qemu/target/arm/mte_helper.c
<<
>>
Prefs
   1/*
   2 * ARM v8.5-MemTag Operations
   3 *
   4 * Copyright (c) 2020 Linaro, Ltd.
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "internals.h"
  23#include "exec/exec-all.h"
  24#include "exec/ram_addr.h"
  25#include "exec/cpu_ldst.h"
  26#include "exec/helper-proto.h"
  27#include "qapi/error.h"
  28#include "qemu/guest-random.h"
  29
  30
  31static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
  32{
  33    if (exclude == 0xffff) {
  34        return 0;
  35    }
  36    if (offset == 0) {
  37        while (exclude & (1 << tag)) {
  38            tag = (tag + 1) & 15;
  39        }
  40    } else {
  41        do {
  42            do {
  43                tag = (tag + 1) & 15;
  44            } while (exclude & (1 << tag));
  45        } while (--offset > 0);
  46    }
  47    return tag;
  48}
  49
  50/**
  51 * allocation_tag_mem:
  52 * @env: the cpu environment
  53 * @ptr_mmu_idx: the addressing regime to use for the virtual address
  54 * @ptr: the virtual address for which to look up tag memory
  55 * @ptr_access: the access to use for the virtual address
  56 * @ptr_size: the number of bytes in the normal memory access
  57 * @tag_access: the access to use for the tag memory
  58 * @tag_size: the number of bytes in the tag memory access
  59 * @ra: the return address for exception handling
  60 *
  61 * Our tag memory is formatted as a sequence of little-endian nibbles.
  62 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
  63 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
  64 * for the higher addr.
  65 *
  66 * Here, resolve the physical address from the virtual address, and return
  67 * a pointer to the corresponding tag byte.  Exit with exception if the
  68 * virtual address is not accessible for @ptr_access.
  69 *
  70 * The @ptr_size and @tag_size values may not have an obvious relation
  71 * due to the alignment of @ptr, and the number of tag checks required.
  72 *
  73 * If there is no tag storage corresponding to @ptr, return NULL.
  74 */
  75static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
  76                                   uint64_t ptr, MMUAccessType ptr_access,
  77                                   int ptr_size, MMUAccessType tag_access,
  78                                   int tag_size, uintptr_t ra)
  79{
  80#ifdef CONFIG_USER_ONLY
  81    uint64_t clean_ptr = useronly_clean_ptr(ptr);
  82    int flags = page_get_flags(clean_ptr);
  83    uint8_t *tags;
  84    uintptr_t index;
  85
  86    if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
  87        /* SIGSEGV */
  88        arm_cpu_tlb_fill(env_cpu(env), ptr, ptr_size, ptr_access,
  89                         ptr_mmu_idx, false, ra);
  90        g_assert_not_reached();
  91    }
  92
  93    /* Require both MAP_ANON and PROT_MTE for the page. */
  94    if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
  95        return NULL;
  96    }
  97
  98    tags = page_get_target_data(clean_ptr);
  99    if (tags == NULL) {
 100        size_t alloc_size = TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1);
 101        tags = page_alloc_target_data(clean_ptr, alloc_size);
 102        assert(tags != NULL);
 103    }
 104
 105    index = extract32(ptr, LOG2_TAG_GRANULE + 1,
 106                      TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
 107    return tags + index;
 108#else
 109    uintptr_t index;
 110    CPUIOTLBEntry *iotlbentry;
 111    int in_page, flags;
 112    ram_addr_t ptr_ra;
 113    hwaddr ptr_paddr, tag_paddr, xlat;
 114    MemoryRegion *mr;
 115    ARMASIdx tag_asi;
 116    AddressSpace *tag_as;
 117    void *host;
 118
 119    /*
 120     * Probe the first byte of the virtual address.  This raises an
 121     * exception for inaccessible pages, and resolves the virtual address
 122     * into the softmmu tlb.
 123     *
 124     * When RA == 0, this is for mte_probe.  The page is expected to be
 125     * valid.  Indicate to probe_access_flags no-fault, then assert that
 126     * we received a valid page.
 127     */
 128    flags = probe_access_flags(env, ptr, ptr_access, ptr_mmu_idx,
 129                               ra == 0, &host, ra);
 130    assert(!(flags & TLB_INVALID_MASK));
 131
 132    /*
 133     * Find the iotlbentry for ptr.  This *must* be present in the TLB
 134     * because we just found the mapping.
 135     * TODO: Perhaps there should be a cputlb helper that returns a
 136     * matching tlb entry + iotlb entry.
 137     */
 138    index = tlb_index(env, ptr_mmu_idx, ptr);
 139# ifdef CONFIG_DEBUG_TCG
 140    {
 141        CPUTLBEntry *entry = tlb_entry(env, ptr_mmu_idx, ptr);
 142        target_ulong comparator = (ptr_access == MMU_DATA_LOAD
 143                                   ? entry->addr_read
 144                                   : tlb_addr_write(entry));
 145        g_assert(tlb_hit(comparator, ptr));
 146    }
 147# endif
 148    iotlbentry = &env_tlb(env)->d[ptr_mmu_idx].iotlb[index];
 149
 150    /* If the virtual page MemAttr != Tagged, access unchecked. */
 151    if (!arm_tlb_mte_tagged(&iotlbentry->attrs)) {
 152        return NULL;
 153    }
 154
 155    /*
 156     * If not backed by host ram, there is no tag storage: access unchecked.
 157     * This is probably a guest os bug though, so log it.
 158     */
 159    if (unlikely(flags & TLB_MMIO)) {
 160        qemu_log_mask(LOG_GUEST_ERROR,
 161                      "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
 162                      "but is not backed by host ram\n", ptr);
 163        return NULL;
 164    }
 165
 166    /*
 167     * The Normal memory access can extend to the next page.  E.g. a single
 168     * 8-byte access to the last byte of a page will check only the last
 169     * tag on the first page.
 170     * Any page access exception has priority over tag check exception.
 171     */
 172    in_page = -(ptr | TARGET_PAGE_MASK);
 173    if (unlikely(ptr_size > in_page)) {
 174        void *ignore;
 175        flags |= probe_access_flags(env, ptr + in_page, ptr_access,
 176                                    ptr_mmu_idx, ra == 0, &ignore, ra);
 177        assert(!(flags & TLB_INVALID_MASK));
 178    }
 179
 180    /* Any debug exception has priority over a tag check exception. */
 181    if (unlikely(flags & TLB_WATCHPOINT)) {
 182        int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
 183        assert(ra != 0);
 184        cpu_check_watchpoint(env_cpu(env), ptr, ptr_size,
 185                             iotlbentry->attrs, wp, ra);
 186    }
 187
 188    /*
 189     * Find the physical address within the normal mem space.
 190     * The memory region lookup must succeed because TLB_MMIO was
 191     * not set in the cputlb lookup above.
 192     */
 193    mr = memory_region_from_host(host, &ptr_ra);
 194    tcg_debug_assert(mr != NULL);
 195    tcg_debug_assert(memory_region_is_ram(mr));
 196    ptr_paddr = ptr_ra;
 197    do {
 198        ptr_paddr += mr->addr;
 199        mr = mr->container;
 200    } while (mr);
 201
 202    /* Convert to the physical address in tag space.  */
 203    tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
 204
 205    /* Look up the address in tag space. */
 206    tag_asi = iotlbentry->attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
 207    tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
 208    mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
 209                                 tag_access == MMU_DATA_STORE,
 210                                 iotlbentry->attrs);
 211
 212    /*
 213     * Note that @mr will never be NULL.  If there is nothing in the address
 214     * space at @tag_paddr, the translation will return the unallocated memory
 215     * region.  For our purposes, the result must be ram.
 216     */
 217    if (unlikely(!memory_region_is_ram(mr))) {
 218        /* ??? Failure is a board configuration error. */
 219        qemu_log_mask(LOG_UNIMP,
 220                      "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
 221                      "Normal Memory @ 0x%" HWADDR_PRIx "\n",
 222                      tag_paddr, ptr_paddr);
 223        return NULL;
 224    }
 225
 226    /*
 227     * Ensure the tag memory is dirty on write, for migration.
 228     * Tag memory can never contain code or display memory (vga).
 229     */
 230    if (tag_access == MMU_DATA_STORE) {
 231        ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
 232        cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
 233    }
 234
 235    return memory_region_get_ram_ptr(mr) + xlat;
 236#endif
 237}
 238
 239uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
 240{
 241    uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
 242    int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
 243    int start = extract32(env->cp15.rgsr_el1, 0, 4);
 244    int seed = extract32(env->cp15.rgsr_el1, 8, 16);
 245    int offset, i, rtag;
 246
 247    /*
 248     * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
 249     * deterministic algorithm.  Except that with RRND==1 the kernel is
 250     * not required to have set RGSR_EL1.SEED != 0, which is required for
 251     * the deterministic algorithm to function.  So we force a non-zero
 252     * SEED for that case.
 253     */
 254    if (unlikely(seed == 0) && rrnd) {
 255        do {
 256            Error *err = NULL;
 257            uint16_t two;
 258
 259            if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
 260                /*
 261                 * Failed, for unknown reasons in the crypto subsystem.
 262                 * Best we can do is log the reason and use a constant seed.
 263                 */
 264                qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
 265                              error_get_pretty(err));
 266                error_free(err);
 267                two = 1;
 268            }
 269            seed = two;
 270        } while (seed == 0);
 271    }
 272
 273    /* RandomTag */
 274    for (i = offset = 0; i < 4; ++i) {
 275        /* NextRandomTagBit */
 276        int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
 277                   extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
 278        seed = (top << 15) | (seed >> 1);
 279        offset |= top << i;
 280    }
 281    rtag = choose_nonexcluded_tag(start, offset, exclude);
 282    env->cp15.rgsr_el1 = rtag | (seed << 8);
 283
 284    return address_with_allocation_tag(rn, rtag);
 285}
 286
 287uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
 288                         int32_t offset, uint32_t tag_offset)
 289{
 290    int start_tag = allocation_tag_from_addr(ptr);
 291    uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
 292    int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
 293
 294    return address_with_allocation_tag(ptr + offset, rtag);
 295}
 296
 297static int load_tag1(uint64_t ptr, uint8_t *mem)
 298{
 299    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 300    return extract32(*mem, ofs, 4);
 301}
 302
 303uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 304{
 305    int mmu_idx = cpu_mmu_index(env, false);
 306    uint8_t *mem;
 307    int rtag = 0;
 308
 309    /* Trap if accessing an invalid page.  */
 310    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
 311                             MMU_DATA_LOAD, 1, GETPC());
 312
 313    /* Load if page supports tags. */
 314    if (mem) {
 315        rtag = load_tag1(ptr, mem);
 316    }
 317
 318    return address_with_allocation_tag(xt, rtag);
 319}
 320
 321static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
 322{
 323    if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
 324        arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
 325                                    cpu_mmu_index(env, false), ra);
 326        g_assert_not_reached();
 327    }
 328}
 329
 330/* For use in a non-parallel context, store to the given nibble.  */
 331static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
 332{
 333    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 334    *mem = deposit32(*mem, ofs, 4, tag);
 335}
 336
 337/* For use in a parallel context, atomically store to the given nibble.  */
 338static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
 339{
 340    int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 341    uint8_t old = qatomic_read(mem);
 342
 343    while (1) {
 344        uint8_t new = deposit32(old, ofs, 4, tag);
 345        uint8_t cmp = qatomic_cmpxchg(mem, old, new);
 346        if (likely(cmp == old)) {
 347            return;
 348        }
 349        old = cmp;
 350    }
 351}
 352
 353typedef void stg_store1(uint64_t, uint8_t *, int);
 354
 355static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
 356                          uintptr_t ra, stg_store1 store1)
 357{
 358    int mmu_idx = cpu_mmu_index(env, false);
 359    uint8_t *mem;
 360
 361    check_tag_aligned(env, ptr, ra);
 362
 363    /* Trap if accessing an invalid page.  */
 364    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
 365                             MMU_DATA_STORE, 1, ra);
 366
 367    /* Store if page supports tags. */
 368    if (mem) {
 369        store1(ptr, mem, allocation_tag_from_addr(xt));
 370    }
 371}
 372
 373void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 374{
 375    do_stg(env, ptr, xt, GETPC(), store_tag1);
 376}
 377
 378void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 379{
 380    do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
 381}
 382
 383void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
 384{
 385    int mmu_idx = cpu_mmu_index(env, false);
 386    uintptr_t ra = GETPC();
 387
 388    check_tag_aligned(env, ptr, ra);
 389    probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 390}
 391
 392static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
 393                           uintptr_t ra, stg_store1 store1)
 394{
 395    int mmu_idx = cpu_mmu_index(env, false);
 396    int tag = allocation_tag_from_addr(xt);
 397    uint8_t *mem1, *mem2;
 398
 399    check_tag_aligned(env, ptr, ra);
 400
 401    /*
 402     * Trap if accessing an invalid page(s).
 403     * This takes priority over !allocation_tag_access_enabled.
 404     */
 405    if (ptr & TAG_GRANULE) {
 406        /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
 407        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 408                                  TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 409        mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
 410                                  MMU_DATA_STORE, TAG_GRANULE,
 411                                  MMU_DATA_STORE, 1, ra);
 412
 413        /* Store if page(s) support tags. */
 414        if (mem1) {
 415            store1(TAG_GRANULE, mem1, tag);
 416        }
 417        if (mem2) {
 418            store1(0, mem2, tag);
 419        }
 420    } else {
 421        /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
 422        mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 423                                  2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 424        if (mem1) {
 425            tag |= tag << 4;
 426            qatomic_set(mem1, tag);
 427        }
 428    }
 429}
 430
 431void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 432{
 433    do_st2g(env, ptr, xt, GETPC(), store_tag1);
 434}
 435
 436void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 437{
 438    do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
 439}
 440
 441void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
 442{
 443    int mmu_idx = cpu_mmu_index(env, false);
 444    uintptr_t ra = GETPC();
 445    int in_page = -(ptr | TARGET_PAGE_MASK);
 446
 447    check_tag_aligned(env, ptr, ra);
 448
 449    if (likely(in_page >= 2 * TAG_GRANULE)) {
 450        probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
 451    } else {
 452        probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 453        probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
 454    }
 455}
 456
 457#define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)
 458
 459uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
 460{
 461    int mmu_idx = cpu_mmu_index(env, false);
 462    uintptr_t ra = GETPC();
 463    void *tag_mem;
 464
 465    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 466
 467    /* Trap if accessing an invalid page.  */
 468    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
 469                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 470                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 471
 472    /* The tag is squashed to zero if the page does not support tags.  */
 473    if (!tag_mem) {
 474        return 0;
 475    }
 476
 477    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 478    /*
 479     * We are loading 64-bits worth of tags.  The ordering of elements
 480     * within the word corresponds to a 64-bit little-endian operation.
 481     */
 482    return ldq_le_p(tag_mem);
 483}
 484
 485void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
 486{
 487    int mmu_idx = cpu_mmu_index(env, false);
 488    uintptr_t ra = GETPC();
 489    void *tag_mem;
 490
 491    ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 492
 493    /* Trap if accessing an invalid page.  */
 494    tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 495                                 LDGM_STGM_SIZE, MMU_DATA_LOAD,
 496                                 LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 497
 498    /*
 499     * Tag store only happens if the page support tags,
 500     * and if the OS has enabled access to the tags.
 501     */
 502    if (!tag_mem) {
 503        return;
 504    }
 505
 506    QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 507    /*
 508     * We are storing 64-bits worth of tags.  The ordering of elements
 509     * within the word corresponds to a 64-bit little-endian operation.
 510     */
 511    stq_le_p(tag_mem, val);
 512}
 513
 514void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
 515{
 516    uintptr_t ra = GETPC();
 517    int mmu_idx = cpu_mmu_index(env, false);
 518    int log2_dcz_bytes, log2_tag_bytes;
 519    intptr_t dcz_bytes, tag_bytes;
 520    uint8_t *mem;
 521
 522    /*
 523     * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
 524     * i.e. 32 bytes, which is an unreasonably small dcz anyway,
 525     * to make sure that we can access one complete tag byte here.
 526     */
 527    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 528    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 529    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 530    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 531    ptr &= -dcz_bytes;
 532
 533    mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
 534                             MMU_DATA_STORE, tag_bytes, ra);
 535    if (mem) {
 536        int tag_pair = (val & 0xf) * 0x11;
 537        memset(mem, tag_pair, tag_bytes);
 538    }
 539}
 540
 541static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
 542                                uint64_t dirty_ptr, uintptr_t ra)
 543{
 544    int is_write, syn;
 545
 546    env->exception.vaddress = dirty_ptr;
 547
 548    is_write = FIELD_EX32(desc, MTEDESC, WRITE);
 549    syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
 550                                0x11);
 551    raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
 552    g_assert_not_reached();
 553}
 554
 555static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
 556                                 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
 557{
 558    int select;
 559
 560    if (regime_has_2_ranges(arm_mmu_idx)) {
 561        select = extract64(dirty_ptr, 55, 1);
 562    } else {
 563        select = 0;
 564    }
 565    env->cp15.tfsr_el[el] |= 1 << select;
 566#ifdef CONFIG_USER_ONLY
 567    /*
 568     * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
 569     * which then sends a SIGSEGV when the thread is next scheduled.
 570     * This cpu will return to the main loop at the end of the TB,
 571     * which is rather sooner than "normal".  But the alternative
 572     * is waiting until the next syscall.
 573     */
 574    qemu_cpu_kick(env_cpu(env));
 575#endif
 576}
 577
 578/* Record a tag check failure.  */
 579static void mte_check_fail(CPUARMState *env, uint32_t desc,
 580                           uint64_t dirty_ptr, uintptr_t ra)
 581{
 582    int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 583    ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
 584    int el, reg_el, tcf;
 585    uint64_t sctlr;
 586
 587    reg_el = regime_el(env, arm_mmu_idx);
 588    sctlr = env->cp15.sctlr_el[reg_el];
 589
 590    switch (arm_mmu_idx) {
 591    case ARMMMUIdx_E10_0:
 592    case ARMMMUIdx_E20_0:
 593        el = 0;
 594        tcf = extract64(sctlr, 38, 2);
 595        break;
 596    default:
 597        el = reg_el;
 598        tcf = extract64(sctlr, 40, 2);
 599    }
 600
 601    switch (tcf) {
 602    case 1:
 603        /* Tag check fail causes a synchronous exception. */
 604        mte_sync_check_fail(env, desc, dirty_ptr, ra);
 605        break;
 606
 607    case 0:
 608        /*
 609         * Tag check fail does not affect the PE.
 610         * We eliminate this case by not setting MTE_ACTIVE
 611         * in tb_flags, so that we never make this runtime call.
 612         */
 613        g_assert_not_reached();
 614
 615    case 2:
 616        /* Tag check fail causes asynchronous flag set.  */
 617        mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
 618        break;
 619
 620    case 3:
 621        /*
 622         * Tag check fail causes asynchronous flag set for stores, or
 623         * a synchronous exception for loads.
 624         */
 625        if (FIELD_EX32(desc, MTEDESC, WRITE)) {
 626            mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
 627        } else {
 628            mte_sync_check_fail(env, desc, dirty_ptr, ra);
 629        }
 630        break;
 631    }
 632}
 633
 634/**
 635 * checkN:
 636 * @tag: tag memory to test
 637 * @odd: true to begin testing at tags at odd nibble
 638 * @cmp: the tag to compare against
 639 * @count: number of tags to test
 640 *
 641 * Return the number of successful tests.
 642 * Thus a return value < @count indicates a failure.
 643 *
 644 * A note about sizes: count is expected to be small.
 645 *
 646 * The most common use will be LDP/STP of two integer registers,
 647 * which means 16 bytes of memory touching at most 2 tags, but
 648 * often the access is aligned and thus just 1 tag.
 649 *
 650 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
 651 * touching at most 5 tags.  SVE LDR/STR (vector) with the default
 652 * vector length is also 64 bytes; the maximum architectural length
 653 * is 256 bytes touching at most 9 tags.
 654 *
 655 * The loop below uses 7 logical operations and 1 memory operation
 656 * per tag pair.  An implementation that loads an aligned word and
 657 * uses masking to ignore adjacent tags requires 18 logical operations
 658 * and thus does not begin to pay off until 6 tags.
 659 * Which, according to the survey above, is unlikely to be common.
 660 */
 661static int checkN(uint8_t *mem, int odd, int cmp, int count)
 662{
 663    int n = 0, diff;
 664
 665    /* Replicate the test tag and compare.  */
 666    cmp *= 0x11;
 667    diff = *mem++ ^ cmp;
 668
 669    if (odd) {
 670        goto start_odd;
 671    }
 672
 673    while (1) {
 674        /* Test even tag. */
 675        if (unlikely((diff) & 0x0f)) {
 676            break;
 677        }
 678        if (++n == count) {
 679            break;
 680        }
 681
 682    start_odd:
 683        /* Test odd tag. */
 684        if (unlikely((diff) & 0xf0)) {
 685            break;
 686        }
 687        if (++n == count) {
 688            break;
 689        }
 690
 691        diff = *mem++ ^ cmp;
 692    }
 693    return n;
 694}
 695
 696/**
 697 * mte_probe_int() - helper for mte_probe and mte_check
 698 * @env: CPU environment
 699 * @desc: MTEDESC descriptor
 700 * @ptr: virtual address of the base of the access
 701 * @fault: return virtual address of the first check failure
 702 *
 703 * Internal routine for both mte_probe and mte_check.
 704 * Return zero on failure, filling in *fault.
 705 * Return negative on trivial success for tbi disabled.
 706 * Return positive on success with tbi enabled.
 707 */
 708static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
 709                         uintptr_t ra, uint64_t *fault)
 710{
 711    int mmu_idx, ptr_tag, bit55;
 712    uint64_t ptr_last, prev_page, next_page;
 713    uint64_t tag_first, tag_last;
 714    uint64_t tag_byte_first, tag_byte_last;
 715    uint32_t sizem1, tag_count, tag_size, n, c;
 716    uint8_t *mem1, *mem2;
 717    MMUAccessType type;
 718
 719    bit55 = extract64(ptr, 55, 1);
 720    *fault = ptr;
 721
 722    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 723    if (unlikely(!tbi_check(desc, bit55))) {
 724        return -1;
 725    }
 726
 727    ptr_tag = allocation_tag_from_addr(ptr);
 728
 729    if (tcma_check(desc, bit55, ptr_tag)) {
 730        return 1;
 731    }
 732
 733    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 734    type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
 735    sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
 736
 737    /* Find the addr of the end of the access */
 738    ptr_last = ptr + sizem1;
 739
 740    /* Round the bounds to the tag granule, and compute the number of tags. */
 741    tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
 742    tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
 743    tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
 744
 745    /* Round the bounds to twice the tag granule, and compute the bytes. */
 746    tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
 747    tag_byte_last = QEMU_ALIGN_DOWN(ptr_last, 2 * TAG_GRANULE);
 748
 749    /* Locate the page boundaries. */
 750    prev_page = ptr & TARGET_PAGE_MASK;
 751    next_page = prev_page + TARGET_PAGE_SIZE;
 752
 753    if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
 754        /* Memory access stays on one page. */
 755        tag_size = ((tag_byte_last - tag_byte_first) / (2 * TAG_GRANULE)) + 1;
 756        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
 757                                  MMU_DATA_LOAD, tag_size, ra);
 758        if (!mem1) {
 759            return 1;
 760        }
 761        /* Perform all of the comparisons. */
 762        n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
 763    } else {
 764        /* Memory access crosses to next page. */
 765        tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
 766        mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
 767                                  MMU_DATA_LOAD, tag_size, ra);
 768
 769        tag_size = ((tag_byte_last - next_page) / (2 * TAG_GRANULE)) + 1;
 770        mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
 771                                  ptr_last - next_page + 1,
 772                                  MMU_DATA_LOAD, tag_size, ra);
 773
 774        /*
 775         * Perform all of the comparisons.
 776         * Note the possible but unlikely case of the operation spanning
 777         * two pages that do not both have tagging enabled.
 778         */
 779        n = c = (next_page - tag_first) / TAG_GRANULE;
 780        if (mem1) {
 781            n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
 782        }
 783        if (n == c) {
 784            if (!mem2) {
 785                return 1;
 786            }
 787            n += checkN(mem2, 0, ptr_tag, tag_count - c);
 788        }
 789    }
 790
 791    if (likely(n == tag_count)) {
 792        return 1;
 793    }
 794
 795    /*
 796     * If we failed, we know which granule.  For the first granule, the
 797     * failure address is @ptr, the first byte accessed.  Otherwise the
 798     * failure address is the first byte of the nth granule.
 799     */
 800    if (n > 0) {
 801        *fault = tag_first + n * TAG_GRANULE;
 802    }
 803    return 0;
 804}
 805
 806uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
 807{
 808    uint64_t fault;
 809    int ret = mte_probe_int(env, desc, ptr, ra, &fault);
 810
 811    if (unlikely(ret == 0)) {
 812        mte_check_fail(env, desc, fault, ra);
 813    } else if (ret < 0) {
 814        return ptr;
 815    }
 816    return useronly_clean_ptr(ptr);
 817}
 818
 819uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 820{
 821    return mte_check(env, desc, ptr, GETPC());
 822}
 823
 824/*
 825 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
 826 * Returns false if the access is Checked and the check failed.  This
 827 * is only intended to probe the tag -- the validity of the page must
 828 * be checked beforehand.
 829 */
 830bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
 831{
 832    uint64_t fault;
 833    int ret = mte_probe_int(env, desc, ptr, 0, &fault);
 834
 835    return ret != 0;
 836}
 837
 838/*
 839 * Perform an MTE checked access for DC_ZVA.
 840 */
 841uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 842{
 843    uintptr_t ra = GETPC();
 844    int log2_dcz_bytes, log2_tag_bytes;
 845    int mmu_idx, bit55;
 846    intptr_t dcz_bytes, tag_bytes, i;
 847    void *mem;
 848    uint64_t ptr_tag, mem_tag, align_ptr;
 849
 850    bit55 = extract64(ptr, 55, 1);
 851
 852    /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 853    if (unlikely(!tbi_check(desc, bit55))) {
 854        return ptr;
 855    }
 856
 857    ptr_tag = allocation_tag_from_addr(ptr);
 858
 859    if (tcma_check(desc, bit55, ptr_tag)) {
 860        goto done;
 861    }
 862
 863    /*
 864     * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
 865     * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
 866     * sure that we can access one complete tag byte here.
 867     */
 868    log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 869    log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 870    dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 871    tag_bytes = (intptr_t)1 << log2_tag_bytes;
 872    align_ptr = ptr & -dcz_bytes;
 873
 874    /*
 875     * Trap if accessing an invalid page.  DC_ZVA requires that we supply
 876     * the original pointer for an invalid page.  But watchpoints require
 877     * that we probe the actual space.  So do both.
 878     */
 879    mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 880    (void) probe_write(env, ptr, 1, mmu_idx, ra);
 881    mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
 882                             dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
 883    if (!mem) {
 884        goto done;
 885    }
 886
 887    /*
 888     * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
 889     * it is quite easy to perform all of the comparisons at once without
 890     * any extra masking.
 891     *
 892     * The most common zva block size is 64; some of the thunderx cpus use
 893     * a block size of 128.  For user-only, aarch64_max_initfn will set the
 894     * block size to 512.  Fill out the other cases for future-proofing.
 895     *
 896     * In order to be able to find the first miscompare later, we want the
 897     * tag bytes to be in little-endian order.
 898     */
 899    switch (log2_tag_bytes) {
 900    case 0: /* zva_blocksize 32 */
 901        mem_tag = *(uint8_t *)mem;
 902        ptr_tag *= 0x11u;
 903        break;
 904    case 1: /* zva_blocksize 64 */
 905        mem_tag = cpu_to_le16(*(uint16_t *)mem);
 906        ptr_tag *= 0x1111u;
 907        break;
 908    case 2: /* zva_blocksize 128 */
 909        mem_tag = cpu_to_le32(*(uint32_t *)mem);
 910        ptr_tag *= 0x11111111u;
 911        break;
 912    case 3: /* zva_blocksize 256 */
 913        mem_tag = cpu_to_le64(*(uint64_t *)mem);
 914        ptr_tag *= 0x1111111111111111ull;
 915        break;
 916
 917    default: /* zva_blocksize 512, 1024, 2048 */
 918        ptr_tag *= 0x1111111111111111ull;
 919        i = 0;
 920        do {
 921            mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
 922            if (unlikely(mem_tag != ptr_tag)) {
 923                goto fail;
 924            }
 925            i += 8;
 926            align_ptr += 16 * TAG_GRANULE;
 927        } while (i < tag_bytes);
 928        goto done;
 929    }
 930
 931    if (likely(mem_tag == ptr_tag)) {
 932        goto done;
 933    }
 934
 935 fail:
 936    /* Locate the first nibble that differs. */
 937    i = ctz64(mem_tag ^ ptr_tag) >> 4;
 938    mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
 939
 940 done:
 941    return useronly_clean_ptr(ptr);
 942}
 943