qemu/migration/rdma.c
<<
>>
Prefs
   1/*
   2 * RDMA protocol and interfaces
   3 *
   4 * Copyright IBM, Corp. 2010-2013
   5 * Copyright Red Hat, Inc. 2015-2016
   6 *
   7 * Authors:
   8 *  Michael R. Hines <mrhines@us.ibm.com>
   9 *  Jiuxing Liu <jl@us.ibm.com>
  10 *  Daniel P. Berrange <berrange@redhat.com>
  11 *
  12 * This work is licensed under the terms of the GNU GPL, version 2 or
  13 * later.  See the COPYING file in the top-level directory.
  14 *
  15 */
  16
  17#include "qemu/osdep.h"
  18#include "qapi/error.h"
  19#include "qemu/cutils.h"
  20#include "rdma.h"
  21#include "migration.h"
  22#include "qemu-file.h"
  23#include "ram.h"
  24#include "qemu-file-channel.h"
  25#include "qemu/error-report.h"
  26#include "qemu/main-loop.h"
  27#include "qemu/module.h"
  28#include "qemu/rcu.h"
  29#include "qemu/sockets.h"
  30#include "qemu/bitmap.h"
  31#include "qemu/coroutine.h"
  32#include "exec/memory.h"
  33#include <sys/socket.h>
  34#include <netdb.h>
  35#include <arpa/inet.h>
  36#include <rdma/rdma_cma.h>
  37#include "trace.h"
  38#include "qom/object.h"
  39#include <poll.h>
  40
  41/*
  42 * Print and error on both the Monitor and the Log file.
  43 */
  44#define ERROR(errp, fmt, ...) \
  45    do { \
  46        fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
  47        if (errp && (*(errp) == NULL)) { \
  48            error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
  49        } \
  50    } while (0)
  51
  52#define RDMA_RESOLVE_TIMEOUT_MS 10000
  53
  54/* Do not merge data if larger than this. */
  55#define RDMA_MERGE_MAX (2 * 1024 * 1024)
  56#define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
  57
  58#define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
  59
  60/*
  61 * This is only for non-live state being migrated.
  62 * Instead of RDMA_WRITE messages, we use RDMA_SEND
  63 * messages for that state, which requires a different
  64 * delivery design than main memory.
  65 */
  66#define RDMA_SEND_INCREMENT 32768
  67
  68/*
  69 * Maximum size infiniband SEND message
  70 */
  71#define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
  72#define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
  73
  74#define RDMA_CONTROL_VERSION_CURRENT 1
  75/*
  76 * Capabilities for negotiation.
  77 */
  78#define RDMA_CAPABILITY_PIN_ALL 0x01
  79
  80/*
  81 * Add the other flags above to this list of known capabilities
  82 * as they are introduced.
  83 */
  84static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
  85
  86#define CHECK_ERROR_STATE() \
  87    do { \
  88        if (rdma->error_state) { \
  89            if (!rdma->error_reported) { \
  90                error_report("RDMA is in an error state waiting migration" \
  91                                " to abort!"); \
  92                rdma->error_reported = 1; \
  93            } \
  94            return rdma->error_state; \
  95        } \
  96    } while (0)
  97
  98/*
  99 * A work request ID is 64-bits and we split up these bits
 100 * into 3 parts:
 101 *
 102 * bits 0-15 : type of control message, 2^16
 103 * bits 16-29: ram block index, 2^14
 104 * bits 30-63: ram block chunk number, 2^34
 105 *
 106 * The last two bit ranges are only used for RDMA writes,
 107 * in order to track their completion and potentially
 108 * also track unregistration status of the message.
 109 */
 110#define RDMA_WRID_TYPE_SHIFT  0UL
 111#define RDMA_WRID_BLOCK_SHIFT 16UL
 112#define RDMA_WRID_CHUNK_SHIFT 30UL
 113
 114#define RDMA_WRID_TYPE_MASK \
 115    ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
 116
 117#define RDMA_WRID_BLOCK_MASK \
 118    (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
 119
 120#define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
 121
 122/*
 123 * RDMA migration protocol:
 124 * 1. RDMA Writes (data messages, i.e. RAM)
 125 * 2. IB Send/Recv (control channel messages)
 126 */
 127enum {
 128    RDMA_WRID_NONE = 0,
 129    RDMA_WRID_RDMA_WRITE = 1,
 130    RDMA_WRID_SEND_CONTROL = 2000,
 131    RDMA_WRID_RECV_CONTROL = 4000,
 132};
 133
 134static const char *wrid_desc[] = {
 135    [RDMA_WRID_NONE] = "NONE",
 136    [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
 137    [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
 138    [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
 139};
 140
 141/*
 142 * Work request IDs for IB SEND messages only (not RDMA writes).
 143 * This is used by the migration protocol to transmit
 144 * control messages (such as device state and registration commands)
 145 *
 146 * We could use more WRs, but we have enough for now.
 147 */
 148enum {
 149    RDMA_WRID_READY = 0,
 150    RDMA_WRID_DATA,
 151    RDMA_WRID_CONTROL,
 152    RDMA_WRID_MAX,
 153};
 154
 155/*
 156 * SEND/RECV IB Control Messages.
 157 */
 158enum {
 159    RDMA_CONTROL_NONE = 0,
 160    RDMA_CONTROL_ERROR,
 161    RDMA_CONTROL_READY,               /* ready to receive */
 162    RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
 163    RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
 164    RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
 165    RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
 166    RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
 167    RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
 168    RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
 169    RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
 170    RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
 171};
 172
 173
 174/*
 175 * Memory and MR structures used to represent an IB Send/Recv work request.
 176 * This is *not* used for RDMA writes, only IB Send/Recv.
 177 */
 178typedef struct {
 179    uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
 180    struct   ibv_mr *control_mr;               /* registration metadata */
 181    size_t   control_len;                      /* length of the message */
 182    uint8_t *control_curr;                     /* start of unconsumed bytes */
 183} RDMAWorkRequestData;
 184
 185/*
 186 * Negotiate RDMA capabilities during connection-setup time.
 187 */
 188typedef struct {
 189    uint32_t version;
 190    uint32_t flags;
 191} RDMACapabilities;
 192
 193static void caps_to_network(RDMACapabilities *cap)
 194{
 195    cap->version = htonl(cap->version);
 196    cap->flags = htonl(cap->flags);
 197}
 198
 199static void network_to_caps(RDMACapabilities *cap)
 200{
 201    cap->version = ntohl(cap->version);
 202    cap->flags = ntohl(cap->flags);
 203}
 204
 205/*
 206 * Representation of a RAMBlock from an RDMA perspective.
 207 * This is not transmitted, only local.
 208 * This and subsequent structures cannot be linked lists
 209 * because we're using a single IB message to transmit
 210 * the information. It's small anyway, so a list is overkill.
 211 */
 212typedef struct RDMALocalBlock {
 213    char          *block_name;
 214    uint8_t       *local_host_addr; /* local virtual address */
 215    uint64_t       remote_host_addr; /* remote virtual address */
 216    uint64_t       offset;
 217    uint64_t       length;
 218    struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
 219    struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
 220    uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
 221    uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
 222    int            index;           /* which block are we */
 223    unsigned int   src_index;       /* (Only used on dest) */
 224    bool           is_ram_block;
 225    int            nb_chunks;
 226    unsigned long *transit_bitmap;
 227    unsigned long *unregister_bitmap;
 228} RDMALocalBlock;
 229
 230/*
 231 * Also represents a RAMblock, but only on the dest.
 232 * This gets transmitted by the dest during connection-time
 233 * to the source VM and then is used to populate the
 234 * corresponding RDMALocalBlock with
 235 * the information needed to perform the actual RDMA.
 236 */
 237typedef struct QEMU_PACKED RDMADestBlock {
 238    uint64_t remote_host_addr;
 239    uint64_t offset;
 240    uint64_t length;
 241    uint32_t remote_rkey;
 242    uint32_t padding;
 243} RDMADestBlock;
 244
 245static const char *control_desc(unsigned int rdma_control)
 246{
 247    static const char *strs[] = {
 248        [RDMA_CONTROL_NONE] = "NONE",
 249        [RDMA_CONTROL_ERROR] = "ERROR",
 250        [RDMA_CONTROL_READY] = "READY",
 251        [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
 252        [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
 253        [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
 254        [RDMA_CONTROL_COMPRESS] = "COMPRESS",
 255        [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
 256        [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
 257        [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
 258        [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
 259        [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
 260    };
 261
 262    if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
 263        return "??BAD CONTROL VALUE??";
 264    }
 265
 266    return strs[rdma_control];
 267}
 268
 269static uint64_t htonll(uint64_t v)
 270{
 271    union { uint32_t lv[2]; uint64_t llv; } u;
 272    u.lv[0] = htonl(v >> 32);
 273    u.lv[1] = htonl(v & 0xFFFFFFFFULL);
 274    return u.llv;
 275}
 276
 277static uint64_t ntohll(uint64_t v)
 278{
 279    union { uint32_t lv[2]; uint64_t llv; } u;
 280    u.llv = v;
 281    return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
 282}
 283
 284static void dest_block_to_network(RDMADestBlock *db)
 285{
 286    db->remote_host_addr = htonll(db->remote_host_addr);
 287    db->offset = htonll(db->offset);
 288    db->length = htonll(db->length);
 289    db->remote_rkey = htonl(db->remote_rkey);
 290}
 291
 292static void network_to_dest_block(RDMADestBlock *db)
 293{
 294    db->remote_host_addr = ntohll(db->remote_host_addr);
 295    db->offset = ntohll(db->offset);
 296    db->length = ntohll(db->length);
 297    db->remote_rkey = ntohl(db->remote_rkey);
 298}
 299
 300/*
 301 * Virtual address of the above structures used for transmitting
 302 * the RAMBlock descriptions at connection-time.
 303 * This structure is *not* transmitted.
 304 */
 305typedef struct RDMALocalBlocks {
 306    int nb_blocks;
 307    bool     init;             /* main memory init complete */
 308    RDMALocalBlock *block;
 309} RDMALocalBlocks;
 310
 311/*
 312 * Main data structure for RDMA state.
 313 * While there is only one copy of this structure being allocated right now,
 314 * this is the place where one would start if you wanted to consider
 315 * having more than one RDMA connection open at the same time.
 316 */
 317typedef struct RDMAContext {
 318    char *host;
 319    int port;
 320    char *host_port;
 321
 322    RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
 323
 324    /*
 325     * This is used by *_exchange_send() to figure out whether or not
 326     * the initial "READY" message has already been received or not.
 327     * This is because other functions may potentially poll() and detect
 328     * the READY message before send() does, in which case we need to
 329     * know if it completed.
 330     */
 331    int control_ready_expected;
 332
 333    /* number of outstanding writes */
 334    int nb_sent;
 335
 336    /* store info about current buffer so that we can
 337       merge it with future sends */
 338    uint64_t current_addr;
 339    uint64_t current_length;
 340    /* index of ram block the current buffer belongs to */
 341    int current_index;
 342    /* index of the chunk in the current ram block */
 343    int current_chunk;
 344
 345    bool pin_all;
 346
 347    /*
 348     * infiniband-specific variables for opening the device
 349     * and maintaining connection state and so forth.
 350     *
 351     * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
 352     * cm_id->verbs, cm_id->channel, and cm_id->qp.
 353     */
 354    struct rdma_cm_id *cm_id;               /* connection manager ID */
 355    struct rdma_cm_id *listen_id;
 356    bool connected;
 357
 358    struct ibv_context          *verbs;
 359    struct rdma_event_channel   *channel;
 360    struct ibv_qp *qp;                      /* queue pair */
 361    struct ibv_comp_channel *comp_channel;  /* completion channel */
 362    struct ibv_pd *pd;                      /* protection domain */
 363    struct ibv_cq *cq;                      /* completion queue */
 364
 365    /*
 366     * If a previous write failed (perhaps because of a failed
 367     * memory registration, then do not attempt any future work
 368     * and remember the error state.
 369     */
 370    int error_state;
 371    int error_reported;
 372    int received_error;
 373
 374    /*
 375     * Description of ram blocks used throughout the code.
 376     */
 377    RDMALocalBlocks local_ram_blocks;
 378    RDMADestBlock  *dest_blocks;
 379
 380    /* Index of the next RAMBlock received during block registration */
 381    unsigned int    next_src_index;
 382
 383    /*
 384     * Migration on *destination* started.
 385     * Then use coroutine yield function.
 386     * Source runs in a thread, so we don't care.
 387     */
 388    int migration_started_on_destination;
 389
 390    int total_registrations;
 391    int total_writes;
 392
 393    int unregister_current, unregister_next;
 394    uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
 395
 396    GHashTable *blockmap;
 397
 398    /* the RDMAContext for return path */
 399    struct RDMAContext *return_path;
 400    bool is_return_path;
 401} RDMAContext;
 402
 403#define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
 404OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
 405
 406
 407
 408struct QIOChannelRDMA {
 409    QIOChannel parent;
 410    RDMAContext *rdmain;
 411    RDMAContext *rdmaout;
 412    QEMUFile *file;
 413    bool blocking; /* XXX we don't actually honour this yet */
 414};
 415
 416/*
 417 * Main structure for IB Send/Recv control messages.
 418 * This gets prepended at the beginning of every Send/Recv.
 419 */
 420typedef struct QEMU_PACKED {
 421    uint32_t len;     /* Total length of data portion */
 422    uint32_t type;    /* which control command to perform */
 423    uint32_t repeat;  /* number of commands in data portion of same type */
 424    uint32_t padding;
 425} RDMAControlHeader;
 426
 427static void control_to_network(RDMAControlHeader *control)
 428{
 429    control->type = htonl(control->type);
 430    control->len = htonl(control->len);
 431    control->repeat = htonl(control->repeat);
 432}
 433
 434static void network_to_control(RDMAControlHeader *control)
 435{
 436    control->type = ntohl(control->type);
 437    control->len = ntohl(control->len);
 438    control->repeat = ntohl(control->repeat);
 439}
 440
 441/*
 442 * Register a single Chunk.
 443 * Information sent by the source VM to inform the dest
 444 * to register an single chunk of memory before we can perform
 445 * the actual RDMA operation.
 446 */
 447typedef struct QEMU_PACKED {
 448    union QEMU_PACKED {
 449        uint64_t current_addr;  /* offset into the ram_addr_t space */
 450        uint64_t chunk;         /* chunk to lookup if unregistering */
 451    } key;
 452    uint32_t current_index; /* which ramblock the chunk belongs to */
 453    uint32_t padding;
 454    uint64_t chunks;            /* how many sequential chunks to register */
 455} RDMARegister;
 456
 457static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
 458{
 459    RDMALocalBlock *local_block;
 460    local_block  = &rdma->local_ram_blocks.block[reg->current_index];
 461
 462    if (local_block->is_ram_block) {
 463        /*
 464         * current_addr as passed in is an address in the local ram_addr_t
 465         * space, we need to translate this for the destination
 466         */
 467        reg->key.current_addr -= local_block->offset;
 468        reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
 469    }
 470    reg->key.current_addr = htonll(reg->key.current_addr);
 471    reg->current_index = htonl(reg->current_index);
 472    reg->chunks = htonll(reg->chunks);
 473}
 474
 475static void network_to_register(RDMARegister *reg)
 476{
 477    reg->key.current_addr = ntohll(reg->key.current_addr);
 478    reg->current_index = ntohl(reg->current_index);
 479    reg->chunks = ntohll(reg->chunks);
 480}
 481
 482typedef struct QEMU_PACKED {
 483    uint32_t value;     /* if zero, we will madvise() */
 484    uint32_t block_idx; /* which ram block index */
 485    uint64_t offset;    /* Address in remote ram_addr_t space */
 486    uint64_t length;    /* length of the chunk */
 487} RDMACompress;
 488
 489static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
 490{
 491    comp->value = htonl(comp->value);
 492    /*
 493     * comp->offset as passed in is an address in the local ram_addr_t
 494     * space, we need to translate this for the destination
 495     */
 496    comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
 497    comp->offset += rdma->dest_blocks[comp->block_idx].offset;
 498    comp->block_idx = htonl(comp->block_idx);
 499    comp->offset = htonll(comp->offset);
 500    comp->length = htonll(comp->length);
 501}
 502
 503static void network_to_compress(RDMACompress *comp)
 504{
 505    comp->value = ntohl(comp->value);
 506    comp->block_idx = ntohl(comp->block_idx);
 507    comp->offset = ntohll(comp->offset);
 508    comp->length = ntohll(comp->length);
 509}
 510
 511/*
 512 * The result of the dest's memory registration produces an "rkey"
 513 * which the source VM must reference in order to perform
 514 * the RDMA operation.
 515 */
 516typedef struct QEMU_PACKED {
 517    uint32_t rkey;
 518    uint32_t padding;
 519    uint64_t host_addr;
 520} RDMARegisterResult;
 521
 522static void result_to_network(RDMARegisterResult *result)
 523{
 524    result->rkey = htonl(result->rkey);
 525    result->host_addr = htonll(result->host_addr);
 526};
 527
 528static void network_to_result(RDMARegisterResult *result)
 529{
 530    result->rkey = ntohl(result->rkey);
 531    result->host_addr = ntohll(result->host_addr);
 532};
 533
 534const char *print_wrid(int wrid);
 535static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
 536                                   uint8_t *data, RDMAControlHeader *resp,
 537                                   int *resp_idx,
 538                                   int (*callback)(RDMAContext *rdma));
 539
 540static inline uint64_t ram_chunk_index(const uint8_t *start,
 541                                       const uint8_t *host)
 542{
 543    return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
 544}
 545
 546static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
 547                                       uint64_t i)
 548{
 549    return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
 550                                  (i << RDMA_REG_CHUNK_SHIFT));
 551}
 552
 553static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
 554                                     uint64_t i)
 555{
 556    uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
 557                                         (1UL << RDMA_REG_CHUNK_SHIFT);
 558
 559    if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
 560        result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
 561    }
 562
 563    return result;
 564}
 565
 566static int rdma_add_block(RDMAContext *rdma, const char *block_name,
 567                         void *host_addr,
 568                         ram_addr_t block_offset, uint64_t length)
 569{
 570    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 571    RDMALocalBlock *block;
 572    RDMALocalBlock *old = local->block;
 573
 574    local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
 575
 576    if (local->nb_blocks) {
 577        int x;
 578
 579        if (rdma->blockmap) {
 580            for (x = 0; x < local->nb_blocks; x++) {
 581                g_hash_table_remove(rdma->blockmap,
 582                                    (void *)(uintptr_t)old[x].offset);
 583                g_hash_table_insert(rdma->blockmap,
 584                                    (void *)(uintptr_t)old[x].offset,
 585                                    &local->block[x]);
 586            }
 587        }
 588        memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
 589        g_free(old);
 590    }
 591
 592    block = &local->block[local->nb_blocks];
 593
 594    block->block_name = g_strdup(block_name);
 595    block->local_host_addr = host_addr;
 596    block->offset = block_offset;
 597    block->length = length;
 598    block->index = local->nb_blocks;
 599    block->src_index = ~0U; /* Filled in by the receipt of the block list */
 600    block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
 601    block->transit_bitmap = bitmap_new(block->nb_chunks);
 602    bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
 603    block->unregister_bitmap = bitmap_new(block->nb_chunks);
 604    bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
 605    block->remote_keys = g_new0(uint32_t, block->nb_chunks);
 606
 607    block->is_ram_block = local->init ? false : true;
 608
 609    if (rdma->blockmap) {
 610        g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
 611    }
 612
 613    trace_rdma_add_block(block_name, local->nb_blocks,
 614                         (uintptr_t) block->local_host_addr,
 615                         block->offset, block->length,
 616                         (uintptr_t) (block->local_host_addr + block->length),
 617                         BITS_TO_LONGS(block->nb_chunks) *
 618                             sizeof(unsigned long) * 8,
 619                         block->nb_chunks);
 620
 621    local->nb_blocks++;
 622
 623    return 0;
 624}
 625
 626/*
 627 * Memory regions need to be registered with the device and queue pairs setup
 628 * in advanced before the migration starts. This tells us where the RAM blocks
 629 * are so that we can register them individually.
 630 */
 631static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
 632{
 633    const char *block_name = qemu_ram_get_idstr(rb);
 634    void *host_addr = qemu_ram_get_host_addr(rb);
 635    ram_addr_t block_offset = qemu_ram_get_offset(rb);
 636    ram_addr_t length = qemu_ram_get_used_length(rb);
 637    return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
 638}
 639
 640/*
 641 * Identify the RAMBlocks and their quantity. They will be references to
 642 * identify chunk boundaries inside each RAMBlock and also be referenced
 643 * during dynamic page registration.
 644 */
 645static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
 646{
 647    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 648    int ret;
 649
 650    assert(rdma->blockmap == NULL);
 651    memset(local, 0, sizeof *local);
 652    ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
 653    if (ret) {
 654        return ret;
 655    }
 656    trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
 657    rdma->dest_blocks = g_new0(RDMADestBlock,
 658                               rdma->local_ram_blocks.nb_blocks);
 659    local->init = true;
 660    return 0;
 661}
 662
 663/*
 664 * Note: If used outside of cleanup, the caller must ensure that the destination
 665 * block structures are also updated
 666 */
 667static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
 668{
 669    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 670    RDMALocalBlock *old = local->block;
 671    int x;
 672
 673    if (rdma->blockmap) {
 674        g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
 675    }
 676    if (block->pmr) {
 677        int j;
 678
 679        for (j = 0; j < block->nb_chunks; j++) {
 680            if (!block->pmr[j]) {
 681                continue;
 682            }
 683            ibv_dereg_mr(block->pmr[j]);
 684            rdma->total_registrations--;
 685        }
 686        g_free(block->pmr);
 687        block->pmr = NULL;
 688    }
 689
 690    if (block->mr) {
 691        ibv_dereg_mr(block->mr);
 692        rdma->total_registrations--;
 693        block->mr = NULL;
 694    }
 695
 696    g_free(block->transit_bitmap);
 697    block->transit_bitmap = NULL;
 698
 699    g_free(block->unregister_bitmap);
 700    block->unregister_bitmap = NULL;
 701
 702    g_free(block->remote_keys);
 703    block->remote_keys = NULL;
 704
 705    g_free(block->block_name);
 706    block->block_name = NULL;
 707
 708    if (rdma->blockmap) {
 709        for (x = 0; x < local->nb_blocks; x++) {
 710            g_hash_table_remove(rdma->blockmap,
 711                                (void *)(uintptr_t)old[x].offset);
 712        }
 713    }
 714
 715    if (local->nb_blocks > 1) {
 716
 717        local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
 718
 719        if (block->index) {
 720            memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
 721        }
 722
 723        if (block->index < (local->nb_blocks - 1)) {
 724            memcpy(local->block + block->index, old + (block->index + 1),
 725                sizeof(RDMALocalBlock) *
 726                    (local->nb_blocks - (block->index + 1)));
 727            for (x = block->index; x < local->nb_blocks - 1; x++) {
 728                local->block[x].index--;
 729            }
 730        }
 731    } else {
 732        assert(block == local->block);
 733        local->block = NULL;
 734    }
 735
 736    trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
 737                           block->offset, block->length,
 738                            (uintptr_t)(block->local_host_addr + block->length),
 739                           BITS_TO_LONGS(block->nb_chunks) *
 740                               sizeof(unsigned long) * 8, block->nb_chunks);
 741
 742    g_free(old);
 743
 744    local->nb_blocks--;
 745
 746    if (local->nb_blocks && rdma->blockmap) {
 747        for (x = 0; x < local->nb_blocks; x++) {
 748            g_hash_table_insert(rdma->blockmap,
 749                                (void *)(uintptr_t)local->block[x].offset,
 750                                &local->block[x]);
 751        }
 752    }
 753
 754    return 0;
 755}
 756
 757/*
 758 * Put in the log file which RDMA device was opened and the details
 759 * associated with that device.
 760 */
 761static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
 762{
 763    struct ibv_port_attr port;
 764
 765    if (ibv_query_port(verbs, 1, &port)) {
 766        error_report("Failed to query port information");
 767        return;
 768    }
 769
 770    printf("%s RDMA Device opened: kernel name %s "
 771           "uverbs device name %s, "
 772           "infiniband_verbs class device path %s, "
 773           "infiniband class device path %s, "
 774           "transport: (%d) %s\n",
 775                who,
 776                verbs->device->name,
 777                verbs->device->dev_name,
 778                verbs->device->dev_path,
 779                verbs->device->ibdev_path,
 780                port.link_layer,
 781                (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
 782                 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
 783                    ? "Ethernet" : "Unknown"));
 784}
 785
 786/*
 787 * Put in the log file the RDMA gid addressing information,
 788 * useful for folks who have trouble understanding the
 789 * RDMA device hierarchy in the kernel.
 790 */
 791static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
 792{
 793    char sgid[33];
 794    char dgid[33];
 795    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
 796    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
 797    trace_qemu_rdma_dump_gid(who, sgid, dgid);
 798}
 799
 800/*
 801 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
 802 * We will try the next addrinfo struct, and fail if there are
 803 * no other valid addresses to bind against.
 804 *
 805 * If user is listening on '[::]', then we will not have a opened a device
 806 * yet and have no way of verifying if the device is RoCE or not.
 807 *
 808 * In this case, the source VM will throw an error for ALL types of
 809 * connections (both IPv4 and IPv6) if the destination machine does not have
 810 * a regular infiniband network available for use.
 811 *
 812 * The only way to guarantee that an error is thrown for broken kernels is
 813 * for the management software to choose a *specific* interface at bind time
 814 * and validate what time of hardware it is.
 815 *
 816 * Unfortunately, this puts the user in a fix:
 817 *
 818 *  If the source VM connects with an IPv4 address without knowing that the
 819 *  destination has bound to '[::]' the migration will unconditionally fail
 820 *  unless the management software is explicitly listening on the IPv4
 821 *  address while using a RoCE-based device.
 822 *
 823 *  If the source VM connects with an IPv6 address, then we're OK because we can
 824 *  throw an error on the source (and similarly on the destination).
 825 *
 826 *  But in mixed environments, this will be broken for a while until it is fixed
 827 *  inside linux.
 828 *
 829 * We do provide a *tiny* bit of help in this function: We can list all of the
 830 * devices in the system and check to see if all the devices are RoCE or
 831 * Infiniband.
 832 *
 833 * If we detect that we have a *pure* RoCE environment, then we can safely
 834 * thrown an error even if the management software has specified '[::]' as the
 835 * bind address.
 836 *
 837 * However, if there is are multiple hetergeneous devices, then we cannot make
 838 * this assumption and the user just has to be sure they know what they are
 839 * doing.
 840 *
 841 * Patches are being reviewed on linux-rdma.
 842 */
 843static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
 844{
 845    /* This bug only exists in linux, to our knowledge. */
 846#ifdef CONFIG_LINUX
 847    struct ibv_port_attr port_attr;
 848
 849    /*
 850     * Verbs are only NULL if management has bound to '[::]'.
 851     *
 852     * Let's iterate through all the devices and see if there any pure IB
 853     * devices (non-ethernet).
 854     *
 855     * If not, then we can safely proceed with the migration.
 856     * Otherwise, there are no guarantees until the bug is fixed in linux.
 857     */
 858    if (!verbs) {
 859        int num_devices, x;
 860        struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
 861        bool roce_found = false;
 862        bool ib_found = false;
 863
 864        for (x = 0; x < num_devices; x++) {
 865            verbs = ibv_open_device(dev_list[x]);
 866            if (!verbs) {
 867                if (errno == EPERM) {
 868                    continue;
 869                } else {
 870                    return -EINVAL;
 871                }
 872            }
 873
 874            if (ibv_query_port(verbs, 1, &port_attr)) {
 875                ibv_close_device(verbs);
 876                ERROR(errp, "Could not query initial IB port");
 877                return -EINVAL;
 878            }
 879
 880            if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
 881                ib_found = true;
 882            } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 883                roce_found = true;
 884            }
 885
 886            ibv_close_device(verbs);
 887
 888        }
 889
 890        if (roce_found) {
 891            if (ib_found) {
 892                fprintf(stderr, "WARN: migrations may fail:"
 893                                " IPv6 over RoCE / iWARP in linux"
 894                                " is broken. But since you appear to have a"
 895                                " mixed RoCE / IB environment, be sure to only"
 896                                " migrate over the IB fabric until the kernel "
 897                                " fixes the bug.\n");
 898            } else {
 899                ERROR(errp, "You only have RoCE / iWARP devices in your systems"
 900                            " and your management software has specified '[::]'"
 901                            ", but IPv6 over RoCE / iWARP is not supported in Linux.");
 902                return -ENONET;
 903            }
 904        }
 905
 906        return 0;
 907    }
 908
 909    /*
 910     * If we have a verbs context, that means that some other than '[::]' was
 911     * used by the management software for binding. In which case we can
 912     * actually warn the user about a potentially broken kernel.
 913     */
 914
 915    /* IB ports start with 1, not 0 */
 916    if (ibv_query_port(verbs, 1, &port_attr)) {
 917        ERROR(errp, "Could not query initial IB port");
 918        return -EINVAL;
 919    }
 920
 921    if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 922        ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
 923                    "(but patches on linux-rdma in progress)");
 924        return -ENONET;
 925    }
 926
 927#endif
 928
 929    return 0;
 930}
 931
 932/*
 933 * Figure out which RDMA device corresponds to the requested IP hostname
 934 * Also create the initial connection manager identifiers for opening
 935 * the connection.
 936 */
 937static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
 938{
 939    int ret;
 940    struct rdma_addrinfo *res;
 941    char port_str[16];
 942    struct rdma_cm_event *cm_event;
 943    char ip[40] = "unknown";
 944    struct rdma_addrinfo *e;
 945
 946    if (rdma->host == NULL || !strcmp(rdma->host, "")) {
 947        ERROR(errp, "RDMA hostname has not been set");
 948        return -EINVAL;
 949    }
 950
 951    /* create CM channel */
 952    rdma->channel = rdma_create_event_channel();
 953    if (!rdma->channel) {
 954        ERROR(errp, "could not create CM channel");
 955        return -EINVAL;
 956    }
 957
 958    /* create CM id */
 959    ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
 960    if (ret) {
 961        ERROR(errp, "could not create channel id");
 962        goto err_resolve_create_id;
 963    }
 964
 965    snprintf(port_str, 16, "%d", rdma->port);
 966    port_str[15] = '\0';
 967
 968    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
 969    if (ret < 0) {
 970        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
 971        goto err_resolve_get_addr;
 972    }
 973
 974    for (e = res; e != NULL; e = e->ai_next) {
 975        inet_ntop(e->ai_family,
 976            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
 977        trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
 978
 979        ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
 980                RDMA_RESOLVE_TIMEOUT_MS);
 981        if (!ret) {
 982            if (e->ai_family == AF_INET6) {
 983                ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
 984                if (ret) {
 985                    continue;
 986                }
 987            }
 988            goto route;
 989        }
 990    }
 991
 992    rdma_freeaddrinfo(res);
 993    ERROR(errp, "could not resolve address %s", rdma->host);
 994    goto err_resolve_get_addr;
 995
 996route:
 997    rdma_freeaddrinfo(res);
 998    qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
 999
1000    ret = rdma_get_cm_event(rdma->channel, &cm_event);
1001    if (ret) {
1002        ERROR(errp, "could not perform event_addr_resolved");
1003        goto err_resolve_get_addr;
1004    }
1005
1006    if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1007        ERROR(errp, "result not equal to event_addr_resolved %s",
1008                rdma_event_str(cm_event->event));
1009        error_report("rdma_resolve_addr");
1010        rdma_ack_cm_event(cm_event);
1011        ret = -EINVAL;
1012        goto err_resolve_get_addr;
1013    }
1014    rdma_ack_cm_event(cm_event);
1015
1016    /* resolve route */
1017    ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1018    if (ret) {
1019        ERROR(errp, "could not resolve rdma route");
1020        goto err_resolve_get_addr;
1021    }
1022
1023    ret = rdma_get_cm_event(rdma->channel, &cm_event);
1024    if (ret) {
1025        ERROR(errp, "could not perform event_route_resolved");
1026        goto err_resolve_get_addr;
1027    }
1028    if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1029        ERROR(errp, "result not equal to event_route_resolved: %s",
1030                        rdma_event_str(cm_event->event));
1031        rdma_ack_cm_event(cm_event);
1032        ret = -EINVAL;
1033        goto err_resolve_get_addr;
1034    }
1035    rdma_ack_cm_event(cm_event);
1036    rdma->verbs = rdma->cm_id->verbs;
1037    qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1038    qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1039    return 0;
1040
1041err_resolve_get_addr:
1042    rdma_destroy_id(rdma->cm_id);
1043    rdma->cm_id = NULL;
1044err_resolve_create_id:
1045    rdma_destroy_event_channel(rdma->channel);
1046    rdma->channel = NULL;
1047    return ret;
1048}
1049
1050/*
1051 * Create protection domain and completion queues
1052 */
1053static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1054{
1055    /* allocate pd */
1056    rdma->pd = ibv_alloc_pd(rdma->verbs);
1057    if (!rdma->pd) {
1058        error_report("failed to allocate protection domain");
1059        return -1;
1060    }
1061
1062    /* create completion channel */
1063    rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1064    if (!rdma->comp_channel) {
1065        error_report("failed to allocate completion channel");
1066        goto err_alloc_pd_cq;
1067    }
1068
1069    /*
1070     * Completion queue can be filled by both read and write work requests,
1071     * so must reflect the sum of both possible queue sizes.
1072     */
1073    rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074            NULL, rdma->comp_channel, 0);
1075    if (!rdma->cq) {
1076        error_report("failed to allocate completion queue");
1077        goto err_alloc_pd_cq;
1078    }
1079
1080    return 0;
1081
1082err_alloc_pd_cq:
1083    if (rdma->pd) {
1084        ibv_dealloc_pd(rdma->pd);
1085    }
1086    if (rdma->comp_channel) {
1087        ibv_destroy_comp_channel(rdma->comp_channel);
1088    }
1089    rdma->pd = NULL;
1090    rdma->comp_channel = NULL;
1091    return -1;
1092
1093}
1094
1095/*
1096 * Create queue pairs.
1097 */
1098static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1099{
1100    struct ibv_qp_init_attr attr = { 0 };
1101    int ret;
1102
1103    attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1104    attr.cap.max_recv_wr = 3;
1105    attr.cap.max_send_sge = 1;
1106    attr.cap.max_recv_sge = 1;
1107    attr.send_cq = rdma->cq;
1108    attr.recv_cq = rdma->cq;
1109    attr.qp_type = IBV_QPT_RC;
1110
1111    ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1112    if (ret) {
1113        return -1;
1114    }
1115
1116    rdma->qp = rdma->cm_id->qp;
1117    return 0;
1118}
1119
1120static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1121{
1122    int i;
1123    RDMALocalBlocks *local = &rdma->local_ram_blocks;
1124
1125    for (i = 0; i < local->nb_blocks; i++) {
1126        local->block[i].mr =
1127            ibv_reg_mr(rdma->pd,
1128                    local->block[i].local_host_addr,
1129                    local->block[i].length,
1130                    IBV_ACCESS_LOCAL_WRITE |
1131                    IBV_ACCESS_REMOTE_WRITE
1132                    );
1133        if (!local->block[i].mr) {
1134            perror("Failed to register local dest ram block!");
1135            break;
1136        }
1137        rdma->total_registrations++;
1138    }
1139
1140    if (i >= local->nb_blocks) {
1141        return 0;
1142    }
1143
1144    for (i--; i >= 0; i--) {
1145        ibv_dereg_mr(local->block[i].mr);
1146        local->block[i].mr = NULL;
1147        rdma->total_registrations--;
1148    }
1149
1150    return -1;
1151
1152}
1153
1154/*
1155 * Find the ram block that corresponds to the page requested to be
1156 * transmitted by QEMU.
1157 *
1158 * Once the block is found, also identify which 'chunk' within that
1159 * block that the page belongs to.
1160 *
1161 * This search cannot fail or the migration will fail.
1162 */
1163static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1164                                      uintptr_t block_offset,
1165                                      uint64_t offset,
1166                                      uint64_t length,
1167                                      uint64_t *block_index,
1168                                      uint64_t *chunk_index)
1169{
1170    uint64_t current_addr = block_offset + offset;
1171    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1172                                                (void *) block_offset);
1173    assert(block);
1174    assert(current_addr >= block->offset);
1175    assert((current_addr + length) <= (block->offset + block->length));
1176
1177    *block_index = block->index;
1178    *chunk_index = ram_chunk_index(block->local_host_addr,
1179                block->local_host_addr + (current_addr - block->offset));
1180
1181    return 0;
1182}
1183
1184/*
1185 * Register a chunk with IB. If the chunk was already registered
1186 * previously, then skip.
1187 *
1188 * Also return the keys associated with the registration needed
1189 * to perform the actual RDMA operation.
1190 */
1191static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1192        RDMALocalBlock *block, uintptr_t host_addr,
1193        uint32_t *lkey, uint32_t *rkey, int chunk,
1194        uint8_t *chunk_start, uint8_t *chunk_end)
1195{
1196    if (block->mr) {
1197        if (lkey) {
1198            *lkey = block->mr->lkey;
1199        }
1200        if (rkey) {
1201            *rkey = block->mr->rkey;
1202        }
1203        return 0;
1204    }
1205
1206    /* allocate memory to store chunk MRs */
1207    if (!block->pmr) {
1208        block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1209    }
1210
1211    /*
1212     * If 'rkey', then we're the destination, so grant access to the source.
1213     *
1214     * If 'lkey', then we're the source VM, so grant access only to ourselves.
1215     */
1216    if (!block->pmr[chunk]) {
1217        uint64_t len = chunk_end - chunk_start;
1218
1219        trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1220
1221        block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1222                chunk_start, len,
1223                (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1224                        IBV_ACCESS_REMOTE_WRITE) : 0));
1225
1226        if (!block->pmr[chunk]) {
1227            perror("Failed to register chunk!");
1228            fprintf(stderr, "Chunk details: block: %d chunk index %d"
1229                            " start %" PRIuPTR " end %" PRIuPTR
1230                            " host %" PRIuPTR
1231                            " local %" PRIuPTR " registrations: %d\n",
1232                            block->index, chunk, (uintptr_t)chunk_start,
1233                            (uintptr_t)chunk_end, host_addr,
1234                            (uintptr_t)block->local_host_addr,
1235                            rdma->total_registrations);
1236            return -1;
1237        }
1238        rdma->total_registrations++;
1239    }
1240
1241    if (lkey) {
1242        *lkey = block->pmr[chunk]->lkey;
1243    }
1244    if (rkey) {
1245        *rkey = block->pmr[chunk]->rkey;
1246    }
1247    return 0;
1248}
1249
1250/*
1251 * Register (at connection time) the memory used for control
1252 * channel messages.
1253 */
1254static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1255{
1256    rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1257            rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1258            IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1259    if (rdma->wr_data[idx].control_mr) {
1260        rdma->total_registrations++;
1261        return 0;
1262    }
1263    error_report("qemu_rdma_reg_control failed");
1264    return -1;
1265}
1266
1267const char *print_wrid(int wrid)
1268{
1269    if (wrid >= RDMA_WRID_RECV_CONTROL) {
1270        return wrid_desc[RDMA_WRID_RECV_CONTROL];
1271    }
1272    return wrid_desc[wrid];
1273}
1274
1275/*
1276 * RDMA requires memory registration (mlock/pinning), but this is not good for
1277 * overcommitment.
1278 *
1279 * In preparation for the future where LRU information or workload-specific
1280 * writable writable working set memory access behavior is available to QEMU
1281 * it would be nice to have in place the ability to UN-register/UN-pin
1282 * particular memory regions from the RDMA hardware when it is determine that
1283 * those regions of memory will likely not be accessed again in the near future.
1284 *
1285 * While we do not yet have such information right now, the following
1286 * compile-time option allows us to perform a non-optimized version of this
1287 * behavior.
1288 *
1289 * By uncommenting this option, you will cause *all* RDMA transfers to be
1290 * unregistered immediately after the transfer completes on both sides of the
1291 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1292 *
1293 * This will have a terrible impact on migration performance, so until future
1294 * workload information or LRU information is available, do not attempt to use
1295 * this feature except for basic testing.
1296 */
1297/* #define RDMA_UNREGISTRATION_EXAMPLE */
1298
1299/*
1300 * Perform a non-optimized memory unregistration after every transfer
1301 * for demonstration purposes, only if pin-all is not requested.
1302 *
1303 * Potential optimizations:
1304 * 1. Start a new thread to run this function continuously
1305        - for bit clearing
1306        - and for receipt of unregister messages
1307 * 2. Use an LRU.
1308 * 3. Use workload hints.
1309 */
1310static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1311{
1312    while (rdma->unregistrations[rdma->unregister_current]) {
1313        int ret;
1314        uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1315        uint64_t chunk =
1316            (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1317        uint64_t index =
1318            (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1319        RDMALocalBlock *block =
1320            &(rdma->local_ram_blocks.block[index]);
1321        RDMARegister reg = { .current_index = index };
1322        RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1323                                 };
1324        RDMAControlHeader head = { .len = sizeof(RDMARegister),
1325                                   .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1326                                   .repeat = 1,
1327                                 };
1328
1329        trace_qemu_rdma_unregister_waiting_proc(chunk,
1330                                                rdma->unregister_current);
1331
1332        rdma->unregistrations[rdma->unregister_current] = 0;
1333        rdma->unregister_current++;
1334
1335        if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1336            rdma->unregister_current = 0;
1337        }
1338
1339
1340        /*
1341         * Unregistration is speculative (because migration is single-threaded
1342         * and we cannot break the protocol's inifinband message ordering).
1343         * Thus, if the memory is currently being used for transmission,
1344         * then abort the attempt to unregister and try again
1345         * later the next time a completion is received for this memory.
1346         */
1347        clear_bit(chunk, block->unregister_bitmap);
1348
1349        if (test_bit(chunk, block->transit_bitmap)) {
1350            trace_qemu_rdma_unregister_waiting_inflight(chunk);
1351            continue;
1352        }
1353
1354        trace_qemu_rdma_unregister_waiting_send(chunk);
1355
1356        ret = ibv_dereg_mr(block->pmr[chunk]);
1357        block->pmr[chunk] = NULL;
1358        block->remote_keys[chunk] = 0;
1359
1360        if (ret != 0) {
1361            perror("unregistration chunk failed");
1362            return -ret;
1363        }
1364        rdma->total_registrations--;
1365
1366        reg.key.chunk = chunk;
1367        register_to_network(rdma, &reg);
1368        ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1369                                &resp, NULL, NULL);
1370        if (ret < 0) {
1371            return ret;
1372        }
1373
1374        trace_qemu_rdma_unregister_waiting_complete(chunk);
1375    }
1376
1377    return 0;
1378}
1379
1380static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1381                                         uint64_t chunk)
1382{
1383    uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1384
1385    result |= (index << RDMA_WRID_BLOCK_SHIFT);
1386    result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1387
1388    return result;
1389}
1390
1391/*
1392 * Set bit for unregistration in the next iteration.
1393 * We cannot transmit right here, but will unpin later.
1394 */
1395static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1396                                        uint64_t chunk, uint64_t wr_id)
1397{
1398    if (rdma->unregistrations[rdma->unregister_next] != 0) {
1399        error_report("rdma migration: queue is full");
1400    } else {
1401        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1402
1403        if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1404            trace_qemu_rdma_signal_unregister_append(chunk,
1405                                                     rdma->unregister_next);
1406
1407            rdma->unregistrations[rdma->unregister_next++] =
1408                    qemu_rdma_make_wrid(wr_id, index, chunk);
1409
1410            if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1411                rdma->unregister_next = 0;
1412            }
1413        } else {
1414            trace_qemu_rdma_signal_unregister_already(chunk);
1415        }
1416    }
1417}
1418
1419/*
1420 * Consult the connection manager to see a work request
1421 * (of any kind) has completed.
1422 * Return the work request ID that completed.
1423 */
1424static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1425                               uint32_t *byte_len)
1426{
1427    int ret;
1428    struct ibv_wc wc;
1429    uint64_t wr_id;
1430
1431    ret = ibv_poll_cq(rdma->cq, 1, &wc);
1432
1433    if (!ret) {
1434        *wr_id_out = RDMA_WRID_NONE;
1435        return 0;
1436    }
1437
1438    if (ret < 0) {
1439        error_report("ibv_poll_cq return %d", ret);
1440        return ret;
1441    }
1442
1443    wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1444
1445    if (wc.status != IBV_WC_SUCCESS) {
1446        fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1447                        wc.status, ibv_wc_status_str(wc.status));
1448        fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1449
1450        return -1;
1451    }
1452
1453    if (rdma->control_ready_expected &&
1454        (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1455        trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1456                  wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1457        rdma->control_ready_expected = 0;
1458    }
1459
1460    if (wr_id == RDMA_WRID_RDMA_WRITE) {
1461        uint64_t chunk =
1462            (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1463        uint64_t index =
1464            (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1465        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1466
1467        trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1468                                   index, chunk, block->local_host_addr,
1469                                   (void *)(uintptr_t)block->remote_host_addr);
1470
1471        clear_bit(chunk, block->transit_bitmap);
1472
1473        if (rdma->nb_sent > 0) {
1474            rdma->nb_sent--;
1475        }
1476
1477        if (!rdma->pin_all) {
1478            /*
1479             * FYI: If one wanted to signal a specific chunk to be unregistered
1480             * using LRU or workload-specific information, this is the function
1481             * you would call to do so. That chunk would then get asynchronously
1482             * unregistered later.
1483             */
1484#ifdef RDMA_UNREGISTRATION_EXAMPLE
1485            qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1486#endif
1487        }
1488    } else {
1489        trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1490    }
1491
1492    *wr_id_out = wc.wr_id;
1493    if (byte_len) {
1494        *byte_len = wc.byte_len;
1495    }
1496
1497    return  0;
1498}
1499
1500/* Wait for activity on the completion channel.
1501 * Returns 0 on success, none-0 on error.
1502 */
1503static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1504{
1505    struct rdma_cm_event *cm_event;
1506    int ret = -1;
1507
1508    /*
1509     * Coroutine doesn't start until migration_fd_process_incoming()
1510     * so don't yield unless we know we're running inside of a coroutine.
1511     */
1512    if (rdma->migration_started_on_destination &&
1513        migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1514        yield_until_fd_readable(rdma->comp_channel->fd);
1515    } else {
1516        /* This is the source side, we're in a separate thread
1517         * or destination prior to migration_fd_process_incoming()
1518         * after postcopy, the destination also in a separate thread.
1519         * we can't yield; so we have to poll the fd.
1520         * But we need to be able to handle 'cancel' or an error
1521         * without hanging forever.
1522         */
1523        while (!rdma->error_state  && !rdma->received_error) {
1524            GPollFD pfds[2];
1525            pfds[0].fd = rdma->comp_channel->fd;
1526            pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1527            pfds[0].revents = 0;
1528
1529            pfds[1].fd = rdma->channel->fd;
1530            pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1531            pfds[1].revents = 0;
1532
1533            /* 0.1s timeout, should be fine for a 'cancel' */
1534            switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1535            case 2:
1536            case 1: /* fd active */
1537                if (pfds[0].revents) {
1538                    return 0;
1539                }
1540
1541                if (pfds[1].revents) {
1542                    ret = rdma_get_cm_event(rdma->channel, &cm_event);
1543                    if (ret) {
1544                        error_report("failed to get cm event while wait "
1545                                     "completion channel");
1546                        return -EPIPE;
1547                    }
1548
1549                    error_report("receive cm event while wait comp channel,"
1550                                 "cm event is %d", cm_event->event);
1551                    if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1552                        cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1553                        rdma_ack_cm_event(cm_event);
1554                        return -EPIPE;
1555                    }
1556                    rdma_ack_cm_event(cm_event);
1557                }
1558                break;
1559
1560            case 0: /* Timeout, go around again */
1561                break;
1562
1563            default: /* Error of some type -
1564                      * I don't trust errno from qemu_poll_ns
1565                     */
1566                error_report("%s: poll failed", __func__);
1567                return -EPIPE;
1568            }
1569
1570            if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1571                /* Bail out and let the cancellation happen */
1572                return -EPIPE;
1573            }
1574        }
1575    }
1576
1577    if (rdma->received_error) {
1578        return -EPIPE;
1579    }
1580    return rdma->error_state;
1581}
1582
1583/*
1584 * Block until the next work request has completed.
1585 *
1586 * First poll to see if a work request has already completed,
1587 * otherwise block.
1588 *
1589 * If we encounter completed work requests for IDs other than
1590 * the one we're interested in, then that's generally an error.
1591 *
1592 * The only exception is actual RDMA Write completions. These
1593 * completions only need to be recorded, but do not actually
1594 * need further processing.
1595 */
1596static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1597                                    uint32_t *byte_len)
1598{
1599    int num_cq_events = 0, ret = 0;
1600    struct ibv_cq *cq;
1601    void *cq_ctx;
1602    uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1603
1604    if (ibv_req_notify_cq(rdma->cq, 0)) {
1605        return -1;
1606    }
1607    /* poll cq first */
1608    while (wr_id != wrid_requested) {
1609        ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1610        if (ret < 0) {
1611            return ret;
1612        }
1613
1614        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1615
1616        if (wr_id == RDMA_WRID_NONE) {
1617            break;
1618        }
1619        if (wr_id != wrid_requested) {
1620            trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1621                       wrid_requested, print_wrid(wr_id), wr_id);
1622        }
1623    }
1624
1625    if (wr_id == wrid_requested) {
1626        return 0;
1627    }
1628
1629    while (1) {
1630        ret = qemu_rdma_wait_comp_channel(rdma);
1631        if (ret) {
1632            goto err_block_for_wrid;
1633        }
1634
1635        ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1636        if (ret) {
1637            perror("ibv_get_cq_event");
1638            goto err_block_for_wrid;
1639        }
1640
1641        num_cq_events++;
1642
1643        ret = -ibv_req_notify_cq(cq, 0);
1644        if (ret) {
1645            goto err_block_for_wrid;
1646        }
1647
1648        while (wr_id != wrid_requested) {
1649            ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1650            if (ret < 0) {
1651                goto err_block_for_wrid;
1652            }
1653
1654            wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1655
1656            if (wr_id == RDMA_WRID_NONE) {
1657                break;
1658            }
1659            if (wr_id != wrid_requested) {
1660                trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1661                                   wrid_requested, print_wrid(wr_id), wr_id);
1662            }
1663        }
1664
1665        if (wr_id == wrid_requested) {
1666            goto success_block_for_wrid;
1667        }
1668    }
1669
1670success_block_for_wrid:
1671    if (num_cq_events) {
1672        ibv_ack_cq_events(cq, num_cq_events);
1673    }
1674    return 0;
1675
1676err_block_for_wrid:
1677    if (num_cq_events) {
1678        ibv_ack_cq_events(cq, num_cq_events);
1679    }
1680
1681    rdma->error_state = ret;
1682    return ret;
1683}
1684
1685/*
1686 * Post a SEND message work request for the control channel
1687 * containing some data and block until the post completes.
1688 */
1689static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1690                                       RDMAControlHeader *head)
1691{
1692    int ret = 0;
1693    RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1694    struct ibv_send_wr *bad_wr;
1695    struct ibv_sge sge = {
1696                           .addr = (uintptr_t)(wr->control),
1697                           .length = head->len + sizeof(RDMAControlHeader),
1698                           .lkey = wr->control_mr->lkey,
1699                         };
1700    struct ibv_send_wr send_wr = {
1701                                   .wr_id = RDMA_WRID_SEND_CONTROL,
1702                                   .opcode = IBV_WR_SEND,
1703                                   .send_flags = IBV_SEND_SIGNALED,
1704                                   .sg_list = &sge,
1705                                   .num_sge = 1,
1706                                };
1707
1708    trace_qemu_rdma_post_send_control(control_desc(head->type));
1709
1710    /*
1711     * We don't actually need to do a memcpy() in here if we used
1712     * the "sge" properly, but since we're only sending control messages
1713     * (not RAM in a performance-critical path), then its OK for now.
1714     *
1715     * The copy makes the RDMAControlHeader simpler to manipulate
1716     * for the time being.
1717     */
1718    assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1719    memcpy(wr->control, head, sizeof(RDMAControlHeader));
1720    control_to_network((void *) wr->control);
1721
1722    if (buf) {
1723        memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1724    }
1725
1726
1727    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1728
1729    if (ret > 0) {
1730        error_report("Failed to use post IB SEND for control");
1731        return -ret;
1732    }
1733
1734    ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1735    if (ret < 0) {
1736        error_report("rdma migration: send polling control error");
1737    }
1738
1739    return ret;
1740}
1741
1742/*
1743 * Post a RECV work request in anticipation of some future receipt
1744 * of data on the control channel.
1745 */
1746static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1747{
1748    struct ibv_recv_wr *bad_wr;
1749    struct ibv_sge sge = {
1750                            .addr = (uintptr_t)(rdma->wr_data[idx].control),
1751                            .length = RDMA_CONTROL_MAX_BUFFER,
1752                            .lkey = rdma->wr_data[idx].control_mr->lkey,
1753                         };
1754
1755    struct ibv_recv_wr recv_wr = {
1756                                    .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1757                                    .sg_list = &sge,
1758                                    .num_sge = 1,
1759                                 };
1760
1761
1762    if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1763        return -1;
1764    }
1765
1766    return 0;
1767}
1768
1769/*
1770 * Block and wait for a RECV control channel message to arrive.
1771 */
1772static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1773                RDMAControlHeader *head, int expecting, int idx)
1774{
1775    uint32_t byte_len;
1776    int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1777                                       &byte_len);
1778
1779    if (ret < 0) {
1780        error_report("rdma migration: recv polling control error!");
1781        return ret;
1782    }
1783
1784    network_to_control((void *) rdma->wr_data[idx].control);
1785    memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1786
1787    trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1788
1789    if (expecting == RDMA_CONTROL_NONE) {
1790        trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1791                                             head->type);
1792    } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1793        error_report("Was expecting a %s (%d) control message"
1794                ", but got: %s (%d), length: %d",
1795                control_desc(expecting), expecting,
1796                control_desc(head->type), head->type, head->len);
1797        if (head->type == RDMA_CONTROL_ERROR) {
1798            rdma->received_error = true;
1799        }
1800        return -EIO;
1801    }
1802    if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1803        error_report("too long length: %d", head->len);
1804        return -EINVAL;
1805    }
1806    if (sizeof(*head) + head->len != byte_len) {
1807        error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1808        return -EINVAL;
1809    }
1810
1811    return 0;
1812}
1813
1814/*
1815 * When a RECV work request has completed, the work request's
1816 * buffer is pointed at the header.
1817 *
1818 * This will advance the pointer to the data portion
1819 * of the control message of the work request's buffer that
1820 * was populated after the work request finished.
1821 */
1822static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1823                                  RDMAControlHeader *head)
1824{
1825    rdma->wr_data[idx].control_len = head->len;
1826    rdma->wr_data[idx].control_curr =
1827        rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1828}
1829
1830/*
1831 * This is an 'atomic' high-level operation to deliver a single, unified
1832 * control-channel message.
1833 *
1834 * Additionally, if the user is expecting some kind of reply to this message,
1835 * they can request a 'resp' response message be filled in by posting an
1836 * additional work request on behalf of the user and waiting for an additional
1837 * completion.
1838 *
1839 * The extra (optional) response is used during registration to us from having
1840 * to perform an *additional* exchange of message just to provide a response by
1841 * instead piggy-backing on the acknowledgement.
1842 */
1843static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1844                                   uint8_t *data, RDMAControlHeader *resp,
1845                                   int *resp_idx,
1846                                   int (*callback)(RDMAContext *rdma))
1847{
1848    int ret = 0;
1849
1850    /*
1851     * Wait until the dest is ready before attempting to deliver the message
1852     * by waiting for a READY message.
1853     */
1854    if (rdma->control_ready_expected) {
1855        RDMAControlHeader resp;
1856        ret = qemu_rdma_exchange_get_response(rdma,
1857                                    &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1858        if (ret < 0) {
1859            return ret;
1860        }
1861    }
1862
1863    /*
1864     * If the user is expecting a response, post a WR in anticipation of it.
1865     */
1866    if (resp) {
1867        ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1868        if (ret) {
1869            error_report("rdma migration: error posting"
1870                    " extra control recv for anticipated result!");
1871            return ret;
1872        }
1873    }
1874
1875    /*
1876     * Post a WR to replace the one we just consumed for the READY message.
1877     */
1878    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1879    if (ret) {
1880        error_report("rdma migration: error posting first control recv!");
1881        return ret;
1882    }
1883
1884    /*
1885     * Deliver the control message that was requested.
1886     */
1887    ret = qemu_rdma_post_send_control(rdma, data, head);
1888
1889    if (ret < 0) {
1890        error_report("Failed to send control buffer!");
1891        return ret;
1892    }
1893
1894    /*
1895     * If we're expecting a response, block and wait for it.
1896     */
1897    if (resp) {
1898        if (callback) {
1899            trace_qemu_rdma_exchange_send_issue_callback();
1900            ret = callback(rdma);
1901            if (ret < 0) {
1902                return ret;
1903            }
1904        }
1905
1906        trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1907        ret = qemu_rdma_exchange_get_response(rdma, resp,
1908                                              resp->type, RDMA_WRID_DATA);
1909
1910        if (ret < 0) {
1911            return ret;
1912        }
1913
1914        qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1915        if (resp_idx) {
1916            *resp_idx = RDMA_WRID_DATA;
1917        }
1918        trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1919    }
1920
1921    rdma->control_ready_expected = 1;
1922
1923    return 0;
1924}
1925
1926/*
1927 * This is an 'atomic' high-level operation to receive a single, unified
1928 * control-channel message.
1929 */
1930static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1931                                int expecting)
1932{
1933    RDMAControlHeader ready = {
1934                                .len = 0,
1935                                .type = RDMA_CONTROL_READY,
1936                                .repeat = 1,
1937                              };
1938    int ret;
1939
1940    /*
1941     * Inform the source that we're ready to receive a message.
1942     */
1943    ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1944
1945    if (ret < 0) {
1946        error_report("Failed to send control buffer!");
1947        return ret;
1948    }
1949
1950    /*
1951     * Block and wait for the message.
1952     */
1953    ret = qemu_rdma_exchange_get_response(rdma, head,
1954                                          expecting, RDMA_WRID_READY);
1955
1956    if (ret < 0) {
1957        return ret;
1958    }
1959
1960    qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1961
1962    /*
1963     * Post a new RECV work request to replace the one we just consumed.
1964     */
1965    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1966    if (ret) {
1967        error_report("rdma migration: error posting second control recv!");
1968        return ret;
1969    }
1970
1971    return 0;
1972}
1973
1974/*
1975 * Write an actual chunk of memory using RDMA.
1976 *
1977 * If we're using dynamic registration on the dest-side, we have to
1978 * send a registration command first.
1979 */
1980static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1981                               int current_index, uint64_t current_addr,
1982                               uint64_t length)
1983{
1984    struct ibv_sge sge;
1985    struct ibv_send_wr send_wr = { 0 };
1986    struct ibv_send_wr *bad_wr;
1987    int reg_result_idx, ret, count = 0;
1988    uint64_t chunk, chunks;
1989    uint8_t *chunk_start, *chunk_end;
1990    RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1991    RDMARegister reg;
1992    RDMARegisterResult *reg_result;
1993    RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1994    RDMAControlHeader head = { .len = sizeof(RDMARegister),
1995                               .type = RDMA_CONTROL_REGISTER_REQUEST,
1996                               .repeat = 1,
1997                             };
1998
1999retry:
2000    sge.addr = (uintptr_t)(block->local_host_addr +
2001                            (current_addr - block->offset));
2002    sge.length = length;
2003
2004    chunk = ram_chunk_index(block->local_host_addr,
2005                            (uint8_t *)(uintptr_t)sge.addr);
2006    chunk_start = ram_chunk_start(block, chunk);
2007
2008    if (block->is_ram_block) {
2009        chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2010
2011        if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2012            chunks--;
2013        }
2014    } else {
2015        chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2016
2017        if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2018            chunks--;
2019        }
2020    }
2021
2022    trace_qemu_rdma_write_one_top(chunks + 1,
2023                                  (chunks + 1) *
2024                                  (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2025
2026    chunk_end = ram_chunk_end(block, chunk + chunks);
2027
2028    if (!rdma->pin_all) {
2029#ifdef RDMA_UNREGISTRATION_EXAMPLE
2030        qemu_rdma_unregister_waiting(rdma);
2031#endif
2032    }
2033
2034    while (test_bit(chunk, block->transit_bitmap)) {
2035        (void)count;
2036        trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2037                sge.addr, length, rdma->nb_sent, block->nb_chunks);
2038
2039        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2040
2041        if (ret < 0) {
2042            error_report("Failed to Wait for previous write to complete "
2043                    "block %d chunk %" PRIu64
2044                    " current %" PRIu64 " len %" PRIu64 " %d",
2045                    current_index, chunk, sge.addr, length, rdma->nb_sent);
2046            return ret;
2047        }
2048    }
2049
2050    if (!rdma->pin_all || !block->is_ram_block) {
2051        if (!block->remote_keys[chunk]) {
2052            /*
2053             * This chunk has not yet been registered, so first check to see
2054             * if the entire chunk is zero. If so, tell the other size to
2055             * memset() + madvise() the entire chunk without RDMA.
2056             */
2057
2058            if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2059                RDMACompress comp = {
2060                                        .offset = current_addr,
2061                                        .value = 0,
2062                                        .block_idx = current_index,
2063                                        .length = length,
2064                                    };
2065
2066                head.len = sizeof(comp);
2067                head.type = RDMA_CONTROL_COMPRESS;
2068
2069                trace_qemu_rdma_write_one_zero(chunk, sge.length,
2070                                               current_index, current_addr);
2071
2072                compress_to_network(rdma, &comp);
2073                ret = qemu_rdma_exchange_send(rdma, &head,
2074                                (uint8_t *) &comp, NULL, NULL, NULL);
2075
2076                if (ret < 0) {
2077                    return -EIO;
2078                }
2079
2080                acct_update_position(f, sge.length, true);
2081
2082                return 1;
2083            }
2084
2085            /*
2086             * Otherwise, tell other side to register.
2087             */
2088            reg.current_index = current_index;
2089            if (block->is_ram_block) {
2090                reg.key.current_addr = current_addr;
2091            } else {
2092                reg.key.chunk = chunk;
2093            }
2094            reg.chunks = chunks;
2095
2096            trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2097                                              current_addr);
2098
2099            register_to_network(rdma, &reg);
2100            ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2101                                    &resp, &reg_result_idx, NULL);
2102            if (ret < 0) {
2103                return ret;
2104            }
2105
2106            /* try to overlap this single registration with the one we sent. */
2107            if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2108                                                &sge.lkey, NULL, chunk,
2109                                                chunk_start, chunk_end)) {
2110                error_report("cannot get lkey");
2111                return -EINVAL;
2112            }
2113
2114            reg_result = (RDMARegisterResult *)
2115                    rdma->wr_data[reg_result_idx].control_curr;
2116
2117            network_to_result(reg_result);
2118
2119            trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2120                                                 reg_result->rkey, chunk);
2121
2122            block->remote_keys[chunk] = reg_result->rkey;
2123            block->remote_host_addr = reg_result->host_addr;
2124        } else {
2125            /* already registered before */
2126            if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2127                                                &sge.lkey, NULL, chunk,
2128                                                chunk_start, chunk_end)) {
2129                error_report("cannot get lkey!");
2130                return -EINVAL;
2131            }
2132        }
2133
2134        send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2135    } else {
2136        send_wr.wr.rdma.rkey = block->remote_rkey;
2137
2138        if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2139                                                     &sge.lkey, NULL, chunk,
2140                                                     chunk_start, chunk_end)) {
2141            error_report("cannot get lkey!");
2142            return -EINVAL;
2143        }
2144    }
2145
2146    /*
2147     * Encode the ram block index and chunk within this wrid.
2148     * We will use this information at the time of completion
2149     * to figure out which bitmap to check against and then which
2150     * chunk in the bitmap to look for.
2151     */
2152    send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2153                                        current_index, chunk);
2154
2155    send_wr.opcode = IBV_WR_RDMA_WRITE;
2156    send_wr.send_flags = IBV_SEND_SIGNALED;
2157    send_wr.sg_list = &sge;
2158    send_wr.num_sge = 1;
2159    send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2160                                (current_addr - block->offset);
2161
2162    trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2163                                   sge.length);
2164
2165    /*
2166     * ibv_post_send() does not return negative error numbers,
2167     * per the specification they are positive - no idea why.
2168     */
2169    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2170
2171    if (ret == ENOMEM) {
2172        trace_qemu_rdma_write_one_queue_full();
2173        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2174        if (ret < 0) {
2175            error_report("rdma migration: failed to make "
2176                         "room in full send queue! %d", ret);
2177            return ret;
2178        }
2179
2180        goto retry;
2181
2182    } else if (ret > 0) {
2183        perror("rdma migration: post rdma write failed");
2184        return -ret;
2185    }
2186
2187    set_bit(chunk, block->transit_bitmap);
2188    acct_update_position(f, sge.length, false);
2189    rdma->total_writes++;
2190
2191    return 0;
2192}
2193
2194/*
2195 * Push out any unwritten RDMA operations.
2196 *
2197 * We support sending out multiple chunks at the same time.
2198 * Not all of them need to get signaled in the completion queue.
2199 */
2200static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2201{
2202    int ret;
2203
2204    if (!rdma->current_length) {
2205        return 0;
2206    }
2207
2208    ret = qemu_rdma_write_one(f, rdma,
2209            rdma->current_index, rdma->current_addr, rdma->current_length);
2210
2211    if (ret < 0) {
2212        return ret;
2213    }
2214
2215    if (ret == 0) {
2216        rdma->nb_sent++;
2217        trace_qemu_rdma_write_flush(rdma->nb_sent);
2218    }
2219
2220    rdma->current_length = 0;
2221    rdma->current_addr = 0;
2222
2223    return 0;
2224}
2225
2226static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2227                    uint64_t offset, uint64_t len)
2228{
2229    RDMALocalBlock *block;
2230    uint8_t *host_addr;
2231    uint8_t *chunk_end;
2232
2233    if (rdma->current_index < 0) {
2234        return 0;
2235    }
2236
2237    if (rdma->current_chunk < 0) {
2238        return 0;
2239    }
2240
2241    block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2242    host_addr = block->local_host_addr + (offset - block->offset);
2243    chunk_end = ram_chunk_end(block, rdma->current_chunk);
2244
2245    if (rdma->current_length == 0) {
2246        return 0;
2247    }
2248
2249    /*
2250     * Only merge into chunk sequentially.
2251     */
2252    if (offset != (rdma->current_addr + rdma->current_length)) {
2253        return 0;
2254    }
2255
2256    if (offset < block->offset) {
2257        return 0;
2258    }
2259
2260    if ((offset + len) > (block->offset + block->length)) {
2261        return 0;
2262    }
2263
2264    if ((host_addr + len) > chunk_end) {
2265        return 0;
2266    }
2267
2268    return 1;
2269}
2270
2271/*
2272 * We're not actually writing here, but doing three things:
2273 *
2274 * 1. Identify the chunk the buffer belongs to.
2275 * 2. If the chunk is full or the buffer doesn't belong to the current
2276 *    chunk, then start a new chunk and flush() the old chunk.
2277 * 3. To keep the hardware busy, we also group chunks into batches
2278 *    and only require that a batch gets acknowledged in the completion
2279 *    queue instead of each individual chunk.
2280 */
2281static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2282                           uint64_t block_offset, uint64_t offset,
2283                           uint64_t len)
2284{
2285    uint64_t current_addr = block_offset + offset;
2286    uint64_t index = rdma->current_index;
2287    uint64_t chunk = rdma->current_chunk;
2288    int ret;
2289
2290    /* If we cannot merge it, we flush the current buffer first. */
2291    if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2292        ret = qemu_rdma_write_flush(f, rdma);
2293        if (ret) {
2294            return ret;
2295        }
2296        rdma->current_length = 0;
2297        rdma->current_addr = current_addr;
2298
2299        ret = qemu_rdma_search_ram_block(rdma, block_offset,
2300                                         offset, len, &index, &chunk);
2301        if (ret) {
2302            error_report("ram block search failed");
2303            return ret;
2304        }
2305        rdma->current_index = index;
2306        rdma->current_chunk = chunk;
2307    }
2308
2309    /* merge it */
2310    rdma->current_length += len;
2311
2312    /* flush it if buffer is too large */
2313    if (rdma->current_length >= RDMA_MERGE_MAX) {
2314        return qemu_rdma_write_flush(f, rdma);
2315    }
2316
2317    return 0;
2318}
2319
2320static void qemu_rdma_cleanup(RDMAContext *rdma)
2321{
2322    int idx;
2323
2324    if (rdma->cm_id && rdma->connected) {
2325        if ((rdma->error_state ||
2326             migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2327            !rdma->received_error) {
2328            RDMAControlHeader head = { .len = 0,
2329                                       .type = RDMA_CONTROL_ERROR,
2330                                       .repeat = 1,
2331                                     };
2332            error_report("Early error. Sending error.");
2333            qemu_rdma_post_send_control(rdma, NULL, &head);
2334        }
2335
2336        rdma_disconnect(rdma->cm_id);
2337        trace_qemu_rdma_cleanup_disconnect();
2338        rdma->connected = false;
2339    }
2340
2341    if (rdma->channel) {
2342        qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2343    }
2344    g_free(rdma->dest_blocks);
2345    rdma->dest_blocks = NULL;
2346
2347    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2348        if (rdma->wr_data[idx].control_mr) {
2349            rdma->total_registrations--;
2350            ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2351        }
2352        rdma->wr_data[idx].control_mr = NULL;
2353    }
2354
2355    if (rdma->local_ram_blocks.block) {
2356        while (rdma->local_ram_blocks.nb_blocks) {
2357            rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2358        }
2359    }
2360
2361    if (rdma->qp) {
2362        rdma_destroy_qp(rdma->cm_id);
2363        rdma->qp = NULL;
2364    }
2365    if (rdma->cq) {
2366        ibv_destroy_cq(rdma->cq);
2367        rdma->cq = NULL;
2368    }
2369    if (rdma->comp_channel) {
2370        ibv_destroy_comp_channel(rdma->comp_channel);
2371        rdma->comp_channel = NULL;
2372    }
2373    if (rdma->pd) {
2374        ibv_dealloc_pd(rdma->pd);
2375        rdma->pd = NULL;
2376    }
2377    if (rdma->cm_id) {
2378        rdma_destroy_id(rdma->cm_id);
2379        rdma->cm_id = NULL;
2380    }
2381
2382    /* the destination side, listen_id and channel is shared */
2383    if (rdma->listen_id) {
2384        if (!rdma->is_return_path) {
2385            rdma_destroy_id(rdma->listen_id);
2386        }
2387        rdma->listen_id = NULL;
2388
2389        if (rdma->channel) {
2390            if (!rdma->is_return_path) {
2391                rdma_destroy_event_channel(rdma->channel);
2392            }
2393            rdma->channel = NULL;
2394        }
2395    }
2396
2397    if (rdma->channel) {
2398        rdma_destroy_event_channel(rdma->channel);
2399        rdma->channel = NULL;
2400    }
2401    g_free(rdma->host);
2402    g_free(rdma->host_port);
2403    rdma->host = NULL;
2404    rdma->host_port = NULL;
2405}
2406
2407
2408static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2409{
2410    int ret, idx;
2411    Error *local_err = NULL, **temp = &local_err;
2412
2413    /*
2414     * Will be validated against destination's actual capabilities
2415     * after the connect() completes.
2416     */
2417    rdma->pin_all = pin_all;
2418
2419    ret = qemu_rdma_resolve_host(rdma, temp);
2420    if (ret) {
2421        goto err_rdma_source_init;
2422    }
2423
2424    ret = qemu_rdma_alloc_pd_cq(rdma);
2425    if (ret) {
2426        ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2427                    " limits may be too low. Please check $ ulimit -a # and "
2428                    "search for 'ulimit -l' in the output");
2429        goto err_rdma_source_init;
2430    }
2431
2432    ret = qemu_rdma_alloc_qp(rdma);
2433    if (ret) {
2434        ERROR(temp, "rdma migration: error allocating qp!");
2435        goto err_rdma_source_init;
2436    }
2437
2438    ret = qemu_rdma_init_ram_blocks(rdma);
2439    if (ret) {
2440        ERROR(temp, "rdma migration: error initializing ram blocks!");
2441        goto err_rdma_source_init;
2442    }
2443
2444    /* Build the hash that maps from offset to RAMBlock */
2445    rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2446    for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2447        g_hash_table_insert(rdma->blockmap,
2448                (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2449                &rdma->local_ram_blocks.block[idx]);
2450    }
2451
2452    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2453        ret = qemu_rdma_reg_control(rdma, idx);
2454        if (ret) {
2455            ERROR(temp, "rdma migration: error registering %d control!",
2456                                                            idx);
2457            goto err_rdma_source_init;
2458        }
2459    }
2460
2461    return 0;
2462
2463err_rdma_source_init:
2464    error_propagate(errp, local_err);
2465    qemu_rdma_cleanup(rdma);
2466    return -1;
2467}
2468
2469static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2470                                     struct rdma_cm_event **cm_event,
2471                                     long msec, Error **errp)
2472{
2473    int ret;
2474    struct pollfd poll_fd = {
2475                                .fd = rdma->channel->fd,
2476                                .events = POLLIN,
2477                                .revents = 0
2478                            };
2479
2480    do {
2481        ret = poll(&poll_fd, 1, msec);
2482    } while (ret < 0 && errno == EINTR);
2483
2484    if (ret == 0) {
2485        ERROR(errp, "poll cm event timeout");
2486        return -1;
2487    } else if (ret < 0) {
2488        ERROR(errp, "failed to poll cm event, errno=%i", errno);
2489        return -1;
2490    } else if (poll_fd.revents & POLLIN) {
2491        return rdma_get_cm_event(rdma->channel, cm_event);
2492    } else {
2493        ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2494        return -1;
2495    }
2496}
2497
2498static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2499{
2500    RDMACapabilities cap = {
2501                                .version = RDMA_CONTROL_VERSION_CURRENT,
2502                                .flags = 0,
2503                           };
2504    struct rdma_conn_param conn_param = { .initiator_depth = 2,
2505                                          .retry_count = 5,
2506                                          .private_data = &cap,
2507                                          .private_data_len = sizeof(cap),
2508                                        };
2509    struct rdma_cm_event *cm_event;
2510    int ret;
2511
2512    /*
2513     * Only negotiate the capability with destination if the user
2514     * on the source first requested the capability.
2515     */
2516    if (rdma->pin_all) {
2517        trace_qemu_rdma_connect_pin_all_requested();
2518        cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2519    }
2520
2521    caps_to_network(&cap);
2522
2523    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2524    if (ret) {
2525        ERROR(errp, "posting second control recv");
2526        goto err_rdma_source_connect;
2527    }
2528
2529    ret = rdma_connect(rdma->cm_id, &conn_param);
2530    if (ret) {
2531        perror("rdma_connect");
2532        ERROR(errp, "connecting to destination!");
2533        goto err_rdma_source_connect;
2534    }
2535
2536    if (return_path) {
2537        ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2538    } else {
2539        ret = rdma_get_cm_event(rdma->channel, &cm_event);
2540    }
2541    if (ret) {
2542        perror("rdma_get_cm_event after rdma_connect");
2543        ERROR(errp, "connecting to destination!");
2544        goto err_rdma_source_connect;
2545    }
2546
2547    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2548        error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2549        ERROR(errp, "connecting to destination!");
2550        rdma_ack_cm_event(cm_event);
2551        goto err_rdma_source_connect;
2552    }
2553    rdma->connected = true;
2554
2555    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2556    network_to_caps(&cap);
2557
2558    /*
2559     * Verify that the *requested* capabilities are supported by the destination
2560     * and disable them otherwise.
2561     */
2562    if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2563        ERROR(errp, "Server cannot support pinning all memory. "
2564                        "Will register memory dynamically.");
2565        rdma->pin_all = false;
2566    }
2567
2568    trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2569
2570    rdma_ack_cm_event(cm_event);
2571
2572    rdma->control_ready_expected = 1;
2573    rdma->nb_sent = 0;
2574    return 0;
2575
2576err_rdma_source_connect:
2577    qemu_rdma_cleanup(rdma);
2578    return -1;
2579}
2580
2581static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2582{
2583    int ret, idx;
2584    struct rdma_cm_id *listen_id;
2585    char ip[40] = "unknown";
2586    struct rdma_addrinfo *res, *e;
2587    char port_str[16];
2588
2589    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2590        rdma->wr_data[idx].control_len = 0;
2591        rdma->wr_data[idx].control_curr = NULL;
2592    }
2593
2594    if (!rdma->host || !rdma->host[0]) {
2595        ERROR(errp, "RDMA host is not set!");
2596        rdma->error_state = -EINVAL;
2597        return -1;
2598    }
2599    /* create CM channel */
2600    rdma->channel = rdma_create_event_channel();
2601    if (!rdma->channel) {
2602        ERROR(errp, "could not create rdma event channel");
2603        rdma->error_state = -EINVAL;
2604        return -1;
2605    }
2606
2607    /* create CM id */
2608    ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2609    if (ret) {
2610        ERROR(errp, "could not create cm_id!");
2611        goto err_dest_init_create_listen_id;
2612    }
2613
2614    snprintf(port_str, 16, "%d", rdma->port);
2615    port_str[15] = '\0';
2616
2617    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2618    if (ret < 0) {
2619        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2620        goto err_dest_init_bind_addr;
2621    }
2622
2623    for (e = res; e != NULL; e = e->ai_next) {
2624        inet_ntop(e->ai_family,
2625            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2626        trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2627        ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2628        if (ret) {
2629            continue;
2630        }
2631        if (e->ai_family == AF_INET6) {
2632            ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2633            if (ret) {
2634                continue;
2635            }
2636        }
2637        break;
2638    }
2639
2640    rdma_freeaddrinfo(res);
2641    if (!e) {
2642        ERROR(errp, "Error: could not rdma_bind_addr!");
2643        goto err_dest_init_bind_addr;
2644    }
2645
2646    rdma->listen_id = listen_id;
2647    qemu_rdma_dump_gid("dest_init", listen_id);
2648    return 0;
2649
2650err_dest_init_bind_addr:
2651    rdma_destroy_id(listen_id);
2652err_dest_init_create_listen_id:
2653    rdma_destroy_event_channel(rdma->channel);
2654    rdma->channel = NULL;
2655    rdma->error_state = ret;
2656    return ret;
2657
2658}
2659
2660static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2661                                            RDMAContext *rdma)
2662{
2663    int idx;
2664
2665    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2666        rdma_return_path->wr_data[idx].control_len = 0;
2667        rdma_return_path->wr_data[idx].control_curr = NULL;
2668    }
2669
2670    /*the CM channel and CM id is shared*/
2671    rdma_return_path->channel = rdma->channel;
2672    rdma_return_path->listen_id = rdma->listen_id;
2673
2674    rdma->return_path = rdma_return_path;
2675    rdma_return_path->return_path = rdma;
2676    rdma_return_path->is_return_path = true;
2677}
2678
2679static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2680{
2681    RDMAContext *rdma = NULL;
2682    InetSocketAddress *addr;
2683
2684    if (host_port) {
2685        rdma = g_new0(RDMAContext, 1);
2686        rdma->current_index = -1;
2687        rdma->current_chunk = -1;
2688
2689        addr = g_new(InetSocketAddress, 1);
2690        if (!inet_parse(addr, host_port, NULL)) {
2691            rdma->port = atoi(addr->port);
2692            rdma->host = g_strdup(addr->host);
2693            rdma->host_port = g_strdup(host_port);
2694        } else {
2695            ERROR(errp, "bad RDMA migration address '%s'", host_port);
2696            g_free(rdma);
2697            rdma = NULL;
2698        }
2699
2700        qapi_free_InetSocketAddress(addr);
2701    }
2702
2703    return rdma;
2704}
2705
2706/*
2707 * QEMUFile interface to the control channel.
2708 * SEND messages for control only.
2709 * VM's ram is handled with regular RDMA messages.
2710 */
2711static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2712                                       const struct iovec *iov,
2713                                       size_t niov,
2714                                       int *fds,
2715                                       size_t nfds,
2716                                       Error **errp)
2717{
2718    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2719    QEMUFile *f = rioc->file;
2720    RDMAContext *rdma;
2721    int ret;
2722    ssize_t done = 0;
2723    size_t i;
2724    size_t len = 0;
2725
2726    RCU_READ_LOCK_GUARD();
2727    rdma = qatomic_rcu_read(&rioc->rdmaout);
2728
2729    if (!rdma) {
2730        return -EIO;
2731    }
2732
2733    CHECK_ERROR_STATE();
2734
2735    /*
2736     * Push out any writes that
2737     * we're queued up for VM's ram.
2738     */
2739    ret = qemu_rdma_write_flush(f, rdma);
2740    if (ret < 0) {
2741        rdma->error_state = ret;
2742        return ret;
2743    }
2744
2745    for (i = 0; i < niov; i++) {
2746        size_t remaining = iov[i].iov_len;
2747        uint8_t * data = (void *)iov[i].iov_base;
2748        while (remaining) {
2749            RDMAControlHeader head;
2750
2751            len = MIN(remaining, RDMA_SEND_INCREMENT);
2752            remaining -= len;
2753
2754            head.len = len;
2755            head.type = RDMA_CONTROL_QEMU_FILE;
2756
2757            ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2758
2759            if (ret < 0) {
2760                rdma->error_state = ret;
2761                return ret;
2762            }
2763
2764            data += len;
2765            done += len;
2766        }
2767    }
2768
2769    return done;
2770}
2771
2772static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2773                             size_t size, int idx)
2774{
2775    size_t len = 0;
2776
2777    if (rdma->wr_data[idx].control_len) {
2778        trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2779
2780        len = MIN(size, rdma->wr_data[idx].control_len);
2781        memcpy(buf, rdma->wr_data[idx].control_curr, len);
2782        rdma->wr_data[idx].control_curr += len;
2783        rdma->wr_data[idx].control_len -= len;
2784    }
2785
2786    return len;
2787}
2788
2789/*
2790 * QEMUFile interface to the control channel.
2791 * RDMA links don't use bytestreams, so we have to
2792 * return bytes to QEMUFile opportunistically.
2793 */
2794static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2795                                      const struct iovec *iov,
2796                                      size_t niov,
2797                                      int **fds,
2798                                      size_t *nfds,
2799                                      Error **errp)
2800{
2801    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2802    RDMAContext *rdma;
2803    RDMAControlHeader head;
2804    int ret = 0;
2805    ssize_t i;
2806    size_t done = 0;
2807
2808    RCU_READ_LOCK_GUARD();
2809    rdma = qatomic_rcu_read(&rioc->rdmain);
2810
2811    if (!rdma) {
2812        return -EIO;
2813    }
2814
2815    CHECK_ERROR_STATE();
2816
2817    for (i = 0; i < niov; i++) {
2818        size_t want = iov[i].iov_len;
2819        uint8_t *data = (void *)iov[i].iov_base;
2820
2821        /*
2822         * First, we hold on to the last SEND message we
2823         * were given and dish out the bytes until we run
2824         * out of bytes.
2825         */
2826        ret = qemu_rdma_fill(rdma, data, want, 0);
2827        done += ret;
2828        want -= ret;
2829        /* Got what we needed, so go to next iovec */
2830        if (want == 0) {
2831            continue;
2832        }
2833
2834        /* If we got any data so far, then don't wait
2835         * for more, just return what we have */
2836        if (done > 0) {
2837            break;
2838        }
2839
2840
2841        /* We've got nothing at all, so lets wait for
2842         * more to arrive
2843         */
2844        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2845
2846        if (ret < 0) {
2847            rdma->error_state = ret;
2848            return ret;
2849        }
2850
2851        /*
2852         * SEND was received with new bytes, now try again.
2853         */
2854        ret = qemu_rdma_fill(rdma, data, want, 0);
2855        done += ret;
2856        want -= ret;
2857
2858        /* Still didn't get enough, so lets just return */
2859        if (want) {
2860            if (done == 0) {
2861                return QIO_CHANNEL_ERR_BLOCK;
2862            } else {
2863                break;
2864            }
2865        }
2866    }
2867    return done;
2868}
2869
2870/*
2871 * Block until all the outstanding chunks have been delivered by the hardware.
2872 */
2873static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2874{
2875    int ret;
2876
2877    if (qemu_rdma_write_flush(f, rdma) < 0) {
2878        return -EIO;
2879    }
2880
2881    while (rdma->nb_sent) {
2882        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2883        if (ret < 0) {
2884            error_report("rdma migration: complete polling error!");
2885            return -EIO;
2886        }
2887    }
2888
2889    qemu_rdma_unregister_waiting(rdma);
2890
2891    return 0;
2892}
2893
2894
2895static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2896                                         bool blocking,
2897                                         Error **errp)
2898{
2899    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2900    /* XXX we should make readv/writev actually honour this :-) */
2901    rioc->blocking = blocking;
2902    return 0;
2903}
2904
2905
2906typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2907struct QIOChannelRDMASource {
2908    GSource parent;
2909    QIOChannelRDMA *rioc;
2910    GIOCondition condition;
2911};
2912
2913static gboolean
2914qio_channel_rdma_source_prepare(GSource *source,
2915                                gint *timeout)
2916{
2917    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2918    RDMAContext *rdma;
2919    GIOCondition cond = 0;
2920    *timeout = -1;
2921
2922    RCU_READ_LOCK_GUARD();
2923    if (rsource->condition == G_IO_IN) {
2924        rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2925    } else {
2926        rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2927    }
2928
2929    if (!rdma) {
2930        error_report("RDMAContext is NULL when prepare Gsource");
2931        return FALSE;
2932    }
2933
2934    if (rdma->wr_data[0].control_len) {
2935        cond |= G_IO_IN;
2936    }
2937    cond |= G_IO_OUT;
2938
2939    return cond & rsource->condition;
2940}
2941
2942static gboolean
2943qio_channel_rdma_source_check(GSource *source)
2944{
2945    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2946    RDMAContext *rdma;
2947    GIOCondition cond = 0;
2948
2949    RCU_READ_LOCK_GUARD();
2950    if (rsource->condition == G_IO_IN) {
2951        rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2952    } else {
2953        rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2954    }
2955
2956    if (!rdma) {
2957        error_report("RDMAContext is NULL when check Gsource");
2958        return FALSE;
2959    }
2960
2961    if (rdma->wr_data[0].control_len) {
2962        cond |= G_IO_IN;
2963    }
2964    cond |= G_IO_OUT;
2965
2966    return cond & rsource->condition;
2967}
2968
2969static gboolean
2970qio_channel_rdma_source_dispatch(GSource *source,
2971                                 GSourceFunc callback,
2972                                 gpointer user_data)
2973{
2974    QIOChannelFunc func = (QIOChannelFunc)callback;
2975    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2976    RDMAContext *rdma;
2977    GIOCondition cond = 0;
2978
2979    RCU_READ_LOCK_GUARD();
2980    if (rsource->condition == G_IO_IN) {
2981        rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2982    } else {
2983        rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2984    }
2985
2986    if (!rdma) {
2987        error_report("RDMAContext is NULL when dispatch Gsource");
2988        return FALSE;
2989    }
2990
2991    if (rdma->wr_data[0].control_len) {
2992        cond |= G_IO_IN;
2993    }
2994    cond |= G_IO_OUT;
2995
2996    return (*func)(QIO_CHANNEL(rsource->rioc),
2997                   (cond & rsource->condition),
2998                   user_data);
2999}
3000
3001static void
3002qio_channel_rdma_source_finalize(GSource *source)
3003{
3004    QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3005
3006    object_unref(OBJECT(ssource->rioc));
3007}
3008
3009GSourceFuncs qio_channel_rdma_source_funcs = {
3010    qio_channel_rdma_source_prepare,
3011    qio_channel_rdma_source_check,
3012    qio_channel_rdma_source_dispatch,
3013    qio_channel_rdma_source_finalize
3014};
3015
3016static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3017                                              GIOCondition condition)
3018{
3019    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3020    QIOChannelRDMASource *ssource;
3021    GSource *source;
3022
3023    source = g_source_new(&qio_channel_rdma_source_funcs,
3024                          sizeof(QIOChannelRDMASource));
3025    ssource = (QIOChannelRDMASource *)source;
3026
3027    ssource->rioc = rioc;
3028    object_ref(OBJECT(rioc));
3029
3030    ssource->condition = condition;
3031
3032    return source;
3033}
3034
3035static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3036                                                  AioContext *ctx,
3037                                                  IOHandler *io_read,
3038                                                  IOHandler *io_write,
3039                                                  void *opaque)
3040{
3041    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3042    if (io_read) {
3043        aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3044                           false, io_read, io_write, NULL, opaque);
3045    } else {
3046        aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3047                           false, io_read, io_write, NULL, opaque);
3048    }
3049}
3050
3051struct rdma_close_rcu {
3052    struct rcu_head rcu;
3053    RDMAContext *rdmain;
3054    RDMAContext *rdmaout;
3055};
3056
3057/* callback from qio_channel_rdma_close via call_rcu */
3058static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3059{
3060    if (rcu->rdmain) {
3061        qemu_rdma_cleanup(rcu->rdmain);
3062    }
3063
3064    if (rcu->rdmaout) {
3065        qemu_rdma_cleanup(rcu->rdmaout);
3066    }
3067
3068    g_free(rcu->rdmain);
3069    g_free(rcu->rdmaout);
3070    g_free(rcu);
3071}
3072
3073static int qio_channel_rdma_close(QIOChannel *ioc,
3074                                  Error **errp)
3075{
3076    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3077    RDMAContext *rdmain, *rdmaout;
3078    struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3079
3080    trace_qemu_rdma_close();
3081
3082    rdmain = rioc->rdmain;
3083    if (rdmain) {
3084        qatomic_rcu_set(&rioc->rdmain, NULL);
3085    }
3086
3087    rdmaout = rioc->rdmaout;
3088    if (rdmaout) {
3089        qatomic_rcu_set(&rioc->rdmaout, NULL);
3090    }
3091
3092    rcu->rdmain = rdmain;
3093    rcu->rdmaout = rdmaout;
3094    call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3095
3096    return 0;
3097}
3098
3099static int
3100qio_channel_rdma_shutdown(QIOChannel *ioc,
3101                            QIOChannelShutdown how,
3102                            Error **errp)
3103{
3104    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3105    RDMAContext *rdmain, *rdmaout;
3106
3107    RCU_READ_LOCK_GUARD();
3108
3109    rdmain = qatomic_rcu_read(&rioc->rdmain);
3110    rdmaout = qatomic_rcu_read(&rioc->rdmain);
3111
3112    switch (how) {
3113    case QIO_CHANNEL_SHUTDOWN_READ:
3114        if (rdmain) {
3115            rdmain->error_state = -1;
3116        }
3117        break;
3118    case QIO_CHANNEL_SHUTDOWN_WRITE:
3119        if (rdmaout) {
3120            rdmaout->error_state = -1;
3121        }
3122        break;
3123    case QIO_CHANNEL_SHUTDOWN_BOTH:
3124    default:
3125        if (rdmain) {
3126            rdmain->error_state = -1;
3127        }
3128        if (rdmaout) {
3129            rdmaout->error_state = -1;
3130        }
3131        break;
3132    }
3133
3134    return 0;
3135}
3136
3137/*
3138 * Parameters:
3139 *    @offset == 0 :
3140 *        This means that 'block_offset' is a full virtual address that does not
3141 *        belong to a RAMBlock of the virtual machine and instead
3142 *        represents a private malloc'd memory area that the caller wishes to
3143 *        transfer.
3144 *
3145 *    @offset != 0 :
3146 *        Offset is an offset to be added to block_offset and used
3147 *        to also lookup the corresponding RAMBlock.
3148 *
3149 *    @size > 0 :
3150 *        Initiate an transfer this size.
3151 *
3152 *    @size == 0 :
3153 *        A 'hint' or 'advice' that means that we wish to speculatively
3154 *        and asynchronously unregister this memory. In this case, there is no
3155 *        guarantee that the unregister will actually happen, for example,
3156 *        if the memory is being actively transmitted. Additionally, the memory
3157 *        may be re-registered at any future time if a write within the same
3158 *        chunk was requested again, even if you attempted to unregister it
3159 *        here.
3160 *
3161 *    @size < 0 : TODO, not yet supported
3162 *        Unregister the memory NOW. This means that the caller does not
3163 *        expect there to be any future RDMA transfers and we just want to clean
3164 *        things up. This is used in case the upper layer owns the memory and
3165 *        cannot wait for qemu_fclose() to occur.
3166 *
3167 *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3168 *                  sent. Usually, this will not be more than a few bytes of
3169 *                  the protocol because most transfers are sent asynchronously.
3170 */
3171static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3172                                  ram_addr_t block_offset, ram_addr_t offset,
3173                                  size_t size, uint64_t *bytes_sent)
3174{
3175    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3176    RDMAContext *rdma;
3177    int ret;
3178
3179    RCU_READ_LOCK_GUARD();
3180    rdma = qatomic_rcu_read(&rioc->rdmaout);
3181
3182    if (!rdma) {
3183        return -EIO;
3184    }
3185
3186    CHECK_ERROR_STATE();
3187
3188    if (migration_in_postcopy()) {
3189        return RAM_SAVE_CONTROL_NOT_SUPP;
3190    }
3191
3192    qemu_fflush(f);
3193
3194    if (size > 0) {
3195        /*
3196         * Add this page to the current 'chunk'. If the chunk
3197         * is full, or the page doesn't belong to the current chunk,
3198         * an actual RDMA write will occur and a new chunk will be formed.
3199         */
3200        ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3201        if (ret < 0) {
3202            error_report("rdma migration: write error! %d", ret);
3203            goto err;
3204        }
3205
3206        /*
3207         * We always return 1 bytes because the RDMA
3208         * protocol is completely asynchronous. We do not yet know
3209         * whether an  identified chunk is zero or not because we're
3210         * waiting for other pages to potentially be merged with
3211         * the current chunk. So, we have to call qemu_update_position()
3212         * later on when the actual write occurs.
3213         */
3214        if (bytes_sent) {
3215            *bytes_sent = 1;
3216        }
3217    } else {
3218        uint64_t index, chunk;
3219
3220        /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3221        if (size < 0) {
3222            ret = qemu_rdma_drain_cq(f, rdma);
3223            if (ret < 0) {
3224                fprintf(stderr, "rdma: failed to synchronously drain"
3225                                " completion queue before unregistration.\n");
3226                goto err;
3227            }
3228        }
3229        */
3230
3231        ret = qemu_rdma_search_ram_block(rdma, block_offset,
3232                                         offset, size, &index, &chunk);
3233
3234        if (ret) {
3235            error_report("ram block search failed");
3236            goto err;
3237        }
3238
3239        qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3240
3241        /*
3242         * TODO: Synchronous, guaranteed unregistration (should not occur during
3243         * fast-path). Otherwise, unregisters will process on the next call to
3244         * qemu_rdma_drain_cq()
3245        if (size < 0) {
3246            qemu_rdma_unregister_waiting(rdma);
3247        }
3248        */
3249    }
3250
3251    /*
3252     * Drain the Completion Queue if possible, but do not block,
3253     * just poll.
3254     *
3255     * If nothing to poll, the end of the iteration will do this
3256     * again to make sure we don't overflow the request queue.
3257     */
3258    while (1) {
3259        uint64_t wr_id, wr_id_in;
3260        int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3261        if (ret < 0) {
3262            error_report("rdma migration: polling error! %d", ret);
3263            goto err;
3264        }
3265
3266        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3267
3268        if (wr_id == RDMA_WRID_NONE) {
3269            break;
3270        }
3271    }
3272
3273    return RAM_SAVE_CONTROL_DELAYED;
3274err:
3275    rdma->error_state = ret;
3276    return ret;
3277}
3278
3279static void rdma_accept_incoming_migration(void *opaque);
3280
3281static void rdma_cm_poll_handler(void *opaque)
3282{
3283    RDMAContext *rdma = opaque;
3284    int ret;
3285    struct rdma_cm_event *cm_event;
3286    MigrationIncomingState *mis = migration_incoming_get_current();
3287
3288    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3289    if (ret) {
3290        error_report("get_cm_event failed %d", errno);
3291        return;
3292    }
3293
3294    if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3295        cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3296        if (!rdma->error_state &&
3297            migration_incoming_get_current()->state !=
3298              MIGRATION_STATUS_COMPLETED) {
3299            error_report("receive cm event, cm event is %d", cm_event->event);
3300            rdma->error_state = -EPIPE;
3301            if (rdma->return_path) {
3302                rdma->return_path->error_state = -EPIPE;
3303            }
3304        }
3305        rdma_ack_cm_event(cm_event);
3306
3307        if (mis->migration_incoming_co) {
3308            qemu_coroutine_enter(mis->migration_incoming_co);
3309        }
3310        return;
3311    }
3312    rdma_ack_cm_event(cm_event);
3313}
3314
3315static int qemu_rdma_accept(RDMAContext *rdma)
3316{
3317    RDMACapabilities cap;
3318    struct rdma_conn_param conn_param = {
3319                                            .responder_resources = 2,
3320                                            .private_data = &cap,
3321                                            .private_data_len = sizeof(cap),
3322                                         };
3323    RDMAContext *rdma_return_path = NULL;
3324    struct rdma_cm_event *cm_event;
3325    struct ibv_context *verbs;
3326    int ret = -EINVAL;
3327    int idx;
3328
3329    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3330    if (ret) {
3331        goto err_rdma_dest_wait;
3332    }
3333
3334    if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3335        rdma_ack_cm_event(cm_event);
3336        goto err_rdma_dest_wait;
3337    }
3338
3339    /*
3340     * initialize the RDMAContext for return path for postcopy after first
3341     * connection request reached.
3342     */
3343    if (migrate_postcopy() && !rdma->is_return_path) {
3344        rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3345        if (rdma_return_path == NULL) {
3346            rdma_ack_cm_event(cm_event);
3347            goto err_rdma_dest_wait;
3348        }
3349
3350        qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3351    }
3352
3353    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3354
3355    network_to_caps(&cap);
3356
3357    if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3358            error_report("Unknown source RDMA version: %d, bailing...",
3359                            cap.version);
3360            rdma_ack_cm_event(cm_event);
3361            goto err_rdma_dest_wait;
3362    }
3363
3364    /*
3365     * Respond with only the capabilities this version of QEMU knows about.
3366     */
3367    cap.flags &= known_capabilities;
3368
3369    /*
3370     * Enable the ones that we do know about.
3371     * Add other checks here as new ones are introduced.
3372     */
3373    if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3374        rdma->pin_all = true;
3375    }
3376
3377    rdma->cm_id = cm_event->id;
3378    verbs = cm_event->id->verbs;
3379
3380    rdma_ack_cm_event(cm_event);
3381
3382    trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3383
3384    caps_to_network(&cap);
3385
3386    trace_qemu_rdma_accept_pin_verbsc(verbs);
3387
3388    if (!rdma->verbs) {
3389        rdma->verbs = verbs;
3390    } else if (rdma->verbs != verbs) {
3391            error_report("ibv context not matching %p, %p!", rdma->verbs,
3392                         verbs);
3393            goto err_rdma_dest_wait;
3394    }
3395
3396    qemu_rdma_dump_id("dest_init", verbs);
3397
3398    ret = qemu_rdma_alloc_pd_cq(rdma);
3399    if (ret) {
3400        error_report("rdma migration: error allocating pd and cq!");
3401        goto err_rdma_dest_wait;
3402    }
3403
3404    ret = qemu_rdma_alloc_qp(rdma);
3405    if (ret) {
3406        error_report("rdma migration: error allocating qp!");
3407        goto err_rdma_dest_wait;
3408    }
3409
3410    ret = qemu_rdma_init_ram_blocks(rdma);
3411    if (ret) {
3412        error_report("rdma migration: error initializing ram blocks!");
3413        goto err_rdma_dest_wait;
3414    }
3415
3416    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3417        ret = qemu_rdma_reg_control(rdma, idx);
3418        if (ret) {
3419            error_report("rdma: error registering %d control", idx);
3420            goto err_rdma_dest_wait;
3421        }
3422    }
3423
3424    /* Accept the second connection request for return path */
3425    if (migrate_postcopy() && !rdma->is_return_path) {
3426        qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3427                            NULL,
3428                            (void *)(intptr_t)rdma->return_path);
3429    } else {
3430        qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3431                            NULL, rdma);
3432    }
3433
3434    ret = rdma_accept(rdma->cm_id, &conn_param);
3435    if (ret) {
3436        error_report("rdma_accept returns %d", ret);
3437        goto err_rdma_dest_wait;
3438    }
3439
3440    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3441    if (ret) {
3442        error_report("rdma_accept get_cm_event failed %d", ret);
3443        goto err_rdma_dest_wait;
3444    }
3445
3446    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3447        error_report("rdma_accept not event established");
3448        rdma_ack_cm_event(cm_event);
3449        goto err_rdma_dest_wait;
3450    }
3451
3452    rdma_ack_cm_event(cm_event);
3453    rdma->connected = true;
3454
3455    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3456    if (ret) {
3457        error_report("rdma migration: error posting second control recv");
3458        goto err_rdma_dest_wait;
3459    }
3460
3461    qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3462
3463    return 0;
3464
3465err_rdma_dest_wait:
3466    rdma->error_state = ret;
3467    qemu_rdma_cleanup(rdma);
3468    g_free(rdma_return_path);
3469    return ret;
3470}
3471
3472static int dest_ram_sort_func(const void *a, const void *b)
3473{
3474    unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3475    unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3476
3477    return (a_index < b_index) ? -1 : (a_index != b_index);
3478}
3479
3480/*
3481 * During each iteration of the migration, we listen for instructions
3482 * by the source VM to perform dynamic page registrations before they
3483 * can perform RDMA operations.
3484 *
3485 * We respond with the 'rkey'.
3486 *
3487 * Keep doing this until the source tells us to stop.
3488 */
3489static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3490{
3491    RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3492                               .type = RDMA_CONTROL_REGISTER_RESULT,
3493                               .repeat = 0,
3494                             };
3495    RDMAControlHeader unreg_resp = { .len = 0,
3496                               .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3497                               .repeat = 0,
3498                             };
3499    RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3500                                 .repeat = 1 };
3501    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3502    RDMAContext *rdma;
3503    RDMALocalBlocks *local;
3504    RDMAControlHeader head;
3505    RDMARegister *reg, *registers;
3506    RDMACompress *comp;
3507    RDMARegisterResult *reg_result;
3508    static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3509    RDMALocalBlock *block;
3510    void *host_addr;
3511    int ret = 0;
3512    int idx = 0;
3513    int count = 0;
3514    int i = 0;
3515
3516    RCU_READ_LOCK_GUARD();
3517    rdma = qatomic_rcu_read(&rioc->rdmain);
3518
3519    if (!rdma) {
3520        return -EIO;
3521    }
3522
3523    CHECK_ERROR_STATE();
3524
3525    local = &rdma->local_ram_blocks;
3526    do {
3527        trace_qemu_rdma_registration_handle_wait();
3528
3529        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3530
3531        if (ret < 0) {
3532            break;
3533        }
3534
3535        if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3536            error_report("rdma: Too many requests in this message (%d)."
3537                            "Bailing.", head.repeat);
3538            ret = -EIO;
3539            break;
3540        }
3541
3542        switch (head.type) {
3543        case RDMA_CONTROL_COMPRESS:
3544            comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3545            network_to_compress(comp);
3546
3547            trace_qemu_rdma_registration_handle_compress(comp->length,
3548                                                         comp->block_idx,
3549                                                         comp->offset);
3550            if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3551                error_report("rdma: 'compress' bad block index %u (vs %d)",
3552                             (unsigned int)comp->block_idx,
3553                             rdma->local_ram_blocks.nb_blocks);
3554                ret = -EIO;
3555                goto out;
3556            }
3557            block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3558
3559            host_addr = block->local_host_addr +
3560                            (comp->offset - block->offset);
3561
3562            ram_handle_compressed(host_addr, comp->value, comp->length);
3563            break;
3564
3565        case RDMA_CONTROL_REGISTER_FINISHED:
3566            trace_qemu_rdma_registration_handle_finished();
3567            goto out;
3568
3569        case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3570            trace_qemu_rdma_registration_handle_ram_blocks();
3571
3572            /* Sort our local RAM Block list so it's the same as the source,
3573             * we can do this since we've filled in a src_index in the list
3574             * as we received the RAMBlock list earlier.
3575             */
3576            qsort(rdma->local_ram_blocks.block,
3577                  rdma->local_ram_blocks.nb_blocks,
3578                  sizeof(RDMALocalBlock), dest_ram_sort_func);
3579            for (i = 0; i < local->nb_blocks; i++) {
3580                local->block[i].index = i;
3581            }
3582
3583            if (rdma->pin_all) {
3584                ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3585                if (ret) {
3586                    error_report("rdma migration: error dest "
3587                                    "registering ram blocks");
3588                    goto out;
3589                }
3590            }
3591
3592            /*
3593             * Dest uses this to prepare to transmit the RAMBlock descriptions
3594             * to the source VM after connection setup.
3595             * Both sides use the "remote" structure to communicate and update
3596             * their "local" descriptions with what was sent.
3597             */
3598            for (i = 0; i < local->nb_blocks; i++) {
3599                rdma->dest_blocks[i].remote_host_addr =
3600                    (uintptr_t)(local->block[i].local_host_addr);
3601
3602                if (rdma->pin_all) {
3603                    rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3604                }
3605
3606                rdma->dest_blocks[i].offset = local->block[i].offset;
3607                rdma->dest_blocks[i].length = local->block[i].length;
3608
3609                dest_block_to_network(&rdma->dest_blocks[i]);
3610                trace_qemu_rdma_registration_handle_ram_blocks_loop(
3611                    local->block[i].block_name,
3612                    local->block[i].offset,
3613                    local->block[i].length,
3614                    local->block[i].local_host_addr,
3615                    local->block[i].src_index);
3616            }
3617
3618            blocks.len = rdma->local_ram_blocks.nb_blocks
3619                                                * sizeof(RDMADestBlock);
3620
3621
3622            ret = qemu_rdma_post_send_control(rdma,
3623                                        (uint8_t *) rdma->dest_blocks, &blocks);
3624
3625            if (ret < 0) {
3626                error_report("rdma migration: error sending remote info");
3627                goto out;
3628            }
3629
3630            break;
3631        case RDMA_CONTROL_REGISTER_REQUEST:
3632            trace_qemu_rdma_registration_handle_register(head.repeat);
3633
3634            reg_resp.repeat = head.repeat;
3635            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3636
3637            for (count = 0; count < head.repeat; count++) {
3638                uint64_t chunk;
3639                uint8_t *chunk_start, *chunk_end;
3640
3641                reg = &registers[count];
3642                network_to_register(reg);
3643
3644                reg_result = &results[count];
3645
3646                trace_qemu_rdma_registration_handle_register_loop(count,
3647                         reg->current_index, reg->key.current_addr, reg->chunks);
3648
3649                if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3650                    error_report("rdma: 'register' bad block index %u (vs %d)",
3651                                 (unsigned int)reg->current_index,
3652                                 rdma->local_ram_blocks.nb_blocks);
3653                    ret = -ENOENT;
3654                    goto out;
3655                }
3656                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3657                if (block->is_ram_block) {
3658                    if (block->offset > reg->key.current_addr) {
3659                        error_report("rdma: bad register address for block %s"
3660                            " offset: %" PRIx64 " current_addr: %" PRIx64,
3661                            block->block_name, block->offset,
3662                            reg->key.current_addr);
3663                        ret = -ERANGE;
3664                        goto out;
3665                    }
3666                    host_addr = (block->local_host_addr +
3667                                (reg->key.current_addr - block->offset));
3668                    chunk = ram_chunk_index(block->local_host_addr,
3669                                            (uint8_t *) host_addr);
3670                } else {
3671                    chunk = reg->key.chunk;
3672                    host_addr = block->local_host_addr +
3673                        (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3674                    /* Check for particularly bad chunk value */
3675                    if (host_addr < (void *)block->local_host_addr) {
3676                        error_report("rdma: bad chunk for block %s"
3677                            " chunk: %" PRIx64,
3678                            block->block_name, reg->key.chunk);
3679                        ret = -ERANGE;
3680                        goto out;
3681                    }
3682                }
3683                chunk_start = ram_chunk_start(block, chunk);
3684                chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3685                /* avoid "-Waddress-of-packed-member" warning */
3686                uint32_t tmp_rkey = 0;
3687                if (qemu_rdma_register_and_get_keys(rdma, block,
3688                            (uintptr_t)host_addr, NULL, &tmp_rkey,
3689                            chunk, chunk_start, chunk_end)) {
3690                    error_report("cannot get rkey");
3691                    ret = -EINVAL;
3692                    goto out;
3693                }
3694                reg_result->rkey = tmp_rkey;
3695
3696                reg_result->host_addr = (uintptr_t)block->local_host_addr;
3697
3698                trace_qemu_rdma_registration_handle_register_rkey(
3699                                                           reg_result->rkey);
3700
3701                result_to_network(reg_result);
3702            }
3703
3704            ret = qemu_rdma_post_send_control(rdma,
3705                            (uint8_t *) results, &reg_resp);
3706
3707            if (ret < 0) {
3708                error_report("Failed to send control buffer");
3709                goto out;
3710            }
3711            break;
3712        case RDMA_CONTROL_UNREGISTER_REQUEST:
3713            trace_qemu_rdma_registration_handle_unregister(head.repeat);
3714            unreg_resp.repeat = head.repeat;
3715            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3716
3717            for (count = 0; count < head.repeat; count++) {
3718                reg = &registers[count];
3719                network_to_register(reg);
3720
3721                trace_qemu_rdma_registration_handle_unregister_loop(count,
3722                           reg->current_index, reg->key.chunk);
3723
3724                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3725
3726                ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3727                block->pmr[reg->key.chunk] = NULL;
3728
3729                if (ret != 0) {
3730                    perror("rdma unregistration chunk failed");
3731                    ret = -ret;
3732                    goto out;
3733                }
3734
3735                rdma->total_registrations--;
3736
3737                trace_qemu_rdma_registration_handle_unregister_success(
3738                                                       reg->key.chunk);
3739            }
3740
3741            ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3742
3743            if (ret < 0) {
3744                error_report("Failed to send control buffer");
3745                goto out;
3746            }
3747            break;
3748        case RDMA_CONTROL_REGISTER_RESULT:
3749            error_report("Invalid RESULT message at dest.");
3750            ret = -EIO;
3751            goto out;
3752        default:
3753            error_report("Unknown control message %s", control_desc(head.type));
3754            ret = -EIO;
3755            goto out;
3756        }
3757    } while (1);
3758out:
3759    if (ret < 0) {
3760        rdma->error_state = ret;
3761    }
3762    return ret;
3763}
3764
3765/* Destination:
3766 * Called via a ram_control_load_hook during the initial RAM load section which
3767 * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3768 * on the source.
3769 * We've already built our local RAMBlock list, but not yet sent the list to
3770 * the source.
3771 */
3772static int
3773rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3774{
3775    RDMAContext *rdma;
3776    int curr;
3777    int found = -1;
3778
3779    RCU_READ_LOCK_GUARD();
3780    rdma = qatomic_rcu_read(&rioc->rdmain);
3781
3782    if (!rdma) {
3783        return -EIO;
3784    }
3785
3786    /* Find the matching RAMBlock in our local list */
3787    for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3788        if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3789            found = curr;
3790            break;
3791        }
3792    }
3793
3794    if (found == -1) {
3795        error_report("RAMBlock '%s' not found on destination", name);
3796        return -ENOENT;
3797    }
3798
3799    rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3800    trace_rdma_block_notification_handle(name, rdma->next_src_index);
3801    rdma->next_src_index++;
3802
3803    return 0;
3804}
3805
3806static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3807{
3808    switch (flags) {
3809    case RAM_CONTROL_BLOCK_REG:
3810        return rdma_block_notification_handle(opaque, data);
3811
3812    case RAM_CONTROL_HOOK:
3813        return qemu_rdma_registration_handle(f, opaque);
3814
3815    default:
3816        /* Shouldn't be called with any other values */
3817        abort();
3818    }
3819}
3820
3821static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3822                                        uint64_t flags, void *data)
3823{
3824    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3825    RDMAContext *rdma;
3826
3827    RCU_READ_LOCK_GUARD();
3828    rdma = qatomic_rcu_read(&rioc->rdmaout);
3829    if (!rdma) {
3830        return -EIO;
3831    }
3832
3833    CHECK_ERROR_STATE();
3834
3835    if (migration_in_postcopy()) {
3836        return 0;
3837    }
3838
3839    trace_qemu_rdma_registration_start(flags);
3840    qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3841    qemu_fflush(f);
3842
3843    return 0;
3844}
3845
3846/*
3847 * Inform dest that dynamic registrations are done for now.
3848 * First, flush writes, if any.
3849 */
3850static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3851                                       uint64_t flags, void *data)
3852{
3853    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3854    RDMAContext *rdma;
3855    RDMAControlHeader head = { .len = 0, .repeat = 1 };
3856    int ret = 0;
3857
3858    RCU_READ_LOCK_GUARD();
3859    rdma = qatomic_rcu_read(&rioc->rdmaout);
3860    if (!rdma) {
3861        return -EIO;
3862    }
3863
3864    CHECK_ERROR_STATE();
3865
3866    if (migration_in_postcopy()) {
3867        return 0;
3868    }
3869
3870    qemu_fflush(f);
3871    ret = qemu_rdma_drain_cq(f, rdma);
3872
3873    if (ret < 0) {
3874        goto err;
3875    }
3876
3877    if (flags == RAM_CONTROL_SETUP) {
3878        RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3879        RDMALocalBlocks *local = &rdma->local_ram_blocks;
3880        int reg_result_idx, i, nb_dest_blocks;
3881
3882        head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3883        trace_qemu_rdma_registration_stop_ram();
3884
3885        /*
3886         * Make sure that we parallelize the pinning on both sides.
3887         * For very large guests, doing this serially takes a really
3888         * long time, so we have to 'interleave' the pinning locally
3889         * with the control messages by performing the pinning on this
3890         * side before we receive the control response from the other
3891         * side that the pinning has completed.
3892         */
3893        ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3894                    &reg_result_idx, rdma->pin_all ?
3895                    qemu_rdma_reg_whole_ram_blocks : NULL);
3896        if (ret < 0) {
3897            fprintf(stderr, "receiving remote info!");
3898            return ret;
3899        }
3900
3901        nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3902
3903        /*
3904         * The protocol uses two different sets of rkeys (mutually exclusive):
3905         * 1. One key to represent the virtual address of the entire ram block.
3906         *    (dynamic chunk registration disabled - pin everything with one rkey.)
3907         * 2. One to represent individual chunks within a ram block.
3908         *    (dynamic chunk registration enabled - pin individual chunks.)
3909         *
3910         * Once the capability is successfully negotiated, the destination transmits
3911         * the keys to use (or sends them later) including the virtual addresses
3912         * and then propagates the remote ram block descriptions to his local copy.
3913         */
3914
3915        if (local->nb_blocks != nb_dest_blocks) {
3916            fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3917                    "Your QEMU command line parameters are probably "
3918                    "not identical on both the source and destination.",
3919                    local->nb_blocks, nb_dest_blocks);
3920            rdma->error_state = -EINVAL;
3921            return -EINVAL;
3922        }
3923
3924        qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3925        memcpy(rdma->dest_blocks,
3926            rdma->wr_data[reg_result_idx].control_curr, resp.len);
3927        for (i = 0; i < nb_dest_blocks; i++) {
3928            network_to_dest_block(&rdma->dest_blocks[i]);
3929
3930            /* We require that the blocks are in the same order */
3931            if (rdma->dest_blocks[i].length != local->block[i].length) {
3932                fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3933                        "vs %" PRIu64, local->block[i].block_name, i,
3934                        local->block[i].length,
3935                        rdma->dest_blocks[i].length);
3936                rdma->error_state = -EINVAL;
3937                return -EINVAL;
3938            }
3939            local->block[i].remote_host_addr =
3940                    rdma->dest_blocks[i].remote_host_addr;
3941            local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3942        }
3943    }
3944
3945    trace_qemu_rdma_registration_stop(flags);
3946
3947    head.type = RDMA_CONTROL_REGISTER_FINISHED;
3948    ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3949
3950    if (ret < 0) {
3951        goto err;
3952    }
3953
3954    return 0;
3955err:
3956    rdma->error_state = ret;
3957    return ret;
3958}
3959
3960static const QEMUFileHooks rdma_read_hooks = {
3961    .hook_ram_load = rdma_load_hook,
3962};
3963
3964static const QEMUFileHooks rdma_write_hooks = {
3965    .before_ram_iterate = qemu_rdma_registration_start,
3966    .after_ram_iterate  = qemu_rdma_registration_stop,
3967    .save_page          = qemu_rdma_save_page,
3968};
3969
3970
3971static void qio_channel_rdma_finalize(Object *obj)
3972{
3973    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3974    if (rioc->rdmain) {
3975        qemu_rdma_cleanup(rioc->rdmain);
3976        g_free(rioc->rdmain);
3977        rioc->rdmain = NULL;
3978    }
3979    if (rioc->rdmaout) {
3980        qemu_rdma_cleanup(rioc->rdmaout);
3981        g_free(rioc->rdmaout);
3982        rioc->rdmaout = NULL;
3983    }
3984}
3985
3986static void qio_channel_rdma_class_init(ObjectClass *klass,
3987                                        void *class_data G_GNUC_UNUSED)
3988{
3989    QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3990
3991    ioc_klass->io_writev = qio_channel_rdma_writev;
3992    ioc_klass->io_readv = qio_channel_rdma_readv;
3993    ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3994    ioc_klass->io_close = qio_channel_rdma_close;
3995    ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3996    ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3997    ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3998}
3999
4000static const TypeInfo qio_channel_rdma_info = {
4001    .parent = TYPE_QIO_CHANNEL,
4002    .name = TYPE_QIO_CHANNEL_RDMA,
4003    .instance_size = sizeof(QIOChannelRDMA),
4004    .instance_finalize = qio_channel_rdma_finalize,
4005    .class_init = qio_channel_rdma_class_init,
4006};
4007
4008static void qio_channel_rdma_register_types(void)
4009{
4010    type_register_static(&qio_channel_rdma_info);
4011}
4012
4013type_init(qio_channel_rdma_register_types);
4014
4015static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4016{
4017    QIOChannelRDMA *rioc;
4018
4019    if (qemu_file_mode_is_not_valid(mode)) {
4020        return NULL;
4021    }
4022
4023    rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4024
4025    if (mode[0] == 'w') {
4026        rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
4027        rioc->rdmaout = rdma;
4028        rioc->rdmain = rdma->return_path;
4029        qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4030    } else {
4031        rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
4032        rioc->rdmain = rdma;
4033        rioc->rdmaout = rdma->return_path;
4034        qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4035    }
4036
4037    return rioc->file;
4038}
4039
4040static void rdma_accept_incoming_migration(void *opaque)
4041{
4042    RDMAContext *rdma = opaque;
4043    int ret;
4044    QEMUFile *f;
4045    Error *local_err = NULL;
4046
4047    trace_qemu_rdma_accept_incoming_migration();
4048    ret = qemu_rdma_accept(rdma);
4049
4050    if (ret) {
4051        fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4052        return;
4053    }
4054
4055    trace_qemu_rdma_accept_incoming_migration_accepted();
4056
4057    if (rdma->is_return_path) {
4058        return;
4059    }
4060
4061    f = qemu_fopen_rdma(rdma, "rb");
4062    if (f == NULL) {
4063        fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4064        qemu_rdma_cleanup(rdma);
4065        return;
4066    }
4067
4068    rdma->migration_started_on_destination = 1;
4069    migration_fd_process_incoming(f, &local_err);
4070    if (local_err) {
4071        error_reportf_err(local_err, "RDMA ERROR:");
4072    }
4073}
4074
4075void rdma_start_incoming_migration(const char *host_port, Error **errp)
4076{
4077    int ret;
4078    RDMAContext *rdma, *rdma_return_path = NULL;
4079    Error *local_err = NULL;
4080
4081    trace_rdma_start_incoming_migration();
4082
4083    /* Avoid ram_block_discard_disable(), cannot change during migration. */
4084    if (ram_block_discard_is_required()) {
4085        error_setg(errp, "RDMA: cannot disable RAM discard");
4086        return;
4087    }
4088
4089    rdma = qemu_rdma_data_init(host_port, &local_err);
4090    if (rdma == NULL) {
4091        goto err;
4092    }
4093
4094    ret = qemu_rdma_dest_init(rdma, &local_err);
4095
4096    if (ret) {
4097        goto err;
4098    }
4099
4100    trace_rdma_start_incoming_migration_after_dest_init();
4101
4102    ret = rdma_listen(rdma->listen_id, 5);
4103
4104    if (ret) {
4105        ERROR(errp, "listening on socket!");
4106        goto cleanup_rdma;
4107    }
4108
4109    trace_rdma_start_incoming_migration_after_rdma_listen();
4110
4111    qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4112                        NULL, (void *)(intptr_t)rdma);
4113    return;
4114
4115cleanup_rdma:
4116    qemu_rdma_cleanup(rdma);
4117err:
4118    error_propagate(errp, local_err);
4119    if (rdma) {
4120        g_free(rdma->host);
4121        g_free(rdma->host_port);
4122    }
4123    g_free(rdma);
4124    g_free(rdma_return_path);
4125}
4126
4127void rdma_start_outgoing_migration(void *opaque,
4128                            const char *host_port, Error **errp)
4129{
4130    MigrationState *s = opaque;
4131    RDMAContext *rdma_return_path = NULL;
4132    RDMAContext *rdma;
4133    int ret = 0;
4134
4135    /* Avoid ram_block_discard_disable(), cannot change during migration. */
4136    if (ram_block_discard_is_required()) {
4137        error_setg(errp, "RDMA: cannot disable RAM discard");
4138        return;
4139    }
4140
4141    rdma = qemu_rdma_data_init(host_port, errp);
4142    if (rdma == NULL) {
4143        goto err;
4144    }
4145
4146    ret = qemu_rdma_source_init(rdma,
4147        s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4148
4149    if (ret) {
4150        goto err;
4151    }
4152
4153    trace_rdma_start_outgoing_migration_after_rdma_source_init();
4154    ret = qemu_rdma_connect(rdma, errp, false);
4155
4156    if (ret) {
4157        goto err;
4158    }
4159
4160    /* RDMA postcopy need a separate queue pair for return path */
4161    if (migrate_postcopy()) {
4162        rdma_return_path = qemu_rdma_data_init(host_port, errp);
4163
4164        if (rdma_return_path == NULL) {
4165            goto return_path_err;
4166        }
4167
4168        ret = qemu_rdma_source_init(rdma_return_path,
4169            s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4170
4171        if (ret) {
4172            goto return_path_err;
4173        }
4174
4175        ret = qemu_rdma_connect(rdma_return_path, errp, true);
4176
4177        if (ret) {
4178            goto return_path_err;
4179        }
4180
4181        rdma->return_path = rdma_return_path;
4182        rdma_return_path->return_path = rdma;
4183        rdma_return_path->is_return_path = true;
4184    }
4185
4186    trace_rdma_start_outgoing_migration_after_rdma_connect();
4187
4188    s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4189    migrate_fd_connect(s, NULL);
4190    return;
4191return_path_err:
4192    qemu_rdma_cleanup(rdma);
4193err:
4194    g_free(rdma);
4195    g_free(rdma_return_path);
4196}
4197