qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu-common.h"
  24#include "target/arm/idau.h"
  25#include "qemu/module.h"
  26#include "qapi/error.h"
  27#include "qapi/visitor.h"
  28#include "cpu.h"
  29#ifdef CONFIG_TCG
  30#include "hw/core/tcg-cpu-ops.h"
  31#endif /* CONFIG_TCG */
  32#include "internals.h"
  33#include "exec/exec-all.h"
  34#include "hw/qdev-properties.h"
  35#if !defined(CONFIG_USER_ONLY)
  36#include "hw/loader.h"
  37#include "hw/boards.h"
  38#endif
  39#include "sysemu/tcg.h"
  40#include "sysemu/hw_accel.h"
  41#include "kvm_arm.h"
  42#include "disas/capstone.h"
  43#include "fpu/softfloat.h"
  44
  45static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  46{
  47    ARMCPU *cpu = ARM_CPU(cs);
  48    CPUARMState *env = &cpu->env;
  49
  50    if (is_a64(env)) {
  51        env->pc = value;
  52        env->thumb = 0;
  53    } else {
  54        env->regs[15] = value & ~1;
  55        env->thumb = value & 1;
  56    }
  57}
  58
  59#ifdef CONFIG_TCG
  60void arm_cpu_synchronize_from_tb(CPUState *cs,
  61                                 const TranslationBlock *tb)
  62{
  63    ARMCPU *cpu = ARM_CPU(cs);
  64    CPUARMState *env = &cpu->env;
  65
  66    /*
  67     * It's OK to look at env for the current mode here, because it's
  68     * never possible for an AArch64 TB to chain to an AArch32 TB.
  69     */
  70    if (is_a64(env)) {
  71        env->pc = tb->pc;
  72    } else {
  73        env->regs[15] = tb->pc;
  74    }
  75}
  76#endif /* CONFIG_TCG */
  77
  78static bool arm_cpu_has_work(CPUState *cs)
  79{
  80    ARMCPU *cpu = ARM_CPU(cs);
  81
  82    return (cpu->power_state != PSCI_OFF)
  83        && cs->interrupt_request &
  84        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  85         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  86         | CPU_INTERRUPT_EXITTB);
  87}
  88
  89void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  90                                 void *opaque)
  91{
  92    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  93
  94    entry->hook = hook;
  95    entry->opaque = opaque;
  96
  97    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  98}
  99
 100void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 101                                 void *opaque)
 102{
 103    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 104
 105    entry->hook = hook;
 106    entry->opaque = opaque;
 107
 108    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 109}
 110
 111static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 112{
 113    /* Reset a single ARMCPRegInfo register */
 114    ARMCPRegInfo *ri = value;
 115    ARMCPU *cpu = opaque;
 116
 117    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 118        return;
 119    }
 120
 121    if (ri->resetfn) {
 122        ri->resetfn(&cpu->env, ri);
 123        return;
 124    }
 125
 126    /* A zero offset is never possible as it would be regs[0]
 127     * so we use it to indicate that reset is being handled elsewhere.
 128     * This is basically only used for fields in non-core coprocessors
 129     * (like the pxa2xx ones).
 130     */
 131    if (!ri->fieldoffset) {
 132        return;
 133    }
 134
 135    if (cpreg_field_is_64bit(ri)) {
 136        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 137    } else {
 138        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 139    }
 140}
 141
 142static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 143{
 144    /* Purely an assertion check: we've already done reset once,
 145     * so now check that running the reset for the cpreg doesn't
 146     * change its value. This traps bugs where two different cpregs
 147     * both try to reset the same state field but to different values.
 148     */
 149    ARMCPRegInfo *ri = value;
 150    ARMCPU *cpu = opaque;
 151    uint64_t oldvalue, newvalue;
 152
 153    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 154        return;
 155    }
 156
 157    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 158    cp_reg_reset(key, value, opaque);
 159    newvalue = read_raw_cp_reg(&cpu->env, ri);
 160    assert(oldvalue == newvalue);
 161}
 162
 163static void arm_cpu_reset(DeviceState *dev)
 164{
 165    CPUState *s = CPU(dev);
 166    ARMCPU *cpu = ARM_CPU(s);
 167    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 168    CPUARMState *env = &cpu->env;
 169
 170    acc->parent_reset(dev);
 171
 172    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 173
 174    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 175    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 176
 177    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 178    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 179    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 180    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 181
 182    cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
 183
 184    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 185        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 186    }
 187
 188    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 189        /* 64 bit CPUs always start in 64 bit mode */
 190        env->aarch64 = 1;
 191#if defined(CONFIG_USER_ONLY)
 192        env->pstate = PSTATE_MODE_EL0t;
 193        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 194        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 195        /* Enable all PAC keys.  */
 196        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 197                                  SCTLR_EnDA | SCTLR_EnDB);
 198        /* and to the FP/Neon instructions */
 199        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 200        /* and to the SVE instructions */
 201        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 202        /* with reasonable vector length */
 203        if (cpu_isar_feature(aa64_sve, cpu)) {
 204            env->vfp.zcr_el[1] =
 205                aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
 206        }
 207        /*
 208         * Enable TBI0 but not TBI1.
 209         * Note that this must match useronly_clean_ptr.
 210         */
 211        env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
 212
 213        /* Enable MTE */
 214        if (cpu_isar_feature(aa64_mte, cpu)) {
 215            /* Enable tag access, but leave TCF0 as No Effect (0). */
 216            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 217            /*
 218             * Exclude all tags, so that tag 0 is always used.
 219             * This corresponds to Linux current->thread.gcr_incl = 0.
 220             *
 221             * Set RRND, so that helper_irg() will generate a seed later.
 222             * Here in cpu_reset(), the crypto subsystem has not yet been
 223             * initialized.
 224             */
 225            env->cp15.gcr_el1 = 0x1ffff;
 226        }
 227#else
 228        /* Reset into the highest available EL */
 229        if (arm_feature(env, ARM_FEATURE_EL3)) {
 230            env->pstate = PSTATE_MODE_EL3h;
 231        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 232            env->pstate = PSTATE_MODE_EL2h;
 233        } else {
 234            env->pstate = PSTATE_MODE_EL1h;
 235        }
 236        env->pc = cpu->rvbar;
 237#endif
 238    } else {
 239#if defined(CONFIG_USER_ONLY)
 240        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 241        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 242#endif
 243    }
 244
 245#if defined(CONFIG_USER_ONLY)
 246    env->uncached_cpsr = ARM_CPU_MODE_USR;
 247    /* For user mode we must enable access to coprocessors */
 248    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 249    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 250        env->cp15.c15_cpar = 3;
 251    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 252        env->cp15.c15_cpar = 1;
 253    }
 254#else
 255
 256    /*
 257     * If the highest available EL is EL2, AArch32 will start in Hyp
 258     * mode; otherwise it starts in SVC. Note that if we start in
 259     * AArch64 then these values in the uncached_cpsr will be ignored.
 260     */
 261    if (arm_feature(env, ARM_FEATURE_EL2) &&
 262        !arm_feature(env, ARM_FEATURE_EL3)) {
 263        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 264    } else {
 265        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 266    }
 267    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 268#endif
 269
 270    if (arm_feature(env, ARM_FEATURE_M)) {
 271#ifndef CONFIG_USER_ONLY
 272        uint32_t initial_msp; /* Loaded from 0x0 */
 273        uint32_t initial_pc; /* Loaded from 0x4 */
 274        uint8_t *rom;
 275        uint32_t vecbase;
 276#endif
 277
 278        if (cpu_isar_feature(aa32_lob, cpu)) {
 279            /*
 280             * LTPSIZE is constant 4 if MVE not implemented, and resets
 281             * to an UNKNOWN value if MVE is implemented. We choose to
 282             * always reset to 4.
 283             */
 284            env->v7m.ltpsize = 4;
 285            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 286            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 287            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 288        }
 289
 290        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 291            env->v7m.secure = true;
 292        } else {
 293            /* This bit resets to 0 if security is supported, but 1 if
 294             * it is not. The bit is not present in v7M, but we set it
 295             * here so we can avoid having to make checks on it conditional
 296             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 297             */
 298            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 299            /*
 300             * Set NSACR to indicate "NS access permitted to everything";
 301             * this avoids having to have all the tests of it being
 302             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 303             * v8.1M the guest-visible value of NSACR in a CPU without the
 304             * Security Extension is 0xcff.
 305             */
 306            env->v7m.nsacr = 0xcff;
 307        }
 308
 309        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 310         * that it resets to 1, so QEMU always does that rather than making
 311         * it dependent on CPU model. In v8M it is RES1.
 312         */
 313        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 314        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 315        if (arm_feature(env, ARM_FEATURE_V8)) {
 316            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 317            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 318            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 319        }
 320        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 321            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 322            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 323        }
 324
 325        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 326            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 327            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 328                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 329        }
 330
 331#ifndef CONFIG_USER_ONLY
 332        /* Unlike A/R profile, M profile defines the reset LR value */
 333        env->regs[14] = 0xffffffff;
 334
 335        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 336        env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
 337
 338        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 339        vecbase = env->v7m.vecbase[env->v7m.secure];
 340        rom = rom_ptr_for_as(s->as, vecbase, 8);
 341        if (rom) {
 342            /* Address zero is covered by ROM which hasn't yet been
 343             * copied into physical memory.
 344             */
 345            initial_msp = ldl_p(rom);
 346            initial_pc = ldl_p(rom + 4);
 347        } else {
 348            /* Address zero not covered by a ROM blob, or the ROM blob
 349             * is in non-modifiable memory and this is a second reset after
 350             * it got copied into memory. In the latter case, rom_ptr
 351             * will return a NULL pointer and we should use ldl_phys instead.
 352             */
 353            initial_msp = ldl_phys(s->as, vecbase);
 354            initial_pc = ldl_phys(s->as, vecbase + 4);
 355        }
 356
 357        env->regs[13] = initial_msp & 0xFFFFFFFC;
 358        env->regs[15] = initial_pc & ~1;
 359        env->thumb = initial_pc & 1;
 360#else
 361        /*
 362         * For user mode we run non-secure and with access to the FPU.
 363         * The FPU context is active (ie does not need further setup)
 364         * and is owned by non-secure.
 365         */
 366        env->v7m.secure = false;
 367        env->v7m.nsacr = 0xcff;
 368        env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
 369        env->v7m.fpccr[M_REG_S] &=
 370            ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
 371        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
 372#endif
 373    }
 374
 375#ifndef CONFIG_USER_ONLY
 376    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 377     * executing as AArch32 then check if highvecs are enabled and
 378     * adjust the PC accordingly.
 379     */
 380    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 381        env->regs[15] = 0xFFFF0000;
 382    }
 383
 384    /* M profile requires that reset clears the exclusive monitor;
 385     * A profile does not, but clearing it makes more sense than having it
 386     * set with an exclusive access on address zero.
 387     */
 388    arm_clear_exclusive(env);
 389
 390    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 391#endif
 392
 393    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 394        if (cpu->pmsav7_dregion > 0) {
 395            if (arm_feature(env, ARM_FEATURE_V8)) {
 396                memset(env->pmsav8.rbar[M_REG_NS], 0,
 397                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 398                       * cpu->pmsav7_dregion);
 399                memset(env->pmsav8.rlar[M_REG_NS], 0,
 400                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 401                       * cpu->pmsav7_dregion);
 402                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 403                    memset(env->pmsav8.rbar[M_REG_S], 0,
 404                           sizeof(*env->pmsav8.rbar[M_REG_S])
 405                           * cpu->pmsav7_dregion);
 406                    memset(env->pmsav8.rlar[M_REG_S], 0,
 407                           sizeof(*env->pmsav8.rlar[M_REG_S])
 408                           * cpu->pmsav7_dregion);
 409                }
 410            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 411                memset(env->pmsav7.drbar, 0,
 412                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 413                memset(env->pmsav7.drsr, 0,
 414                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 415                memset(env->pmsav7.dracr, 0,
 416                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 417            }
 418        }
 419        env->pmsav7.rnr[M_REG_NS] = 0;
 420        env->pmsav7.rnr[M_REG_S] = 0;
 421        env->pmsav8.mair0[M_REG_NS] = 0;
 422        env->pmsav8.mair0[M_REG_S] = 0;
 423        env->pmsav8.mair1[M_REG_NS] = 0;
 424        env->pmsav8.mair1[M_REG_S] = 0;
 425    }
 426
 427    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 428        if (cpu->sau_sregion > 0) {
 429            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 430            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 431        }
 432        env->sau.rnr = 0;
 433        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 434         * the Cortex-M33 does.
 435         */
 436        env->sau.ctrl = 0;
 437    }
 438
 439    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 440    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 441    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 442    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 443    set_float_detect_tininess(float_tininess_before_rounding,
 444                              &env->vfp.fp_status);
 445    set_float_detect_tininess(float_tininess_before_rounding,
 446                              &env->vfp.standard_fp_status);
 447    set_float_detect_tininess(float_tininess_before_rounding,
 448                              &env->vfp.fp_status_f16);
 449    set_float_detect_tininess(float_tininess_before_rounding,
 450                              &env->vfp.standard_fp_status_f16);
 451#ifndef CONFIG_USER_ONLY
 452    if (kvm_enabled()) {
 453        kvm_arm_reset_vcpu(cpu);
 454    }
 455#endif
 456
 457    hw_breakpoint_update_all(cpu);
 458    hw_watchpoint_update_all(cpu);
 459    arm_rebuild_hflags(env);
 460}
 461
 462static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 463                                     unsigned int target_el,
 464                                     unsigned int cur_el, bool secure,
 465                                     uint64_t hcr_el2)
 466{
 467    CPUARMState *env = cs->env_ptr;
 468    bool pstate_unmasked;
 469    bool unmasked = false;
 470
 471    /*
 472     * Don't take exceptions if they target a lower EL.
 473     * This check should catch any exceptions that would not be taken
 474     * but left pending.
 475     */
 476    if (cur_el > target_el) {
 477        return false;
 478    }
 479
 480    switch (excp_idx) {
 481    case EXCP_FIQ:
 482        pstate_unmasked = !(env->daif & PSTATE_F);
 483        break;
 484
 485    case EXCP_IRQ:
 486        pstate_unmasked = !(env->daif & PSTATE_I);
 487        break;
 488
 489    case EXCP_VFIQ:
 490        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 491            /* VFIQs are only taken when hypervized.  */
 492            return false;
 493        }
 494        return !(env->daif & PSTATE_F);
 495    case EXCP_VIRQ:
 496        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 497            /* VIRQs are only taken when hypervized.  */
 498            return false;
 499        }
 500        return !(env->daif & PSTATE_I);
 501    default:
 502        g_assert_not_reached();
 503    }
 504
 505    /*
 506     * Use the target EL, current execution state and SCR/HCR settings to
 507     * determine whether the corresponding CPSR bit is used to mask the
 508     * interrupt.
 509     */
 510    if ((target_el > cur_el) && (target_el != 1)) {
 511        /* Exceptions targeting a higher EL may not be maskable */
 512        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 513            /*
 514             * 64-bit masking rules are simple: exceptions to EL3
 515             * can't be masked, and exceptions to EL2 can only be
 516             * masked from Secure state. The HCR and SCR settings
 517             * don't affect the masking logic, only the interrupt routing.
 518             */
 519            if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
 520                unmasked = true;
 521            }
 522        } else {
 523            /*
 524             * The old 32-bit-only environment has a more complicated
 525             * masking setup. HCR and SCR bits not only affect interrupt
 526             * routing but also change the behaviour of masking.
 527             */
 528            bool hcr, scr;
 529
 530            switch (excp_idx) {
 531            case EXCP_FIQ:
 532                /*
 533                 * If FIQs are routed to EL3 or EL2 then there are cases where
 534                 * we override the CPSR.F in determining if the exception is
 535                 * masked or not. If neither of these are set then we fall back
 536                 * to the CPSR.F setting otherwise we further assess the state
 537                 * below.
 538                 */
 539                hcr = hcr_el2 & HCR_FMO;
 540                scr = (env->cp15.scr_el3 & SCR_FIQ);
 541
 542                /*
 543                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 544                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 545                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 546                 * when non-secure but only when FIQs are only routed to EL3.
 547                 */
 548                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 549                break;
 550            case EXCP_IRQ:
 551                /*
 552                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 553                 * we may override the CPSR.I masking when in non-secure state.
 554                 * The SCR.IRQ setting has already been taken into consideration
 555                 * when setting the target EL, so it does not have a further
 556                 * affect here.
 557                 */
 558                hcr = hcr_el2 & HCR_IMO;
 559                scr = false;
 560                break;
 561            default:
 562                g_assert_not_reached();
 563            }
 564
 565            if ((scr || hcr) && !secure) {
 566                unmasked = true;
 567            }
 568        }
 569    }
 570
 571    /*
 572     * The PSTATE bits only mask the interrupt if we have not overriden the
 573     * ability above.
 574     */
 575    return unmasked || pstate_unmasked;
 576}
 577
 578bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 579{
 580    CPUClass *cc = CPU_GET_CLASS(cs);
 581    CPUARMState *env = cs->env_ptr;
 582    uint32_t cur_el = arm_current_el(env);
 583    bool secure = arm_is_secure(env);
 584    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 585    uint32_t target_el;
 586    uint32_t excp_idx;
 587
 588    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 589
 590    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 591        excp_idx = EXCP_FIQ;
 592        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 593        if (arm_excp_unmasked(cs, excp_idx, target_el,
 594                              cur_el, secure, hcr_el2)) {
 595            goto found;
 596        }
 597    }
 598    if (interrupt_request & CPU_INTERRUPT_HARD) {
 599        excp_idx = EXCP_IRQ;
 600        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 601        if (arm_excp_unmasked(cs, excp_idx, target_el,
 602                              cur_el, secure, hcr_el2)) {
 603            goto found;
 604        }
 605    }
 606    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 607        excp_idx = EXCP_VIRQ;
 608        target_el = 1;
 609        if (arm_excp_unmasked(cs, excp_idx, target_el,
 610                              cur_el, secure, hcr_el2)) {
 611            goto found;
 612        }
 613    }
 614    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 615        excp_idx = EXCP_VFIQ;
 616        target_el = 1;
 617        if (arm_excp_unmasked(cs, excp_idx, target_el,
 618                              cur_el, secure, hcr_el2)) {
 619            goto found;
 620        }
 621    }
 622    return false;
 623
 624 found:
 625    cs->exception_index = excp_idx;
 626    env->exception.target_el = target_el;
 627    cc->tcg_ops->do_interrupt(cs);
 628    return true;
 629}
 630
 631void arm_cpu_update_virq(ARMCPU *cpu)
 632{
 633    /*
 634     * Update the interrupt level for VIRQ, which is the logical OR of
 635     * the HCR_EL2.VI bit and the input line level from the GIC.
 636     */
 637    CPUARMState *env = &cpu->env;
 638    CPUState *cs = CPU(cpu);
 639
 640    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 641        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 642
 643    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 644        if (new_state) {
 645            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 646        } else {
 647            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 648        }
 649    }
 650}
 651
 652void arm_cpu_update_vfiq(ARMCPU *cpu)
 653{
 654    /*
 655     * Update the interrupt level for VFIQ, which is the logical OR of
 656     * the HCR_EL2.VF bit and the input line level from the GIC.
 657     */
 658    CPUARMState *env = &cpu->env;
 659    CPUState *cs = CPU(cpu);
 660
 661    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 662        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 663
 664    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 665        if (new_state) {
 666            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 667        } else {
 668            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 669        }
 670    }
 671}
 672
 673#ifndef CONFIG_USER_ONLY
 674static void arm_cpu_set_irq(void *opaque, int irq, int level)
 675{
 676    ARMCPU *cpu = opaque;
 677    CPUARMState *env = &cpu->env;
 678    CPUState *cs = CPU(cpu);
 679    static const int mask[] = {
 680        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 681        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 682        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 683        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 684    };
 685
 686    if (level) {
 687        env->irq_line_state |= mask[irq];
 688    } else {
 689        env->irq_line_state &= ~mask[irq];
 690    }
 691
 692    switch (irq) {
 693    case ARM_CPU_VIRQ:
 694        assert(arm_feature(env, ARM_FEATURE_EL2));
 695        arm_cpu_update_virq(cpu);
 696        break;
 697    case ARM_CPU_VFIQ:
 698        assert(arm_feature(env, ARM_FEATURE_EL2));
 699        arm_cpu_update_vfiq(cpu);
 700        break;
 701    case ARM_CPU_IRQ:
 702    case ARM_CPU_FIQ:
 703        if (level) {
 704            cpu_interrupt(cs, mask[irq]);
 705        } else {
 706            cpu_reset_interrupt(cs, mask[irq]);
 707        }
 708        break;
 709    default:
 710        g_assert_not_reached();
 711    }
 712}
 713
 714static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 715{
 716#ifdef CONFIG_KVM
 717    ARMCPU *cpu = opaque;
 718    CPUARMState *env = &cpu->env;
 719    CPUState *cs = CPU(cpu);
 720    uint32_t linestate_bit;
 721    int irq_id;
 722
 723    switch (irq) {
 724    case ARM_CPU_IRQ:
 725        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 726        linestate_bit = CPU_INTERRUPT_HARD;
 727        break;
 728    case ARM_CPU_FIQ:
 729        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 730        linestate_bit = CPU_INTERRUPT_FIQ;
 731        break;
 732    default:
 733        g_assert_not_reached();
 734    }
 735
 736    if (level) {
 737        env->irq_line_state |= linestate_bit;
 738    } else {
 739        env->irq_line_state &= ~linestate_bit;
 740    }
 741    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 742#endif
 743}
 744
 745static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 746{
 747    ARMCPU *cpu = ARM_CPU(cs);
 748    CPUARMState *env = &cpu->env;
 749
 750    cpu_synchronize_state(cs);
 751    return arm_cpu_data_is_big_endian(env);
 752}
 753
 754#endif
 755
 756static int
 757print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 758{
 759  return print_insn_arm(pc | 1, info);
 760}
 761
 762static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 763{
 764    ARMCPU *ac = ARM_CPU(cpu);
 765    CPUARMState *env = &ac->env;
 766    bool sctlr_b;
 767
 768    if (is_a64(env)) {
 769        /* We might not be compiled with the A64 disassembler
 770         * because it needs a C++ compiler. Leave print_insn
 771         * unset in this case to use the caller default behaviour.
 772         */
 773#if defined(CONFIG_ARM_A64_DIS)
 774        info->print_insn = print_insn_arm_a64;
 775#endif
 776        info->cap_arch = CS_ARCH_ARM64;
 777        info->cap_insn_unit = 4;
 778        info->cap_insn_split = 4;
 779    } else {
 780        int cap_mode;
 781        if (env->thumb) {
 782            info->print_insn = print_insn_thumb1;
 783            info->cap_insn_unit = 2;
 784            info->cap_insn_split = 4;
 785            cap_mode = CS_MODE_THUMB;
 786        } else {
 787            info->print_insn = print_insn_arm;
 788            info->cap_insn_unit = 4;
 789            info->cap_insn_split = 4;
 790            cap_mode = CS_MODE_ARM;
 791        }
 792        if (arm_feature(env, ARM_FEATURE_V8)) {
 793            cap_mode |= CS_MODE_V8;
 794        }
 795        if (arm_feature(env, ARM_FEATURE_M)) {
 796            cap_mode |= CS_MODE_MCLASS;
 797        }
 798        info->cap_arch = CS_ARCH_ARM;
 799        info->cap_mode = cap_mode;
 800    }
 801
 802    sctlr_b = arm_sctlr_b(env);
 803    if (bswap_code(sctlr_b)) {
 804#ifdef TARGET_WORDS_BIGENDIAN
 805        info->endian = BFD_ENDIAN_LITTLE;
 806#else
 807        info->endian = BFD_ENDIAN_BIG;
 808#endif
 809    }
 810    info->flags &= ~INSN_ARM_BE32;
 811#ifndef CONFIG_USER_ONLY
 812    if (sctlr_b) {
 813        info->flags |= INSN_ARM_BE32;
 814    }
 815#endif
 816}
 817
 818#ifdef TARGET_AARCH64
 819
 820static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 821{
 822    ARMCPU *cpu = ARM_CPU(cs);
 823    CPUARMState *env = &cpu->env;
 824    uint32_t psr = pstate_read(env);
 825    int i;
 826    int el = arm_current_el(env);
 827    const char *ns_status;
 828
 829    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 830    for (i = 0; i < 32; i++) {
 831        if (i == 31) {
 832            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 833        } else {
 834            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 835                         (i + 2) % 3 ? " " : "\n");
 836        }
 837    }
 838
 839    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 840        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 841    } else {
 842        ns_status = "";
 843    }
 844    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 845                 psr,
 846                 psr & PSTATE_N ? 'N' : '-',
 847                 psr & PSTATE_Z ? 'Z' : '-',
 848                 psr & PSTATE_C ? 'C' : '-',
 849                 psr & PSTATE_V ? 'V' : '-',
 850                 ns_status,
 851                 el,
 852                 psr & PSTATE_SP ? 'h' : 't');
 853
 854    if (cpu_isar_feature(aa64_bti, cpu)) {
 855        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 856    }
 857    if (!(flags & CPU_DUMP_FPU)) {
 858        qemu_fprintf(f, "\n");
 859        return;
 860    }
 861    if (fp_exception_el(env, el) != 0) {
 862        qemu_fprintf(f, "    FPU disabled\n");
 863        return;
 864    }
 865    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 866                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 867
 868    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
 869        int j, zcr_len = sve_zcr_len_for_el(env, el);
 870
 871        for (i = 0; i <= FFR_PRED_NUM; i++) {
 872            bool eol;
 873            if (i == FFR_PRED_NUM) {
 874                qemu_fprintf(f, "FFR=");
 875                /* It's last, so end the line.  */
 876                eol = true;
 877            } else {
 878                qemu_fprintf(f, "P%02d=", i);
 879                switch (zcr_len) {
 880                case 0:
 881                    eol = i % 8 == 7;
 882                    break;
 883                case 1:
 884                    eol = i % 6 == 5;
 885                    break;
 886                case 2:
 887                case 3:
 888                    eol = i % 3 == 2;
 889                    break;
 890                default:
 891                    /* More than one quadword per predicate.  */
 892                    eol = true;
 893                    break;
 894                }
 895            }
 896            for (j = zcr_len / 4; j >= 0; j--) {
 897                int digits;
 898                if (j * 4 + 4 <= zcr_len + 1) {
 899                    digits = 16;
 900                } else {
 901                    digits = (zcr_len % 4 + 1) * 4;
 902                }
 903                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 904                             env->vfp.pregs[i].p[j],
 905                             j ? ":" : eol ? "\n" : " ");
 906            }
 907        }
 908
 909        for (i = 0; i < 32; i++) {
 910            if (zcr_len == 0) {
 911                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 912                             i, env->vfp.zregs[i].d[1],
 913                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 914            } else if (zcr_len == 1) {
 915                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 916                             ":%016" PRIx64 ":%016" PRIx64 "\n",
 917                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 918                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 919            } else {
 920                for (j = zcr_len; j >= 0; j--) {
 921                    bool odd = (zcr_len - j) % 2 != 0;
 922                    if (j == zcr_len) {
 923                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
 924                    } else if (!odd) {
 925                        if (j > 0) {
 926                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
 927                        } else {
 928                            qemu_fprintf(f, "     [%x]=", j);
 929                        }
 930                    }
 931                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
 932                                 env->vfp.zregs[i].d[j * 2 + 1],
 933                                 env->vfp.zregs[i].d[j * 2],
 934                                 odd || j == 0 ? "\n" : ":");
 935                }
 936            }
 937        }
 938    } else {
 939        for (i = 0; i < 32; i++) {
 940            uint64_t *q = aa64_vfp_qreg(env, i);
 941            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 942                         i, q[1], q[0], (i & 1 ? "\n" : " "));
 943        }
 944    }
 945}
 946
 947#else
 948
 949static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 950{
 951    g_assert_not_reached();
 952}
 953
 954#endif
 955
 956static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 957{
 958    ARMCPU *cpu = ARM_CPU(cs);
 959    CPUARMState *env = &cpu->env;
 960    int i;
 961
 962    if (is_a64(env)) {
 963        aarch64_cpu_dump_state(cs, f, flags);
 964        return;
 965    }
 966
 967    for (i = 0; i < 16; i++) {
 968        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
 969        if ((i % 4) == 3) {
 970            qemu_fprintf(f, "\n");
 971        } else {
 972            qemu_fprintf(f, " ");
 973        }
 974    }
 975
 976    if (arm_feature(env, ARM_FEATURE_M)) {
 977        uint32_t xpsr = xpsr_read(env);
 978        const char *mode;
 979        const char *ns_status = "";
 980
 981        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 982            ns_status = env->v7m.secure ? "S " : "NS ";
 983        }
 984
 985        if (xpsr & XPSR_EXCP) {
 986            mode = "handler";
 987        } else {
 988            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
 989                mode = "unpriv-thread";
 990            } else {
 991                mode = "priv-thread";
 992            }
 993        }
 994
 995        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
 996                     xpsr,
 997                     xpsr & XPSR_N ? 'N' : '-',
 998                     xpsr & XPSR_Z ? 'Z' : '-',
 999                     xpsr & XPSR_C ? 'C' : '-',
1000                     xpsr & XPSR_V ? 'V' : '-',
1001                     xpsr & XPSR_T ? 'T' : 'A',
1002                     ns_status,
1003                     mode);
1004    } else {
1005        uint32_t psr = cpsr_read(env);
1006        const char *ns_status = "";
1007
1008        if (arm_feature(env, ARM_FEATURE_EL3) &&
1009            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1010            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1011        }
1012
1013        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1014                     psr,
1015                     psr & CPSR_N ? 'N' : '-',
1016                     psr & CPSR_Z ? 'Z' : '-',
1017                     psr & CPSR_C ? 'C' : '-',
1018                     psr & CPSR_V ? 'V' : '-',
1019                     psr & CPSR_T ? 'T' : 'A',
1020                     ns_status,
1021                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1022    }
1023
1024    if (flags & CPU_DUMP_FPU) {
1025        int numvfpregs = 0;
1026        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1027            numvfpregs = 32;
1028        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1029            numvfpregs = 16;
1030        }
1031        for (i = 0; i < numvfpregs; i++) {
1032            uint64_t v = *aa32_vfp_dreg(env, i);
1033            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1034                         i * 2, (uint32_t)v,
1035                         i * 2 + 1, (uint32_t)(v >> 32),
1036                         i, v);
1037        }
1038        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1039    }
1040}
1041
1042uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1043{
1044    uint32_t Aff1 = idx / clustersz;
1045    uint32_t Aff0 = idx % clustersz;
1046    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1047}
1048
1049static void cpreg_hashtable_data_destroy(gpointer data)
1050{
1051    /*
1052     * Destroy function for cpu->cp_regs hashtable data entries.
1053     * We must free the name string because it was g_strdup()ed in
1054     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1055     * from r->name because we know we definitely allocated it.
1056     */
1057    ARMCPRegInfo *r = data;
1058
1059    g_free((void *)r->name);
1060    g_free(r);
1061}
1062
1063static void arm_cpu_initfn(Object *obj)
1064{
1065    ARMCPU *cpu = ARM_CPU(obj);
1066
1067    cpu_set_cpustate_pointers(cpu);
1068    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1069                                         g_free, cpreg_hashtable_data_destroy);
1070
1071    QLIST_INIT(&cpu->pre_el_change_hooks);
1072    QLIST_INIT(&cpu->el_change_hooks);
1073
1074#ifdef CONFIG_USER_ONLY
1075# ifdef TARGET_AARCH64
1076    /*
1077     * The linux kernel defaults to 512-bit vectors, when sve is supported.
1078     * See documentation for /proc/sys/abi/sve_default_vector_length, and
1079     * our corresponding sve-default-vector-length cpu property.
1080     */
1081    cpu->sve_default_vq = 4;
1082# endif
1083#else
1084    /* Our inbound IRQ and FIQ lines */
1085    if (kvm_enabled()) {
1086        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1087         * the same interface as non-KVM CPUs.
1088         */
1089        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1090    } else {
1091        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1092    }
1093
1094    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1095                       ARRAY_SIZE(cpu->gt_timer_outputs));
1096
1097    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1098                             "gicv3-maintenance-interrupt", 1);
1099    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1100                             "pmu-interrupt", 1);
1101#endif
1102
1103    /* DTB consumers generally don't in fact care what the 'compatible'
1104     * string is, so always provide some string and trust that a hypothetical
1105     * picky DTB consumer will also provide a helpful error message.
1106     */
1107    cpu->dtb_compatible = "qemu,unknown";
1108    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1109    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1110
1111    if (tcg_enabled()) {
1112        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1113    }
1114}
1115
1116static Property arm_cpu_gt_cntfrq_property =
1117            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1118                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1119
1120static Property arm_cpu_reset_cbar_property =
1121            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1122
1123static Property arm_cpu_reset_hivecs_property =
1124            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1125
1126static Property arm_cpu_rvbar_property =
1127            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1128
1129#ifndef CONFIG_USER_ONLY
1130static Property arm_cpu_has_el2_property =
1131            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1132
1133static Property arm_cpu_has_el3_property =
1134            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1135#endif
1136
1137static Property arm_cpu_cfgend_property =
1138            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1139
1140static Property arm_cpu_has_vfp_property =
1141            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1142
1143static Property arm_cpu_has_neon_property =
1144            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1145
1146static Property arm_cpu_has_dsp_property =
1147            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1148
1149static Property arm_cpu_has_mpu_property =
1150            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1151
1152/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1153 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1154 * the right value for that particular CPU type, and we don't want
1155 * to override that with an incorrect constant value.
1156 */
1157static Property arm_cpu_pmsav7_dregion_property =
1158            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1159                                           pmsav7_dregion,
1160                                           qdev_prop_uint32, uint32_t);
1161
1162static bool arm_get_pmu(Object *obj, Error **errp)
1163{
1164    ARMCPU *cpu = ARM_CPU(obj);
1165
1166    return cpu->has_pmu;
1167}
1168
1169static void arm_set_pmu(Object *obj, bool value, Error **errp)
1170{
1171    ARMCPU *cpu = ARM_CPU(obj);
1172
1173    if (value) {
1174        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1175            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1176            return;
1177        }
1178        set_feature(&cpu->env, ARM_FEATURE_PMU);
1179    } else {
1180        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1181    }
1182    cpu->has_pmu = value;
1183}
1184
1185unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1186{
1187    /*
1188     * The exact approach to calculating guest ticks is:
1189     *
1190     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1191     *              NANOSECONDS_PER_SECOND);
1192     *
1193     * We don't do that. Rather we intentionally use integer division
1194     * truncation below and in the caller for the conversion of host monotonic
1195     * time to guest ticks to provide the exact inverse for the semantics of
1196     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1197     * it loses precision when representing frequencies where
1198     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1199     * provide an exact inverse leads to scheduling timers with negative
1200     * periods, which in turn leads to sticky behaviour in the guest.
1201     *
1202     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1203     * cannot become zero.
1204     */
1205    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1206      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1207}
1208
1209void arm_cpu_post_init(Object *obj)
1210{
1211    ARMCPU *cpu = ARM_CPU(obj);
1212
1213    /* M profile implies PMSA. We have to do this here rather than
1214     * in realize with the other feature-implication checks because
1215     * we look at the PMSA bit to see if we should add some properties.
1216     */
1217    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1218        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1219    }
1220
1221    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1222        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1223        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1224    }
1225
1226    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1227        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1228    }
1229
1230    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1231        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1232    }
1233
1234#ifndef CONFIG_USER_ONLY
1235    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1236        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1237         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1238         */
1239        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1240
1241        object_property_add_link(obj, "secure-memory",
1242                                 TYPE_MEMORY_REGION,
1243                                 (Object **)&cpu->secure_memory,
1244                                 qdev_prop_allow_set_link_before_realize,
1245                                 OBJ_PROP_LINK_STRONG);
1246    }
1247
1248    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1249        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1250    }
1251#endif
1252
1253    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1254        cpu->has_pmu = true;
1255        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1256    }
1257
1258    /*
1259     * Allow user to turn off VFP and Neon support, but only for TCG --
1260     * KVM does not currently allow us to lie to the guest about its
1261     * ID/feature registers, so the guest always sees what the host has.
1262     */
1263    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1264        ? cpu_isar_feature(aa64_fp_simd, cpu)
1265        : cpu_isar_feature(aa32_vfp, cpu)) {
1266        cpu->has_vfp = true;
1267        if (!kvm_enabled()) {
1268            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1269        }
1270    }
1271
1272    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1273        cpu->has_neon = true;
1274        if (!kvm_enabled()) {
1275            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1276        }
1277    }
1278
1279    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1280        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1281        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1282    }
1283
1284    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1285        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1286        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1287            qdev_property_add_static(DEVICE(obj),
1288                                     &arm_cpu_pmsav7_dregion_property);
1289        }
1290    }
1291
1292    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1293        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1294                                 qdev_prop_allow_set_link_before_realize,
1295                                 OBJ_PROP_LINK_STRONG);
1296        /*
1297         * M profile: initial value of the Secure VTOR. We can't just use
1298         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1299         * the property to be set after realize.
1300         */
1301        object_property_add_uint32_ptr(obj, "init-svtor",
1302                                       &cpu->init_svtor,
1303                                       OBJ_PROP_FLAG_READWRITE);
1304    }
1305    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1306        /*
1307         * Initial value of the NS VTOR (for cores without the Security
1308         * extension, this is the only VTOR)
1309         */
1310        object_property_add_uint32_ptr(obj, "init-nsvtor",
1311                                       &cpu->init_nsvtor,
1312                                       OBJ_PROP_FLAG_READWRITE);
1313    }
1314
1315    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1316
1317    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1318        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1319    }
1320
1321    if (kvm_enabled()) {
1322        kvm_arm_add_vcpu_properties(obj);
1323    }
1324
1325#ifndef CONFIG_USER_ONLY
1326    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1327        cpu_isar_feature(aa64_mte, cpu)) {
1328        object_property_add_link(obj, "tag-memory",
1329                                 TYPE_MEMORY_REGION,
1330                                 (Object **)&cpu->tag_memory,
1331                                 qdev_prop_allow_set_link_before_realize,
1332                                 OBJ_PROP_LINK_STRONG);
1333
1334        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1335            object_property_add_link(obj, "secure-tag-memory",
1336                                     TYPE_MEMORY_REGION,
1337                                     (Object **)&cpu->secure_tag_memory,
1338                                     qdev_prop_allow_set_link_before_realize,
1339                                     OBJ_PROP_LINK_STRONG);
1340        }
1341    }
1342#endif
1343}
1344
1345static void arm_cpu_finalizefn(Object *obj)
1346{
1347    ARMCPU *cpu = ARM_CPU(obj);
1348    ARMELChangeHook *hook, *next;
1349
1350    g_hash_table_destroy(cpu->cp_regs);
1351
1352    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1353        QLIST_REMOVE(hook, node);
1354        g_free(hook);
1355    }
1356    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1357        QLIST_REMOVE(hook, node);
1358        g_free(hook);
1359    }
1360#ifndef CONFIG_USER_ONLY
1361    if (cpu->pmu_timer) {
1362        timer_free(cpu->pmu_timer);
1363    }
1364#endif
1365}
1366
1367void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1368{
1369    Error *local_err = NULL;
1370
1371    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1372        arm_cpu_sve_finalize(cpu, &local_err);
1373        if (local_err != NULL) {
1374            error_propagate(errp, local_err);
1375            return;
1376        }
1377
1378        /*
1379         * KVM does not support modifications to this feature.
1380         * We have not registered the cpu properties when KVM
1381         * is in use, so the user will not be able to set them.
1382         */
1383        if (!kvm_enabled()) {
1384            arm_cpu_pauth_finalize(cpu, &local_err);
1385            if (local_err != NULL) {
1386                error_propagate(errp, local_err);
1387                return;
1388            }
1389        }
1390    }
1391
1392    if (kvm_enabled()) {
1393        kvm_arm_steal_time_finalize(cpu, &local_err);
1394        if (local_err != NULL) {
1395            error_propagate(errp, local_err);
1396            return;
1397        }
1398    }
1399}
1400
1401static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1402{
1403    CPUState *cs = CPU(dev);
1404    ARMCPU *cpu = ARM_CPU(dev);
1405    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1406    CPUARMState *env = &cpu->env;
1407    int pagebits;
1408    Error *local_err = NULL;
1409    bool no_aa32 = false;
1410
1411    /* If we needed to query the host kernel for the CPU features
1412     * then it's possible that might have failed in the initfn, but
1413     * this is the first point where we can report it.
1414     */
1415    if (cpu->host_cpu_probe_failed) {
1416        if (!kvm_enabled()) {
1417            error_setg(errp, "The 'host' CPU type can only be used with KVM");
1418        } else {
1419            error_setg(errp, "Failed to retrieve host CPU features");
1420        }
1421        return;
1422    }
1423
1424#ifndef CONFIG_USER_ONLY
1425    /* The NVIC and M-profile CPU are two halves of a single piece of
1426     * hardware; trying to use one without the other is a command line
1427     * error and will result in segfaults if not caught here.
1428     */
1429    if (arm_feature(env, ARM_FEATURE_M)) {
1430        if (!env->nvic) {
1431            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1432            return;
1433        }
1434    } else {
1435        if (env->nvic) {
1436            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1437            return;
1438        }
1439    }
1440
1441    {
1442        uint64_t scale;
1443
1444        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1445            if (!cpu->gt_cntfrq_hz) {
1446                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1447                           cpu->gt_cntfrq_hz);
1448                return;
1449            }
1450            scale = gt_cntfrq_period_ns(cpu);
1451        } else {
1452            scale = GTIMER_SCALE;
1453        }
1454
1455        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1456                                               arm_gt_ptimer_cb, cpu);
1457        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1458                                               arm_gt_vtimer_cb, cpu);
1459        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1460                                              arm_gt_htimer_cb, cpu);
1461        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1462                                              arm_gt_stimer_cb, cpu);
1463        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1464                                                  arm_gt_hvtimer_cb, cpu);
1465    }
1466#endif
1467
1468    cpu_exec_realizefn(cs, &local_err);
1469    if (local_err != NULL) {
1470        error_propagate(errp, local_err);
1471        return;
1472    }
1473
1474    arm_cpu_finalize_features(cpu, &local_err);
1475    if (local_err != NULL) {
1476        error_propagate(errp, local_err);
1477        return;
1478    }
1479
1480    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1481        cpu->has_vfp != cpu->has_neon) {
1482        /*
1483         * This is an architectural requirement for AArch64; AArch32 is
1484         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1485         */
1486        error_setg(errp,
1487                   "AArch64 CPUs must have both VFP and Neon or neither");
1488        return;
1489    }
1490
1491    if (!cpu->has_vfp) {
1492        uint64_t t;
1493        uint32_t u;
1494
1495        t = cpu->isar.id_aa64isar1;
1496        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1497        cpu->isar.id_aa64isar1 = t;
1498
1499        t = cpu->isar.id_aa64pfr0;
1500        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1501        cpu->isar.id_aa64pfr0 = t;
1502
1503        u = cpu->isar.id_isar6;
1504        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1505        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1506        cpu->isar.id_isar6 = u;
1507
1508        u = cpu->isar.mvfr0;
1509        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1510        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1511        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1512        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1513        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1514        if (!arm_feature(env, ARM_FEATURE_M)) {
1515            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1516            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1517        }
1518        cpu->isar.mvfr0 = u;
1519
1520        u = cpu->isar.mvfr1;
1521        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1522        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1523        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1524        if (arm_feature(env, ARM_FEATURE_M)) {
1525            u = FIELD_DP32(u, MVFR1, FP16, 0);
1526        }
1527        cpu->isar.mvfr1 = u;
1528
1529        u = cpu->isar.mvfr2;
1530        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1531        cpu->isar.mvfr2 = u;
1532    }
1533
1534    if (!cpu->has_neon) {
1535        uint64_t t;
1536        uint32_t u;
1537
1538        unset_feature(env, ARM_FEATURE_NEON);
1539
1540        t = cpu->isar.id_aa64isar0;
1541        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1542        cpu->isar.id_aa64isar0 = t;
1543
1544        t = cpu->isar.id_aa64isar1;
1545        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1546        t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1547        t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1548        cpu->isar.id_aa64isar1 = t;
1549
1550        t = cpu->isar.id_aa64pfr0;
1551        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1552        cpu->isar.id_aa64pfr0 = t;
1553
1554        u = cpu->isar.id_isar5;
1555        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1556        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1557        cpu->isar.id_isar5 = u;
1558
1559        u = cpu->isar.id_isar6;
1560        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1561        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1562        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1563        u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1564        cpu->isar.id_isar6 = u;
1565
1566        if (!arm_feature(env, ARM_FEATURE_M)) {
1567            u = cpu->isar.mvfr1;
1568            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1569            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1570            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1571            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1572            cpu->isar.mvfr1 = u;
1573
1574            u = cpu->isar.mvfr2;
1575            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1576            cpu->isar.mvfr2 = u;
1577        }
1578    }
1579
1580    if (!cpu->has_neon && !cpu->has_vfp) {
1581        uint64_t t;
1582        uint32_t u;
1583
1584        t = cpu->isar.id_aa64isar0;
1585        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1586        cpu->isar.id_aa64isar0 = t;
1587
1588        t = cpu->isar.id_aa64isar1;
1589        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1590        cpu->isar.id_aa64isar1 = t;
1591
1592        u = cpu->isar.mvfr0;
1593        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1594        cpu->isar.mvfr0 = u;
1595
1596        /* Despite the name, this field covers both VFP and Neon */
1597        u = cpu->isar.mvfr1;
1598        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1599        cpu->isar.mvfr1 = u;
1600    }
1601
1602    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1603        uint32_t u;
1604
1605        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1606
1607        u = cpu->isar.id_isar1;
1608        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1609        cpu->isar.id_isar1 = u;
1610
1611        u = cpu->isar.id_isar2;
1612        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1613        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1614        cpu->isar.id_isar2 = u;
1615
1616        u = cpu->isar.id_isar3;
1617        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1618        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1619        cpu->isar.id_isar3 = u;
1620    }
1621
1622    /* Some features automatically imply others: */
1623    if (arm_feature(env, ARM_FEATURE_V8)) {
1624        if (arm_feature(env, ARM_FEATURE_M)) {
1625            set_feature(env, ARM_FEATURE_V7);
1626        } else {
1627            set_feature(env, ARM_FEATURE_V7VE);
1628        }
1629    }
1630
1631    /*
1632     * There exist AArch64 cpus without AArch32 support.  When KVM
1633     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1634     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1635     * As a general principle, we also do not make ID register
1636     * consistency checks anywhere unless using TCG, because only
1637     * for TCG would a consistency-check failure be a QEMU bug.
1638     */
1639    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1640        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1641    }
1642
1643    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1644        /* v7 Virtualization Extensions. In real hardware this implies
1645         * EL2 and also the presence of the Security Extensions.
1646         * For QEMU, for backwards-compatibility we implement some
1647         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1648         * include the various other features that V7VE implies.
1649         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1650         * Security Extensions is ARM_FEATURE_EL3.
1651         */
1652        assert(!tcg_enabled() || no_aa32 ||
1653               cpu_isar_feature(aa32_arm_div, cpu));
1654        set_feature(env, ARM_FEATURE_LPAE);
1655        set_feature(env, ARM_FEATURE_V7);
1656    }
1657    if (arm_feature(env, ARM_FEATURE_V7)) {
1658        set_feature(env, ARM_FEATURE_VAPA);
1659        set_feature(env, ARM_FEATURE_THUMB2);
1660        set_feature(env, ARM_FEATURE_MPIDR);
1661        if (!arm_feature(env, ARM_FEATURE_M)) {
1662            set_feature(env, ARM_FEATURE_V6K);
1663        } else {
1664            set_feature(env, ARM_FEATURE_V6);
1665        }
1666
1667        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1668         * non-EL3 configs. This is needed by some legacy boards.
1669         */
1670        set_feature(env, ARM_FEATURE_VBAR);
1671    }
1672    if (arm_feature(env, ARM_FEATURE_V6K)) {
1673        set_feature(env, ARM_FEATURE_V6);
1674        set_feature(env, ARM_FEATURE_MVFR);
1675    }
1676    if (arm_feature(env, ARM_FEATURE_V6)) {
1677        set_feature(env, ARM_FEATURE_V5);
1678        if (!arm_feature(env, ARM_FEATURE_M)) {
1679            assert(!tcg_enabled() || no_aa32 ||
1680                   cpu_isar_feature(aa32_jazelle, cpu));
1681            set_feature(env, ARM_FEATURE_AUXCR);
1682        }
1683    }
1684    if (arm_feature(env, ARM_FEATURE_V5)) {
1685        set_feature(env, ARM_FEATURE_V4T);
1686    }
1687    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1688        set_feature(env, ARM_FEATURE_V7MP);
1689    }
1690    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1691        set_feature(env, ARM_FEATURE_CBAR);
1692    }
1693    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1694        !arm_feature(env, ARM_FEATURE_M)) {
1695        set_feature(env, ARM_FEATURE_THUMB_DSP);
1696    }
1697
1698    /*
1699     * We rely on no XScale CPU having VFP so we can use the same bits in the
1700     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1701     */
1702    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1703           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1704           !arm_feature(env, ARM_FEATURE_XSCALE));
1705
1706    if (arm_feature(env, ARM_FEATURE_V7) &&
1707        !arm_feature(env, ARM_FEATURE_M) &&
1708        !arm_feature(env, ARM_FEATURE_PMSA)) {
1709        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1710         * can use 4K pages.
1711         */
1712        pagebits = 12;
1713    } else {
1714        /* For CPUs which might have tiny 1K pages, or which have an
1715         * MPU and might have small region sizes, stick with 1K pages.
1716         */
1717        pagebits = 10;
1718    }
1719    if (!set_preferred_target_page_bits(pagebits)) {
1720        /* This can only ever happen for hotplugging a CPU, or if
1721         * the board code incorrectly creates a CPU which it has
1722         * promised via minimum_page_size that it will not.
1723         */
1724        error_setg(errp, "This CPU requires a smaller page size than the "
1725                   "system is using");
1726        return;
1727    }
1728
1729    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1730     * We don't support setting cluster ID ([16..23]) (known as Aff2
1731     * in later ARM ARM versions), or any of the higher affinity level fields,
1732     * so these bits always RAZ.
1733     */
1734    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1735        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1736                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1737    }
1738
1739    if (cpu->reset_hivecs) {
1740            cpu->reset_sctlr |= (1 << 13);
1741    }
1742
1743    if (cpu->cfgend) {
1744        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1745            cpu->reset_sctlr |= SCTLR_EE;
1746        } else {
1747            cpu->reset_sctlr |= SCTLR_B;
1748        }
1749    }
1750
1751    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1752        /* If the has_el3 CPU property is disabled then we need to disable the
1753         * feature.
1754         */
1755        unset_feature(env, ARM_FEATURE_EL3);
1756
1757        /* Disable the security extension feature bits in the processor feature
1758         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1759         */
1760        cpu->isar.id_pfr1 &= ~0xf0;
1761        cpu->isar.id_aa64pfr0 &= ~0xf000;
1762    }
1763
1764    if (!cpu->has_el2) {
1765        unset_feature(env, ARM_FEATURE_EL2);
1766    }
1767
1768    if (!cpu->has_pmu) {
1769        unset_feature(env, ARM_FEATURE_PMU);
1770    }
1771    if (arm_feature(env, ARM_FEATURE_PMU)) {
1772        pmu_init(cpu);
1773
1774        if (!kvm_enabled()) {
1775            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1776            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1777        }
1778
1779#ifndef CONFIG_USER_ONLY
1780        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1781                cpu);
1782#endif
1783    } else {
1784        cpu->isar.id_aa64dfr0 =
1785            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1786        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1787        cpu->pmceid0 = 0;
1788        cpu->pmceid1 = 0;
1789    }
1790
1791    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1792        /* Disable the hypervisor feature bits in the processor feature
1793         * registers if we don't have EL2. These are id_pfr1[15:12] and
1794         * id_aa64pfr0_el1[11:8].
1795         */
1796        cpu->isar.id_aa64pfr0 &= ~0xf00;
1797        cpu->isar.id_pfr1 &= ~0xf000;
1798    }
1799
1800#ifndef CONFIG_USER_ONLY
1801    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1802        /*
1803         * Disable the MTE feature bits if we do not have tag-memory
1804         * provided by the machine.
1805         */
1806        cpu->isar.id_aa64pfr1 =
1807            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1808    }
1809#endif
1810
1811    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1812     * to false or by setting pmsav7-dregion to 0.
1813     */
1814    if (!cpu->has_mpu) {
1815        cpu->pmsav7_dregion = 0;
1816    }
1817    if (cpu->pmsav7_dregion == 0) {
1818        cpu->has_mpu = false;
1819    }
1820
1821    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1822        arm_feature(env, ARM_FEATURE_V7)) {
1823        uint32_t nr = cpu->pmsav7_dregion;
1824
1825        if (nr > 0xff) {
1826            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1827            return;
1828        }
1829
1830        if (nr) {
1831            if (arm_feature(env, ARM_FEATURE_V8)) {
1832                /* PMSAv8 */
1833                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1834                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1835                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1836                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1837                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1838                }
1839            } else {
1840                env->pmsav7.drbar = g_new0(uint32_t, nr);
1841                env->pmsav7.drsr = g_new0(uint32_t, nr);
1842                env->pmsav7.dracr = g_new0(uint32_t, nr);
1843            }
1844        }
1845    }
1846
1847    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1848        uint32_t nr = cpu->sau_sregion;
1849
1850        if (nr > 0xff) {
1851            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1852            return;
1853        }
1854
1855        if (nr) {
1856            env->sau.rbar = g_new0(uint32_t, nr);
1857            env->sau.rlar = g_new0(uint32_t, nr);
1858        }
1859    }
1860
1861    if (arm_feature(env, ARM_FEATURE_EL3)) {
1862        set_feature(env, ARM_FEATURE_VBAR);
1863    }
1864
1865    register_cp_regs_for_features(cpu);
1866    arm_cpu_register_gdb_regs_for_features(cpu);
1867
1868    init_cpreg_list(cpu);
1869
1870#ifndef CONFIG_USER_ONLY
1871    MachineState *ms = MACHINE(qdev_get_machine());
1872    unsigned int smp_cpus = ms->smp.cpus;
1873    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1874
1875    /*
1876     * We must set cs->num_ases to the final value before
1877     * the first call to cpu_address_space_init.
1878     */
1879    if (cpu->tag_memory != NULL) {
1880        cs->num_ases = 3 + has_secure;
1881    } else {
1882        cs->num_ases = 1 + has_secure;
1883    }
1884
1885    if (has_secure) {
1886        if (!cpu->secure_memory) {
1887            cpu->secure_memory = cs->memory;
1888        }
1889        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1890                               cpu->secure_memory);
1891    }
1892
1893    if (cpu->tag_memory != NULL) {
1894        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1895                               cpu->tag_memory);
1896        if (has_secure) {
1897            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1898                                   cpu->secure_tag_memory);
1899        }
1900    }
1901
1902    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1903
1904    /* No core_count specified, default to smp_cpus. */
1905    if (cpu->core_count == -1) {
1906        cpu->core_count = smp_cpus;
1907    }
1908#endif
1909
1910    if (tcg_enabled()) {
1911        int dcz_blocklen = 4 << cpu->dcz_blocksize;
1912
1913        /*
1914         * We only support DCZ blocklen that fits on one page.
1915         *
1916         * Architectually this is always true.  However TARGET_PAGE_SIZE
1917         * is variable and, for compatibility with -machine virt-2.7,
1918         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1919         * But even then, while the largest architectural DCZ blocklen
1920         * is 2KiB, no cpu actually uses such a large blocklen.
1921         */
1922        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1923
1924        /*
1925         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1926         * both nibbles of each byte storing tag data may be written at once.
1927         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1928         */
1929        if (cpu_isar_feature(aa64_mte, cpu)) {
1930            assert(dcz_blocklen >= 2 * TAG_GRANULE);
1931        }
1932    }
1933
1934    qemu_init_vcpu(cs);
1935    cpu_reset(cs);
1936
1937    acc->parent_realize(dev, errp);
1938}
1939
1940static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1941{
1942    ObjectClass *oc;
1943    char *typename;
1944    char **cpuname;
1945    const char *cpunamestr;
1946
1947    cpuname = g_strsplit(cpu_model, ",", 1);
1948    cpunamestr = cpuname[0];
1949#ifdef CONFIG_USER_ONLY
1950    /* For backwards compatibility usermode emulation allows "-cpu any",
1951     * which has the same semantics as "-cpu max".
1952     */
1953    if (!strcmp(cpunamestr, "any")) {
1954        cpunamestr = "max";
1955    }
1956#endif
1957    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1958    oc = object_class_by_name(typename);
1959    g_strfreev(cpuname);
1960    g_free(typename);
1961    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1962        object_class_is_abstract(oc)) {
1963        return NULL;
1964    }
1965    return oc;
1966}
1967
1968static Property arm_cpu_properties[] = {
1969    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1970    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1971    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1972                        mp_affinity, ARM64_AFFINITY_INVALID),
1973    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1974    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1975    DEFINE_PROP_END_OF_LIST()
1976};
1977
1978static gchar *arm_gdb_arch_name(CPUState *cs)
1979{
1980    ARMCPU *cpu = ARM_CPU(cs);
1981    CPUARMState *env = &cpu->env;
1982
1983    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1984        return g_strdup("iwmmxt");
1985    }
1986    return g_strdup("arm");
1987}
1988
1989#ifndef CONFIG_USER_ONLY
1990#include "hw/core/sysemu-cpu-ops.h"
1991
1992static const struct SysemuCPUOps arm_sysemu_ops = {
1993    .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
1994    .asidx_from_attrs = arm_asidx_from_attrs,
1995    .write_elf32_note = arm_cpu_write_elf32_note,
1996    .write_elf64_note = arm_cpu_write_elf64_note,
1997    .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
1998    .legacy_vmsd = &vmstate_arm_cpu,
1999};
2000#endif
2001
2002#ifdef CONFIG_TCG
2003static const struct TCGCPUOps arm_tcg_ops = {
2004    .initialize = arm_translate_init,
2005    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2006    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2007    .tlb_fill = arm_cpu_tlb_fill,
2008    .debug_excp_handler = arm_debug_excp_handler,
2009
2010#if !defined(CONFIG_USER_ONLY)
2011    .do_interrupt = arm_cpu_do_interrupt,
2012    .do_transaction_failed = arm_cpu_do_transaction_failed,
2013    .do_unaligned_access = arm_cpu_do_unaligned_access,
2014    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2015    .debug_check_watchpoint = arm_debug_check_watchpoint,
2016    .debug_check_breakpoint = arm_debug_check_breakpoint,
2017#endif /* !CONFIG_USER_ONLY */
2018};
2019#endif /* CONFIG_TCG */
2020
2021static void arm_cpu_class_init(ObjectClass *oc, void *data)
2022{
2023    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2024    CPUClass *cc = CPU_CLASS(acc);
2025    DeviceClass *dc = DEVICE_CLASS(oc);
2026
2027    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2028                                    &acc->parent_realize);
2029
2030    device_class_set_props(dc, arm_cpu_properties);
2031    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2032
2033    cc->class_by_name = arm_cpu_class_by_name;
2034    cc->has_work = arm_cpu_has_work;
2035    cc->dump_state = arm_cpu_dump_state;
2036    cc->set_pc = arm_cpu_set_pc;
2037    cc->gdb_read_register = arm_cpu_gdb_read_register;
2038    cc->gdb_write_register = arm_cpu_gdb_write_register;
2039#ifndef CONFIG_USER_ONLY
2040    cc->sysemu_ops = &arm_sysemu_ops;
2041#endif
2042    cc->gdb_num_core_regs = 26;
2043    cc->gdb_core_xml_file = "arm-core.xml";
2044    cc->gdb_arch_name = arm_gdb_arch_name;
2045    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2046    cc->gdb_stop_before_watchpoint = true;
2047    cc->disas_set_info = arm_disas_set_info;
2048
2049#ifdef CONFIG_TCG
2050    cc->tcg_ops = &arm_tcg_ops;
2051#endif /* CONFIG_TCG */
2052}
2053
2054#ifdef CONFIG_KVM
2055static void arm_host_initfn(Object *obj)
2056{
2057    ARMCPU *cpu = ARM_CPU(obj);
2058
2059    kvm_arm_set_cpu_features_from_host(cpu);
2060    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2061        aarch64_add_sve_properties(obj);
2062    }
2063    arm_cpu_post_init(obj);
2064}
2065
2066static const TypeInfo host_arm_cpu_type_info = {
2067    .name = TYPE_ARM_HOST_CPU,
2068    .parent = TYPE_AARCH64_CPU,
2069    .instance_init = arm_host_initfn,
2070};
2071
2072#endif
2073
2074static void arm_cpu_instance_init(Object *obj)
2075{
2076    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2077
2078    acc->info->initfn(obj);
2079    arm_cpu_post_init(obj);
2080}
2081
2082static void cpu_register_class_init(ObjectClass *oc, void *data)
2083{
2084    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2085
2086    acc->info = data;
2087}
2088
2089void arm_cpu_register(const ARMCPUInfo *info)
2090{
2091    TypeInfo type_info = {
2092        .parent = TYPE_ARM_CPU,
2093        .instance_size = sizeof(ARMCPU),
2094        .instance_align = __alignof__(ARMCPU),
2095        .instance_init = arm_cpu_instance_init,
2096        .class_size = sizeof(ARMCPUClass),
2097        .class_init = info->class_init ?: cpu_register_class_init,
2098        .class_data = (void *)info,
2099    };
2100
2101    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2102    type_register(&type_info);
2103    g_free((void *)type_info.name);
2104}
2105
2106static const TypeInfo arm_cpu_type_info = {
2107    .name = TYPE_ARM_CPU,
2108    .parent = TYPE_CPU,
2109    .instance_size = sizeof(ARMCPU),
2110    .instance_align = __alignof__(ARMCPU),
2111    .instance_init = arm_cpu_initfn,
2112    .instance_finalize = arm_cpu_finalizefn,
2113    .abstract = true,
2114    .class_size = sizeof(ARMCPUClass),
2115    .class_init = arm_cpu_class_init,
2116};
2117
2118static void arm_cpu_register_types(void)
2119{
2120    type_register_static(&arm_cpu_type_info);
2121
2122#ifdef CONFIG_KVM
2123    type_register_static(&host_arm_cpu_type_info);
2124#endif
2125}
2126
2127type_init(arm_cpu_register_types)
2128