qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include "hostdep.h"
   5#include "cpu.h"
   6#include "exec/exec-all.h"
   7#include "exec/cpu_ldst.h"
   8
   9#undef DEBUG_REMAP
  10
  11#include "exec/user/abitypes.h"
  12
  13#include "exec/user/thunk.h"
  14#include "syscall_defs.h"
  15#include "target_syscall.h"
  16#include "exec/gdbstub.h"
  17
  18/* This is the size of the host kernel's sigset_t, needed where we make
  19 * direct system calls that take a sigset_t pointer and a size.
  20 */
  21#define SIGSET_T_SIZE (_NSIG / 8)
  22
  23/* This struct is used to hold certain information about the image.
  24 * Basically, it replicates in user space what would be certain
  25 * task_struct fields in the kernel
  26 */
  27struct image_info {
  28        abi_ulong       load_bias;
  29        abi_ulong       load_addr;
  30        abi_ulong       start_code;
  31        abi_ulong       end_code;
  32        abi_ulong       start_data;
  33        abi_ulong       end_data;
  34        abi_ulong       start_brk;
  35        abi_ulong       brk;
  36        abi_ulong       reserve_brk;
  37        abi_ulong       start_mmap;
  38        abi_ulong       start_stack;
  39        abi_ulong       stack_limit;
  40        abi_ulong       entry;
  41        abi_ulong       code_offset;
  42        abi_ulong       data_offset;
  43        abi_ulong       saved_auxv;
  44        abi_ulong       auxv_len;
  45        abi_ulong       arg_start;
  46        abi_ulong       arg_end;
  47        abi_ulong       arg_strings;
  48        abi_ulong       env_strings;
  49        abi_ulong       file_string;
  50        uint32_t        elf_flags;
  51        int             personality;
  52        abi_ulong       alignment;
  53
  54        /* The fields below are used in FDPIC mode.  */
  55        abi_ulong       loadmap_addr;
  56        uint16_t        nsegs;
  57        void           *loadsegs;
  58        abi_ulong       pt_dynamic_addr;
  59        abi_ulong       interpreter_loadmap_addr;
  60        abi_ulong       interpreter_pt_dynamic_addr;
  61        struct image_info *other_info;
  62
  63        /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */
  64        uint32_t        note_flags;
  65
  66#ifdef TARGET_MIPS
  67        int             fp_abi;
  68        int             interp_fp_abi;
  69#endif
  70};
  71
  72#ifdef TARGET_I386
  73/* Information about the current linux thread */
  74struct vm86_saved_state {
  75    uint32_t eax; /* return code */
  76    uint32_t ebx;
  77    uint32_t ecx;
  78    uint32_t edx;
  79    uint32_t esi;
  80    uint32_t edi;
  81    uint32_t ebp;
  82    uint32_t esp;
  83    uint32_t eflags;
  84    uint32_t eip;
  85    uint16_t cs, ss, ds, es, fs, gs;
  86};
  87#endif
  88
  89#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  90/* FPU emulator */
  91#include "nwfpe/fpa11.h"
  92#endif
  93
  94#define MAX_SIGQUEUE_SIZE 1024
  95
  96struct emulated_sigtable {
  97    int pending; /* true if signal is pending */
  98    target_siginfo_t info;
  99};
 100
 101/* NOTE: we force a big alignment so that the stack stored after is
 102   aligned too */
 103typedef struct TaskState {
 104    pid_t ts_tid;     /* tid (or pid) of this task */
 105#ifdef TARGET_ARM
 106# ifdef TARGET_ABI32
 107    /* FPA state */
 108    FPA11 fpa;
 109# endif
 110#endif
 111#if defined(TARGET_ARM) || defined(TARGET_RISCV)
 112    int swi_errno;
 113#endif
 114#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 115    abi_ulong target_v86;
 116    struct vm86_saved_state vm86_saved_regs;
 117    struct target_vm86plus_struct vm86plus;
 118    uint32_t v86flags;
 119    uint32_t v86mask;
 120#endif
 121    abi_ulong child_tidptr;
 122#ifdef TARGET_M68K
 123    abi_ulong tp_value;
 124#endif
 125#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV)
 126    /* Extra fields for semihosted binaries.  */
 127    abi_ulong heap_base;
 128    abi_ulong heap_limit;
 129#endif
 130    abi_ulong stack_base;
 131    int used; /* non zero if used */
 132    struct image_info *info;
 133    struct linux_binprm *bprm;
 134
 135    struct emulated_sigtable sync_signal;
 136    struct emulated_sigtable sigtab[TARGET_NSIG];
 137    /* This thread's signal mask, as requested by the guest program.
 138     * The actual signal mask of this thread may differ:
 139     *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
 140     *  + sometimes we block all signals to avoid races
 141     */
 142    sigset_t signal_mask;
 143    /* The signal mask imposed by a guest sigsuspend syscall, if we are
 144     * currently in the middle of such a syscall
 145     */
 146    sigset_t sigsuspend_mask;
 147    /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
 148    int in_sigsuspend;
 149
 150    /* Nonzero if process_pending_signals() needs to do something (either
 151     * handle a pending signal or unblock signals).
 152     * This flag is written from a signal handler so should be accessed via
 153     * the qatomic_read() and qatomic_set() functions. (It is not accessed
 154     * from multiple threads.)
 155     */
 156    int signal_pending;
 157
 158    /* This thread's sigaltstack, if it has one */
 159    struct target_sigaltstack sigaltstack_used;
 160} __attribute__((aligned(16))) TaskState;
 161
 162extern char *exec_path;
 163void init_task_state(TaskState *ts);
 164void task_settid(TaskState *);
 165void stop_all_tasks(void);
 166extern const char *qemu_uname_release;
 167extern unsigned long mmap_min_addr;
 168
 169/* ??? See if we can avoid exposing so much of the loader internals.  */
 170
 171/* Read a good amount of data initially, to hopefully get all the
 172   program headers loaded.  */
 173#define BPRM_BUF_SIZE  1024
 174
 175/*
 176 * This structure is used to hold the arguments that are
 177 * used when loading binaries.
 178 */
 179struct linux_binprm {
 180        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 181        abi_ulong p;
 182        int fd;
 183        int e_uid, e_gid;
 184        int argc, envc;
 185        char **argv;
 186        char **envp;
 187        char * filename;        /* Name of binary */
 188        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 189};
 190
 191typedef struct IOCTLEntry IOCTLEntry;
 192
 193typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
 194                             int fd, int cmd, abi_long arg);
 195
 196struct IOCTLEntry {
 197    int target_cmd;
 198    unsigned int host_cmd;
 199    const char *name;
 200    int access;
 201    do_ioctl_fn *do_ioctl;
 202    const argtype arg_type[5];
 203};
 204
 205extern IOCTLEntry ioctl_entries[];
 206
 207#define IOC_R 0x0001
 208#define IOC_W 0x0002
 209#define IOC_RW (IOC_R | IOC_W)
 210
 211void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 212abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 213                              abi_ulong stringp, int push_ptr);
 214int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 215             struct target_pt_regs * regs, struct image_info *infop,
 216             struct linux_binprm *);
 217
 218/* Returns true if the image uses the FDPIC ABI. If this is the case,
 219 * we have to provide some information (loadmap, pt_dynamic_info) such
 220 * that the program can be relocated adequately. This is also useful
 221 * when handling signals.
 222 */
 223int info_is_fdpic(struct image_info *info);
 224
 225uint32_t get_elf_eflags(int fd);
 226int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 227int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 228
 229abi_long memcpy_to_target(abi_ulong dest, const void *src,
 230                          unsigned long len);
 231void target_set_brk(abi_ulong new_brk);
 232abi_long do_brk(abi_ulong new_brk);
 233void syscall_init(void);
 234abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 235                    abi_long arg2, abi_long arg3, abi_long arg4,
 236                    abi_long arg5, abi_long arg6, abi_long arg7,
 237                    abi_long arg8);
 238extern __thread CPUState *thread_cpu;
 239void cpu_loop(CPUArchState *env);
 240const char *target_strerror(int err);
 241int get_osversion(void);
 242void init_qemu_uname_release(void);
 243void fork_start(void);
 244void fork_end(int child);
 245
 246/**
 247 * probe_guest_base:
 248 * @image_name: the executable being loaded
 249 * @loaddr: the lowest fixed address in the executable
 250 * @hiaddr: the highest fixed address in the executable
 251 *
 252 * Creates the initial guest address space in the host memory space.
 253 *
 254 * If @loaddr == 0, then no address in the executable is fixed,
 255 * i.e. it is fully relocatable.  In that case @hiaddr is the size
 256 * of the executable.
 257 *
 258 * This function will not return if a valid value for guest_base
 259 * cannot be chosen.  On return, the executable loader can expect
 260 *
 261 *    target_mmap(loaddr, hiaddr - loaddr, ...)
 262 *
 263 * to succeed.
 264 */
 265void probe_guest_base(const char *image_name,
 266                      abi_ulong loaddr, abi_ulong hiaddr);
 267
 268#include "qemu/log.h"
 269
 270/* safe_syscall.S */
 271
 272/**
 273 * safe_syscall:
 274 * @int number: number of system call to make
 275 * ...: arguments to the system call
 276 *
 277 * Call a system call if guest signal not pending.
 278 * This has the same API as the libc syscall() function, except that it
 279 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
 280 *
 281 * Returns: the system call result, or -1 with an error code in errno
 282 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
 283 * with any of the host errno values.)
 284 */
 285
 286/* A guide to using safe_syscall() to handle interactions between guest
 287 * syscalls and guest signals:
 288 *
 289 * Guest syscalls come in two flavours:
 290 *
 291 * (1) Non-interruptible syscalls
 292 *
 293 * These are guest syscalls that never get interrupted by signals and
 294 * so never return EINTR. They can be implemented straightforwardly in
 295 * QEMU: just make sure that if the implementation code has to make any
 296 * blocking calls that those calls are retried if they return EINTR.
 297 * It's also OK to implement these with safe_syscall, though it will be
 298 * a little less efficient if a signal is delivered at the 'wrong' moment.
 299 *
 300 * Some non-interruptible syscalls need to be handled using block_signals()
 301 * to block signals for the duration of the syscall. This mainly applies
 302 * to code which needs to modify the data structures used by the
 303 * host_signal_handler() function and the functions it calls, including
 304 * all syscalls which change the thread's signal mask.
 305 *
 306 * (2) Interruptible syscalls
 307 *
 308 * These are guest syscalls that can be interrupted by signals and
 309 * for which we need to either return EINTR or arrange for the guest
 310 * syscall to be restarted. This category includes both syscalls which
 311 * always restart (and in the kernel return -ERESTARTNOINTR), ones
 312 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
 313 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
 314 * if the handler was registered with SA_RESTART (kernel returns
 315 * -ERESTARTSYS). System calls which are only interruptible in some
 316 * situations (like 'open') also need to be handled this way.
 317 *
 318 * Here it is important that the host syscall is made
 319 * via this safe_syscall() function, and *not* via the host libc.
 320 * If the host libc is used then the implementation will appear to work
 321 * most of the time, but there will be a race condition where a
 322 * signal could arrive just before we make the host syscall inside libc,
 323 * and then then guest syscall will not correctly be interrupted.
 324 * Instead the implementation of the guest syscall can use the safe_syscall
 325 * function but otherwise just return the result or errno in the usual
 326 * way; the main loop code will take care of restarting the syscall
 327 * if appropriate.
 328 *
 329 * (If the implementation needs to make multiple host syscalls this is
 330 * OK; any which might really block must be via safe_syscall(); for those
 331 * which are only technically blocking (ie which we know in practice won't
 332 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
 333 * You must be able to cope with backing out correctly if some safe_syscall
 334 * you make in the implementation returns either -TARGET_ERESTARTSYS or
 335 * EINTR though.)
 336 *
 337 * block_signals() cannot be used for interruptible syscalls.
 338 *
 339 *
 340 * How and why the safe_syscall implementation works:
 341 *
 342 * The basic setup is that we make the host syscall via a known
 343 * section of host native assembly. If a signal occurs, our signal
 344 * handler checks the interrupted host PC against the addresse of that
 345 * known section. If the PC is before or at the address of the syscall
 346 * instruction then we change the PC to point at a "return
 347 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
 348 * (causing the safe_syscall() call to immediately return that value).
 349 * Then in the main.c loop if we see this magic return value we adjust
 350 * the guest PC to wind it back to before the system call, and invoke
 351 * the guest signal handler as usual.
 352 *
 353 * This winding-back will happen in two cases:
 354 * (1) signal came in just before we took the host syscall (a race);
 355 *   in this case we'll take the guest signal and have another go
 356 *   at the syscall afterwards, and this is indistinguishable for the
 357 *   guest from the timing having been different such that the guest
 358 *   signal really did win the race
 359 * (2) signal came in while the host syscall was blocking, and the
 360 *   host kernel decided the syscall should be restarted;
 361 *   in this case we want to restart the guest syscall also, and so
 362 *   rewinding is the right thing. (Note that "restart" semantics mean
 363 *   "first call the signal handler, then reattempt the syscall".)
 364 * The other situation to consider is when a signal came in while the
 365 * host syscall was blocking, and the host kernel decided that the syscall
 366 * should not be restarted; in this case QEMU's host signal handler will
 367 * be invoked with the PC pointing just after the syscall instruction,
 368 * with registers indicating an EINTR return; the special code in the
 369 * handler will not kick in, and we will return EINTR to the guest as
 370 * we should.
 371 *
 372 * Notice that we can leave the host kernel to make the decision for
 373 * us about whether to do a restart of the syscall or not; we do not
 374 * need to check SA_RESTART flags in QEMU or distinguish the various
 375 * kinds of restartability.
 376 */
 377#ifdef HAVE_SAFE_SYSCALL
 378/* The core part of this function is implemented in assembly */
 379extern long safe_syscall_base(int *pending, long number, ...);
 380
 381#define safe_syscall(...)                                               \
 382    ({                                                                  \
 383        long ret_;                                                      \
 384        int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
 385        ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
 386        if (is_error(ret_)) {                                           \
 387            errno = -ret_;                                              \
 388            ret_ = -1;                                                  \
 389        }                                                               \
 390        ret_;                                                           \
 391    })
 392
 393#else
 394
 395/* Fallback for architectures which don't yet provide a safe-syscall assembly
 396 * fragment; note that this is racy!
 397 * This should go away when all host architectures have been updated.
 398 */
 399#define safe_syscall syscall
 400
 401#endif
 402
 403/* syscall.c */
 404int host_to_target_waitstatus(int status);
 405
 406/* strace.c */
 407void print_syscall(void *cpu_env, int num,
 408                   abi_long arg1, abi_long arg2, abi_long arg3,
 409                   abi_long arg4, abi_long arg5, abi_long arg6);
 410void print_syscall_ret(void *cpu_env, int num, abi_long ret,
 411                       abi_long arg1, abi_long arg2, abi_long arg3,
 412                       abi_long arg4, abi_long arg5, abi_long arg6);
 413/**
 414 * print_taken_signal:
 415 * @target_signum: target signal being taken
 416 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
 417 *
 418 * Print strace output indicating that this signal is being taken by the guest,
 419 * in a format similar to:
 420 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
 421 */
 422void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
 423
 424/* signal.c */
 425void process_pending_signals(CPUArchState *cpu_env);
 426void signal_init(void);
 427int queue_signal(CPUArchState *env, int sig, int si_type,
 428                 target_siginfo_t *info);
 429void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 430void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 431int target_to_host_signal(int sig);
 432int host_to_target_signal(int sig);
 433long do_sigreturn(CPUArchState *env);
 434long do_rt_sigreturn(CPUArchState *env);
 435abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
 436                        CPUArchState *env);
 437int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 438abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
 439                        abi_ulong unew_ctx, abi_long ctx_size);
 440/**
 441 * block_signals: block all signals while handling this guest syscall
 442 *
 443 * Block all signals, and arrange that the signal mask is returned to
 444 * its correct value for the guest before we resume execution of guest code.
 445 * If this function returns non-zero, then the caller should immediately
 446 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
 447 * signal and restart execution of the syscall.
 448 * If block_signals() returns zero, then the caller can continue with
 449 * emulation of the system call knowing that no signals can be taken
 450 * (and therefore that no race conditions will result).
 451 * This should only be called once, because if it is called a second time
 452 * it will always return non-zero. (Think of it like a mutex that can't
 453 * be recursively locked.)
 454 * Signals will be unblocked again by process_pending_signals().
 455 *
 456 * Return value: non-zero if there was a pending signal, zero if not.
 457 */
 458int block_signals(void); /* Returns non zero if signal pending */
 459
 460#ifdef TARGET_I386
 461/* vm86.c */
 462void save_v86_state(CPUX86State *env);
 463void handle_vm86_trap(CPUX86State *env, int trapno);
 464void handle_vm86_fault(CPUX86State *env);
 465int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 466#elif defined(TARGET_SPARC64)
 467void sparc64_set_context(CPUSPARCState *env);
 468void sparc64_get_context(CPUSPARCState *env);
 469#endif
 470
 471/* mmap.c */
 472int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 473abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 474                     int flags, int fd, abi_ulong offset);
 475int target_munmap(abi_ulong start, abi_ulong len);
 476abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 477                       abi_ulong new_size, unsigned long flags,
 478                       abi_ulong new_addr);
 479extern unsigned long last_brk;
 480extern abi_ulong mmap_next_start;
 481abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
 482void mmap_fork_start(void);
 483void mmap_fork_end(int child);
 484
 485/* main.c */
 486extern unsigned long guest_stack_size;
 487
 488/* user access */
 489
 490#define VERIFY_READ  PAGE_READ
 491#define VERIFY_WRITE (PAGE_READ | PAGE_WRITE)
 492
 493static inline bool access_ok_untagged(int type, abi_ulong addr, abi_ulong size)
 494{
 495    if (size == 0
 496        ? !guest_addr_valid_untagged(addr)
 497        : !guest_range_valid_untagged(addr, size)) {
 498        return false;
 499    }
 500    return page_check_range((target_ulong)addr, size, type) == 0;
 501}
 502
 503static inline bool access_ok(CPUState *cpu, int type,
 504                             abi_ulong addr, abi_ulong size)
 505{
 506    return access_ok_untagged(type, cpu_untagged_addr(cpu, addr), size);
 507}
 508
 509/* NOTE __get_user and __put_user use host pointers and don't check access.
 510   These are usually used to access struct data members once the struct has
 511   been locked - usually with lock_user_struct.  */
 512
 513/*
 514 * Tricky points:
 515 * - Use __builtin_choose_expr to avoid type promotion from ?:,
 516 * - Invalid sizes result in a compile time error stemming from
 517 *   the fact that abort has no parameters.
 518 * - It's easier to use the endian-specific unaligned load/store
 519 *   functions than host-endian unaligned load/store plus tswapN.
 520 * - The pragmas are necessary only to silence a clang false-positive
 521 *   warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
 522 * - gcc has bugs in its _Pragma() support in some versions, eg
 523 *   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
 524 *   include the warning-suppression pragmas for clang
 525 */
 526#if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
 527#define PRAGMA_DISABLE_PACKED_WARNING                                   \
 528    _Pragma("GCC diagnostic push");                                     \
 529    _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
 530
 531#define PRAGMA_REENABLE_PACKED_WARNING          \
 532    _Pragma("GCC diagnostic pop")
 533
 534#else
 535#define PRAGMA_DISABLE_PACKED_WARNING
 536#define PRAGMA_REENABLE_PACKED_WARNING
 537#endif
 538
 539#define __put_user_e(x, hptr, e)                                            \
 540    do {                                                                    \
 541        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 542        (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                 \
 543        __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,            \
 544        __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,            \
 545        __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))  \
 546            ((hptr), (x)), (void)0);                                        \
 547        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 548    } while (0)
 549
 550#define __get_user_e(x, hptr, e)                                            \
 551    do {                                                                    \
 552        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 553        ((x) = (typeof(*hptr))(                                             \
 554        __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                 \
 555        __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,           \
 556        __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,            \
 557        __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))  \
 558            (hptr)), (void)0);                                              \
 559        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 560    } while (0)
 561
 562
 563#ifdef TARGET_WORDS_BIGENDIAN
 564# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 565# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 566#else
 567# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 568# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 569#endif
 570
 571/* put_user()/get_user() take a guest address and check access */
 572/* These are usually used to access an atomic data type, such as an int,
 573 * that has been passed by address.  These internally perform locking
 574 * and unlocking on the data type.
 575 */
 576#define put_user(x, gaddr, target_type)                                 \
 577({                                                                      \
 578    abi_ulong __gaddr = (gaddr);                                        \
 579    target_type *__hptr;                                                \
 580    abi_long __ret = 0;                                                 \
 581    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 582        __put_user((x), __hptr);                                \
 583        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 584    } else                                                              \
 585        __ret = -TARGET_EFAULT;                                         \
 586    __ret;                                                              \
 587})
 588
 589#define get_user(x, gaddr, target_type)                                 \
 590({                                                                      \
 591    abi_ulong __gaddr = (gaddr);                                        \
 592    target_type *__hptr;                                                \
 593    abi_long __ret = 0;                                                 \
 594    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 595        __get_user((x), __hptr);                                \
 596        unlock_user(__hptr, __gaddr, 0);                                \
 597    } else {                                                            \
 598        /* avoid warning */                                             \
 599        (x) = 0;                                                        \
 600        __ret = -TARGET_EFAULT;                                         \
 601    }                                                                   \
 602    __ret;                                                              \
 603})
 604
 605#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 606#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 607#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 608#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 609#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 610#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 611#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 612#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 613#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 614#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 615
 616#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 617#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 618#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 619#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 620#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 621#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 622#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 623#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 624#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 625#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 626
 627/* copy_from_user() and copy_to_user() are usually used to copy data
 628 * buffers between the target and host.  These internally perform
 629 * locking/unlocking of the memory.
 630 */
 631int copy_from_user(void *hptr, abi_ulong gaddr, ssize_t len);
 632int copy_to_user(abi_ulong gaddr, void *hptr, ssize_t len);
 633
 634/* Functions for accessing guest memory.  The tget and tput functions
 635   read/write single values, byteswapping as necessary.  The lock_user function
 636   gets a pointer to a contiguous area of guest memory, but does not perform
 637   any byteswapping.  lock_user may return either a pointer to the guest
 638   memory, or a temporary buffer.  */
 639
 640/* Lock an area of guest memory into the host.  If copy is true then the
 641   host area will have the same contents as the guest.  */
 642void *lock_user(int type, abi_ulong guest_addr, ssize_t len, bool copy);
 643
 644/* Unlock an area of guest memory.  The first LEN bytes must be
 645   flushed back to guest memory. host_ptr = NULL is explicitly
 646   allowed and does nothing. */
 647#ifndef DEBUG_REMAP
 648static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 649                               ssize_t len)
 650{
 651    /* no-op */
 652}
 653#else
 654void unlock_user(void *host_ptr, abi_ulong guest_addr, ssize_t len);
 655#endif
 656
 657/* Return the length of a string in target memory or -TARGET_EFAULT if
 658   access error. */
 659ssize_t target_strlen(abi_ulong gaddr);
 660
 661/* Like lock_user but for null terminated strings.  */
 662void *lock_user_string(abi_ulong guest_addr);
 663
 664/* Helper macros for locking/unlocking a target struct.  */
 665#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 666    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 667#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 668    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 669
 670#include <pthread.h>
 671
 672static inline int is_error(abi_long ret)
 673{
 674    return (abi_ulong)ret >= (abi_ulong)(-4096);
 675}
 676
 677#if TARGET_ABI_BITS == 32
 678static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
 679{
 680#ifdef TARGET_WORDS_BIGENDIAN
 681    return ((uint64_t)word0 << 32) | word1;
 682#else
 683    return ((uint64_t)word1 << 32) | word0;
 684#endif
 685}
 686#else /* TARGET_ABI_BITS == 32 */
 687static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
 688{
 689    return word0;
 690}
 691#endif /* TARGET_ABI_BITS != 32 */
 692
 693void print_termios(void *arg);
 694
 695/* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
 696#ifdef TARGET_ARM
 697static inline int regpairs_aligned(void *cpu_env, int num)
 698{
 699    return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
 700}
 701#elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
 702static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
 703#elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
 704/*
 705 * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
 706 * of registers which translates to the same as ARM/MIPS, because we start with
 707 * r3 as arg1
 708 */
 709static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
 710#elif defined(TARGET_SH4)
 711/* SH4 doesn't align register pairs, except for p{read,write}64 */
 712static inline int regpairs_aligned(void *cpu_env, int num)
 713{
 714    switch (num) {
 715    case TARGET_NR_pread64:
 716    case TARGET_NR_pwrite64:
 717        return 1;
 718
 719    default:
 720        return 0;
 721    }
 722}
 723#elif defined(TARGET_XTENSA)
 724static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
 725#elif defined(TARGET_HEXAGON)
 726static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
 727#else
 728static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
 729#endif
 730
 731/**
 732 * preexit_cleanup: housekeeping before the guest exits
 733 *
 734 * env: the CPU state
 735 * code: the exit code
 736 */
 737void preexit_cleanup(CPUArchState *env, int code);
 738
 739/* Include target-specific struct and function definitions;
 740 * they may need access to the target-independent structures
 741 * above, so include them last.
 742 */
 743#include "target_cpu.h"
 744#include "target_structs.h"
 745
 746#endif /* QEMU_H */
 747