qemu/target/hexagon/macros.h
<<
>>
Prefs
   1/*
   2 *  Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
   3 *
   4 *  This program is free software; you can redistribute it and/or modify
   5 *  it under the terms of the GNU General Public License as published by
   6 *  the Free Software Foundation; either version 2 of the License, or
   7 *  (at your option) any later version.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  16 */
  17
  18#ifndef HEXAGON_MACROS_H
  19#define HEXAGON_MACROS_H
  20
  21#include "cpu.h"
  22#include "hex_regs.h"
  23#include "reg_fields.h"
  24
  25#ifdef QEMU_GENERATE
  26#define READ_REG(dest, NUM)              gen_read_reg(dest, NUM)
  27#else
  28#define READ_REG(NUM)                    (env->gpr[(NUM)])
  29#define READ_PREG(NUM)                   (env->pred[NUM])
  30
  31#define WRITE_RREG(NUM, VAL)             log_reg_write(env, NUM, VAL, slot)
  32#define WRITE_PREG(NUM, VAL)             log_pred_write(env, NUM, VAL)
  33#endif
  34
  35#define PCALIGN 4
  36#define PCALIGN_MASK (PCALIGN - 1)
  37
  38#define GET_FIELD(FIELD, REGIN) \
  39    fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
  40                   reg_field_info[FIELD].offset)
  41
  42#ifdef QEMU_GENERATE
  43#define GET_USR_FIELD(FIELD, DST) \
  44    tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
  45                       reg_field_info[FIELD].offset, \
  46                       reg_field_info[FIELD].width)
  47
  48#define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
  49#define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
  50#define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
  51
  52#define SET_USR_FIELD_FUNC(X) \
  53    __builtin_choose_expr(TYPE_INT(X), \
  54        gen_set_usr_fieldi, \
  55        __builtin_choose_expr(TYPE_TCGV(X), \
  56            gen_set_usr_field, (void)0))
  57#define SET_USR_FIELD(FIELD, VAL) \
  58    SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
  59#else
  60#define GET_USR_FIELD(FIELD) \
  61    fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
  62                   reg_field_info[FIELD].offset)
  63
  64#define SET_USR_FIELD(FIELD, VAL) \
  65    fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
  66                 reg_field_info[FIELD].offset, (VAL))
  67#endif
  68
  69#ifdef QEMU_GENERATE
  70/*
  71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
  72 *
  73 * Slot 1 store with slot 0 load
  74 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
  75 * The packet attribute :mem_noshuf inhibits the instruction reordering that
  76 * would otherwise be done by the assembler. For example:
  77 *     {
  78 *         memw(R5) = R2 // slot 1 store
  79 *         R3 = memh(R6) // slot 0 load
  80 *     }:mem_noshuf
  81 * Unlike most packetized operations, these memory operations are not executed
  82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
  83 * effectively executes first, followed by the load instruction in Slot 0. If
  84 * the addresses of the two operations are overlapping, the load will receive
  85 * the newly stored data. This feature is supported in processor versions
  86 * V65 or greater.
  87 *
  88 *
  89 * For qemu, we look for a load in slot 0 when there is  a store in slot 1
  90 * in the same packet.  When we see this, we call a helper that merges the
  91 * bytes from the store buffer with the value loaded from memory.
  92 */
  93#define CHECK_NOSHUF \
  94    do { \
  95        if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
  96            process_store(ctx, pkt, 1); \
  97        } \
  98    } while (0)
  99
 100#define MEM_LOAD1s(DST, VA) \
 101    do { \
 102        CHECK_NOSHUF; \
 103        tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
 104    } while (0)
 105#define MEM_LOAD1u(DST, VA) \
 106    do { \
 107        CHECK_NOSHUF; \
 108        tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
 109    } while (0)
 110#define MEM_LOAD2s(DST, VA) \
 111    do { \
 112        CHECK_NOSHUF; \
 113        tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
 114    } while (0)
 115#define MEM_LOAD2u(DST, VA) \
 116    do { \
 117        CHECK_NOSHUF; \
 118        tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
 119    } while (0)
 120#define MEM_LOAD4s(DST, VA) \
 121    do { \
 122        CHECK_NOSHUF; \
 123        tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
 124    } while (0)
 125#define MEM_LOAD4u(DST, VA) \
 126    do { \
 127        CHECK_NOSHUF; \
 128        tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
 129    } while (0)
 130#define MEM_LOAD8u(DST, VA) \
 131    do { \
 132        CHECK_NOSHUF; \
 133        tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
 134    } while (0)
 135
 136#define MEM_STORE1_FUNC(X) \
 137    __builtin_choose_expr(TYPE_INT(X), \
 138        gen_store1i, \
 139        __builtin_choose_expr(TYPE_TCGV(X), \
 140            gen_store1, (void)0))
 141#define MEM_STORE1(VA, DATA, SLOT) \
 142    MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
 143
 144#define MEM_STORE2_FUNC(X) \
 145    __builtin_choose_expr(TYPE_INT(X), \
 146        gen_store2i, \
 147        __builtin_choose_expr(TYPE_TCGV(X), \
 148            gen_store2, (void)0))
 149#define MEM_STORE2(VA, DATA, SLOT) \
 150    MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
 151
 152#define MEM_STORE4_FUNC(X) \
 153    __builtin_choose_expr(TYPE_INT(X), \
 154        gen_store4i, \
 155        __builtin_choose_expr(TYPE_TCGV(X), \
 156            gen_store4, (void)0))
 157#define MEM_STORE4(VA, DATA, SLOT) \
 158    MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
 159
 160#define MEM_STORE8_FUNC(X) \
 161    __builtin_choose_expr(TYPE_INT(X), \
 162        gen_store8i, \
 163        __builtin_choose_expr(TYPE_TCGV_I64(X), \
 164            gen_store8, (void)0))
 165#define MEM_STORE8(VA, DATA, SLOT) \
 166    MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
 167#else
 168#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
 169#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
 170#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
 171#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
 172#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
 173#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
 174#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
 175#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
 176
 177#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
 178#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
 179#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
 180#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
 181#endif
 182
 183#define CANCEL cancel_slot(env, slot)
 184
 185#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
 186
 187#ifdef QEMU_GENERATE
 188static inline void gen_pred_cancel(TCGv pred, int slot_num)
 189 {
 190    TCGv slot_mask = tcg_const_tl(1 << slot_num);
 191    TCGv tmp = tcg_temp_new();
 192    TCGv zero = tcg_const_tl(0);
 193    TCGv one = tcg_const_tl(1);
 194    tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
 195    tcg_gen_andi_tl(tmp, pred, 1);
 196    tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
 197                       slot_mask, hex_slot_cancelled);
 198    tcg_temp_free(slot_mask);
 199    tcg_temp_free(tmp);
 200    tcg_temp_free(zero);
 201    tcg_temp_free(one);
 202}
 203#define PRED_LOAD_CANCEL(PRED, EA) \
 204    gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
 205#endif
 206
 207#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
 208
 209#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
 210
 211#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
 212
 213#define fABS(A) (((A) < 0) ? (-(A)) : (A))
 214#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
 215    REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
 216#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
 217    ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
 218#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
 219    (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
 220#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
 221    (((HIBIT) - (LOWBIT) + 1) ? \
 222        extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
 223        0LL)
 224#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
 225    do { \
 226        int width = ((HIBIT) - (LOWBIT) + 1); \
 227        INREG = (width >= 0 ? \
 228            deposit64((INREG), (LOWBIT), width, (INVAL)) : \
 229            INREG); \
 230    } while (0)
 231
 232#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
 233
 234#ifdef QEMU_GENERATE
 235#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
 236#else
 237#define fLSBOLD(VAL)  ((VAL) & 1)
 238#endif
 239
 240#ifdef QEMU_GENERATE
 241#define fLSBNEW(PVAL)   tcg_gen_andi_tl(LSB, (PVAL), 1)
 242#define fLSBNEW0        tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
 243#define fLSBNEW1        tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
 244#else
 245#define fLSBNEW(PVAL)   ((PVAL) & 1)
 246#define fLSBNEW0        (env->new_pred_value[0] & 1)
 247#define fLSBNEW1        (env->new_pred_value[1] & 1)
 248#endif
 249
 250#ifdef QEMU_GENERATE
 251#define fLSBOLDNOT(VAL) \
 252    do { \
 253        tcg_gen_andi_tl(LSB, (VAL), 1); \
 254        tcg_gen_xori_tl(LSB, LSB, 1); \
 255    } while (0)
 256#define fLSBNEWNOT(PNUM) \
 257    do { \
 258        tcg_gen_andi_tl(LSB, (PNUM), 1); \
 259        tcg_gen_xori_tl(LSB, LSB, 1); \
 260    } while (0)
 261#else
 262#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
 263#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
 264#define fLSBNEW0NOT (!fLSBNEW0)
 265#define fLSBNEW1NOT (!fLSBNEW1)
 266#endif
 267
 268#define fNEWREG(VAL) ((int32_t)(VAL))
 269
 270#define fNEWREG_ST(VAL) (VAL)
 271
 272#define fSATUVALN(N, VAL) \
 273    ({ \
 274        fSET_OVERFLOW(); \
 275        ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
 276    })
 277#define fSATVALN(N, VAL) \
 278    ({ \
 279        fSET_OVERFLOW(); \
 280        ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
 281    })
 282#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
 283#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
 284#define fSATN(N, VAL) \
 285    ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
 286#define fADDSAT64(DST, A, B) \
 287    do { \
 288        uint64_t __a = fCAST8u(A); \
 289        uint64_t __b = fCAST8u(B); \
 290        uint64_t __sum = __a + __b; \
 291        uint64_t __xor = __a ^ __b; \
 292        const uint64_t __mask = 0x8000000000000000ULL; \
 293        if (__xor & __mask) { \
 294            DST = __sum; \
 295        } \
 296        else if ((__a ^ __sum) & __mask) { \
 297            if (__sum & __mask) { \
 298                DST = 0x7FFFFFFFFFFFFFFFLL; \
 299                fSET_OVERFLOW(); \
 300            } else { \
 301                DST = 0x8000000000000000LL; \
 302                fSET_OVERFLOW(); \
 303            } \
 304        } else { \
 305            DST = __sum; \
 306        } \
 307    } while (0)
 308#define fSATUN(N, VAL) \
 309    ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
 310#define fSATH(VAL) (fSATN(16, VAL))
 311#define fSATUH(VAL) (fSATUN(16, VAL))
 312#define fSATUB(VAL) (fSATUN(8, VAL))
 313#define fSATB(VAL) (fSATN(8, VAL))
 314#define fIMMEXT(IMM) (IMM = IMM)
 315#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
 316
 317#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
 318
 319#ifdef QEMU_GENERATE
 320static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
 321{
 322    /*
 323     * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
 324     *
 325     *  The "I" value from a modifier register is divided into two pieces
 326     *      LSB         bits 23:17
 327     *      MSB         bits 31:28
 328     * The value is signed
 329     *
 330     * At the end we shift the result according to the shift argument
 331     */
 332    TCGv msb = tcg_temp_new();
 333    TCGv lsb = tcg_temp_new();
 334
 335    tcg_gen_extract_tl(lsb, val, 17, 7);
 336    tcg_gen_sari_tl(msb, val, 21);
 337    tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
 338
 339    tcg_gen_shli_tl(result, result, shift);
 340
 341    tcg_temp_free(msb);
 342    tcg_temp_free(lsb);
 343
 344    return result;
 345}
 346#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
 347#else
 348#define fREAD_IREG(VAL) \
 349    (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
 350#endif
 351
 352#define fREAD_LR() (READ_REG(HEX_REG_LR))
 353
 354#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
 355#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
 356#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
 357
 358#define fREAD_SP() (READ_REG(HEX_REG_SP))
 359#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
 360#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
 361#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
 362#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
 363#define fREAD_FP() (READ_REG(HEX_REG_FP))
 364#ifdef FIXME
 365/* Figure out how to get insn->extension_valid to helper */
 366#define fREAD_GP() \
 367    (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
 368#else
 369#define fREAD_GP() READ_REG(HEX_REG_GP)
 370#endif
 371#define fREAD_PC() (READ_REG(HEX_REG_PC))
 372
 373#define fREAD_NPC() (env->next_PC & (0xfffffffe))
 374
 375#define fREAD_P0() (READ_PREG(0))
 376#define fREAD_P3() (READ_PREG(3))
 377
 378#define fCHECK_PCALIGN(A)
 379
 380#define fWRITE_NPC(A) write_new_pc(env, A)
 381
 382#define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
 383#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
 384#define fHINTJR(TARGET) { /* Not modelled in qemu */}
 385#define fCALL(A) \
 386    do { \
 387        fWRITE_LR(fREAD_NPC()); \
 388        fBRANCH(A, COF_TYPE_CALL); \
 389    } while (0)
 390#define fCALLR(A) \
 391    do { \
 392        fWRITE_LR(fREAD_NPC()); \
 393        fBRANCH(A, COF_TYPE_CALLR); \
 394    } while (0)
 395#define fWRITE_LOOP_REGS0(START, COUNT) \
 396    do { \
 397        WRITE_RREG(HEX_REG_LC0, COUNT);  \
 398        WRITE_RREG(HEX_REG_SA0, START); \
 399    } while (0)
 400#define fWRITE_LOOP_REGS1(START, COUNT) \
 401    do { \
 402        WRITE_RREG(HEX_REG_LC1, COUNT);  \
 403        WRITE_RREG(HEX_REG_SA1, START);\
 404    } while (0)
 405#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
 406#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
 407
 408#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
 409#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
 410#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
 411#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
 412#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
 413#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
 414#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
 415#define fPART1(WORK) if (part1) { WORK; return; }
 416#define fCAST4u(A) ((uint32_t)(A))
 417#define fCAST4s(A) ((int32_t)(A))
 418#define fCAST8u(A) ((uint64_t)(A))
 419#define fCAST8s(A) ((int64_t)(A))
 420#define fCAST4_4s(A) ((int32_t)(A))
 421#define fCAST4_4u(A) ((uint32_t)(A))
 422#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
 423#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
 424#define fCAST8_8s(A) ((int64_t)(A))
 425#define fCAST8_8u(A) ((uint64_t)(A))
 426#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
 427#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
 428#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
 429#define fSE8_16(A) ((int16_t)((int8_t)(A)))
 430#define fSE16_32(A) ((int32_t)((int16_t)(A)))
 431#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
 432#define fSE32_64(A) ((int64_t)((int32_t)(A)))
 433#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
 434#define fSE8_32(A) ((int32_t)((int8_t)(A)))
 435#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
 436#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
 437#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
 438#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
 439#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
 440#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
 441#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
 442#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
 443#define fMPY16US(A, B) fMPY16SU(B, A)
 444#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
 445#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
 446#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
 447#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
 448#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
 449#define fROUND(A) (A + 0x8000)
 450#define fCLIP(DST, SRC, U) \
 451    do { \
 452        int32_t maxv = (1 << U) - 1; \
 453        int32_t minv = -(1 << U); \
 454        DST = fMIN(maxv, fMAX(SRC, minv)); \
 455    } while (0)
 456#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
 457#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
 458#define fCRNDN(A, N) (conv_round(A, N))
 459#define fADD128(A, B) (int128_add(A, B))
 460#define fSUB128(A, B) (int128_sub(A, B))
 461#define fSHIFTR128(A, B) (int128_rshift(A, B))
 462#define fSHIFTL128(A, B) (int128_lshift(A, B))
 463#define fAND128(A, B) (int128_and(A, B))
 464#define fCAST8S_16S(A) (int128_exts64(A))
 465#define fCAST16S_8S(A) (int128_getlo(A))
 466
 467#ifdef QEMU_GENERATE
 468#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
 469#define fEA_RRs(REG, REG2, SCALE) \
 470    do { \
 471        TCGv tmp = tcg_temp_new(); \
 472        tcg_gen_shli_tl(tmp, REG2, SCALE); \
 473        tcg_gen_add_tl(EA, REG, tmp); \
 474        tcg_temp_free(tmp); \
 475    } while (0)
 476#define fEA_IRs(IMM, REG, SCALE) \
 477    do { \
 478        tcg_gen_shli_tl(EA, REG, SCALE); \
 479        tcg_gen_addi_tl(EA, EA, IMM); \
 480    } while (0)
 481#else
 482#define fEA_RI(REG, IMM) \
 483    do { \
 484        EA = REG + IMM; \
 485    } while (0)
 486#define fEA_RRs(REG, REG2, SCALE) \
 487    do { \
 488        EA = REG + (REG2 << SCALE); \
 489    } while (0)
 490#define fEA_IRs(IMM, REG, SCALE) \
 491    do { \
 492        EA = IMM + (REG << SCALE); \
 493    } while (0)
 494#endif
 495
 496#ifdef QEMU_GENERATE
 497#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
 498#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
 499#define fEA_BREVR(REG)      gen_helper_fbrev(EA, REG)
 500#define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
 501#define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
 502#define fPM_CIRI(REG, IMM, MVAL) \
 503    do { \
 504        TCGv tcgv_siV = tcg_const_tl(siV); \
 505        gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
 506                            hex_gpr[HEX_REG_CS0 + MuN]); \
 507        tcg_temp_free(tcgv_siV); \
 508    } while (0)
 509#else
 510#define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
 511#define fEA_REG(REG)        do { EA = (REG); } while (0)
 512#define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
 513#define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
 514#define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
 515#endif
 516#define fSCALE(N, A) (((int64_t)(A)) << N)
 517#define fSATW(A) fSATN(32, ((long long)A))
 518#define fSAT(A) fSATN(32, (A))
 519#define fSAT_ORIG_SHL(A, ORIG_REG) \
 520    ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
 521        ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
 522        : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
 523                                            : fSAT(A)))
 524#define fPASS(A) A
 525#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
 526    (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
 527                   : (fCAST##REGSTYPE(SRC) << (SHAMT)))
 528#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
 529    fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
 530#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
 531    fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
 532#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
 533    (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
 534                   : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
 535#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
 536    (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
 537                   : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
 538#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
 539    fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
 540#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
 541    fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
 542#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
 543    (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
 544                        << ((-(SHAMT)) - 1)) << 1, (SRC)) \
 545                   : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
 546#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
 547#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
 548    (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
 549#define fROTL(SRC, SHAMT, REGSTYPE) \
 550    (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
 551                              ((fCAST##REGSTYPE##u(SRC) >> \
 552                                 ((sizeof(SRC) * 8) - (SHAMT))))))
 553#define fROTR(SRC, SHAMT, REGSTYPE) \
 554    (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
 555                              ((fCAST##REGSTYPE##u(SRC) << \
 556                                 ((sizeof(SRC) * 8) - (SHAMT))))))
 557#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
 558    (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
 559
 560#ifdef QEMU_GENERATE
 561#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
 562#else
 563#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
 564    DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
 565#endif
 566
 567#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
 568
 569#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
 570#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
 571#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
 572
 573#ifdef CONFIG_USER_ONLY
 574#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
 575#else
 576/* System mode not implemented yet */
 577#define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
 578#endif
 579
 580#ifdef QEMU_GENERATE
 581#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
 582    gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
 583#endif
 584
 585#ifdef QEMU_GENERATE
 586#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
 587#else
 588#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
 589#endif
 590
 591#ifdef QEMU_GENERATE
 592#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
 593    gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
 594#endif
 595
 596#ifdef QEMU_GENERATE
 597#define GETBYTE_FUNC(X) \
 598    __builtin_choose_expr(TYPE_TCGV(X), \
 599        gen_get_byte, \
 600        __builtin_choose_expr(TYPE_TCGV_I64(X), \
 601            gen_get_byte_i64, (void)0))
 602#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
 603#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
 604#else
 605#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
 606#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
 607#endif
 608
 609#define fSETBYTE(N, DST, VAL) \
 610    do { \
 611        DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
 612        (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
 613    } while (0)
 614
 615#ifdef QEMU_GENERATE
 616#define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
 617#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
 618#else
 619#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
 620#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
 621#endif
 622#define fSETHALF(N, DST, VAL) \
 623    do { \
 624        DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
 625        (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
 626    } while (0)
 627#define fSETHALFw fSETHALF
 628#define fSETHALFd fSETHALF
 629
 630#define fGETWORD(N, SRC) \
 631    ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
 632#define fGETUWORD(N, SRC) \
 633    ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
 634
 635#define fSETWORD(N, DST, VAL) \
 636    do { \
 637        DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
 638              (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
 639    } while (0)
 640
 641#define fSETBIT(N, DST, VAL) \
 642    do { \
 643        DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
 644    } while (0)
 645
 646#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
 647#define fSETBITS(HI, LO, DST, VAL) \
 648    do { \
 649        int j; \
 650        for (j = LO; j <= HI; j++) { \
 651            fSETBIT(j, DST, VAL); \
 652        } \
 653    } while (0)
 654#define fCOUNTONES_4(VAL) ctpop32(VAL)
 655#define fCOUNTONES_8(VAL) ctpop64(VAL)
 656#define fBREV_8(VAL) revbit64(VAL)
 657#define fBREV_4(VAL) revbit32(VAL)
 658#define fCL1_8(VAL) clo64(VAL)
 659#define fCL1_4(VAL) clo32(VAL)
 660#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
 661#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
 662#define fHIDE(A) A
 663#define fCONSTLL(A) A##LL
 664#define fECHO(A) (A)
 665
 666#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
 667#define fPAUSE(IMM)
 668
 669#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
 670    ((VAL) << reg_field_info[FIELD].offset)
 671#define fGET_REG_FIELD_MASK(FIELD) \
 672    (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
 673#define fREAD_REG_FIELD(REG, FIELD) \
 674    fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
 675                   reg_field_info[FIELD].width, \
 676                   reg_field_info[FIELD].offset)
 677#define fGET_FIELD(VAL, FIELD)
 678#define fSET_FIELD(VAL, FIELD, NEWVAL)
 679#define fBARRIER()
 680#define fSYNCH()
 681#define fISYNC()
 682#define fDCFETCH(REG) \
 683    do { (void)REG; } while (0) /* Nothing to do in qemu */
 684#define fICINVA(REG) \
 685    do { (void)REG; } while (0) /* Nothing to do in qemu */
 686#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
 687#define fDCCLEANA(REG) \
 688    do { (void)REG; } while (0) /* Nothing to do in qemu */
 689#define fDCCLEANINVA(REG) \
 690    do { (void)REG; } while (0) /* Nothing to do in qemu */
 691
 692#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
 693
 694#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
 695                                STRBITNUM) /* Nothing */
 696
 697
 698#endif
 699