdr)) {
3158        return 0;
3159    }
3160
3161    /* check header */
3162    bswap_ehdr(&ehdr);
3163    if (!elf_check_ehdr(&ehdr)) {
3164        return 0;
3165    }
3166
3167    /* return architecture id */
3168    return ehdr.e_flags;
3169}
3170
3171int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3172{
3173    struct image_info interp_info;
3174    struct elfhdr elf_ex;
3175    char *elf_interpreter = NULL;
3176    char *scratch;
3177
3178    memset(&interp_info, 0, sizeof(interp_info));
3179#ifdef TARGET_MIPS
3180    interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3181#endif
3182
3183    info->start_mmap = (abi_ulong)ELF_START_MMAP;
3184
3185    load_elf_image(bprm->filename, bprm->fd, info,
3186                   &elf_interpreter, bprm->buf);
3187
3188    /* ??? We need a copy of the elf header for passing to create_elf_tables.
3189       If we do nothing, we'll have overwritten this when we re-use bprm->buf
3190       when we load the interpreter.  */
3191    elf_ex = *(struct elfhdr *)bprm->buf;
3192
3193    /* Do this so that we can load the interpreter, if need be.  We will
3194       change some of these later */
3195    bprm->p = setup_arg_pages(bprm, info);
3196
3197    scratch = g_new0(char, TARGET_PAGE_SIZE);
3198    if (STACK_GROWS_DOWN) {
3199        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3200                                   bprm->p, info->stack_limit);
3201        info->file_string = bprm->p;
3202        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3203                                   bprm->p, info->stack_limit);
3204        info->env_strings = bprm->p;
3205        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3206                                   bprm->p, info->stack_limit);
3207        info->arg_strings = bprm->p;
3208    } else {
3209        info->arg_strings = bprm->p;
3210        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3211                                   bprm->p, info->stack_limit);
3212        info->env_strings = bprm->p;
3213        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3214                                   bprm->p, info->stack_limit);
3215        info->file_string = bprm->p;
3216        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3217                                   bprm->p, info->stack_limit);
3218    }
3219
3220    g_free(scratch);
3221
3222    if (!bprm->p) {
3223        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3224        exit(-1);
3225    }
3226
3227    if (elf_interpreter) {
3228        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3229
3230        /* If the program interpreter is one of these two, then assume
3231           an iBCS2 image.  Otherwise assume a native linux image.  */
3232
3233        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3234            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3235            info->personality = PER_SVR4;
3236
3237            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3238               and some applications "depend" upon this behavior.  Since
3239               we do not have the power to recompile these, we emulate
3240               the SVr4 behavior.  Sigh.  */
3241            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3242                        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3243        }
3244#ifdef TARGET_MIPS
3245        info->interp_fp_abi = interp_info.fp_abi;
3246#endif
3247    }
3248
3249    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3250                                info, (elf_interpreter ? &interp_info : NULL));
3251    info->start_stack = bprm->p;
3252
3253    /* If we have an interpreter, set that as the program's entry point.
3254       Copy the load_bias as well, to help PPC64 interpret the entry
3255       point as a function descriptor.  Do this after creating elf tables
3256       so that we copy the original program entry point into the AUXV.  */
3257    if (elf_interpreter) {
3258        info->load_bias = interp_info.load_bias;
3259        info->entry = interp_info.entry;
3260        g_free(elf_interpreter);
3261    }
3262
3263#ifdef USE_ELF_CORE_DUMP
3264    bprm->core_dump = &elf_core_dump;
3265#endif
3266
3267    /*
3268     * If we reserved extra space for brk, release it now.
3269     * The implementation of do_brk in syscalls.c expects to be able
3270     * to mmap pages in this space.
3271     */
3272    if (info->reserve_brk) {
3273        abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3274        abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3275        target_munmap(start_brk, end_brk - start_brk);
3276    }
3277
3278    return 0;
3279}
3280
3281#ifdef USE_ELF_CORE_DUMP
3282/*
3283 * Definitions to generate Intel SVR4-like core files.
3284 * These mostly have the same names as the SVR4 types with "target_elf_"
3285 * tacked on the front to prevent clashes with linux definitions,
3286 * and the typedef forms have been avoided.  This is mostly like
3287 * the SVR4 structure, but more Linuxy, with things that Linux does
3288 * not support and which gdb doesn't really use excluded.
3289 *
3290 * Fields we don't dump (their contents is zero) in linux-user qemu
3291 * are marked with XXX.
3292 *
3293 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3294 *
3295 * Porting ELF coredump for target is (quite) simple process.  First you
3296 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3297 * the target resides):
3298 *
3299 * #define USE_ELF_CORE_DUMP
3300 *
3301 * Next you define type of register set used for dumping.  ELF specification
3302 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3303 *
3304 * typedef <target_regtype> target_elf_greg_t;
3305 * #define ELF_NREG <number of registers>
3306 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3307 *
3308 * Last step is to implement target specific function that copies registers
3309 * from given cpu into just specified register set.  Prototype is:
3310 *
3311 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3312 *                                const CPUArchState *env);
3313 *
3314 * Parameters:
3315 *     regs - copy register values into here (allocated and zeroed by caller)
3316 *     env - copy registers from here
3317 *
3318 * Example for ARM target is provided in this file.
3319 */
3320
3321/* An ELF note in memory */
3322struct memelfnote {
3323    const char *name;
3324    size_t     namesz;
3325    size_t     namesz_rounded;
3326    int        type;
3327    size_t     datasz;
3328    size_t     datasz_rounded;
3329    void       *data;
3330    size_t     notesz;
3331};
3332
3333struct target_elf_siginfo {
3334    abi_int    si_signo; /* signal number */
3335    abi_int    si_code;  /* extra code */
3336    abi_int    si_errno; /* errno */
3337};
3338
3339struct target_elf_prstatus {
3340    struct target_elf_siginfo pr_info;      /* Info associated with signal */
3341    abi_short          pr_cursig;    /* Current signal */
3342    abi_ulong          pr_sigpend;   /* XXX */
3343    abi_ulong          pr_sighold;   /* XXX */
3344    target_pid_t       pr_pid;
3345    target_pid_t       pr_ppid;
3346    target_pid_t       pr_pgrp;
3347    target_pid_t       pr_sid;
3348    struct target_timeval pr_utime;  /* XXX User time */
3349    struct target_timeval pr_stime;  /* XXX System time */
3350    struct target_timeval pr_cutime; /* XXX Cumulative user time */
3351    struct target_timeval pr_cstime; /* XXX Cumulative system time */
3352    target_elf_gregset_t      pr_reg;       /* GP registers */
3353    abi_int            pr_fpvalid;   /* XXX */
3354};
3355
3356#define ELF_PRARGSZ     (80) /* Number of chars for args */
3357
3358struct target_elf_prpsinfo {
3359    char         pr_state;       /* numeric process state */
3360    char         pr_sname;       /* char for pr_state */
3361    char         pr_zomb;        /* zombie */
3362    char         pr_nice;        /* nice val */
3363    abi_ulong    pr_flag;        /* flags */
3364    target_uid_t pr_uid;
3365    target_gid_t pr_gid;
3366    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3367    /* Lots missing */
3368    char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3369    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3370};
3371
3372/* Here is the structure in which status of each thread is captured. */
3373struct elf_thread_status {
3374    QTAILQ_ENTRY(elf_thread_status)  ets_link;
3375    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3376#if 0
3377    elf_fpregset_t fpu;             /* NT_PRFPREG */
3378    struct task_struct *thread;
3379    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3380#endif
3381    struct memelfnote notes[1];
3382    int num_notes;
3383};
3384
3385struct elf_note_info {
3386    struct memelfnote   *notes;
3387    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3388    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3389
3390    QTAILQ_HEAD(, elf_thread_status) thread_list;
3391#if 0
3392    /*
3393     * Current version of ELF coredump doesn't support
3394     * dumping fp regs etc.
3395     */
3396    elf_fpregset_t *fpu;
3397    elf_fpxregset_t *xfpu;
3398    int thread_status_size;
3399#endif
3400    int notes_size;
3401    int numnote;
3402};
3403
3404struct vm_area_struct {
3405    target_ulong   vma_start;  /* start vaddr of memory region */
3406    target_ulong   vma_end;    /* end vaddr of memory region */
3407    abi_ulong      vma_flags;  /* protection etc. flags for the region */
3408    QTAILQ_ENTRY(vm_area_struct) vma_link;
3409};
3410
3411struct mm_struct {
3412    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3413    int mm_count;           /* number of mappings */
3414};
3415
3416static struct mm_struct *vma_init(void);
3417static void vma_delete(struct mm_struct *);
3418static int vma_add_mapping(struct mm_struct *, target_ulong,
3419                           target_ulong, abi_ulong);
3420static int vma_get_mapping_count(const struct mm_struct *);
3421static struct vm_area_struct *vma_first(const struct mm_struct *);
3422static struct vm_area_struct *vma_next(struct vm_area_struct *);
3423static abi_ulong vma_dump_size(const struct vm_area_struct *);
3424static int vma_walker(void *priv, target_ulong start, target_ulong end,
3425                      unsigned long flags);
3426
3427static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3428static void fill_note(struct memelfnote *, const char *, int,
3429                      unsigned int, void *);
3430static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3431static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3432static void fill_auxv_note(struct memelfnote *, const TaskState *);
3433static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3434static size_t note_size(const struct memelfnote *);
3435static void free_note_info(struct elf_note_info *);
3436static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3437static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3438
3439static int dump_write(int, const void *, size_t);
3440static int write_note(struct memelfnote *, int);
3441static int write_note_info(struct elf_note_info *, int);
3442
3443#ifdef BSWAP_NEEDED
3444static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3445{
3446    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3447    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3448    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3449    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3450    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3451    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3452    prstatus->pr_pid = tswap32(prstatus->pr_pid);
3453    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3454    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3455    prstatus->pr_sid = tswap32(prstatus->pr_sid);
3456    /* cpu times are not filled, so we skip them */
3457    /* regs should be in correct format already */
3458    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3459}
3460
3461static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3462{
3463    psinfo->pr_flag = tswapal(psinfo->pr_flag);
3464    psinfo->pr_uid = tswap16(psinfo->pr_uid);
3465    psinfo->pr_gid = tswap16(psinfo->pr_gid);
3466    psinfo->pr_pid = tswap32(psinfo->pr_pid);
3467    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3468    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3469    psinfo->pr_sid = tswap32(psinfo->pr_sid);
3470}
3471
3472static void bswap_note(struct elf_note *en)
3473{
3474    bswap32s(&en->n_namesz);
3475    bswap32s(&en->n_descsz);
3476    bswap32s(&en->n_type);
3477}
3478#else
3479static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3480static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3481static inline void bswap_note(struct elf_note *en) { }
3482#endif /* BSWAP_NEEDED */
3483
3484/*
3485 * Minimal support for linux memory regions.  These are needed
3486 * when we are finding out what memory exactly belongs to
3487 * emulated process.  No locks needed here, as long as
3488 * thread that received the signal is stopped.
3489 */
3490
3491static struct mm_struct *vma_init(void)
3492{
3493    struct mm_struct *mm;
3494
3495    if ((mm = g_malloc(sizeof (*mm))) == NULL)
3496        return (NULL);
3497
3498    mm->mm_count = 0;
3499    QTAILQ_INIT(&mm->mm_mmap);
3500
3501    return (mm);
3502}
3503
3504static void vma_delete(struct mm_struct *mm)
3505{
3506    struct vm_area_struct *vma;
3507
3508    while ((vma = vma_first(mm)) != NULL) {
3509        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3510        g_free(vma);
3511    }
3512    g_free(mm);
3513}
3514
3515static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3516                           target_ulong end, abi_ulong flags)
3517{
3518    struct vm_area_struct *vma;
3519
3520    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3521        return (-1);
3522
3523    vma->vma_start = start;
3524    vma->vma_end = end;
3525    vma->vma_flags = flags;
3526
3527    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3528    mm->mm_count++;
3529
3530    return (0);
3531}
3532
3533static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3534{
3535    return (QTAILQ_FIRST(&mm->mm_mmap));
3536}
3537
3538static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3539{
3540    return (QTAILQ_NEXT(vma, vma_link));
3541}
3542
3543static int vma_get_mapping_count(const struct mm_struct *mm)
3544{
3545    return (mm->mm_count);
3546}
3547
3548/*
3549 * Calculate file (dump) size of given memory region.
3550 */
3551static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3552{
3553    /* if we cannot even read the first page, skip it */
3554    if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3555        return (0);
3556
3557    /*
3558     * Usually we don't dump executable pages as they contain
3559     * non-writable code that debugger can read directly from
3560     * target library etc.  However, thread stacks are marked
3561     * also executable so we read in first page of given region
3562     * and check whether it contains elf header.  If there is
3563     * no elf header, we dump it.
3564     */
3565    if (vma->vma_flags & PROT_EXEC) {
3566        char page[TARGET_PAGE_SIZE];
3567
3568        if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3569            return 0;
3570        }
3571        if ((page[EI_MAG0] == ELFMAG0) &&
3572            (page[EI_MAG1] == ELFMAG1) &&
3573            (page[EI_MAG2] == ELFMAG2) &&
3574            (page[EI_MAG3] == ELFMAG3)) {
3575            /*
3576             * Mappings are possibly from ELF binary.  Don't dump
3577             * them.
3578             */
3579            return (0);
3580        }
3581    }
3582
3583    return (vma->vma_end - vma->vma_start);
3584}
3585
3586static int vma_walker(void *priv, target_ulong start, target_ulong end,
3587                      unsigned long flags)
3588{
3589    struct mm_struct *mm = (struct mm_struct *)priv;
3590
3591    vma_add_mapping(mm, start, end, flags);
3592    return (0);
3593}
3594
3595static void fill_note(struct memelfnote *note, const char *name, int type,
3596                      unsigned int sz, void *data)
3597{
3598    unsigned int namesz;
3599
3600    namesz = strlen(name) + 1;
3601    note->name = name;
3602    note->namesz = namesz;
3603    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3604    note->type = type;
3605    note->datasz = sz;
3606    note->datasz_rounded = roundup(sz, sizeof (int32_t));
3607
3608    note->data = data;
3609
3610    /*
3611     * We calculate rounded up note size here as specified by
3612     * ELF document.
3613     */
3614    note->notesz = sizeof (struct elf_note) +
3615        note->namesz_rounded + note->datasz_rounded;
3616}
3617
3618static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3619                            uint32_t flags)
3620{
3621    (void) memset(elf, 0, sizeof(*elf));
3622
3623    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3624    elf->e_ident[EI_CLASS] = ELF_CLASS;
3625    elf->e_ident[EI_DATA] = ELF_DATA;
3626    elf->e_ident[EI_VERSION] = EV_CURRENT;
3627    elf->e_ident[EI_OSABI] = ELF_OSABI;
3628
3629    elf->e_type = ET_CORE;
3630    elf->e_machine = machine;
3631    elf->e_version = EV_CURRENT;
3632    elf->e_phoff = sizeof(struct elfhdr);
3633    elf->e_flags = flags;
3634    elf->e_ehsize = sizeof(struct elfhdr);
3635    elf->e_phentsize = sizeof(struct elf_phdr);
3636    elf->e_phnum = segs;
3637
3638    bswap_ehdr(elf);
3639}
3640
3641static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3642{
3643    phdr->p_type = PT_NOTE;
3644    phdr->p_offset = offset;
3645    phdr->p_vaddr = 0;
3646    phdr->p_paddr = 0;
3647    phdr->p_filesz = sz;
3648    phdr->p_memsz = 0;
3649    phdr->p_flags = 0;
3650    phdr->p_align = 0;
3651
3652    bswap_phdr(phdr, 1);
3653}
3654
3655static size_t note_size(const struct memelfnote *note)
3656{
3657    return (note->notesz);
3658}
3659
3660static void fill_prstatus(struct target_elf_prstatus *prstatus,
3661                          const TaskState *ts, int signr)
3662{
3663    (void) memset(prstatus, 0, sizeof (*prstatus));
3664    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3665    prstatus->pr_pid = ts->ts_tid;
3666    prstatus->pr_ppid = getppid();
3667    prstatus->pr_pgrp = getpgrp();
3668    prstatus->pr_sid = getsid(0);
3669
3670    bswap_prstatus(prstatus);
3671}
3672
3673static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3674{
3675    char *base_filename;
3676    unsigned int i, len;
3677
3678    (void) memset(psinfo, 0, sizeof (*psinfo));
3679
3680    len = ts->info->env_strings - ts->info->arg_strings;
3681    if (len >= ELF_PRARGSZ)
3682        len = ELF_PRARGSZ - 1;
3683    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3684        return -EFAULT;
3685    }
3686    for (i = 0; i < len; i++)
3687        if (psinfo->pr_psargs[i] == 0)
3688            psinfo->pr_psargs[i] = ' ';
3689    psinfo->pr_psargs[len] = 0;
3690
3691    psinfo->pr_pid = getpid();
3692    psinfo->pr_ppid = getppid();
3693    psinfo->pr_pgrp = getpgrp();
3694    psinfo->pr_sid = getsid(0);
3695    psinfo->pr_uid = getuid();
3696    psinfo->pr_gid = getgid();
3697
3698    base_filename = g_path_get_basename(ts->bprm->filename);
3699    /*
3700     * Using strncpy here is fine: at max-length,
3701     * this field is not NUL-terminated.
3702     */
3703    (void) strncpy(psinfo->pr_fname, base_filename,
3704                   sizeof(psinfo->pr_fname));
3705
3706    g_free(base_filename);
3707    bswap_psinfo(psinfo);
3708    return (0);
3709}
3710
3711static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3712{
3713    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3714    elf_addr_t orig_auxv = auxv;
3715    void *ptr;
3716    int len = ts->info->auxv_len;
3717
3718    /*
3719     * Auxiliary vector is stored in target process stack.  It contains
3720     * {type, value} pairs that we need to dump into note.  This is not
3721     * strictly necessary but we do it here for sake of completeness.
3722     */
3723
3724    /* read in whole auxv vector and copy it to memelfnote */
3725    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3726    if (ptr != NULL) {
3727        fill_note(note, "CORE", NT_AUXV, len, ptr);
3728        unlock_user(ptr, auxv, len);
3729    }
3730}
3731
3732/*
3733 * Constructs name of coredump file.  We have following convention
3734 * for the name:
3735 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3736 *
3737 * Returns the filename
3738 */
3739static char *core_dump_filename(const TaskState *ts)
3740{
3741    g_autoptr(GDateTime) now = g_date_time_new_now_local();
3742    g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3743    g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3744
3745    return g_strdup_printf("qemu_%s_%s_%d.core",
3746                           base_filename, nowstr, (int)getpid());
3747}
3748
3749static int dump_write(int fd, const void *ptr, size_t size)
3750{
3751    const char *bufp = (const char *)ptr;
3752    ssize_t bytes_written, bytes_left;
3753    struct rlimit dumpsize;
3754    off_t pos;
3755
3756    bytes_written = 0;
3757    getrlimit(RLIMIT_CORE, &dumpsize);
3758    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3759        if (errno == ESPIPE) { /* not a seekable stream */
3760            bytes_left = size;
3761        } else {
3762            return pos;
3763        }
3764    } else {
3765        if (dumpsize.rlim_cur <= pos) {
3766            return -1;
3767        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3768            bytes_left = size;
3769        } else {
3770            size_t limit_left=dumpsize.rlim_cur - pos;
3771            bytes_left = limit_left >= size ? size : limit_left ;
3772        }
3773    }
3774
3775    /*
3776     * In normal conditions, single write(2) should do but
3777     * in case of socket etc. this mechanism is more portable.
3778     */
3779    do {
3780        bytes_written = write(fd, bufp, bytes_left);
3781        if (bytes_written < 0) {
3782            if (errno == EINTR)
3783                continue;
3784            return (-1);
3785        } else if (bytes_written == 0) { /* eof */
3786            return (-1);
3787        }
3788        bufp += bytes_written;
3789        bytes_left -= bytes_written;
3790    } while (bytes_left > 0);
3791
3792    return (0);
3793}
3794
3795static int write_note(struct memelfnote *men, int fd)
3796{
3797    struct elf_note en;
3798
3799    en.n_namesz = men->namesz;
3800    en.n_type = men->type;
3801    en.n_descsz = men->datasz;
3802
3803    bswap_note(&en);
3804
3805    if (dump_write(fd, &en, sizeof(en)) != 0)
3806        return (-1);
3807    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3808        return (-1);
3809    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3810        return (-1);
3811
3812    return (0);
3813}
3814
3815static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3816{
3817    CPUState *cpu = env_cpu((CPUArchState *)env);
3818    TaskState *ts = (TaskState *)cpu->opaque;
3819    struct elf_thread_status *ets;
3820
3821    ets = g_malloc0(sizeof (*ets));
3822    ets->num_notes = 1; /* only prstatus is dumped */
3823    fill_prstatus(&ets->prstatus, ts, 0);
3824    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3825    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3826              &ets->prstatus);
3827
3828    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3829
3830    info->notes_size += note_size(&ets->notes[0]);
3831}
3832
3833static void init_note_info(struct elf_note_info *info)
3834{
3835    /* Initialize the elf_note_info structure so that it is at
3836     * least safe to call free_note_info() on it. Must be
3837     * called before calling fill_note_info().
3838     */
3839    memset(info, 0, sizeof (*info));
3840    QTAILQ_INIT(&info->thread_list);
3841}
3842
3843static int fill_note_info(struct elf_note_info *info,
3844                          long signr, const CPUArchState *env)
3845{
3846#define NUMNOTES 3
3847    CPUState *cpu = env_cpu((CPUArchState *)env);
3848    TaskState *ts = (TaskState *)cpu->opaque;
3849    int i;
3850
3851    info->notes = g_new0(struct memelfnote, NUMNOTES);
3852    if (info->notes == NULL)
3853        return (-ENOMEM);
3854    info->prstatus = g_malloc0(sizeof (*info->prstatus));
3855    if (info->prstatus == NULL)
3856        return (-ENOMEM);
3857    info->psinfo = g_malloc0(sizeof (*info->psinfo));
3858    if (info->prstatus == NULL)
3859        return (-ENOMEM);
3860
3861    /*
3862     * First fill in status (and registers) of current thread
3863     * including process info & aux vector.
3864     */
3865    fill_prstatus(info->prstatus, ts, signr);
3866    elf_core_copy_regs(&info->prstatus->pr_reg, env);
3867    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3868              sizeof (*info->prstatus), info->prstatus);
3869    fill_psinfo(info->psinfo, ts);
3870    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3871              sizeof (*info->psinfo), info->psinfo);
3872    fill_auxv_note(&info->notes[2], ts);
3873    info->numnote = 3;
3874
3875    info->notes_size = 0;
3876    for (i = 0; i < info->numnote; i++)
3877        info->notes_size += note_size(&info->notes[i]);
3878
3879    /* read and fill status of all threads */
3880    cpu_list_lock();
3881    CPU_FOREACH(cpu) {
3882        if (cpu == thread_cpu) {
3883            continue;
3884        }
3885        fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3886    }
3887    cpu_list_unlock();
3888
3889    return (0);
3890}
3891
3892static void free_note_info(struct elf_note_info *info)
3893{
3894    struct elf_thread_status *ets;
3895
3896    while (!QTAILQ_EMPTY(&info->thread_list)) {
3897        ets = QTAILQ_FIRST(&info->thread_list);
3898        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3899        g_free(ets);
3900    }
3901
3902    g_free(info->prstatus);
3903    g_free(info->psinfo);
3904    g_free(info->notes);
3905}
3906
3907static int write_note_info(struct elf_note_info *info, int fd)
3908{
3909    struct elf_thread_status *ets;
3910    int i, error = 0;
3911
3912    /* write prstatus, psinfo and auxv for current thread */
3913    for (i = 0; i < info->numnote; i++)
3914        if ((error = write_note(&info->notes[i], fd)) != 0)
3915            return (error);
3916
3917    /* write prstatus for each thread */
3918    QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3919        if ((error = write_note(&ets->notes[0], fd)) != 0)
3920            return (error);
3921    }
3922
3923    return (0);
3924}
3925
3926/*
3927 * Write out ELF coredump.
3928 *
3929 * See documentation of ELF object file format in:
3930 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3931 *
3932 * Coredump format in linux is following:
3933 *
3934 * 0   +----------------------+         \
3935 *     | ELF header           | ET_CORE  |
3936 *     +----------------------+          |
3937 *     | ELF program headers  |          |--- headers
3938 *     | - NOTE section       |          |
3939 *     | - PT_LOAD sections   |          |
3940 *     +----------------------+         /
3941 *     | NOTEs:               |
3942 *     | - NT_PRSTATUS        |
3943 *     | - NT_PRSINFO         |
3944 *     | - NT_AUXV            |
3945 *     +----------------------+ <-- aligned to target page
3946 *     | Process memory dump  |
3947 *     :                      :
3948 *     .                      .
3949 *     :                      :
3950 *     |                      |
3951 *     +----------------------+
3952 *
3953 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3954 * NT_PRSINFO  -> struct elf_prpsinfo
3955 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3956 *
3957 * Format follows System V format as close as possible.  Current
3958 * version limitations are as follows:
3959 *     - no floating point registers are dumped
3960 *
3961 * Function returns 0 in case of success, negative errno otherwise.
3962 *
3963 * TODO: make this work also during runtime: it should be
3964 * possible to force coredump from running process and then
3965 * continue processing.  For example qemu could set up SIGUSR2
3966 * handler (provided that target process haven't registered
3967 * handler for that) that does the dump when signal is received.
3968 */
3969static int elf_core_dump(int signr, const CPUArchState *env)
3970{
3971    const CPUState *cpu = env_cpu((CPUArchState *)env);
3972    const TaskState *ts = (const TaskState *)cpu->opaque;
3973    struct vm_area_struct *vma = NULL;
3974    g_autofree char *corefile = NULL;
3975    struct elf_note_info info;
3976    struct elfhdr elf;
3977    struct elf_phdr phdr;
3978    struct rlimit dumpsize;
3979    struct mm_struct *mm = NULL;
3980    off_t offset = 0, data_offset = 0;
3981    int segs = 0;
3982    int fd = -1;
3983
3984    init_note_info(&info);
3985
3986    errno = 0;
3987    getrlimit(RLIMIT_CORE, &dumpsize);
3988    if (dumpsize.rlim_cur == 0)
3989        return 0;
3990
3991    corefile = core_dump_filename(ts);
3992
3993    if ((fd = open(corefile, O_WRONLY | O_CREAT,
3994                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3995        return (-errno);
3996
3997    /*
3998     * Walk through target process memory mappings and
3999     * set up structure containing this information.  After
4000     * this point vma_xxx functions can be used.
4001     */
4002    if ((mm = vma_init()) == NULL)
4003        goto out;
4004
4005    walk_memory_regions(mm, vma_walker);
4006    segs = vma_get_mapping_count(mm);
4007
4008    /*
4009     * Construct valid coredump ELF header.  We also
4010     * add one more segment for notes.
4011     */
4012    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4013    if (dump_write(fd, &elf, sizeof (elf)) != 0)
4014        goto out;
4015
4016    /* fill in the in-memory version of notes */
4017    if (fill_note_info(&info, signr, env) < 0)
4018        goto out;
4019
4020    offset += sizeof (elf);                             /* elf header */
4021    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4022
4023    /* write out notes program header */
4024    fill_elf_note_phdr(&phdr, info.notes_size, offset);
4025
4026    offset += info.notes_size;
4027    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4028        goto out;
4029
4030    /*
4031     * ELF specification wants data to start at page boundary so
4032     * we align it here.
4033     */
4034    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4035
4036    /*
4037     * Write program headers for memory regions mapped in
4038     * the target process.
4039     */
4040    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4041        (void) memset(&phdr, 0, sizeof (phdr));
4042
4043        phdr.p_type = PT_LOAD;
4044        phdr.p_offset = offset;
4045        phdr.p_vaddr = vma->vma_start;
4046        phdr.p_paddr = 0;
4047        phdr.p_filesz = vma_dump_size(vma);
4048        offset += phdr.p_filesz;
4049        phdr.p_memsz = vma->vma_end - vma->vma_start;
4050        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4051        if (vma->vma_flags & PROT_WRITE)
4052            phdr.p_flags |= PF_W;
4053        if (vma->vma_flags & PROT_EXEC)
4054            phdr.p_flags |= PF_X;
4055        phdr.p_align = ELF_EXEC_PAGESIZE;
4056
4057        bswap_phdr(&phdr, 1);
4058        if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4059            goto out;
4060        }
4061    }
4062
4063    /*
4064     * Next we write notes just after program headers.  No
4065     * alignment needed here.
4066     */
4067    if (write_note_info(&info, fd) < 0)
4068        goto out;
4069
4070    /* align data to page boundary */
4071    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4072        goto out;
4073
4074    /*
4075     * Finally we can dump process memory into corefile as well.
4076     */
4077    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4078        abi_ulong addr;
4079        abi_ulong end;
4080
4081        end = vma->vma_start + vma_dump_size(vma);
4082
4083        for (addr = vma->vma_start; addr < end;
4084             addr += TARGET_PAGE_SIZE) {
4085            char page[TARGET_PAGE_SIZE];
4086            int error;
4087
4088            /*
4089             *  Read in page from target process memory and
4090             *  write it to coredump file.
4091             */
4092            error = copy_from_user(page, addr, sizeof (page));
4093            if (error != 0) {
4094                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4095                               addr);
4096                errno = -error;
4097                goto out;
4098            }
4099            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4100                goto out;
4101        }
4102    }
4103
4104 out:
4105    free_note_info(&info);
4106    if (mm != NULL)
4107        vma_delete(mm);
4108    (void) close(fd);
4109
4110    if (errno != 0)
4111        return (-errno);
4112    return (0);
4113}
4114#endif /* USE_ELF_CORE_DUMP */
4115
4116void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4117{
4118    init_thread(regs, infop);
4119}
4120