qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu-common.h"
  12#include "qemu/datadir.h"
  13#include "qemu/error-report.h"
  14#include "qapi/error.h"
  15#include <libfdt.h>
  16#include "hw/arm/boot.h"
  17#include "hw/arm/linux-boot-if.h"
  18#include "sysemu/kvm.h"
  19#include "sysemu/sysemu.h"
  20#include "sysemu/numa.h"
  21#include "hw/boards.h"
  22#include "sysemu/reset.h"
  23#include "hw/loader.h"
  24#include "elf.h"
  25#include "sysemu/device_tree.h"
  26#include "qemu/config-file.h"
  27#include "qemu/option.h"
  28#include "qemu/units.h"
  29
  30/* Kernel boot protocol is specified in the kernel docs
  31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  32 * They have different preferred image load offsets from system RAM base.
  33 */
  34#define KERNEL_ARGS_ADDR   0x100
  35#define KERNEL_NOLOAD_ADDR 0x02000000
  36#define KERNEL_LOAD_ADDR   0x00010000
  37#define KERNEL64_LOAD_ADDR 0x00080000
  38
  39#define ARM64_TEXT_OFFSET_OFFSET    8
  40#define ARM64_MAGIC_OFFSET          56
  41
  42#define BOOTLOADER_MAX_SIZE         (4 * KiB)
  43
  44AddressSpace *arm_boot_address_space(ARMCPU *cpu,
  45                                     const struct arm_boot_info *info)
  46{
  47    /* Return the address space to use for bootloader reads and writes.
  48     * We prefer the secure address space if the CPU has it and we're
  49     * going to boot the guest into it.
  50     */
  51    int asidx;
  52    CPUState *cs = CPU(cpu);
  53
  54    if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
  55        asidx = ARMASIdx_S;
  56    } else {
  57        asidx = ARMASIdx_NS;
  58    }
  59
  60    return cpu_get_address_space(cs, asidx);
  61}
  62
  63typedef enum {
  64    FIXUP_NONE = 0,     /* do nothing */
  65    FIXUP_TERMINATOR,   /* end of insns */
  66    FIXUP_BOARDID,      /* overwrite with board ID number */
  67    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
  68    FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
  69    FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
  70    FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
  71    FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
  72    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
  73    FIXUP_BOOTREG,      /* overwrite with boot register address */
  74    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
  75    FIXUP_MAX,
  76} FixupType;
  77
  78typedef struct ARMInsnFixup {
  79    uint32_t insn;
  80    FixupType fixup;
  81} ARMInsnFixup;
  82
  83static const ARMInsnFixup bootloader_aarch64[] = {
  84    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  85    { 0xaa1f03e1 }, /* mov x1, xzr */
  86    { 0xaa1f03e2 }, /* mov x2, xzr */
  87    { 0xaa1f03e3 }, /* mov x3, xzr */
  88    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  89    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  90    { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
  91    { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
  92    { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
  93    { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
  94    { 0, FIXUP_TERMINATOR }
  95};
  96
  97/* A very small bootloader: call the board-setup code (if needed),
  98 * set r0-r2, then jump to the kernel.
  99 * If we're not calling boot setup code then we don't copy across
 100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
 101 */
 102
 103static const ARMInsnFixup bootloader[] = {
 104    { 0xe28fe004 }, /* add     lr, pc, #4 */
 105    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
 106    { 0, FIXUP_BOARD_SETUP },
 107#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
 108    { 0xe3a00000 }, /* mov     r0, #0 */
 109    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
 110    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
 111    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
 112    { 0, FIXUP_BOARDID },
 113    { 0, FIXUP_ARGPTR_LO },
 114    { 0, FIXUP_ENTRYPOINT_LO },
 115    { 0, FIXUP_TERMINATOR }
 116};
 117
 118/* Handling for secondary CPU boot in a multicore system.
 119 * Unlike the uniprocessor/primary CPU boot, this is platform
 120 * dependent. The default code here is based on the secondary
 121 * CPU boot protocol used on realview/vexpress boards, with
 122 * some parameterisation to increase its flexibility.
 123 * QEMU platform models for which this code is not appropriate
 124 * should override write_secondary_boot and secondary_cpu_reset_hook
 125 * instead.
 126 *
 127 * This code enables the interrupt controllers for the secondary
 128 * CPUs and then puts all the secondary CPUs into a loop waiting
 129 * for an interprocessor interrupt and polling a configurable
 130 * location for the kernel secondary CPU entry point.
 131 */
 132#define DSB_INSN 0xf57ff04f
 133#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 134
 135static const ARMInsnFixup smpboot[] = {
 136    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 137    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 138    { 0xe3a01001 }, /* mov r1, #1 */
 139    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 140    { 0xe3a010ff }, /* mov r1, #0xff */
 141    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 142    { 0, FIXUP_DSB },   /* dsb */
 143    { 0xe320f003 }, /* wfi */
 144    { 0xe5901000 }, /* ldr     r1, [r0] */
 145    { 0xe1110001 }, /* tst     r1, r1 */
 146    { 0x0afffffb }, /* beq     <wfi> */
 147    { 0xe12fff11 }, /* bx      r1 */
 148    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 149    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 150    { 0, FIXUP_TERMINATOR }
 151};
 152
 153static void write_bootloader(const char *name, hwaddr addr,
 154                             const ARMInsnFixup *insns, uint32_t *fixupcontext,
 155                             AddressSpace *as)
 156{
 157    /* Fix up the specified bootloader fragment and write it into
 158     * guest memory using rom_add_blob_fixed(). fixupcontext is
 159     * an array giving the values to write in for the fixup types
 160     * which write a value into the code array.
 161     */
 162    int i, len;
 163    uint32_t *code;
 164
 165    len = 0;
 166    while (insns[len].fixup != FIXUP_TERMINATOR) {
 167        len++;
 168    }
 169
 170    code = g_new0(uint32_t, len);
 171
 172    for (i = 0; i < len; i++) {
 173        uint32_t insn = insns[i].insn;
 174        FixupType fixup = insns[i].fixup;
 175
 176        switch (fixup) {
 177        case FIXUP_NONE:
 178            break;
 179        case FIXUP_BOARDID:
 180        case FIXUP_BOARD_SETUP:
 181        case FIXUP_ARGPTR_LO:
 182        case FIXUP_ARGPTR_HI:
 183        case FIXUP_ENTRYPOINT_LO:
 184        case FIXUP_ENTRYPOINT_HI:
 185        case FIXUP_GIC_CPU_IF:
 186        case FIXUP_BOOTREG:
 187        case FIXUP_DSB:
 188            insn = fixupcontext[fixup];
 189            break;
 190        default:
 191            abort();
 192        }
 193        code[i] = tswap32(insn);
 194    }
 195
 196    assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
 197
 198    rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
 199
 200    g_free(code);
 201}
 202
 203static void default_write_secondary(ARMCPU *cpu,
 204                                    const struct arm_boot_info *info)
 205{
 206    uint32_t fixupcontext[FIXUP_MAX];
 207    AddressSpace *as = arm_boot_address_space(cpu, info);
 208
 209    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 210    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 211    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 212        fixupcontext[FIXUP_DSB] = DSB_INSN;
 213    } else {
 214        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 215    }
 216
 217    write_bootloader("smpboot", info->smp_loader_start,
 218                     smpboot, fixupcontext, as);
 219}
 220
 221void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 222                                            const struct arm_boot_info *info,
 223                                            hwaddr mvbar_addr)
 224{
 225    AddressSpace *as = arm_boot_address_space(cpu, info);
 226    int n;
 227    uint32_t mvbar_blob[] = {
 228        /* mvbar_addr: secure monitor vectors
 229         * Default unimplemented and unused vectors to spin. Makes it
 230         * easier to debug (as opposed to the CPU running away).
 231         */
 232        0xeafffffe, /* (spin) */
 233        0xeafffffe, /* (spin) */
 234        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 235        0xeafffffe, /* (spin) */
 236        0xeafffffe, /* (spin) */
 237        0xeafffffe, /* (spin) */
 238        0xeafffffe, /* (spin) */
 239        0xeafffffe, /* (spin) */
 240    };
 241    uint32_t board_setup_blob[] = {
 242        /* board setup addr */
 243        0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
 244        0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
 245        0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
 246        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 247        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 248        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 249        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 250        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 251        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 252        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 253        0xe1a0f001, /* mov     pc, r1                 ;return */
 254    };
 255
 256    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 257    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 258
 259    /* check that these blobs don't overlap */
 260    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 261          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 262
 263    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 264        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 265    }
 266    rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 267                          mvbar_addr, as);
 268
 269    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 270        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 271    }
 272    rom_add_blob_fixed_as("board-setup", board_setup_blob,
 273                          sizeof(board_setup_blob), info->board_setup_addr, as);
 274}
 275
 276static void default_reset_secondary(ARMCPU *cpu,
 277                                    const struct arm_boot_info *info)
 278{
 279    AddressSpace *as = arm_boot_address_space(cpu, info);
 280    CPUState *cs = CPU(cpu);
 281
 282    address_space_stl_notdirty(as, info->smp_bootreg_addr,
 283                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 284    cpu_set_pc(cs, info->smp_loader_start);
 285}
 286
 287static inline bool have_dtb(const struct arm_boot_info *info)
 288{
 289    return info->dtb_filename || info->get_dtb;
 290}
 291
 292#define WRITE_WORD(p, value) do { \
 293    address_space_stl_notdirty(as, p, value, \
 294                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 295    p += 4;                       \
 296} while (0)
 297
 298static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
 299{
 300    int initrd_size = info->initrd_size;
 301    hwaddr base = info->loader_start;
 302    hwaddr p;
 303
 304    p = base + KERNEL_ARGS_ADDR;
 305    /* ATAG_CORE */
 306    WRITE_WORD(p, 5);
 307    WRITE_WORD(p, 0x54410001);
 308    WRITE_WORD(p, 1);
 309    WRITE_WORD(p, 0x1000);
 310    WRITE_WORD(p, 0);
 311    /* ATAG_MEM */
 312    /* TODO: handle multiple chips on one ATAG list */
 313    WRITE_WORD(p, 4);
 314    WRITE_WORD(p, 0x54410002);
 315    WRITE_WORD(p, info->ram_size);
 316    WRITE_WORD(p, info->loader_start);
 317    if (initrd_size) {
 318        /* ATAG_INITRD2 */
 319        WRITE_WORD(p, 4);
 320        WRITE_WORD(p, 0x54420005);
 321        WRITE_WORD(p, info->initrd_start);
 322        WRITE_WORD(p, initrd_size);
 323    }
 324    if (info->kernel_cmdline && *info->kernel_cmdline) {
 325        /* ATAG_CMDLINE */
 326        int cmdline_size;
 327
 328        cmdline_size = strlen(info->kernel_cmdline);
 329        address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
 330                            info->kernel_cmdline, cmdline_size + 1);
 331        cmdline_size = (cmdline_size >> 2) + 1;
 332        WRITE_WORD(p, cmdline_size + 2);
 333        WRITE_WORD(p, 0x54410009);
 334        p += cmdline_size * 4;
 335    }
 336    if (info->atag_board) {
 337        /* ATAG_BOARD */
 338        int atag_board_len;
 339        uint8_t atag_board_buf[0x1000];
 340
 341        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 342        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 343        WRITE_WORD(p, 0x414f4d50);
 344        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 345                            atag_board_buf, atag_board_len);
 346        p += atag_board_len;
 347    }
 348    /* ATAG_END */
 349    WRITE_WORD(p, 0);
 350    WRITE_WORD(p, 0);
 351}
 352
 353static void set_kernel_args_old(const struct arm_boot_info *info,
 354                                AddressSpace *as)
 355{
 356    hwaddr p;
 357    const char *s;
 358    int initrd_size = info->initrd_size;
 359    hwaddr base = info->loader_start;
 360
 361    /* see linux/include/asm-arm/setup.h */
 362    p = base + KERNEL_ARGS_ADDR;
 363    /* page_size */
 364    WRITE_WORD(p, 4096);
 365    /* nr_pages */
 366    WRITE_WORD(p, info->ram_size / 4096);
 367    /* ramdisk_size */
 368    WRITE_WORD(p, 0);
 369#define FLAG_READONLY   1
 370#define FLAG_RDLOAD     4
 371#define FLAG_RDPROMPT   8
 372    /* flags */
 373    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 374    /* rootdev */
 375    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 376    /* video_num_cols */
 377    WRITE_WORD(p, 0);
 378    /* video_num_rows */
 379    WRITE_WORD(p, 0);
 380    /* video_x */
 381    WRITE_WORD(p, 0);
 382    /* video_y */
 383    WRITE_WORD(p, 0);
 384    /* memc_control_reg */
 385    WRITE_WORD(p, 0);
 386    /* unsigned char sounddefault */
 387    /* unsigned char adfsdrives */
 388    /* unsigned char bytes_per_char_h */
 389    /* unsigned char bytes_per_char_v */
 390    WRITE_WORD(p, 0);
 391    /* pages_in_bank[4] */
 392    WRITE_WORD(p, 0);
 393    WRITE_WORD(p, 0);
 394    WRITE_WORD(p, 0);
 395    WRITE_WORD(p, 0);
 396    /* pages_in_vram */
 397    WRITE_WORD(p, 0);
 398    /* initrd_start */
 399    if (initrd_size) {
 400        WRITE_WORD(p, info->initrd_start);
 401    } else {
 402        WRITE_WORD(p, 0);
 403    }
 404    /* initrd_size */
 405    WRITE_WORD(p, initrd_size);
 406    /* rd_start */
 407    WRITE_WORD(p, 0);
 408    /* system_rev */
 409    WRITE_WORD(p, 0);
 410    /* system_serial_low */
 411    WRITE_WORD(p, 0);
 412    /* system_serial_high */
 413    WRITE_WORD(p, 0);
 414    /* mem_fclk_21285 */
 415    WRITE_WORD(p, 0);
 416    /* zero unused fields */
 417    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 418        WRITE_WORD(p, 0);
 419    }
 420    s = info->kernel_cmdline;
 421    if (s) {
 422        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
 423    } else {
 424        WRITE_WORD(p, 0);
 425    }
 426}
 427
 428static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
 429                               uint32_t scells, hwaddr mem_len,
 430                               int numa_node_id)
 431{
 432    char *nodename;
 433    int ret;
 434
 435    nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 436    qemu_fdt_add_subnode(fdt, nodename);
 437    qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 438    ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
 439                                       scells, mem_len);
 440    if (ret < 0) {
 441        goto out;
 442    }
 443
 444    /* only set the NUMA ID if it is specified */
 445    if (numa_node_id >= 0) {
 446        ret = qemu_fdt_setprop_cell(fdt, nodename,
 447                                    "numa-node-id", numa_node_id);
 448    }
 449out:
 450    g_free(nodename);
 451    return ret;
 452}
 453
 454static void fdt_add_psci_node(void *fdt)
 455{
 456    uint32_t cpu_suspend_fn;
 457    uint32_t cpu_off_fn;
 458    uint32_t cpu_on_fn;
 459    uint32_t migrate_fn;
 460    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 461    const char *psci_method;
 462    int64_t psci_conduit;
 463    int rc;
 464
 465    psci_conduit = object_property_get_int(OBJECT(armcpu),
 466                                           "psci-conduit",
 467                                           &error_abort);
 468    switch (psci_conduit) {
 469    case QEMU_PSCI_CONDUIT_DISABLED:
 470        return;
 471    case QEMU_PSCI_CONDUIT_HVC:
 472        psci_method = "hvc";
 473        break;
 474    case QEMU_PSCI_CONDUIT_SMC:
 475        psci_method = "smc";
 476        break;
 477    default:
 478        g_assert_not_reached();
 479    }
 480
 481    /*
 482     * If /psci node is present in provided DTB, assume that no fixup
 483     * is necessary and all PSCI configuration should be taken as-is
 484     */
 485    rc = fdt_path_offset(fdt, "/psci");
 486    if (rc >= 0) {
 487        return;
 488    }
 489
 490    qemu_fdt_add_subnode(fdt, "/psci");
 491    if (armcpu->psci_version == 2) {
 492        const char comp[] = "arm,psci-0.2\0arm,psci";
 493        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 494
 495        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 496        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 497            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 498            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 499            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 500        } else {
 501            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 502            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 503            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 504        }
 505    } else {
 506        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 507
 508        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 509        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 510        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 511        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 512    }
 513
 514    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 515     * to the instruction that should be used to invoke PSCI functions.
 516     * However, the device tree binding uses 'method' instead, so that is
 517     * what we should use here.
 518     */
 519    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 520
 521    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 522    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 523    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 524    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 525}
 526
 527int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 528                 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
 529{
 530    void *fdt = NULL;
 531    int size, rc, n = 0;
 532    uint32_t acells, scells;
 533    unsigned int i;
 534    hwaddr mem_base, mem_len;
 535    char **node_path;
 536    Error *err = NULL;
 537
 538    if (binfo->dtb_filename) {
 539        char *filename;
 540        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 541        if (!filename) {
 542            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 543            goto fail;
 544        }
 545
 546        fdt = load_device_tree(filename, &size);
 547        if (!fdt) {
 548            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 549            g_free(filename);
 550            goto fail;
 551        }
 552        g_free(filename);
 553    } else {
 554        fdt = binfo->get_dtb(binfo, &size);
 555        if (!fdt) {
 556            fprintf(stderr, "Board was unable to create a dtb blob\n");
 557            goto fail;
 558        }
 559    }
 560
 561    if (addr_limit > addr && size > (addr_limit - addr)) {
 562        /* Installing the device tree blob at addr would exceed addr_limit.
 563         * Whether this constitutes failure is up to the caller to decide,
 564         * so just return 0 as size, i.e., no error.
 565         */
 566        g_free(fdt);
 567        return 0;
 568    }
 569
 570    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 571                                   NULL, &error_fatal);
 572    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 573                                   NULL, &error_fatal);
 574    if (acells == 0 || scells == 0) {
 575        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 576        goto fail;
 577    }
 578
 579    if (scells < 2 && binfo->ram_size >= 4 * GiB) {
 580        /* This is user error so deserves a friendlier error message
 581         * than the failure of setprop_sized_cells would provide
 582         */
 583        fprintf(stderr, "qemu: dtb file not compatible with "
 584                "RAM size > 4GB\n");
 585        goto fail;
 586    }
 587
 588    /* nop all root nodes matching /memory or /memory@unit-address */
 589    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
 590    if (err) {
 591        error_report_err(err);
 592        goto fail;
 593    }
 594    while (node_path[n]) {
 595        if (g_str_has_prefix(node_path[n], "/memory")) {
 596            qemu_fdt_nop_node(fdt, node_path[n]);
 597        }
 598        n++;
 599    }
 600    g_strfreev(node_path);
 601
 602    /*
 603     * We drop all the memory nodes which correspond to empty NUMA nodes
 604     * from the device tree, because the Linux NUMA binding document
 605     * states they should not be generated. Linux will get the NUMA node
 606     * IDs of the empty NUMA nodes from the distance map if they are needed.
 607     * This means QEMU users may be obliged to provide command lines which
 608     * configure distance maps when the empty NUMA node IDs are needed and
 609     * Linux's default distance map isn't sufficient.
 610     */
 611    if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
 612        mem_base = binfo->loader_start;
 613        for (i = 0; i < ms->numa_state->num_nodes; i++) {
 614            mem_len = ms->numa_state->nodes[i].node_mem;
 615            if (!mem_len) {
 616                continue;
 617            }
 618
 619            rc = fdt_add_memory_node(fdt, acells, mem_base,
 620                                     scells, mem_len, i);
 621            if (rc < 0) {
 622                fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 623                        mem_base);
 624                goto fail;
 625            }
 626
 627            mem_base += mem_len;
 628        }
 629    } else {
 630        rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
 631                                 scells, binfo->ram_size, -1);
 632        if (rc < 0) {
 633            fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 634                    binfo->loader_start);
 635            goto fail;
 636        }
 637    }
 638
 639    rc = fdt_path_offset(fdt, "/chosen");
 640    if (rc < 0) {
 641        qemu_fdt_add_subnode(fdt, "/chosen");
 642    }
 643
 644    if (ms->kernel_cmdline && *ms->kernel_cmdline) {
 645        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 646                                     ms->kernel_cmdline);
 647        if (rc < 0) {
 648            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 649            goto fail;
 650        }
 651    }
 652
 653    if (binfo->initrd_size) {
 654        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 655                                   binfo->initrd_start);
 656        if (rc < 0) {
 657            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 658            goto fail;
 659        }
 660
 661        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 662                                   binfo->initrd_start + binfo->initrd_size);
 663        if (rc < 0) {
 664            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 665            goto fail;
 666        }
 667    }
 668
 669    fdt_add_psci_node(fdt);
 670
 671    if (binfo->modify_dtb) {
 672        binfo->modify_dtb(binfo, fdt);
 673    }
 674
 675    qemu_fdt_dumpdtb(fdt, size);
 676
 677    /* Put the DTB into the memory map as a ROM image: this will ensure
 678     * the DTB is copied again upon reset, even if addr points into RAM.
 679     */
 680    rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
 681
 682    g_free(fdt);
 683
 684    return size;
 685
 686fail:
 687    g_free(fdt);
 688    return -1;
 689}
 690
 691static void do_cpu_reset(void *opaque)
 692{
 693    ARMCPU *cpu = opaque;
 694    CPUState *cs = CPU(cpu);
 695    CPUARMState *env = &cpu->env;
 696    const struct arm_boot_info *info = env->boot_info;
 697
 698    cpu_reset(cs);
 699    if (info) {
 700        if (!info->is_linux) {
 701            int i;
 702            /* Jump to the entry point.  */
 703            uint64_t entry = info->entry;
 704
 705            switch (info->endianness) {
 706            case ARM_ENDIANNESS_LE:
 707                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 708                for (i = 1; i < 4; ++i) {
 709                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 710                }
 711                env->uncached_cpsr &= ~CPSR_E;
 712                break;
 713            case ARM_ENDIANNESS_BE8:
 714                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 715                for (i = 1; i < 4; ++i) {
 716                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 717                }
 718                env->uncached_cpsr |= CPSR_E;
 719                break;
 720            case ARM_ENDIANNESS_BE32:
 721                env->cp15.sctlr_el[1] |= SCTLR_B;
 722                break;
 723            case ARM_ENDIANNESS_UNKNOWN:
 724                break; /* Board's decision */
 725            default:
 726                g_assert_not_reached();
 727            }
 728
 729            cpu_set_pc(cs, entry);
 730        } else {
 731            /* If we are booting Linux then we need to check whether we are
 732             * booting into secure or non-secure state and adjust the state
 733             * accordingly.  Out of reset, ARM is defined to be in secure state
 734             * (SCR.NS = 0), we change that here if non-secure boot has been
 735             * requested.
 736             */
 737            if (arm_feature(env, ARM_FEATURE_EL3)) {
 738                /* AArch64 is defined to come out of reset into EL3 if enabled.
 739                 * If we are booting Linux then we need to adjust our EL as
 740                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 741                 * SVC, which Linux expects, so no privilege/exception level to
 742                 * adjust.
 743                 */
 744                if (env->aarch64) {
 745                    env->cp15.scr_el3 |= SCR_RW;
 746                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 747                        env->cp15.hcr_el2 |= HCR_RW;
 748                        env->pstate = PSTATE_MODE_EL2h;
 749                    } else {
 750                        env->pstate = PSTATE_MODE_EL1h;
 751                    }
 752                    if (cpu_isar_feature(aa64_pauth, cpu)) {
 753                        env->cp15.scr_el3 |= SCR_API | SCR_APK;
 754                    }
 755                    if (cpu_isar_feature(aa64_mte, cpu)) {
 756                        env->cp15.scr_el3 |= SCR_ATA;
 757                    }
 758                    if (cpu_isar_feature(aa64_sve, cpu)) {
 759                        env->cp15.cptr_el[3] |= CPTR_EZ;
 760                    }
 761                    /* AArch64 kernels never boot in secure mode */
 762                    assert(!info->secure_boot);
 763                    /* This hook is only supported for AArch32 currently:
 764                     * bootloader_aarch64[] will not call the hook, and
 765                     * the code above has already dropped us into EL2 or EL1.
 766                     */
 767                    assert(!info->secure_board_setup);
 768                }
 769
 770                if (arm_feature(env, ARM_FEATURE_EL2)) {
 771                    /* If we have EL2 then Linux expects the HVC insn to work */
 772                    env->cp15.scr_el3 |= SCR_HCE;
 773                }
 774
 775                /* Set to non-secure if not a secure boot */
 776                if (!info->secure_boot &&
 777                    (cs != first_cpu || !info->secure_board_setup)) {
 778                    /* Linux expects non-secure state */
 779                    env->cp15.scr_el3 |= SCR_NS;
 780                    /* Set NSACR.{CP11,CP10} so NS can access the FPU */
 781                    env->cp15.nsacr |= 3 << 10;
 782                }
 783            }
 784
 785            if (!env->aarch64 && !info->secure_boot &&
 786                arm_feature(env, ARM_FEATURE_EL2)) {
 787                /*
 788                 * This is an AArch32 boot not to Secure state, and
 789                 * we have Hyp mode available, so boot the kernel into
 790                 * Hyp mode. This is not how the CPU comes out of reset,
 791                 * so we need to manually put it there.
 792                 */
 793                cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
 794            }
 795
 796            if (cs == first_cpu) {
 797                AddressSpace *as = arm_boot_address_space(cpu, info);
 798
 799                cpu_set_pc(cs, info->loader_start);
 800
 801                if (!have_dtb(info)) {
 802                    if (old_param) {
 803                        set_kernel_args_old(info, as);
 804                    } else {
 805                        set_kernel_args(info, as);
 806                    }
 807                }
 808            } else {
 809                info->secondary_cpu_reset_hook(cpu, info);
 810            }
 811        }
 812        arm_rebuild_hflags(env);
 813    }
 814}
 815
 816/**
 817 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 818 *                          by key.
 819 * @fw_cfg:         The firmware config instance to store the data in.
 820 * @size_key:       The firmware config key to store the size of the loaded
 821 *                  data under, with fw_cfg_add_i32().
 822 * @data_key:       The firmware config key to store the loaded data under,
 823 *                  with fw_cfg_add_bytes().
 824 * @image_name:     The name of the image file to load. If it is NULL, the
 825 *                  function returns without doing anything.
 826 * @try_decompress: Whether the image should be decompressed (gunzipped) before
 827 *                  adding it to fw_cfg. If decompression fails, the image is
 828 *                  loaded as-is.
 829 *
 830 * In case of failure, the function prints an error message to stderr and the
 831 * process exits with status 1.
 832 */
 833static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 834                                 uint16_t data_key, const char *image_name,
 835                                 bool try_decompress)
 836{
 837    size_t size = -1;
 838    uint8_t *data;
 839
 840    if (image_name == NULL) {
 841        return;
 842    }
 843
 844    if (try_decompress) {
 845        size = load_image_gzipped_buffer(image_name,
 846                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 847    }
 848
 849    if (size == (size_t)-1) {
 850        gchar *contents;
 851        gsize length;
 852
 853        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 854            error_report("failed to load \"%s\"", image_name);
 855            exit(1);
 856        }
 857        size = length;
 858        data = (uint8_t *)contents;
 859    }
 860
 861    fw_cfg_add_i32(fw_cfg, size_key, size);
 862    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 863}
 864
 865static int do_arm_linux_init(Object *obj, void *opaque)
 866{
 867    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 868        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 869        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 870        struct arm_boot_info *info = opaque;
 871
 872        if (albifc->arm_linux_init) {
 873            albifc->arm_linux_init(albif, info->secure_boot);
 874        }
 875    }
 876    return 0;
 877}
 878
 879static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 880                            uint64_t *lowaddr, uint64_t *highaddr,
 881                            int elf_machine, AddressSpace *as)
 882{
 883    bool elf_is64;
 884    union {
 885        Elf32_Ehdr h32;
 886        Elf64_Ehdr h64;
 887    } elf_header;
 888    int data_swab = 0;
 889    bool big_endian;
 890    int64_t ret = -1;
 891    Error *err = NULL;
 892
 893
 894    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 895    if (err) {
 896        error_free(err);
 897        return ret;
 898    }
 899
 900    if (elf_is64) {
 901        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 902        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 903                                      : ARM_ENDIANNESS_LE;
 904    } else {
 905        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 906        if (big_endian) {
 907            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 908                info->endianness = ARM_ENDIANNESS_BE8;
 909            } else {
 910                info->endianness = ARM_ENDIANNESS_BE32;
 911                /* In BE32, the CPU has a different view of the per-byte
 912                 * address map than the rest of the system. BE32 ELF files
 913                 * are organised such that they can be programmed through
 914                 * the CPU's per-word byte-reversed view of the world. QEMU
 915                 * however loads ELF files independently of the CPU. So
 916                 * tell the ELF loader to byte reverse the data for us.
 917                 */
 918                data_swab = 2;
 919            }
 920        } else {
 921            info->endianness = ARM_ENDIANNESS_LE;
 922        }
 923    }
 924
 925    ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
 926                      pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
 927                      1, data_swab, as);
 928    if (ret <= 0) {
 929        /* The header loaded but the image didn't */
 930        exit(1);
 931    }
 932
 933    return ret;
 934}
 935
 936static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 937                                   hwaddr *entry, AddressSpace *as)
 938{
 939    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 940    uint64_t kernel_size = 0;
 941    uint8_t *buffer;
 942    int size;
 943
 944    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 945    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 946                                     &buffer);
 947
 948    if (size < 0) {
 949        gsize len;
 950
 951        /* Load as raw file otherwise */
 952        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 953            return -1;
 954        }
 955        size = len;
 956    }
 957
 958    /* check the arm64 magic header value -- very old kernels may not have it */
 959    if (size > ARM64_MAGIC_OFFSET + 4 &&
 960        memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 961        uint64_t hdrvals[2];
 962
 963        /* The arm64 Image header has text_offset and image_size fields at 8 and
 964         * 16 bytes into the Image header, respectively. The text_offset field
 965         * is only valid if the image_size is non-zero.
 966         */
 967        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 968
 969        kernel_size = le64_to_cpu(hdrvals[1]);
 970
 971        if (kernel_size != 0) {
 972            kernel_load_offset = le64_to_cpu(hdrvals[0]);
 973
 974            /*
 975             * We write our startup "bootloader" at the very bottom of RAM,
 976             * so that bit can't be used for the image. Luckily the Image
 977             * format specification is that the image requests only an offset
 978             * from a 2MB boundary, not an absolute load address. So if the
 979             * image requests an offset that might mean it overlaps with the
 980             * bootloader, we can just load it starting at 2MB+offset rather
 981             * than 0MB + offset.
 982             */
 983            if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
 984                kernel_load_offset += 2 * MiB;
 985            }
 986        }
 987    }
 988
 989    /*
 990     * Kernels before v3.17 don't populate the image_size field, and
 991     * raw images have no header. For those our best guess at the size
 992     * is the size of the Image file itself.
 993     */
 994    if (kernel_size == 0) {
 995        kernel_size = size;
 996    }
 997
 998    *entry = mem_base + kernel_load_offset;
 999    rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
1000
1001    g_free(buffer);
1002
1003    return kernel_size;
1004}
1005
1006static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
1007                                         struct arm_boot_info *info)
1008{
1009    /* Set up for a direct boot of a kernel image file. */
1010    CPUState *cs;
1011    AddressSpace *as = arm_boot_address_space(cpu, info);
1012    int kernel_size;
1013    int initrd_size;
1014    int is_linux = 0;
1015    uint64_t elf_entry;
1016    /* Addresses of first byte used and first byte not used by the image */
1017    uint64_t image_low_addr = 0, image_high_addr = 0;
1018    int elf_machine;
1019    hwaddr entry;
1020    static const ARMInsnFixup *primary_loader;
1021    uint64_t ram_end = info->loader_start + info->ram_size;
1022
1023    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1024        primary_loader = bootloader_aarch64;
1025        elf_machine = EM_AARCH64;
1026    } else {
1027        primary_loader = bootloader;
1028        if (!info->write_board_setup) {
1029            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1030        }
1031        elf_machine = EM_ARM;
1032    }
1033
1034    if (!info->secondary_cpu_reset_hook) {
1035        info->secondary_cpu_reset_hook = default_reset_secondary;
1036    }
1037    if (!info->write_secondary_boot) {
1038        info->write_secondary_boot = default_write_secondary;
1039    }
1040
1041    if (info->nb_cpus == 0)
1042        info->nb_cpus = 1;
1043
1044    /* Assume that raw images are linux kernels, and ELF images are not.  */
1045    kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1046                               &image_high_addr, elf_machine, as);
1047    if (kernel_size > 0 && have_dtb(info)) {
1048        /*
1049         * If there is still some room left at the base of RAM, try and put
1050         * the DTB there like we do for images loaded with -bios or -pflash.
1051         */
1052        if (image_low_addr > info->loader_start
1053            || image_high_addr < info->loader_start) {
1054            /*
1055             * Set image_low_addr as address limit for arm_load_dtb if it may be
1056             * pointing into RAM, otherwise pass '0' (no limit)
1057             */
1058            if (image_low_addr < info->loader_start) {
1059                image_low_addr = 0;
1060            }
1061            info->dtb_start = info->loader_start;
1062            info->dtb_limit = image_low_addr;
1063        }
1064    }
1065    entry = elf_entry;
1066    if (kernel_size < 0) {
1067        uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1068        kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1069                                     &is_linux, NULL, NULL, as);
1070        if (kernel_size >= 0) {
1071            image_low_addr = loadaddr;
1072            image_high_addr = image_low_addr + kernel_size;
1073        }
1074    }
1075    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1076        kernel_size = load_aarch64_image(info->kernel_filename,
1077                                         info->loader_start, &entry, as);
1078        is_linux = 1;
1079        if (kernel_size >= 0) {
1080            image_low_addr = entry;
1081            image_high_addr = image_low_addr + kernel_size;
1082        }
1083    } else if (kernel_size < 0) {
1084        /* 32-bit ARM */
1085        entry = info->loader_start + KERNEL_LOAD_ADDR;
1086        kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1087                                             ram_end - KERNEL_LOAD_ADDR, as);
1088        is_linux = 1;
1089        if (kernel_size >= 0) {
1090            image_low_addr = entry;
1091            image_high_addr = image_low_addr + kernel_size;
1092        }
1093    }
1094    if (kernel_size < 0) {
1095        error_report("could not load kernel '%s'", info->kernel_filename);
1096        exit(1);
1097    }
1098
1099    if (kernel_size > info->ram_size) {
1100        error_report("kernel '%s' is too large to fit in RAM "
1101                     "(kernel size %d, RAM size %" PRId64 ")",
1102                     info->kernel_filename, kernel_size, info->ram_size);
1103        exit(1);
1104    }
1105
1106    info->entry = entry;
1107
1108    /*
1109     * We want to put the initrd far enough into RAM that when the
1110     * kernel is uncompressed it will not clobber the initrd. However
1111     * on boards without much RAM we must ensure that we still leave
1112     * enough room for a decent sized initrd, and on boards with large
1113     * amounts of RAM we must avoid the initrd being so far up in RAM
1114     * that it is outside lowmem and inaccessible to the kernel.
1115     * So for boards with less  than 256MB of RAM we put the initrd
1116     * halfway into RAM, and for boards with 256MB of RAM or more we put
1117     * the initrd at 128MB.
1118     * We also refuse to put the initrd somewhere that will definitely
1119     * overlay the kernel we just loaded, though for kernel formats which
1120     * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1121     * we might still make a bad choice here.
1122     */
1123    info->initrd_start = info->loader_start +
1124        MIN(info->ram_size / 2, 128 * MiB);
1125    if (image_high_addr) {
1126        info->initrd_start = MAX(info->initrd_start, image_high_addr);
1127    }
1128    info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1129
1130    if (is_linux) {
1131        uint32_t fixupcontext[FIXUP_MAX];
1132
1133        if (info->initrd_filename) {
1134
1135            if (info->initrd_start >= ram_end) {
1136                error_report("not enough space after kernel to load initrd");
1137                exit(1);
1138            }
1139
1140            initrd_size = load_ramdisk_as(info->initrd_filename,
1141                                          info->initrd_start,
1142                                          ram_end - info->initrd_start, as);
1143            if (initrd_size < 0) {
1144                initrd_size = load_image_targphys_as(info->initrd_filename,
1145                                                     info->initrd_start,
1146                                                     ram_end -
1147                                                     info->initrd_start,
1148                                                     as);
1149            }
1150            if (initrd_size < 0) {
1151                error_report("could not load initrd '%s'",
1152                             info->initrd_filename);
1153                exit(1);
1154            }
1155            if (info->initrd_start + initrd_size > ram_end) {
1156                error_report("could not load initrd '%s': "
1157                             "too big to fit into RAM after the kernel",
1158                             info->initrd_filename);
1159                exit(1);
1160            }
1161        } else {
1162            initrd_size = 0;
1163        }
1164        info->initrd_size = initrd_size;
1165
1166        fixupcontext[FIXUP_BOARDID] = info->board_id;
1167        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1168
1169        /*
1170         * for device tree boot, we pass the DTB directly in r2. Otherwise
1171         * we point to the kernel args.
1172         */
1173        if (have_dtb(info)) {
1174            hwaddr align;
1175
1176            if (elf_machine == EM_AARCH64) {
1177                /*
1178                 * Some AArch64 kernels on early bootup map the fdt region as
1179                 *
1180                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1181                 *
1182                 * Let's play safe and prealign it to 2MB to give us some space.
1183                 */
1184                align = 2 * MiB;
1185            } else {
1186                /*
1187                 * Some 32bit kernels will trash anything in the 4K page the
1188                 * initrd ends in, so make sure the DTB isn't caught up in that.
1189                 */
1190                align = 4 * KiB;
1191            }
1192
1193            /* Place the DTB after the initrd in memory with alignment. */
1194            info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1195                                           align);
1196            if (info->dtb_start >= ram_end) {
1197                error_report("Not enough space for DTB after kernel/initrd");
1198                exit(1);
1199            }
1200            fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1201            fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1202        } else {
1203            fixupcontext[FIXUP_ARGPTR_LO] =
1204                info->loader_start + KERNEL_ARGS_ADDR;
1205            fixupcontext[FIXUP_ARGPTR_HI] =
1206                (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1207            if (info->ram_size >= 4 * GiB) {
1208                error_report("RAM size must be less than 4GB to boot"
1209                             " Linux kernel using ATAGS (try passing a device tree"
1210                             " using -dtb)");
1211                exit(1);
1212            }
1213        }
1214        fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1215        fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1216
1217        write_bootloader("bootloader", info->loader_start,
1218                         primary_loader, fixupcontext, as);
1219
1220        if (info->nb_cpus > 1) {
1221            info->write_secondary_boot(cpu, info);
1222        }
1223        if (info->write_board_setup) {
1224            info->write_board_setup(cpu, info);
1225        }
1226
1227        /*
1228         * Notify devices which need to fake up firmware initialization
1229         * that we're doing a direct kernel boot.
1230         */
1231        object_child_foreach_recursive(object_get_root(),
1232                                       do_arm_linux_init, info);
1233    }
1234    info->is_linux = is_linux;
1235
1236    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1237        ARM_CPU(cs)->env.boot_info = info;
1238    }
1239}
1240
1241static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1242{
1243    /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1244
1245    if (have_dtb(info)) {
1246        /*
1247         * If we have a device tree blob, but no kernel to supply it to (or
1248         * the kernel is supposed to be loaded by the bootloader), copy the
1249         * DTB to the base of RAM for the bootloader to pick up.
1250         */
1251        info->dtb_start = info->loader_start;
1252    }
1253
1254    if (info->kernel_filename) {
1255        FWCfgState *fw_cfg;
1256        bool try_decompressing_kernel;
1257
1258        fw_cfg = fw_cfg_find();
1259
1260        if (!fw_cfg) {
1261            error_report("This machine type does not support loading both "
1262                         "a guest firmware/BIOS image and a guest kernel at "
1263                         "the same time. You should change your QEMU command "
1264                         "line to specify one or the other, but not both.");
1265            exit(1);
1266        }
1267
1268        try_decompressing_kernel = arm_feature(&cpu->env,
1269                                               ARM_FEATURE_AARCH64);
1270
1271        /*
1272         * Expose the kernel, the command line, and the initrd in fw_cfg.
1273         * We don't process them here at all, it's all left to the
1274         * firmware.
1275         */
1276        load_image_to_fw_cfg(fw_cfg,
1277                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1278                             info->kernel_filename,
1279                             try_decompressing_kernel);
1280        load_image_to_fw_cfg(fw_cfg,
1281                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1282                             info->initrd_filename, false);
1283
1284        if (info->kernel_cmdline) {
1285            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1286                           strlen(info->kernel_cmdline) + 1);
1287            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1288                              info->kernel_cmdline);
1289        }
1290    }
1291
1292    /*
1293     * We will start from address 0 (typically a boot ROM image) in the
1294     * same way as hardware. Leave env->boot_info NULL, so that
1295     * do_cpu_reset() knows it does not need to alter the PC on reset.
1296     */
1297}
1298
1299void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1300{
1301    CPUState *cs;
1302    AddressSpace *as = arm_boot_address_space(cpu, info);
1303
1304    /*
1305     * CPU objects (unlike devices) are not automatically reset on system
1306     * reset, so we must always register a handler to do so. If we're
1307     * actually loading a kernel, the handler is also responsible for
1308     * arranging that we start it correctly.
1309     */
1310    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1311        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1312    }
1313
1314    /*
1315     * The board code is not supposed to set secure_board_setup unless
1316     * running its code in secure mode is actually possible, and KVM
1317     * doesn't support secure.
1318     */
1319    assert(!(info->secure_board_setup && kvm_enabled()));
1320    info->kernel_filename = ms->kernel_filename;
1321    info->kernel_cmdline = ms->kernel_cmdline;
1322    info->initrd_filename = ms->initrd_filename;
1323    info->dtb_filename = ms->dtb;
1324    info->dtb_limit = 0;
1325
1326    /* Load the kernel.  */
1327    if (!info->kernel_filename || info->firmware_loaded) {
1328        arm_setup_firmware_boot(cpu, info);
1329    } else {
1330        arm_setup_direct_kernel_boot(cpu, info);
1331    }
1332
1333    if (!info->skip_dtb_autoload && have_dtb(info)) {
1334        if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1335            exit(1);
1336        }
1337    }
1338}
1339
1340static const TypeInfo arm_linux_boot_if_info = {
1341    .name = TYPE_ARM_LINUX_BOOT_IF,
1342    .parent = TYPE_INTERFACE,
1343    .class_size = sizeof(ARMLinuxBootIfClass),
1344};
1345
1346static void arm_linux_boot_register_types(void)
1347{
1348    type_register_static(&arm_linux_boot_if_info);
1349}
1350
1351type_init(arm_linux_boot_register_types)
1352