qemu/target/s390x/mmu_helper.c
<<
>>
Prefs
   1/*
   2 * S390x MMU related functions
   3 *
   4 * Copyright (c) 2011 Alexander Graf
   5 * Copyright (c) 2015 Thomas Huth, IBM Corporation
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include "qemu/osdep.h"
  19#include "qemu/error-report.h"
  20#include "exec/address-spaces.h"
  21#include "cpu.h"
  22#include "s390x-internal.h"
  23#include "kvm/kvm_s390x.h"
  24#include "sysemu/kvm.h"
  25#include "sysemu/tcg.h"
  26#include "exec/exec-all.h"
  27#include "trace.h"
  28#include "hw/hw.h"
  29#include "hw/s390x/storage-keys.h"
  30#include "hw/boards.h"
  31
  32/* Fetch/store bits in the translation exception code: */
  33#define FS_READ  0x800
  34#define FS_WRITE 0x400
  35
  36static void trigger_access_exception(CPUS390XState *env, uint32_t type,
  37                                     uint64_t tec)
  38{
  39    S390CPU *cpu = env_archcpu(env);
  40
  41    if (kvm_enabled()) {
  42        kvm_s390_access_exception(cpu, type, tec);
  43    } else {
  44        CPUState *cs = env_cpu(env);
  45        if (type != PGM_ADDRESSING) {
  46            stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
  47        }
  48        trigger_pgm_exception(env, type);
  49    }
  50}
  51
  52/* check whether the address would be proteted by Low-Address Protection */
  53static bool is_low_address(uint64_t addr)
  54{
  55    return addr <= 511 || (addr >= 4096 && addr <= 4607);
  56}
  57
  58/* check whether Low-Address Protection is enabled for mmu_translate() */
  59static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
  60{
  61    if (!(env->cregs[0] & CR0_LOWPROT)) {
  62        return false;
  63    }
  64    if (!(env->psw.mask & PSW_MASK_DAT)) {
  65        return true;
  66    }
  67
  68    /* Check the private-space control bit */
  69    switch (asc) {
  70    case PSW_ASC_PRIMARY:
  71        return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
  72    case PSW_ASC_SECONDARY:
  73        return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
  74    case PSW_ASC_HOME:
  75        return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
  76    default:
  77        /* We don't support access register mode */
  78        error_report("unsupported addressing mode");
  79        exit(1);
  80    }
  81}
  82
  83/**
  84 * Translate real address to absolute (= physical)
  85 * address by taking care of the prefix mapping.
  86 */
  87target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
  88{
  89    if (raddr < 0x2000) {
  90        return raddr + env->psa;    /* Map the lowcore. */
  91    } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
  92        return raddr - env->psa;    /* Map the 0 page. */
  93    }
  94    return raddr;
  95}
  96
  97static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr,
  98                                    uint64_t *entry)
  99{
 100    CPUState *cs = env_cpu(env);
 101
 102    /*
 103     * According to the PoP, these table addresses are "unpredictably real
 104     * or absolute". Also, "it is unpredictable whether the address wraps
 105     * or an addressing exception is recognized".
 106     *
 107     * We treat them as absolute addresses and don't wrap them.
 108     */
 109    if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED,
 110                                    entry, sizeof(*entry)) !=
 111                 MEMTX_OK)) {
 112        return false;
 113    }
 114    *entry = be64_to_cpu(*entry);
 115    return true;
 116}
 117
 118static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
 119                              uint64_t asc, uint64_t asce, target_ulong *raddr,
 120                              int *flags, int rw)
 121{
 122    const bool edat1 = (env->cregs[0] & CR0_EDAT) &&
 123                       s390_has_feat(S390_FEAT_EDAT);
 124    const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2);
 125    const bool iep = (env->cregs[0] & CR0_IEP) &&
 126                     s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT);
 127    const int asce_tl = asce & ASCE_TABLE_LENGTH;
 128    const int asce_p = asce & ASCE_PRIVATE_SPACE;
 129    hwaddr gaddr = asce & ASCE_ORIGIN;
 130    uint64_t entry;
 131
 132    if (asce & ASCE_REAL_SPACE) {
 133        /* direct mapping */
 134        *raddr = vaddr;
 135        return 0;
 136    }
 137
 138    switch (asce & ASCE_TYPE_MASK) {
 139    case ASCE_TYPE_REGION1:
 140        if (VADDR_REGION1_TL(vaddr) > asce_tl) {
 141            return PGM_REG_FIRST_TRANS;
 142        }
 143        gaddr += VADDR_REGION1_TX(vaddr) * 8;
 144        break;
 145    case ASCE_TYPE_REGION2:
 146        if (VADDR_REGION1_TX(vaddr)) {
 147            return PGM_ASCE_TYPE;
 148        }
 149        if (VADDR_REGION2_TL(vaddr) > asce_tl) {
 150            return PGM_REG_SEC_TRANS;
 151        }
 152        gaddr += VADDR_REGION2_TX(vaddr) * 8;
 153        break;
 154    case ASCE_TYPE_REGION3:
 155        if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) {
 156            return PGM_ASCE_TYPE;
 157        }
 158        if (VADDR_REGION3_TL(vaddr) > asce_tl) {
 159            return PGM_REG_THIRD_TRANS;
 160        }
 161        gaddr += VADDR_REGION3_TX(vaddr) * 8;
 162        break;
 163    case ASCE_TYPE_SEGMENT:
 164        if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) ||
 165            VADDR_REGION3_TX(vaddr)) {
 166            return PGM_ASCE_TYPE;
 167        }
 168        if (VADDR_SEGMENT_TL(vaddr) > asce_tl) {
 169            return PGM_SEGMENT_TRANS;
 170        }
 171        gaddr += VADDR_SEGMENT_TX(vaddr) * 8;
 172        break;
 173    }
 174
 175    switch (asce & ASCE_TYPE_MASK) {
 176    case ASCE_TYPE_REGION1:
 177        if (!read_table_entry(env, gaddr, &entry)) {
 178            return PGM_ADDRESSING;
 179        }
 180        if (entry & REGION_ENTRY_I) {
 181            return PGM_REG_FIRST_TRANS;
 182        }
 183        if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) {
 184            return PGM_TRANS_SPEC;
 185        }
 186        if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
 187            VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
 188            return PGM_REG_SEC_TRANS;
 189        }
 190        if (edat1 && (entry & REGION_ENTRY_P)) {
 191            *flags &= ~PAGE_WRITE;
 192        }
 193        gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8;
 194        /* fall through */
 195    case ASCE_TYPE_REGION2:
 196        if (!read_table_entry(env, gaddr, &entry)) {
 197            return PGM_ADDRESSING;
 198        }
 199        if (entry & REGION_ENTRY_I) {
 200            return PGM_REG_SEC_TRANS;
 201        }
 202        if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) {
 203            return PGM_TRANS_SPEC;
 204        }
 205        if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
 206            VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
 207            return PGM_REG_THIRD_TRANS;
 208        }
 209        if (edat1 && (entry & REGION_ENTRY_P)) {
 210            *flags &= ~PAGE_WRITE;
 211        }
 212        gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8;
 213        /* fall through */
 214    case ASCE_TYPE_REGION3:
 215        if (!read_table_entry(env, gaddr, &entry)) {
 216            return PGM_ADDRESSING;
 217        }
 218        if (entry & REGION_ENTRY_I) {
 219            return PGM_REG_THIRD_TRANS;
 220        }
 221        if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) {
 222            return PGM_TRANS_SPEC;
 223        }
 224        if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) {
 225            return PGM_TRANS_SPEC;
 226        }
 227        if (edat1 && (entry & REGION_ENTRY_P)) {
 228            *flags &= ~PAGE_WRITE;
 229        }
 230        if (edat2 && (entry & REGION3_ENTRY_FC)) {
 231            if (iep && (entry & REGION3_ENTRY_IEP)) {
 232                *flags &= ~PAGE_EXEC;
 233            }
 234            *raddr = (entry & REGION3_ENTRY_RFAA) |
 235                     (vaddr & ~REGION3_ENTRY_RFAA);
 236            return 0;
 237        }
 238        if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
 239            VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
 240            return PGM_SEGMENT_TRANS;
 241        }
 242        gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8;
 243        /* fall through */
 244    case ASCE_TYPE_SEGMENT:
 245        if (!read_table_entry(env, gaddr, &entry)) {
 246            return PGM_ADDRESSING;
 247        }
 248        if (entry & SEGMENT_ENTRY_I) {
 249            return PGM_SEGMENT_TRANS;
 250        }
 251        if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) {
 252            return PGM_TRANS_SPEC;
 253        }
 254        if ((entry & SEGMENT_ENTRY_CS) && asce_p) {
 255            return PGM_TRANS_SPEC;
 256        }
 257        if (entry & SEGMENT_ENTRY_P) {
 258            *flags &= ~PAGE_WRITE;
 259        }
 260        if (edat1 && (entry & SEGMENT_ENTRY_FC)) {
 261            if (iep && (entry & SEGMENT_ENTRY_IEP)) {
 262                *flags &= ~PAGE_EXEC;
 263            }
 264            *raddr = (entry & SEGMENT_ENTRY_SFAA) |
 265                     (vaddr & ~SEGMENT_ENTRY_SFAA);
 266            return 0;
 267        }
 268        gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8;
 269        break;
 270    }
 271
 272    if (!read_table_entry(env, gaddr, &entry)) {
 273        return PGM_ADDRESSING;
 274    }
 275    if (entry & PAGE_ENTRY_I) {
 276        return PGM_PAGE_TRANS;
 277    }
 278    if (entry & PAGE_ENTRY_0) {
 279        return PGM_TRANS_SPEC;
 280    }
 281    if (entry & PAGE_ENTRY_P) {
 282        *flags &= ~PAGE_WRITE;
 283    }
 284    if (iep && (entry & PAGE_ENTRY_IEP)) {
 285        *flags &= ~PAGE_EXEC;
 286    }
 287
 288    *raddr = entry & TARGET_PAGE_MASK;
 289    return 0;
 290}
 291
 292static void mmu_handle_skey(target_ulong addr, int rw, int *flags)
 293{
 294    static S390SKeysClass *skeyclass;
 295    static S390SKeysState *ss;
 296    MachineState *ms = MACHINE(qdev_get_machine());
 297    uint8_t key;
 298    int rc;
 299
 300    if (unlikely(addr >= ms->ram_size)) {
 301        return;
 302    }
 303
 304    if (unlikely(!ss)) {
 305        ss = s390_get_skeys_device();
 306        skeyclass = S390_SKEYS_GET_CLASS(ss);
 307    }
 308
 309    /*
 310     * Whenever we create a new TLB entry, we set the storage key reference
 311     * bit. In case we allow write accesses, we set the storage key change
 312     * bit. Whenever the guest changes the storage key, we have to flush the
 313     * TLBs of all CPUs (the whole TLB or all affected entries), so that the
 314     * next reference/change will result in an MMU fault and make us properly
 315     * update the storage key here.
 316     *
 317     * Note 1: "record of references ... is not necessarily accurate",
 318     *         "change bit may be set in case no storing has occurred".
 319     *         -> We can set reference/change bits even on exceptions.
 320     * Note 2: certain accesses seem to ignore storage keys. For example,
 321     *         DAT translation does not set reference bits for table accesses.
 322     *
 323     * TODO: key-controlled protection. Only CPU accesses make use of the
 324     *       PSW key. CSS accesses are different - we have to pass in the key.
 325     *
 326     * TODO: we have races between getting and setting the key.
 327     */
 328    rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
 329    if (rc) {
 330        trace_get_skeys_nonzero(rc);
 331        return;
 332    }
 333
 334    switch (rw) {
 335    case MMU_DATA_LOAD:
 336    case MMU_INST_FETCH:
 337        /*
 338         * The TLB entry has to remain write-protected on read-faults if
 339         * the storage key does not indicate a change already. Otherwise
 340         * we might miss setting the change bit on write accesses.
 341         */
 342        if (!(key & SK_C)) {
 343            *flags &= ~PAGE_WRITE;
 344        }
 345        break;
 346    case MMU_DATA_STORE:
 347        key |= SK_C;
 348        break;
 349    default:
 350        g_assert_not_reached();
 351    }
 352
 353    /* Any store/fetch sets the reference bit */
 354    key |= SK_R;
 355
 356    rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
 357    if (rc) {
 358        trace_set_skeys_nonzero(rc);
 359    }
 360}
 361
 362/**
 363 * Translate a virtual (logical) address into a physical (absolute) address.
 364 * @param vaddr  the virtual address
 365 * @param rw     0 = read, 1 = write, 2 = code fetch
 366 * @param asc    address space control (one of the PSW_ASC_* modes)
 367 * @param raddr  the translated address is stored to this pointer
 368 * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
 369 * @param exc    true = inject a program check if a fault occurred
 370 * @return       0 = success, != 0, the exception to raise
 371 */
 372int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
 373                  target_ulong *raddr, int *flags, uint64_t *tec)
 374{
 375    uint64_t asce;
 376    int r;
 377
 378    *tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) |
 379            (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ);
 380    *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 381
 382    if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
 383        /*
 384         * If any part of this page is currently protected, make sure the
 385         * TLB entry will not be reused.
 386         *
 387         * As the protected range is always the first 512 bytes of the
 388         * two first pages, we are able to catch all writes to these areas
 389         * just by looking at the start address (triggering the tlb miss).
 390         */
 391        *flags |= PAGE_WRITE_INV;
 392        if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
 393            /* LAP sets bit 56 */
 394            *tec |= 0x80;
 395            return PGM_PROTECTION;
 396        }
 397    }
 398
 399    vaddr &= TARGET_PAGE_MASK;
 400
 401    if (!(env->psw.mask & PSW_MASK_DAT)) {
 402        *raddr = vaddr;
 403        goto nodat;
 404    }
 405
 406    switch (asc) {
 407    case PSW_ASC_PRIMARY:
 408        asce = env->cregs[1];
 409        break;
 410    case PSW_ASC_HOME:
 411        asce = env->cregs[13];
 412        break;
 413    case PSW_ASC_SECONDARY:
 414        asce = env->cregs[7];
 415        break;
 416    case PSW_ASC_ACCREG:
 417    default:
 418        hw_error("guest switched to unknown asc mode\n");
 419        break;
 420    }
 421
 422    /* perform the DAT translation */
 423    r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags, rw);
 424    if (unlikely(r)) {
 425        return r;
 426    }
 427
 428    /* check for DAT protection */
 429    if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) {
 430        /* DAT sets bit 61 only */
 431        *tec |= 0x4;
 432        return PGM_PROTECTION;
 433    }
 434
 435    /* check for Instruction-Execution-Protection */
 436    if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) {
 437        /* IEP sets bit 56 and 61 */
 438        *tec |= 0x84;
 439        return PGM_PROTECTION;
 440    }
 441
 442nodat:
 443    /* Convert real address -> absolute address */
 444    *raddr = mmu_real2abs(env, *raddr);
 445
 446    mmu_handle_skey(*raddr, rw, flags);
 447    return 0;
 448}
 449
 450/**
 451 * translate_pages: Translate a set of consecutive logical page addresses
 452 * to absolute addresses. This function is used for TCG and old KVM without
 453 * the MEMOP interface.
 454 */
 455static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
 456                           target_ulong *pages, bool is_write, uint64_t *tec)
 457{
 458    uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
 459    CPUS390XState *env = &cpu->env;
 460    int ret, i, pflags;
 461
 462    for (i = 0; i < nr_pages; i++) {
 463        ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec);
 464        if (ret) {
 465            return ret;
 466        }
 467        if (!address_space_access_valid(&address_space_memory, pages[i],
 468                                        TARGET_PAGE_SIZE, is_write,
 469                                        MEMTXATTRS_UNSPECIFIED)) {
 470            *tec = 0; /* unused */
 471            return PGM_ADDRESSING;
 472        }
 473        addr += TARGET_PAGE_SIZE;
 474    }
 475
 476    return 0;
 477}
 478
 479int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf,
 480                       int len, bool is_write)
 481{
 482    int ret;
 483
 484    if (kvm_enabled()) {
 485        ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write);
 486    } else {
 487        /* Protected Virtualization is a KVM/Hardware only feature */
 488        g_assert_not_reached();
 489    }
 490    return ret;
 491}
 492
 493/**
 494 * s390_cpu_virt_mem_rw:
 495 * @laddr:     the logical start address
 496 * @ar:        the access register number
 497 * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
 498 * @len:       length that should be transferred
 499 * @is_write:  true = write, false = read
 500 * Returns:    0 on success, non-zero if an exception occurred
 501 *
 502 * Copy from/to guest memory using logical addresses. Note that we inject a
 503 * program interrupt in case there is an error while accessing the memory.
 504 *
 505 * This function will always return (also for TCG), make sure to call
 506 * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
 507 */
 508int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
 509                         int len, bool is_write)
 510{
 511    int currlen, nr_pages, i;
 512    target_ulong *pages;
 513    uint64_t tec;
 514    int ret;
 515
 516    if (kvm_enabled()) {
 517        ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
 518        if (ret >= 0) {
 519            return ret;
 520        }
 521    }
 522
 523    nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
 524               + 1;
 525    pages = g_malloc(nr_pages * sizeof(*pages));
 526
 527    ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec);
 528    if (ret) {
 529        trigger_access_exception(&cpu->env, ret, tec);
 530    } else if (hostbuf != NULL) {
 531        /* Copy data by stepping through the area page by page */
 532        for (i = 0; i < nr_pages; i++) {
 533            currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
 534            cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
 535                                   hostbuf, currlen, is_write);
 536            laddr += currlen;
 537            hostbuf += currlen;
 538            len -= currlen;
 539        }
 540    }
 541
 542    g_free(pages);
 543    return ret;
 544}
 545
 546void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
 547{
 548    /* KVM will handle the interrupt automatically, TCG has to exit the TB */
 549#ifdef CONFIG_TCG
 550    if (tcg_enabled()) {
 551        cpu_loop_exit_restore(CPU(cpu), ra);
 552    }
 553#endif
 554}
 555
 556/**
 557 * Translate a real address into a physical (absolute) address.
 558 * @param raddr  the real address
 559 * @param rw     0 = read, 1 = write, 2 = code fetch
 560 * @param addr   the translated address is stored to this pointer
 561 * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
 562 * @return       0 = success, != 0, the exception to raise
 563 */
 564int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
 565                       target_ulong *addr, int *flags, uint64_t *tec)
 566{
 567    const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
 568
 569    *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 570    if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
 571        /* see comment in mmu_translate() how this works */
 572        *flags |= PAGE_WRITE_INV;
 573        if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
 574            /* LAP sets bit 56 */
 575            *tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80;
 576            return PGM_PROTECTION;
 577        }
 578    }
 579
 580    *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
 581
 582    mmu_handle_skey(*addr, rw, flags);
 583    return 0;
 584}
 585