qemu/hw/intc/xive.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC XIVE interrupt controller model
   3 *
   4 * Copyright (c) 2017-2018, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/log.h"
  12#include "qemu/module.h"
  13#include "qapi/error.h"
  14#include "target/ppc/cpu.h"
  15#include "sysemu/cpus.h"
  16#include "sysemu/dma.h"
  17#include "sysemu/reset.h"
  18#include "hw/qdev-properties.h"
  19#include "migration/vmstate.h"
  20#include "monitor/monitor.h"
  21#include "hw/irq.h"
  22#include "hw/ppc/xive.h"
  23#include "hw/ppc/xive_regs.h"
  24#include "trace.h"
  25
  26/*
  27 * XIVE Thread Interrupt Management context
  28 */
  29
  30/*
  31 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
  32 * Interrupt Priority Register (PIPR), which contains the priority of
  33 * the most favored pending notification.
  34 */
  35static uint8_t ipb_to_pipr(uint8_t ibp)
  36{
  37    return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
  38}
  39
  40static uint8_t exception_mask(uint8_t ring)
  41{
  42    switch (ring) {
  43    case TM_QW1_OS:
  44        return TM_QW1_NSR_EO;
  45    case TM_QW3_HV_PHYS:
  46        return TM_QW3_NSR_HE;
  47    default:
  48        g_assert_not_reached();
  49    }
  50}
  51
  52static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
  53{
  54        switch (ring) {
  55        case TM_QW0_USER:
  56                return 0; /* Not supported */
  57        case TM_QW1_OS:
  58                return tctx->os_output;
  59        case TM_QW2_HV_POOL:
  60        case TM_QW3_HV_PHYS:
  61                return tctx->hv_output;
  62        default:
  63                return 0;
  64        }
  65}
  66
  67static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
  68{
  69    uint8_t *regs = &tctx->regs[ring];
  70    uint8_t nsr = regs[TM_NSR];
  71    uint8_t mask = exception_mask(ring);
  72
  73    qemu_irq_lower(xive_tctx_output(tctx, ring));
  74
  75    if (regs[TM_NSR] & mask) {
  76        uint8_t cppr = regs[TM_PIPR];
  77
  78        regs[TM_CPPR] = cppr;
  79
  80        /* Reset the pending buffer bit */
  81        regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
  82        regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
  83
  84        /* Drop Exception bit */
  85        regs[TM_NSR] &= ~mask;
  86
  87        trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
  88                               regs[TM_IPB], regs[TM_PIPR],
  89                               regs[TM_CPPR], regs[TM_NSR]);
  90    }
  91
  92    return (nsr << 8) | regs[TM_CPPR];
  93}
  94
  95static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
  96{
  97    uint8_t *regs = &tctx->regs[ring];
  98
  99    if (regs[TM_PIPR] < regs[TM_CPPR]) {
 100        switch (ring) {
 101        case TM_QW1_OS:
 102            regs[TM_NSR] |= TM_QW1_NSR_EO;
 103            break;
 104        case TM_QW3_HV_PHYS:
 105            regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
 106            break;
 107        default:
 108            g_assert_not_reached();
 109        }
 110        trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
 111                               regs[TM_IPB], regs[TM_PIPR],
 112                               regs[TM_CPPR], regs[TM_NSR]);
 113        qemu_irq_raise(xive_tctx_output(tctx, ring));
 114    }
 115}
 116
 117static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
 118{
 119    uint8_t *regs = &tctx->regs[ring];
 120
 121    trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
 122                             regs[TM_IPB], regs[TM_PIPR],
 123                             cppr, regs[TM_NSR]);
 124
 125    if (cppr > XIVE_PRIORITY_MAX) {
 126        cppr = 0xff;
 127    }
 128
 129    tctx->regs[ring + TM_CPPR] = cppr;
 130
 131    /* CPPR has changed, check if we need to raise a pending exception */
 132    xive_tctx_notify(tctx, ring);
 133}
 134
 135void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
 136{
 137    uint8_t *regs = &tctx->regs[ring];
 138
 139    regs[TM_IPB] |= ipb;
 140    regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
 141    xive_tctx_notify(tctx, ring);
 142}
 143
 144/*
 145 * XIVE Thread Interrupt Management Area (TIMA)
 146 */
 147
 148static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
 149                                hwaddr offset, uint64_t value, unsigned size)
 150{
 151    xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
 152}
 153
 154static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
 155                                   hwaddr offset, unsigned size)
 156{
 157    return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
 158}
 159
 160static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
 161                                      hwaddr offset, unsigned size)
 162{
 163    uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
 164    uint32_t qw2w2;
 165
 166    qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
 167    memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
 168    return qw2w2;
 169}
 170
 171static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
 172                            uint64_t value, unsigned size)
 173{
 174    tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
 175}
 176
 177static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
 178                                hwaddr offset, unsigned size)
 179{
 180    return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
 181}
 182
 183/*
 184 * Define an access map for each page of the TIMA that we will use in
 185 * the memory region ops to filter values when doing loads and stores
 186 * of raw registers values
 187 *
 188 * Registers accessibility bits :
 189 *
 190 *    0x0 - no access
 191 *    0x1 - write only
 192 *    0x2 - read only
 193 *    0x3 - read/write
 194 */
 195
 196static const uint8_t xive_tm_hw_view[] = {
 197    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
 198    3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
 199    0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
 200    3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
 201};
 202
 203static const uint8_t xive_tm_hv_view[] = {
 204    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
 205    3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
 206    0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
 207    3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
 208};
 209
 210static const uint8_t xive_tm_os_view[] = {
 211    3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
 212    2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
 213    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
 214    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
 215};
 216
 217static const uint8_t xive_tm_user_view[] = {
 218    3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
 219    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
 220    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
 221    0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
 222};
 223
 224/*
 225 * Overall TIMA access map for the thread interrupt management context
 226 * registers
 227 */
 228static const uint8_t *xive_tm_views[] = {
 229    [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
 230    [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
 231    [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
 232    [XIVE_TM_USER_PAGE] = xive_tm_user_view,
 233};
 234
 235/*
 236 * Computes a register access mask for a given offset in the TIMA
 237 */
 238static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
 239{
 240    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
 241    uint8_t reg_offset = offset & 0x3F;
 242    uint8_t reg_mask = write ? 0x1 : 0x2;
 243    uint64_t mask = 0x0;
 244    int i;
 245
 246    for (i = 0; i < size; i++) {
 247        if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
 248            mask |= (uint64_t) 0xff << (8 * (size - i - 1));
 249        }
 250    }
 251
 252    return mask;
 253}
 254
 255static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 256                              unsigned size)
 257{
 258    uint8_t ring_offset = offset & 0x30;
 259    uint8_t reg_offset = offset & 0x3F;
 260    uint64_t mask = xive_tm_mask(offset, size, true);
 261    int i;
 262
 263    /*
 264     * Only 4 or 8 bytes stores are allowed and the User ring is
 265     * excluded
 266     */
 267    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
 268        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
 269                      HWADDR_PRIx"\n", offset);
 270        return;
 271    }
 272
 273    /*
 274     * Use the register offset for the raw values and filter out
 275     * reserved values
 276     */
 277    for (i = 0; i < size; i++) {
 278        uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
 279        if (byte_mask) {
 280            tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
 281                byte_mask;
 282        }
 283    }
 284}
 285
 286static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
 287{
 288    uint8_t ring_offset = offset & 0x30;
 289    uint8_t reg_offset = offset & 0x3F;
 290    uint64_t mask = xive_tm_mask(offset, size, false);
 291    uint64_t ret;
 292    int i;
 293
 294    /*
 295     * Only 4 or 8 bytes loads are allowed and the User ring is
 296     * excluded
 297     */
 298    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
 299        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
 300                      HWADDR_PRIx"\n", offset);
 301        return -1;
 302    }
 303
 304    /* Use the register offset for the raw values */
 305    ret = 0;
 306    for (i = 0; i < size; i++) {
 307        ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
 308    }
 309
 310    /* filter out reserved values */
 311    return ret & mask;
 312}
 313
 314/*
 315 * The TM context is mapped twice within each page. Stores and loads
 316 * to the first mapping below 2K write and read the specified values
 317 * without modification. The second mapping above 2K performs specific
 318 * state changes (side effects) in addition to setting/returning the
 319 * interrupt management area context of the processor thread.
 320 */
 321static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
 322                                   hwaddr offset, unsigned size)
 323{
 324    return xive_tctx_accept(tctx, TM_QW1_OS);
 325}
 326
 327static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
 328                                hwaddr offset, uint64_t value, unsigned size)
 329{
 330    xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
 331}
 332
 333/*
 334 * Adjust the IPB to allow a CPU to process event queues of other
 335 * priorities during one physical interrupt cycle.
 336 */
 337static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
 338                                   hwaddr offset, uint64_t value, unsigned size)
 339{
 340    xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
 341}
 342
 343static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
 344                               uint32_t *nvt_idx, bool *vo)
 345{
 346    if (nvt_blk) {
 347        *nvt_blk = xive_nvt_blk(cam);
 348    }
 349    if (nvt_idx) {
 350        *nvt_idx = xive_nvt_idx(cam);
 351    }
 352    if (vo) {
 353        *vo = !!(cam & TM_QW1W2_VO);
 354    }
 355}
 356
 357static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
 358                                     uint32_t *nvt_idx, bool *vo)
 359{
 360    uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
 361    uint32_t cam = be32_to_cpu(qw1w2);
 362
 363    xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
 364    return qw1w2;
 365}
 366
 367static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
 368{
 369    memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
 370}
 371
 372static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
 373                                    hwaddr offset, unsigned size)
 374{
 375    uint32_t qw1w2;
 376    uint32_t qw1w2_new;
 377    uint8_t nvt_blk;
 378    uint32_t nvt_idx;
 379    bool vo;
 380
 381    qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
 382
 383    if (!vo) {
 384        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
 385                      nvt_blk, nvt_idx);
 386    }
 387
 388    /* Invalidate CAM line */
 389    qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
 390    xive_tctx_set_os_cam(tctx, qw1w2_new);
 391    return qw1w2;
 392}
 393
 394static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
 395                                  uint8_t nvt_blk, uint32_t nvt_idx)
 396{
 397    XiveNVT nvt;
 398    uint8_t ipb;
 399
 400    /*
 401     * Grab the associated NVT to pull the pending bits, and merge
 402     * them with the IPB of the thread interrupt context registers
 403     */
 404    if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
 405        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
 406                          nvt_blk, nvt_idx);
 407        return;
 408    }
 409
 410    ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
 411
 412    if (ipb) {
 413        /* Reset the NVT value */
 414        nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
 415        xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
 416
 417        /* Merge in current context */
 418        xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
 419    }
 420}
 421
 422/*
 423 * Updating the OS CAM line can trigger a resend of interrupt
 424 */
 425static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
 426                                hwaddr offset, uint64_t value, unsigned size)
 427{
 428    uint32_t cam = value;
 429    uint32_t qw1w2 = cpu_to_be32(cam);
 430    uint8_t nvt_blk;
 431    uint32_t nvt_idx;
 432    bool vo;
 433
 434    xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
 435
 436    /* First update the registers */
 437    xive_tctx_set_os_cam(tctx, qw1w2);
 438
 439    /* Check the interrupt pending bits */
 440    if (vo) {
 441        xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
 442    }
 443}
 444
 445/*
 446 * Define a mapping of "special" operations depending on the TIMA page
 447 * offset and the size of the operation.
 448 */
 449typedef struct XiveTmOp {
 450    uint8_t  page_offset;
 451    uint32_t op_offset;
 452    unsigned size;
 453    void     (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
 454                              hwaddr offset,
 455                              uint64_t value, unsigned size);
 456    uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
 457                             unsigned size);
 458} XiveTmOp;
 459
 460static const XiveTmOp xive_tm_operations[] = {
 461    /*
 462     * MMIOs below 2K : raw values and special operations without side
 463     * effects
 464     */
 465    { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
 466    { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,     4, xive_tm_push_os_ctx, NULL },
 467    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
 468    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
 469    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
 470
 471    /* MMIOs above 2K : special operations with side effects */
 472    { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
 473    { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
 474    { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
 475    { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
 476    { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
 477    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
 478    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
 479};
 480
 481static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
 482{
 483    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
 484    uint32_t op_offset = offset & 0xFFF;
 485    int i;
 486
 487    for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
 488        const XiveTmOp *xto = &xive_tm_operations[i];
 489
 490        /* Accesses done from a more privileged TIMA page is allowed */
 491        if (xto->page_offset >= page_offset &&
 492            xto->op_offset == op_offset &&
 493            xto->size == size &&
 494            ((write && xto->write_handler) || (!write && xto->read_handler))) {
 495            return xto;
 496        }
 497    }
 498    return NULL;
 499}
 500
 501/*
 502 * TIMA MMIO handlers
 503 */
 504void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
 505                        uint64_t value, unsigned size)
 506{
 507    const XiveTmOp *xto;
 508
 509    trace_xive_tctx_tm_write(offset, size, value);
 510
 511    /*
 512     * TODO: check V bit in Q[0-3]W2
 513     */
 514
 515    /*
 516     * First, check for special operations in the 2K region
 517     */
 518    if (offset & 0x800) {
 519        xto = xive_tm_find_op(offset, size, true);
 520        if (!xto) {
 521            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
 522                          "@%"HWADDR_PRIx"\n", offset);
 523        } else {
 524            xto->write_handler(xptr, tctx, offset, value, size);
 525        }
 526        return;
 527    }
 528
 529    /*
 530     * Then, for special operations in the region below 2K.
 531     */
 532    xto = xive_tm_find_op(offset, size, true);
 533    if (xto) {
 534        xto->write_handler(xptr, tctx, offset, value, size);
 535        return;
 536    }
 537
 538    /*
 539     * Finish with raw access to the register values
 540     */
 541    xive_tm_raw_write(tctx, offset, value, size);
 542}
 543
 544uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
 545                           unsigned size)
 546{
 547    const XiveTmOp *xto;
 548    uint64_t ret;
 549
 550    /*
 551     * TODO: check V bit in Q[0-3]W2
 552     */
 553
 554    /*
 555     * First, check for special operations in the 2K region
 556     */
 557    if (offset & 0x800) {
 558        xto = xive_tm_find_op(offset, size, false);
 559        if (!xto) {
 560            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
 561                          "@%"HWADDR_PRIx"\n", offset);
 562            return -1;
 563        }
 564        ret = xto->read_handler(xptr, tctx, offset, size);
 565        goto out;
 566    }
 567
 568    /*
 569     * Then, for special operations in the region below 2K.
 570     */
 571    xto = xive_tm_find_op(offset, size, false);
 572    if (xto) {
 573        ret = xto->read_handler(xptr, tctx, offset, size);
 574        goto out;
 575    }
 576
 577    /*
 578     * Finish with raw access to the register values
 579     */
 580    ret = xive_tm_raw_read(tctx, offset, size);
 581out:
 582    trace_xive_tctx_tm_read(offset, size, ret);
 583    return ret;
 584}
 585
 586static char *xive_tctx_ring_print(uint8_t *ring)
 587{
 588    uint32_t w2 = xive_tctx_word2(ring);
 589
 590    return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
 591                   "%02x  %02x   %02x  %08x",
 592                   ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
 593                   ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
 594                   be32_to_cpu(w2));
 595}
 596
 597static const char * const xive_tctx_ring_names[] = {
 598    "USER", "OS", "POOL", "PHYS",
 599};
 600
 601/*
 602 * kvm_irqchip_in_kernel() will cause the compiler to turn this
 603 * info a nop if CONFIG_KVM isn't defined.
 604 */
 605#define xive_in_kernel(xptr)                                            \
 606    (kvm_irqchip_in_kernel() &&                                         \
 607     ({                                                                 \
 608         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);      \
 609         xpc->in_kernel ? xpc->in_kernel(xptr) : false;                 \
 610     }))
 611
 612void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
 613{
 614    int cpu_index;
 615    int i;
 616
 617    /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
 618     * are hot plugged or unplugged.
 619     */
 620    if (!tctx) {
 621        return;
 622    }
 623
 624    cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
 625
 626    if (xive_in_kernel(tctx->xptr)) {
 627        Error *local_err = NULL;
 628
 629        kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
 630        if (local_err) {
 631            error_report_err(local_err);
 632            return;
 633        }
 634    }
 635
 636    monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
 637                   "  W2\n", cpu_index);
 638
 639    for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
 640        char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
 641        monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
 642                       xive_tctx_ring_names[i], s);
 643        g_free(s);
 644    }
 645}
 646
 647void xive_tctx_reset(XiveTCTX *tctx)
 648{
 649    memset(tctx->regs, 0, sizeof(tctx->regs));
 650
 651    /* Set some defaults */
 652    tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
 653    tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
 654    tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
 655
 656    /*
 657     * Initialize PIPR to 0xFF to avoid phantom interrupts when the
 658     * CPPR is first set.
 659     */
 660    tctx->regs[TM_QW1_OS + TM_PIPR] =
 661        ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
 662    tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
 663        ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
 664}
 665
 666static void xive_tctx_realize(DeviceState *dev, Error **errp)
 667{
 668    XiveTCTX *tctx = XIVE_TCTX(dev);
 669    PowerPCCPU *cpu;
 670    CPUPPCState *env;
 671
 672    assert(tctx->cs);
 673    assert(tctx->xptr);
 674
 675    cpu = POWERPC_CPU(tctx->cs);
 676    env = &cpu->env;
 677    switch (PPC_INPUT(env)) {
 678    case PPC_FLAGS_INPUT_POWER9:
 679        tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
 680        tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
 681        break;
 682
 683    default:
 684        error_setg(errp, "XIVE interrupt controller does not support "
 685                   "this CPU bus model");
 686        return;
 687    }
 688
 689    /* Connect the presenter to the VCPU (required for CPU hotplug) */
 690    if (xive_in_kernel(tctx->xptr)) {
 691        if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
 692            return;
 693        }
 694    }
 695}
 696
 697static int vmstate_xive_tctx_pre_save(void *opaque)
 698{
 699    XiveTCTX *tctx = XIVE_TCTX(opaque);
 700    Error *local_err = NULL;
 701    int ret;
 702
 703    if (xive_in_kernel(tctx->xptr)) {
 704        ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
 705        if (ret < 0) {
 706            error_report_err(local_err);
 707            return ret;
 708        }
 709    }
 710
 711    return 0;
 712}
 713
 714static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
 715{
 716    XiveTCTX *tctx = XIVE_TCTX(opaque);
 717    Error *local_err = NULL;
 718    int ret;
 719
 720    if (xive_in_kernel(tctx->xptr)) {
 721        /*
 722         * Required for hotplugged CPU, for which the state comes
 723         * after all states of the machine.
 724         */
 725        ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
 726        if (ret < 0) {
 727            error_report_err(local_err);
 728            return ret;
 729        }
 730    }
 731
 732    return 0;
 733}
 734
 735static const VMStateDescription vmstate_xive_tctx = {
 736    .name = TYPE_XIVE_TCTX,
 737    .version_id = 1,
 738    .minimum_version_id = 1,
 739    .pre_save = vmstate_xive_tctx_pre_save,
 740    .post_load = vmstate_xive_tctx_post_load,
 741    .fields = (VMStateField[]) {
 742        VMSTATE_BUFFER(regs, XiveTCTX),
 743        VMSTATE_END_OF_LIST()
 744    },
 745};
 746
 747static Property xive_tctx_properties[] = {
 748    DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
 749    DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
 750                     XivePresenter *),
 751    DEFINE_PROP_END_OF_LIST(),
 752};
 753
 754static void xive_tctx_class_init(ObjectClass *klass, void *data)
 755{
 756    DeviceClass *dc = DEVICE_CLASS(klass);
 757
 758    dc->desc = "XIVE Interrupt Thread Context";
 759    dc->realize = xive_tctx_realize;
 760    dc->vmsd = &vmstate_xive_tctx;
 761    device_class_set_props(dc, xive_tctx_properties);
 762    /*
 763     * Reason: part of XIVE interrupt controller, needs to be wired up
 764     * by xive_tctx_create().
 765     */
 766    dc->user_creatable = false;
 767}
 768
 769static const TypeInfo xive_tctx_info = {
 770    .name          = TYPE_XIVE_TCTX,
 771    .parent        = TYPE_DEVICE,
 772    .instance_size = sizeof(XiveTCTX),
 773    .class_init    = xive_tctx_class_init,
 774};
 775
 776Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
 777{
 778    Object *obj;
 779
 780    obj = object_new(TYPE_XIVE_TCTX);
 781    object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
 782    object_unref(obj);
 783    object_property_set_link(obj, "cpu", cpu, &error_abort);
 784    object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
 785    if (!qdev_realize(DEVICE(obj), NULL, errp)) {
 786        object_unparent(obj);
 787        return NULL;
 788    }
 789    return obj;
 790}
 791
 792void xive_tctx_destroy(XiveTCTX *tctx)
 793{
 794    Object *obj = OBJECT(tctx);
 795
 796    object_unparent(obj);
 797}
 798
 799/*
 800 * XIVE ESB helpers
 801 */
 802
 803uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
 804{
 805    uint8_t old_pq = *pq & 0x3;
 806
 807    *pq &= ~0x3;
 808    *pq |= value & 0x3;
 809
 810    return old_pq;
 811}
 812
 813bool xive_esb_trigger(uint8_t *pq)
 814{
 815    uint8_t old_pq = *pq & 0x3;
 816
 817    switch (old_pq) {
 818    case XIVE_ESB_RESET:
 819        xive_esb_set(pq, XIVE_ESB_PENDING);
 820        return true;
 821    case XIVE_ESB_PENDING:
 822    case XIVE_ESB_QUEUED:
 823        xive_esb_set(pq, XIVE_ESB_QUEUED);
 824        return false;
 825    case XIVE_ESB_OFF:
 826        xive_esb_set(pq, XIVE_ESB_OFF);
 827        return false;
 828    default:
 829         g_assert_not_reached();
 830    }
 831}
 832
 833bool xive_esb_eoi(uint8_t *pq)
 834{
 835    uint8_t old_pq = *pq & 0x3;
 836
 837    switch (old_pq) {
 838    case XIVE_ESB_RESET:
 839    case XIVE_ESB_PENDING:
 840        xive_esb_set(pq, XIVE_ESB_RESET);
 841        return false;
 842    case XIVE_ESB_QUEUED:
 843        xive_esb_set(pq, XIVE_ESB_PENDING);
 844        return true;
 845    case XIVE_ESB_OFF:
 846        xive_esb_set(pq, XIVE_ESB_OFF);
 847        return false;
 848    default:
 849         g_assert_not_reached();
 850    }
 851}
 852
 853/*
 854 * XIVE Interrupt Source (or IVSE)
 855 */
 856
 857uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
 858{
 859    assert(srcno < xsrc->nr_irqs);
 860
 861    return xsrc->status[srcno] & 0x3;
 862}
 863
 864uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
 865{
 866    assert(srcno < xsrc->nr_irqs);
 867
 868    return xive_esb_set(&xsrc->status[srcno], pq);
 869}
 870
 871/*
 872 * Returns whether the event notification should be forwarded.
 873 */
 874static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
 875{
 876    uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
 877
 878    xive_source_set_asserted(xsrc, srcno, true);
 879
 880    switch (old_pq) {
 881    case XIVE_ESB_RESET:
 882        xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
 883        return true;
 884    default:
 885        return false;
 886    }
 887}
 888
 889/*
 890 * Returns whether the event notification should be forwarded.
 891 */
 892static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
 893{
 894    bool ret;
 895
 896    assert(srcno < xsrc->nr_irqs);
 897
 898    ret = xive_esb_trigger(&xsrc->status[srcno]);
 899
 900    if (xive_source_irq_is_lsi(xsrc, srcno) &&
 901        xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
 902        qemu_log_mask(LOG_GUEST_ERROR,
 903                      "XIVE: queued an event on LSI IRQ %d\n", srcno);
 904    }
 905
 906    return ret;
 907}
 908
 909/*
 910 * Returns whether the event notification should be forwarded.
 911 */
 912static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
 913{
 914    bool ret;
 915
 916    assert(srcno < xsrc->nr_irqs);
 917
 918    ret = xive_esb_eoi(&xsrc->status[srcno]);
 919
 920    /*
 921     * LSI sources do not set the Q bit but they can still be
 922     * asserted, in which case we should forward a new event
 923     * notification
 924     */
 925    if (xive_source_irq_is_lsi(xsrc, srcno) &&
 926        xive_source_is_asserted(xsrc, srcno)) {
 927        ret = xive_source_lsi_trigger(xsrc, srcno);
 928    }
 929
 930    return ret;
 931}
 932
 933/*
 934 * Forward the source event notification to the Router
 935 */
 936static void xive_source_notify(XiveSource *xsrc, int srcno)
 937{
 938    XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
 939
 940    if (xnc->notify) {
 941        xnc->notify(xsrc->xive, srcno);
 942    }
 943}
 944
 945/*
 946 * In a two pages ESB MMIO setting, even page is the trigger page, odd
 947 * page is for management
 948 */
 949static inline bool addr_is_even(hwaddr addr, uint32_t shift)
 950{
 951    return !((addr >> shift) & 1);
 952}
 953
 954static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
 955{
 956    return xive_source_esb_has_2page(xsrc) &&
 957        addr_is_even(addr, xsrc->esb_shift - 1);
 958}
 959
 960/*
 961 * ESB MMIO loads
 962 *                      Trigger page    Management/EOI page
 963 *
 964 * ESB MMIO setting     2 pages         1 or 2 pages
 965 *
 966 * 0x000 .. 0x3FF       -1              EOI and return 0|1
 967 * 0x400 .. 0x7FF       -1              EOI and return 0|1
 968 * 0x800 .. 0xBFF       -1              return PQ
 969 * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
 970 * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
 971 * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
 972 * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
 973 */
 974static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
 975{
 976    XiveSource *xsrc = XIVE_SOURCE(opaque);
 977    uint32_t offset = addr & 0xFFF;
 978    uint32_t srcno = addr >> xsrc->esb_shift;
 979    uint64_t ret = -1;
 980
 981    /* In a two pages ESB MMIO setting, trigger page should not be read */
 982    if (xive_source_is_trigger_page(xsrc, addr)) {
 983        qemu_log_mask(LOG_GUEST_ERROR,
 984                      "XIVE: invalid load on IRQ %d trigger page at "
 985                      "0x%"HWADDR_PRIx"\n", srcno, addr);
 986        return -1;
 987    }
 988
 989    switch (offset) {
 990    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
 991        ret = xive_source_esb_eoi(xsrc, srcno);
 992
 993        /* Forward the source event notification for routing */
 994        if (ret) {
 995            xive_source_notify(xsrc, srcno);
 996        }
 997        break;
 998
 999    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1000        ret = xive_source_esb_get(xsrc, srcno);
1001        break;
1002
1003    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1004    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1005    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1006    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1007        ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1008        break;
1009    default:
1010        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1011                      offset);
1012    }
1013
1014    trace_xive_source_esb_read(addr, srcno, ret);
1015
1016    return ret;
1017}
1018
1019/*
1020 * ESB MMIO stores
1021 *                      Trigger page    Management/EOI page
1022 *
1023 * ESB MMIO setting     2 pages         1 or 2 pages
1024 *
1025 * 0x000 .. 0x3FF       Trigger         Trigger
1026 * 0x400 .. 0x7FF       Trigger         EOI
1027 * 0x800 .. 0xBFF       Trigger         undefined
1028 * 0xC00 .. 0xCFF       Trigger         PQ=00
1029 * 0xD00 .. 0xDFF       Trigger         PQ=01
1030 * 0xE00 .. 0xDFF       Trigger         PQ=10
1031 * 0xF00 .. 0xDFF       Trigger         PQ=11
1032 */
1033static void xive_source_esb_write(void *opaque, hwaddr addr,
1034                                  uint64_t value, unsigned size)
1035{
1036    XiveSource *xsrc = XIVE_SOURCE(opaque);
1037    uint32_t offset = addr & 0xFFF;
1038    uint32_t srcno = addr >> xsrc->esb_shift;
1039    bool notify = false;
1040
1041    trace_xive_source_esb_write(addr, srcno, value);
1042
1043    /* In a two pages ESB MMIO setting, trigger page only triggers */
1044    if (xive_source_is_trigger_page(xsrc, addr)) {
1045        notify = xive_source_esb_trigger(xsrc, srcno);
1046        goto out;
1047    }
1048
1049    switch (offset) {
1050    case 0 ... 0x3FF:
1051        notify = xive_source_esb_trigger(xsrc, srcno);
1052        break;
1053
1054    case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1055        if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1056            qemu_log_mask(LOG_GUEST_ERROR,
1057                          "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1058            return;
1059        }
1060
1061        notify = xive_source_esb_eoi(xsrc, srcno);
1062        break;
1063
1064    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1065    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1066    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1067    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1068        xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1069        break;
1070
1071    default:
1072        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1073                      offset);
1074        return;
1075    }
1076
1077out:
1078    /* Forward the source event notification for routing */
1079    if (notify) {
1080        xive_source_notify(xsrc, srcno);
1081    }
1082}
1083
1084static const MemoryRegionOps xive_source_esb_ops = {
1085    .read = xive_source_esb_read,
1086    .write = xive_source_esb_write,
1087    .endianness = DEVICE_BIG_ENDIAN,
1088    .valid = {
1089        .min_access_size = 8,
1090        .max_access_size = 8,
1091    },
1092    .impl = {
1093        .min_access_size = 8,
1094        .max_access_size = 8,
1095    },
1096};
1097
1098void xive_source_set_irq(void *opaque, int srcno, int val)
1099{
1100    XiveSource *xsrc = XIVE_SOURCE(opaque);
1101    bool notify = false;
1102
1103    if (xive_source_irq_is_lsi(xsrc, srcno)) {
1104        if (val) {
1105            notify = xive_source_lsi_trigger(xsrc, srcno);
1106        } else {
1107            xive_source_set_asserted(xsrc, srcno, false);
1108        }
1109    } else {
1110        if (val) {
1111            notify = xive_source_esb_trigger(xsrc, srcno);
1112        }
1113    }
1114
1115    /* Forward the source event notification for routing */
1116    if (notify) {
1117        xive_source_notify(xsrc, srcno);
1118    }
1119}
1120
1121void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1122{
1123    int i;
1124
1125    for (i = 0; i < xsrc->nr_irqs; i++) {
1126        uint8_t pq = xive_source_esb_get(xsrc, i);
1127
1128        if (pq == XIVE_ESB_OFF) {
1129            continue;
1130        }
1131
1132        monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
1133                       xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1134                       pq & XIVE_ESB_VAL_P ? 'P' : '-',
1135                       pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1136                       xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1137    }
1138}
1139
1140static void xive_source_reset(void *dev)
1141{
1142    XiveSource *xsrc = XIVE_SOURCE(dev);
1143
1144    /* Do not clear the LSI bitmap */
1145
1146    /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1147    memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1148}
1149
1150static void xive_source_realize(DeviceState *dev, Error **errp)
1151{
1152    XiveSource *xsrc = XIVE_SOURCE(dev);
1153    size_t esb_len = xive_source_esb_len(xsrc);
1154
1155    assert(xsrc->xive);
1156
1157    if (!xsrc->nr_irqs) {
1158        error_setg(errp, "Number of interrupt needs to be greater than 0");
1159        return;
1160    }
1161
1162    if (xsrc->esb_shift != XIVE_ESB_4K &&
1163        xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1164        xsrc->esb_shift != XIVE_ESB_64K &&
1165        xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1166        error_setg(errp, "Invalid ESB shift setting");
1167        return;
1168    }
1169
1170    xsrc->status = g_malloc0(xsrc->nr_irqs);
1171    xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1172
1173    memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1174    memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1175                          &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1176                          esb_len);
1177    memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1178
1179    qemu_register_reset(xive_source_reset, dev);
1180}
1181
1182static const VMStateDescription vmstate_xive_source = {
1183    .name = TYPE_XIVE_SOURCE,
1184    .version_id = 1,
1185    .minimum_version_id = 1,
1186    .fields = (VMStateField[]) {
1187        VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1188        VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1189        VMSTATE_END_OF_LIST()
1190    },
1191};
1192
1193/*
1194 * The default XIVE interrupt source setting for the ESB MMIOs is two
1195 * 64k pages without Store EOI, to be in sync with KVM.
1196 */
1197static Property xive_source_properties[] = {
1198    DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1199    DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1200    DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1201    DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1202                     XiveNotifier *),
1203    DEFINE_PROP_END_OF_LIST(),
1204};
1205
1206static void xive_source_class_init(ObjectClass *klass, void *data)
1207{
1208    DeviceClass *dc = DEVICE_CLASS(klass);
1209
1210    dc->desc    = "XIVE Interrupt Source";
1211    device_class_set_props(dc, xive_source_properties);
1212    dc->realize = xive_source_realize;
1213    dc->vmsd    = &vmstate_xive_source;
1214    /*
1215     * Reason: part of XIVE interrupt controller, needs to be wired up,
1216     * e.g. by spapr_xive_instance_init().
1217     */
1218    dc->user_creatable = false;
1219}
1220
1221static const TypeInfo xive_source_info = {
1222    .name          = TYPE_XIVE_SOURCE,
1223    .parent        = TYPE_DEVICE,
1224    .instance_size = sizeof(XiveSource),
1225    .class_init    = xive_source_class_init,
1226};
1227
1228/*
1229 * XiveEND helpers
1230 */
1231
1232void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1233{
1234    uint64_t qaddr_base = xive_end_qaddr(end);
1235    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1236    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1237    uint32_t qentries = 1 << (qsize + 10);
1238    int i;
1239
1240    /*
1241     * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1242     */
1243    monitor_printf(mon, " [ ");
1244    qindex = (qindex - (width - 1)) & (qentries - 1);
1245    for (i = 0; i < width; i++) {
1246        uint64_t qaddr = qaddr_base + (qindex << 2);
1247        uint32_t qdata = -1;
1248
1249        if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1250                            sizeof(qdata))) {
1251            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1252                          HWADDR_PRIx "\n", qaddr);
1253            return;
1254        }
1255        monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1256                       be32_to_cpu(qdata));
1257        qindex = (qindex + 1) & (qentries - 1);
1258    }
1259    monitor_printf(mon, "]");
1260}
1261
1262void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1263{
1264    uint64_t qaddr_base = xive_end_qaddr(end);
1265    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1266    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1267    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1268    uint32_t qentries = 1 << (qsize + 10);
1269
1270    uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1271    uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1272    uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1273    uint8_t pq;
1274
1275    if (!xive_end_is_valid(end)) {
1276        return;
1277    }
1278
1279    pq = xive_get_field32(END_W1_ESn, end->w1);
1280
1281    monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1282                   end_idx,
1283                   pq & XIVE_ESB_VAL_P ? 'P' : '-',
1284                   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1285                   xive_end_is_valid(end)    ? 'v' : '-',
1286                   xive_end_is_enqueue(end)  ? 'q' : '-',
1287                   xive_end_is_notify(end)   ? 'n' : '-',
1288                   xive_end_is_backlog(end)  ? 'b' : '-',
1289                   xive_end_is_escalate(end) ? 'e' : '-',
1290                   xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1291                   xive_end_is_silent_escalation(end)   ? 's' : '-',
1292                   xive_end_is_firmware(end)   ? 'f' : '-',
1293                   priority, nvt_blk, nvt_idx);
1294
1295    if (qaddr_base) {
1296        monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1297                       qaddr_base, qindex, qentries, qgen);
1298        xive_end_queue_pic_print_info(end, 6, mon);
1299    }
1300    monitor_printf(mon, "\n");
1301}
1302
1303static void xive_end_enqueue(XiveEND *end, uint32_t data)
1304{
1305    uint64_t qaddr_base = xive_end_qaddr(end);
1306    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1307    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1308    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1309
1310    uint64_t qaddr = qaddr_base + (qindex << 2);
1311    uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1312    uint32_t qentries = 1 << (qsize + 10);
1313
1314    if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1315        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1316                      HWADDR_PRIx "\n", qaddr);
1317        return;
1318    }
1319
1320    qindex = (qindex + 1) & (qentries - 1);
1321    if (qindex == 0) {
1322        qgen ^= 1;
1323        end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1324    }
1325    end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1326}
1327
1328void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1329                                   Monitor *mon)
1330{
1331    XiveEAS *eas = (XiveEAS *) &end->w4;
1332    uint8_t pq;
1333
1334    if (!xive_end_is_escalate(end)) {
1335        return;
1336    }
1337
1338    pq = xive_get_field32(END_W1_ESe, end->w1);
1339
1340    monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1341                   end_idx,
1342                   pq & XIVE_ESB_VAL_P ? 'P' : '-',
1343                   pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1344                   xive_eas_is_valid(eas) ? 'V' : ' ',
1345                   xive_eas_is_masked(eas) ? 'M' : ' ',
1346                   (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1347                   (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1348                   (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1349}
1350
1351/*
1352 * XIVE Router (aka. Virtualization Controller or IVRE)
1353 */
1354
1355int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1356                        XiveEAS *eas)
1357{
1358    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1359
1360    return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1361}
1362
1363int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1364                        XiveEND *end)
1365{
1366   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1367
1368   return xrc->get_end(xrtr, end_blk, end_idx, end);
1369}
1370
1371int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1372                          XiveEND *end, uint8_t word_number)
1373{
1374   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1375
1376   return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1377}
1378
1379int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1380                        XiveNVT *nvt)
1381{
1382   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1383
1384   return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1385}
1386
1387int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1388                        XiveNVT *nvt, uint8_t word_number)
1389{
1390   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1391
1392   return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1393}
1394
1395static int xive_router_get_block_id(XiveRouter *xrtr)
1396{
1397   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1398
1399   return xrc->get_block_id(xrtr);
1400}
1401
1402static void xive_router_realize(DeviceState *dev, Error **errp)
1403{
1404    XiveRouter *xrtr = XIVE_ROUTER(dev);
1405
1406    assert(xrtr->xfb);
1407}
1408
1409/*
1410 * Encode the HW CAM line in the block group mode format :
1411 *
1412 *   chip << 19 | 0000000 0 0001 thread (7Bit)
1413 */
1414static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1415{
1416    CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1417    uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1418    uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1419
1420    return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1421}
1422
1423/*
1424 * The thread context register words are in big-endian format.
1425 */
1426int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1427                              uint8_t format,
1428                              uint8_t nvt_blk, uint32_t nvt_idx,
1429                              bool cam_ignore, uint32_t logic_serv)
1430{
1431    uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1432    uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1433    uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1434    uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1435    uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1436
1437    /*
1438     * TODO (PowerNV): ignore mode. The low order bits of the NVT
1439     * identifier are ignored in the "CAM" match.
1440     */
1441
1442    if (format == 0) {
1443        if (cam_ignore == true) {
1444            /*
1445             * F=0 & i=1: Logical server notification (bits ignored at
1446             * the end of the NVT identifier)
1447             */
1448            qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1449                          nvt_blk, nvt_idx);
1450             return -1;
1451        }
1452
1453        /* F=0 & i=0: Specific NVT notification */
1454
1455        /* PHYS ring */
1456        if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1457            cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1458            return TM_QW3_HV_PHYS;
1459        }
1460
1461        /* HV POOL ring */
1462        if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1463            cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1464            return TM_QW2_HV_POOL;
1465        }
1466
1467        /* OS ring */
1468        if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1469            cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1470            return TM_QW1_OS;
1471        }
1472    } else {
1473        /* F=1 : User level Event-Based Branch (EBB) notification */
1474
1475        /* USER ring */
1476        if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1477             (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1478             (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1479             (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1480            return TM_QW0_USER;
1481        }
1482    }
1483    return -1;
1484}
1485
1486/*
1487 * This is our simple Xive Presenter Engine model. It is merged in the
1488 * Router as it does not require an extra object.
1489 *
1490 * It receives notification requests sent by the IVRE to find one
1491 * matching NVT (or more) dispatched on the processor threads. In case
1492 * of a single NVT notification, the process is abreviated and the
1493 * thread is signaled if a match is found. In case of a logical server
1494 * notification (bits ignored at the end of the NVT identifier), the
1495 * IVPE and IVRE select a winning thread using different filters. This
1496 * involves 2 or 3 exchanges on the PowerBus that the model does not
1497 * support.
1498 *
1499 * The parameters represent what is sent on the PowerBus
1500 */
1501bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1502                           uint8_t nvt_blk, uint32_t nvt_idx,
1503                           bool cam_ignore, uint8_t priority,
1504                           uint32_t logic_serv)
1505{
1506    XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1507    XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1508    int count;
1509
1510    /*
1511     * Ask the machine to scan the interrupt controllers for a match
1512     */
1513    count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1514                           priority, logic_serv, &match);
1515    if (count < 0) {
1516        return false;
1517    }
1518
1519    /* handle CPU exception delivery */
1520    if (count) {
1521        trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
1522        xive_tctx_ipb_update(match.tctx, match.ring,
1523                             xive_priority_to_ipb(priority));
1524    }
1525
1526    return !!count;
1527}
1528
1529/*
1530 * Notification using the END ESe/ESn bit (Event State Buffer for
1531 * escalation and notification). Provide further coalescing in the
1532 * Router.
1533 */
1534static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1535                                      uint32_t end_idx, XiveEND *end,
1536                                      uint32_t end_esmask)
1537{
1538    uint8_t pq = xive_get_field32(end_esmask, end->w1);
1539    bool notify = xive_esb_trigger(&pq);
1540
1541    if (pq != xive_get_field32(end_esmask, end->w1)) {
1542        end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1543        xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1544    }
1545
1546    /* ESe/n[Q]=1 : end of notification */
1547    return notify;
1548}
1549
1550/*
1551 * An END trigger can come from an event trigger (IPI or HW) or from
1552 * another chip. We don't model the PowerBus but the END trigger
1553 * message has the same parameters than in the function below.
1554 */
1555static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1556                                   uint32_t end_idx, uint32_t end_data)
1557{
1558    XiveEND end;
1559    uint8_t priority;
1560    uint8_t format;
1561    uint8_t nvt_blk;
1562    uint32_t nvt_idx;
1563    XiveNVT nvt;
1564    bool found;
1565
1566    /* END cache lookup */
1567    if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1568        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1569                      end_idx);
1570        return;
1571    }
1572
1573    if (!xive_end_is_valid(&end)) {
1574        trace_xive_router_end_notify(end_blk, end_idx, end_data);
1575        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1576                      end_blk, end_idx);
1577        return;
1578    }
1579
1580    if (xive_end_is_enqueue(&end)) {
1581        xive_end_enqueue(&end, end_data);
1582        /* Enqueuing event data modifies the EQ toggle and index */
1583        xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1584    }
1585
1586    /*
1587     * When the END is silent, we skip the notification part.
1588     */
1589    if (xive_end_is_silent_escalation(&end)) {
1590        goto do_escalation;
1591    }
1592
1593    /*
1594     * The W7 format depends on the F bit in W6. It defines the type
1595     * of the notification :
1596     *
1597     *   F=0 : single or multiple NVT notification
1598     *   F=1 : User level Event-Based Branch (EBB) notification, no
1599     *         priority
1600     */
1601    format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1602    priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1603
1604    /* The END is masked */
1605    if (format == 0 && priority == 0xff) {
1606        return;
1607    }
1608
1609    /*
1610     * Check the END ESn (Event State Buffer for notification) for
1611     * even further coalescing in the Router
1612     */
1613    if (!xive_end_is_notify(&end)) {
1614        /* ESn[Q]=1 : end of notification */
1615        if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1616                                       &end, END_W1_ESn)) {
1617            return;
1618        }
1619    }
1620
1621    /*
1622     * Follows IVPE notification
1623     */
1624    nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1625    nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1626
1627    /* NVT cache lookup */
1628    if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1629        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1630                      nvt_blk, nvt_idx);
1631        return;
1632    }
1633
1634    if (!xive_nvt_is_valid(&nvt)) {
1635        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1636                      nvt_blk, nvt_idx);
1637        return;
1638    }
1639
1640    found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1641                          xive_get_field32(END_W7_F0_IGNORE, end.w7),
1642                          priority,
1643                          xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1644
1645    /* TODO: Auto EOI. */
1646
1647    if (found) {
1648        return;
1649    }
1650
1651    /*
1652     * If no matching NVT is dispatched on a HW thread :
1653     * - specific VP: update the NVT structure if backlog is activated
1654     * - logical server : forward request to IVPE (not supported)
1655     */
1656    if (xive_end_is_backlog(&end)) {
1657        uint8_t ipb;
1658
1659        if (format == 1) {
1660            qemu_log_mask(LOG_GUEST_ERROR,
1661                          "XIVE: END %x/%x invalid config: F1 & backlog\n",
1662                          end_blk, end_idx);
1663            return;
1664        }
1665        /*
1666         * Record the IPB in the associated NVT structure for later
1667         * use. The presenter will resend the interrupt when the vCPU
1668         * is dispatched again on a HW thread.
1669         */
1670        ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
1671            xive_priority_to_ipb(priority);
1672        nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1673        xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1674
1675        /*
1676         * On HW, follows a "Broadcast Backlog" to IVPEs
1677         */
1678    }
1679
1680do_escalation:
1681    /*
1682     * If activated, escalate notification using the ESe PQ bits and
1683     * the EAS in w4-5
1684     */
1685    if (!xive_end_is_escalate(&end)) {
1686        return;
1687    }
1688
1689    /*
1690     * Check the END ESe (Event State Buffer for escalation) for even
1691     * further coalescing in the Router
1692     */
1693    if (!xive_end_is_uncond_escalation(&end)) {
1694        /* ESe[Q]=1 : end of notification */
1695        if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1696                                       &end, END_W1_ESe)) {
1697            return;
1698        }
1699    }
1700
1701    trace_xive_router_end_escalate(end_blk, end_idx,
1702           (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1703           (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1704           (uint32_t) xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1705    /*
1706     * The END trigger becomes an Escalation trigger
1707     */
1708    xive_router_end_notify(xrtr,
1709                           xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1710                           xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1711                           xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1712}
1713
1714void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1715{
1716    XiveRouter *xrtr = XIVE_ROUTER(xn);
1717    uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1718    uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1719    XiveEAS eas;
1720
1721    /* EAS cache lookup */
1722    if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1723        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1724        return;
1725    }
1726
1727    /*
1728     * The IVRE checks the State Bit Cache at this point. We skip the
1729     * SBC lookup because the state bits of the sources are modeled
1730     * internally in QEMU.
1731     */
1732
1733    if (!xive_eas_is_valid(&eas)) {
1734        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1735        return;
1736    }
1737
1738    if (xive_eas_is_masked(&eas)) {
1739        /* Notification completed */
1740        return;
1741    }
1742
1743    /*
1744     * The event trigger becomes an END trigger
1745     */
1746    xive_router_end_notify(xrtr,
1747                           xive_get_field64(EAS_END_BLOCK, eas.w),
1748                           xive_get_field64(EAS_END_INDEX, eas.w),
1749                           xive_get_field64(EAS_END_DATA,  eas.w));
1750}
1751
1752static Property xive_router_properties[] = {
1753    DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1754                     TYPE_XIVE_FABRIC, XiveFabric *),
1755    DEFINE_PROP_END_OF_LIST(),
1756};
1757
1758static void xive_router_class_init(ObjectClass *klass, void *data)
1759{
1760    DeviceClass *dc = DEVICE_CLASS(klass);
1761    XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1762
1763    dc->desc    = "XIVE Router Engine";
1764    device_class_set_props(dc, xive_router_properties);
1765    /* Parent is SysBusDeviceClass. No need to call its realize hook */
1766    dc->realize = xive_router_realize;
1767    xnc->notify = xive_router_notify;
1768}
1769
1770static const TypeInfo xive_router_info = {
1771    .name          = TYPE_XIVE_ROUTER,
1772    .parent        = TYPE_SYS_BUS_DEVICE,
1773    .abstract      = true,
1774    .instance_size = sizeof(XiveRouter),
1775    .class_size    = sizeof(XiveRouterClass),
1776    .class_init    = xive_router_class_init,
1777    .interfaces    = (InterfaceInfo[]) {
1778        { TYPE_XIVE_NOTIFIER },
1779        { TYPE_XIVE_PRESENTER },
1780        { }
1781    }
1782};
1783
1784void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1785{
1786    if (!xive_eas_is_valid(eas)) {
1787        return;
1788    }
1789
1790    monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1791                   lisn, xive_eas_is_masked(eas) ? "M" : " ",
1792                   (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1793                   (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1794                   (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1795}
1796
1797/*
1798 * END ESB MMIO loads
1799 */
1800static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1801{
1802    XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1803    uint32_t offset = addr & 0xFFF;
1804    uint8_t end_blk;
1805    uint32_t end_idx;
1806    XiveEND end;
1807    uint32_t end_esmask;
1808    uint8_t pq;
1809    uint64_t ret = -1;
1810
1811    /*
1812     * The block id should be deduced from the load address on the END
1813     * ESB MMIO but our model only supports a single block per XIVE chip.
1814     */
1815    end_blk = xive_router_get_block_id(xsrc->xrtr);
1816    end_idx = addr >> (xsrc->esb_shift + 1);
1817
1818    trace_xive_end_source_read(end_blk, end_idx, addr);
1819
1820    if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1821        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1822                      end_idx);
1823        return -1;
1824    }
1825
1826    if (!xive_end_is_valid(&end)) {
1827        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1828                      end_blk, end_idx);
1829        return -1;
1830    }
1831
1832    end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1833    pq = xive_get_field32(end_esmask, end.w1);
1834
1835    switch (offset) {
1836    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1837        ret = xive_esb_eoi(&pq);
1838
1839        /* Forward the source event notification for routing ?? */
1840        break;
1841
1842    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1843        ret = pq;
1844        break;
1845
1846    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1847    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1848    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1849    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1850        ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1851        break;
1852    default:
1853        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1854                      offset);
1855        return -1;
1856    }
1857
1858    if (pq != xive_get_field32(end_esmask, end.w1)) {
1859        end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1860        xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1861    }
1862
1863    return ret;
1864}
1865
1866/*
1867 * END ESB MMIO stores are invalid
1868 */
1869static void xive_end_source_write(void *opaque, hwaddr addr,
1870                                  uint64_t value, unsigned size)
1871{
1872    qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1873                  HWADDR_PRIx"\n", addr);
1874}
1875
1876static const MemoryRegionOps xive_end_source_ops = {
1877    .read = xive_end_source_read,
1878    .write = xive_end_source_write,
1879    .endianness = DEVICE_BIG_ENDIAN,
1880    .valid = {
1881        .min_access_size = 8,
1882        .max_access_size = 8,
1883    },
1884    .impl = {
1885        .min_access_size = 8,
1886        .max_access_size = 8,
1887    },
1888};
1889
1890static void xive_end_source_realize(DeviceState *dev, Error **errp)
1891{
1892    XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1893
1894    assert(xsrc->xrtr);
1895
1896    if (!xsrc->nr_ends) {
1897        error_setg(errp, "Number of interrupt needs to be greater than 0");
1898        return;
1899    }
1900
1901    if (xsrc->esb_shift != XIVE_ESB_4K &&
1902        xsrc->esb_shift != XIVE_ESB_64K) {
1903        error_setg(errp, "Invalid ESB shift setting");
1904        return;
1905    }
1906
1907    /*
1908     * Each END is assigned an even/odd pair of MMIO pages, the even page
1909     * manages the ESn field while the odd page manages the ESe field.
1910     */
1911    memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1912                          &xive_end_source_ops, xsrc, "xive.end",
1913                          (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1914}
1915
1916static Property xive_end_source_properties[] = {
1917    DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1918    DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1919    DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1920                     XiveRouter *),
1921    DEFINE_PROP_END_OF_LIST(),
1922};
1923
1924static void xive_end_source_class_init(ObjectClass *klass, void *data)
1925{
1926    DeviceClass *dc = DEVICE_CLASS(klass);
1927
1928    dc->desc    = "XIVE END Source";
1929    device_class_set_props(dc, xive_end_source_properties);
1930    dc->realize = xive_end_source_realize;
1931    /*
1932     * Reason: part of XIVE interrupt controller, needs to be wired up,
1933     * e.g. by spapr_xive_instance_init().
1934     */
1935    dc->user_creatable = false;
1936}
1937
1938static const TypeInfo xive_end_source_info = {
1939    .name          = TYPE_XIVE_END_SOURCE,
1940    .parent        = TYPE_DEVICE,
1941    .instance_size = sizeof(XiveENDSource),
1942    .class_init    = xive_end_source_class_init,
1943};
1944
1945/*
1946 * XIVE Notifier
1947 */
1948static const TypeInfo xive_notifier_info = {
1949    .name = TYPE_XIVE_NOTIFIER,
1950    .parent = TYPE_INTERFACE,
1951    .class_size = sizeof(XiveNotifierClass),
1952};
1953
1954/*
1955 * XIVE Presenter
1956 */
1957static const TypeInfo xive_presenter_info = {
1958    .name = TYPE_XIVE_PRESENTER,
1959    .parent = TYPE_INTERFACE,
1960    .class_size = sizeof(XivePresenterClass),
1961};
1962
1963/*
1964 * XIVE Fabric
1965 */
1966static const TypeInfo xive_fabric_info = {
1967    .name = TYPE_XIVE_FABRIC,
1968    .parent = TYPE_INTERFACE,
1969    .class_size = sizeof(XiveFabricClass),
1970};
1971
1972static void xive_register_types(void)
1973{
1974    type_register_static(&xive_fabric_info);
1975    type_register_static(&xive_source_info);
1976    type_register_static(&xive_notifier_info);
1977    type_register_static(&xive_presenter_info);
1978    type_register_static(&xive_router_info);
1979    type_register_static(&xive_end_source_info);
1980    type_register_static(&xive_tctx_info);
1981}
1982
1983type_init(xive_register_types)
1984