qemu/hw/net/msf2-emac.c
<<
>>
Prefs
   1/*
   2 * QEMU model of the Smartfusion2 Ethernet MAC.
   3 *
   4 * Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 *
  24 * Refer to section Ethernet MAC in the document:
  25 * UG0331: SmartFusion2 Microcontroller Subsystem User Guide
  26 * Datasheet URL:
  27 * https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/
  28 * 56758-soc?lang=en&limit=20&limitstart=220
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qemu-common.h"
  33#include "qemu/log.h"
  34#include "qapi/error.h"
  35#include "hw/registerfields.h"
  36#include "hw/net/msf2-emac.h"
  37#include "hw/net/mii.h"
  38#include "hw/irq.h"
  39#include "hw/qdev-properties.h"
  40#include "migration/vmstate.h"
  41
  42REG32(CFG1, 0x0)
  43    FIELD(CFG1, RESET, 31, 1)
  44    FIELD(CFG1, RX_EN, 2, 1)
  45    FIELD(CFG1, TX_EN, 0, 1)
  46    FIELD(CFG1, LB_EN, 8, 1)
  47REG32(CFG2, 0x4)
  48REG32(IFG, 0x8)
  49REG32(HALF_DUPLEX, 0xc)
  50REG32(MAX_FRAME_LENGTH, 0x10)
  51REG32(MII_CMD, 0x24)
  52    FIELD(MII_CMD, READ, 0, 1)
  53REG32(MII_ADDR, 0x28)
  54    FIELD(MII_ADDR, REGADDR, 0, 5)
  55    FIELD(MII_ADDR, PHYADDR, 8, 5)
  56REG32(MII_CTL, 0x2c)
  57REG32(MII_STS, 0x30)
  58REG32(STA1, 0x40)
  59REG32(STA2, 0x44)
  60REG32(FIFO_CFG0, 0x48)
  61REG32(FIFO_CFG4, 0x58)
  62    FIELD(FIFO_CFG4, BCAST, 9, 1)
  63    FIELD(FIFO_CFG4, MCAST, 8, 1)
  64REG32(FIFO_CFG5, 0x5C)
  65    FIELD(FIFO_CFG5, BCAST, 9, 1)
  66    FIELD(FIFO_CFG5, MCAST, 8, 1)
  67REG32(DMA_TX_CTL, 0x180)
  68    FIELD(DMA_TX_CTL, EN, 0, 1)
  69REG32(DMA_TX_DESC, 0x184)
  70REG32(DMA_TX_STATUS, 0x188)
  71    FIELD(DMA_TX_STATUS, PKTCNT, 16, 8)
  72    FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1)
  73    FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1)
  74REG32(DMA_RX_CTL, 0x18c)
  75    FIELD(DMA_RX_CTL, EN, 0, 1)
  76REG32(DMA_RX_DESC, 0x190)
  77REG32(DMA_RX_STATUS, 0x194)
  78    FIELD(DMA_RX_STATUS, PKTCNT, 16, 8)
  79    FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1)
  80    FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1)
  81REG32(DMA_IRQ_MASK, 0x198)
  82REG32(DMA_IRQ, 0x19c)
  83
  84#define EMPTY_MASK              (1 << 31)
  85#define PKT_SIZE                0x7FF
  86#define PHYADDR                 0x1
  87#define MAX_PKT_SIZE            2048
  88
  89typedef struct {
  90    uint32_t pktaddr;
  91    uint32_t pktsize;
  92    uint32_t next;
  93} EmacDesc;
  94
  95static uint32_t emac_get_isr(MSF2EmacState *s)
  96{
  97    uint32_t ier = s->regs[R_DMA_IRQ_MASK];
  98    uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF;
  99    uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF;
 100    uint32_t isr = (rx << 4) | tx;
 101
 102    s->regs[R_DMA_IRQ] = ier & isr;
 103    return s->regs[R_DMA_IRQ];
 104}
 105
 106static void emac_update_irq(MSF2EmacState *s)
 107{
 108    bool intr = emac_get_isr(s);
 109
 110    qemu_set_irq(s->irq, intr);
 111}
 112
 113static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
 114{
 115    address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
 116    /* Convert from LE into host endianness. */
 117    d->pktaddr = le32_to_cpu(d->pktaddr);
 118    d->pktsize = le32_to_cpu(d->pktsize);
 119    d->next = le32_to_cpu(d->next);
 120}
 121
 122static void emac_store_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
 123{
 124    /* Convert from host endianness into LE. */
 125    d->pktaddr = cpu_to_le32(d->pktaddr);
 126    d->pktsize = cpu_to_le32(d->pktsize);
 127    d->next = cpu_to_le32(d->next);
 128
 129    address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
 130}
 131
 132static void msf2_dma_tx(MSF2EmacState *s)
 133{
 134    NetClientState *nc = qemu_get_queue(s->nic);
 135    hwaddr desc = s->regs[R_DMA_TX_DESC];
 136    uint8_t buf[MAX_PKT_SIZE];
 137    EmacDesc d;
 138    int size;
 139    uint8_t pktcnt;
 140    uint32_t status;
 141
 142    if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) {
 143        return;
 144    }
 145
 146    while (1) {
 147        emac_load_desc(s, &d, desc);
 148        if (d.pktsize & EMPTY_MASK) {
 149            break;
 150        }
 151        size = d.pktsize & PKT_SIZE;
 152        address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
 153                           buf, size);
 154        /*
 155         * This is very basic way to send packets. Ideally there should be
 156         * a FIFO and packets should be sent out from FIFO only when
 157         * R_CFG1 bit 0 is set.
 158         */
 159        if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) {
 160            qemu_receive_packet(nc, buf, size);
 161        } else {
 162            qemu_send_packet(nc, buf, size);
 163        }
 164        d.pktsize |= EMPTY_MASK;
 165        emac_store_desc(s, &d, desc);
 166        /* update sent packets count */
 167        status = s->regs[R_DMA_TX_STATUS];
 168        pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT);
 169        pktcnt++;
 170        s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS,
 171                                              PKTCNT, pktcnt);
 172        s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK;
 173        desc = d.next;
 174    }
 175    s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK;
 176    s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK;
 177}
 178
 179static void msf2_phy_update_link(MSF2EmacState *s)
 180{
 181    /* Autonegotiation status mirrors link status. */
 182    if (qemu_get_queue(s->nic)->link_down) {
 183        s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP |
 184                                   MII_BMSR_LINK_ST);
 185    } else {
 186        s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP |
 187                                  MII_BMSR_LINK_ST);
 188    }
 189}
 190
 191static void msf2_phy_reset(MSF2EmacState *s)
 192{
 193    memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
 194    s->phy_regs[MII_BMCR] = 0x1140;
 195    s->phy_regs[MII_BMSR] = 0x7968;
 196    s->phy_regs[MII_PHYID1] = 0x0022;
 197    s->phy_regs[MII_PHYID2] = 0x1550;
 198    s->phy_regs[MII_ANAR] = 0x01E1;
 199    s->phy_regs[MII_ANLPAR] = 0xCDE1;
 200
 201    msf2_phy_update_link(s);
 202}
 203
 204static void write_to_phy(MSF2EmacState *s)
 205{
 206    uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
 207    uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
 208                       R_MII_ADDR_REGADDR_MASK;
 209    uint16_t data = s->regs[R_MII_CTL] & 0xFFFF;
 210
 211    if (phy_addr != PHYADDR) {
 212        return;
 213    }
 214
 215    switch (reg_addr) {
 216    case MII_BMCR:
 217        if (data & MII_BMCR_RESET) {
 218            /* Phy reset */
 219            msf2_phy_reset(s);
 220            data &= ~MII_BMCR_RESET;
 221        }
 222        if (data & MII_BMCR_AUTOEN) {
 223            /* Complete autonegotiation immediately */
 224            data &= ~MII_BMCR_AUTOEN;
 225            s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP;
 226        }
 227        break;
 228    }
 229
 230    s->phy_regs[reg_addr] = data;
 231}
 232
 233static uint16_t read_from_phy(MSF2EmacState *s)
 234{
 235    uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
 236    uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
 237                       R_MII_ADDR_REGADDR_MASK;
 238
 239    if (phy_addr == PHYADDR) {
 240        return s->phy_regs[reg_addr];
 241    } else {
 242        return 0xFFFF;
 243    }
 244}
 245
 246static void msf2_emac_do_reset(MSF2EmacState *s)
 247{
 248    memset(&s->regs[0], 0, sizeof(s->regs));
 249    s->regs[R_CFG1] = 0x80000000;
 250    s->regs[R_CFG2] = 0x00007000;
 251    s->regs[R_IFG] = 0x40605060;
 252    s->regs[R_HALF_DUPLEX] = 0x00A1F037;
 253    s->regs[R_MAX_FRAME_LENGTH] = 0x00000600;
 254    s->regs[R_FIFO_CFG5] = 0X3FFFF;
 255
 256    msf2_phy_reset(s);
 257}
 258
 259static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size)
 260{
 261    MSF2EmacState *s = opaque;
 262    uint32_t r = 0;
 263
 264    addr >>= 2;
 265
 266    switch (addr) {
 267    case R_DMA_IRQ:
 268        r = emac_get_isr(s);
 269        break;
 270    default:
 271        if (addr >= ARRAY_SIZE(s->regs)) {
 272            qemu_log_mask(LOG_GUEST_ERROR,
 273                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
 274                          addr * 4);
 275            return r;
 276        }
 277        r = s->regs[addr];
 278        break;
 279    }
 280    return r;
 281}
 282
 283static void emac_write(void *opaque, hwaddr addr, uint64_t val64,
 284        unsigned int size)
 285{
 286    MSF2EmacState *s = opaque;
 287    uint32_t value = val64;
 288    uint32_t enreqbits;
 289    uint8_t pktcnt;
 290
 291    addr >>= 2;
 292    switch (addr) {
 293    case R_DMA_TX_CTL:
 294        s->regs[addr] = value;
 295        if (value & R_DMA_TX_CTL_EN_MASK) {
 296            msf2_dma_tx(s);
 297        }
 298        break;
 299    case R_DMA_RX_CTL:
 300        s->regs[addr] = value;
 301        if (value & R_DMA_RX_CTL_EN_MASK) {
 302            s->rx_desc = s->regs[R_DMA_RX_DESC];
 303            qemu_flush_queued_packets(qemu_get_queue(s->nic));
 304        }
 305        break;
 306    case R_CFG1:
 307        s->regs[addr] = value;
 308        if (value & R_CFG1_RESET_MASK) {
 309            msf2_emac_do_reset(s);
 310        }
 311        break;
 312    case R_FIFO_CFG0:
 313       /*
 314        * For our implementation, turning on modules is instantaneous,
 315        * so the states requested via the *ENREQ bits appear in the
 316        * *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC
 317        * module are not emulated here since it deals with start of frames,
 318        * inter-packet gap and control frames.
 319        */
 320        enreqbits = extract32(value, 8, 5);
 321        s->regs[addr] = deposit32(value, 16, 5, enreqbits);
 322        break;
 323    case R_DMA_TX_DESC:
 324        if (value & 0x3) {
 325            qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be"
 326                          " 32 bit aligned\n");
 327        }
 328        /* Ignore [1:0] bits */
 329        s->regs[addr] = value & ~3;
 330        break;
 331    case R_DMA_RX_DESC:
 332        if (value & 0x3) {
 333            qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be"
 334                          " 32 bit aligned\n");
 335        }
 336        /* Ignore [1:0] bits */
 337        s->regs[addr] = value & ~3;
 338        break;
 339    case R_DMA_TX_STATUS:
 340        if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) {
 341            s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK;
 342        }
 343        if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) {
 344            pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT);
 345            pktcnt--;
 346            s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS,
 347                                       PKTCNT, pktcnt);
 348            if (pktcnt == 0) {
 349                s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK;
 350            }
 351        }
 352        break;
 353    case R_DMA_RX_STATUS:
 354        if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) {
 355            s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK;
 356        }
 357        if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) {
 358            pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT);
 359            pktcnt--;
 360            s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS,
 361                                       PKTCNT, pktcnt);
 362            if (pktcnt == 0) {
 363                s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK;
 364            }
 365        }
 366        break;
 367    case R_DMA_IRQ:
 368        break;
 369    case R_MII_CMD:
 370        if (value & R_MII_CMD_READ_MASK) {
 371            s->regs[R_MII_STS] = read_from_phy(s);
 372        }
 373        break;
 374    case R_MII_CTL:
 375        s->regs[addr] = value;
 376        write_to_phy(s);
 377        break;
 378    case R_STA1:
 379        s->regs[addr] = value;
 380       /*
 381        * R_STA1 [31:24] : octet 1 of mac address
 382        * R_STA1 [23:16] : octet 2 of mac address
 383        * R_STA1 [15:8] : octet 3 of mac address
 384        * R_STA1 [7:0] : octet 4 of mac address
 385        */
 386        stl_be_p(s->mac_addr, value);
 387        break;
 388    case R_STA2:
 389        s->regs[addr] = value;
 390       /*
 391        * R_STA2 [31:24] : octet 5 of mac address
 392        * R_STA2 [23:16] : octet 6 of mac address
 393        */
 394        stw_be_p(s->mac_addr + 4, value >> 16);
 395        break;
 396    default:
 397        if (addr >= ARRAY_SIZE(s->regs)) {
 398            qemu_log_mask(LOG_GUEST_ERROR,
 399                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
 400                          addr * 4);
 401            return;
 402        }
 403        s->regs[addr] = value;
 404        break;
 405    }
 406    emac_update_irq(s);
 407}
 408
 409static const MemoryRegionOps emac_ops = {
 410    .read = emac_read,
 411    .write = emac_write,
 412    .endianness = DEVICE_NATIVE_ENDIAN,
 413    .impl = {
 414        .min_access_size = 4,
 415        .max_access_size = 4
 416    }
 417};
 418
 419static bool emac_can_rx(NetClientState *nc)
 420{
 421    MSF2EmacState *s = qemu_get_nic_opaque(nc);
 422
 423    return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) &&
 424           (s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK);
 425}
 426
 427static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf)
 428{
 429    /* The broadcast MAC address: FF:FF:FF:FF:FF:FF */
 430    const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF,
 431                                              0xFF, 0xFF };
 432    bool bcast_en = true;
 433    bool mcast_en = true;
 434
 435    if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) {
 436        bcast_en = true; /* Broadcast dont care for drop circuitry */
 437    } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) {
 438        bcast_en = false;
 439    }
 440
 441    if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) {
 442        mcast_en = true; /* Multicast dont care for drop circuitry */
 443    } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) {
 444        mcast_en = false;
 445    }
 446
 447    if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) {
 448        return bcast_en;
 449    }
 450
 451    if (buf[0] & 1) {
 452        return mcast_en;
 453    }
 454
 455    return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr));
 456}
 457
 458static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size)
 459{
 460    MSF2EmacState *s = qemu_get_nic_opaque(nc);
 461    EmacDesc d;
 462    uint8_t pktcnt;
 463    uint32_t status;
 464
 465    if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) {
 466        return size;
 467    }
 468    if (!addr_filter_ok(s, buf)) {
 469        return size;
 470    }
 471
 472    emac_load_desc(s, &d, s->rx_desc);
 473
 474    if (d.pktsize & EMPTY_MASK) {
 475        address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
 476                            buf, size & PKT_SIZE);
 477        d.pktsize = size & PKT_SIZE;
 478        emac_store_desc(s, &d, s->rx_desc);
 479        /* update received packets count */
 480        status = s->regs[R_DMA_RX_STATUS];
 481        pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT);
 482        pktcnt++;
 483        s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS,
 484                                              PKTCNT, pktcnt);
 485        s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK;
 486        s->rx_desc = d.next;
 487    } else {
 488        s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK;
 489        s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK;
 490    }
 491    emac_update_irq(s);
 492    return size;
 493}
 494
 495static void msf2_emac_reset(DeviceState *dev)
 496{
 497    MSF2EmacState *s = MSS_EMAC(dev);
 498
 499    msf2_emac_do_reset(s);
 500}
 501
 502static void emac_set_link(NetClientState *nc)
 503{
 504    MSF2EmacState *s = qemu_get_nic_opaque(nc);
 505
 506    msf2_phy_update_link(s);
 507}
 508
 509static NetClientInfo net_msf2_emac_info = {
 510    .type = NET_CLIENT_DRIVER_NIC,
 511    .size = sizeof(NICState),
 512    .can_receive = emac_can_rx,
 513    .receive = emac_rx,
 514    .link_status_changed = emac_set_link,
 515};
 516
 517static void msf2_emac_realize(DeviceState *dev, Error **errp)
 518{
 519    MSF2EmacState *s = MSS_EMAC(dev);
 520
 521    if (!s->dma_mr) {
 522        error_setg(errp, "MSS_EMAC 'ahb-bus' link not set");
 523        return;
 524    }
 525
 526    address_space_init(&s->dma_as, s->dma_mr, "emac-ahb");
 527
 528    qemu_macaddr_default_if_unset(&s->conf.macaddr);
 529    s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf,
 530                          object_get_typename(OBJECT(dev)), dev->id, s);
 531    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
 532}
 533
 534static void msf2_emac_init(Object *obj)
 535{
 536    MSF2EmacState *s = MSS_EMAC(obj);
 537
 538    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
 539
 540    memory_region_init_io(&s->mmio, obj, &emac_ops, s,
 541                          "msf2-emac", R_MAX * 4);
 542    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
 543}
 544
 545static Property msf2_emac_properties[] = {
 546    DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr,
 547                     TYPE_MEMORY_REGION, MemoryRegion *),
 548    DEFINE_NIC_PROPERTIES(MSF2EmacState, conf),
 549    DEFINE_PROP_END_OF_LIST(),
 550};
 551
 552static const VMStateDescription vmstate_msf2_emac = {
 553    .name = TYPE_MSS_EMAC,
 554    .version_id = 1,
 555    .minimum_version_id = 1,
 556    .fields = (VMStateField[]) {
 557        VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN),
 558        VMSTATE_UINT32(rx_desc, MSF2EmacState),
 559        VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS),
 560        VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX),
 561        VMSTATE_END_OF_LIST()
 562    }
 563};
 564
 565static void msf2_emac_class_init(ObjectClass *klass, void *data)
 566{
 567    DeviceClass *dc = DEVICE_CLASS(klass);
 568
 569    dc->realize = msf2_emac_realize;
 570    dc->reset = msf2_emac_reset;
 571    dc->vmsd = &vmstate_msf2_emac;
 572    device_class_set_props(dc, msf2_emac_properties);
 573}
 574
 575static const TypeInfo msf2_emac_info = {
 576    .name          = TYPE_MSS_EMAC,
 577    .parent        = TYPE_SYS_BUS_DEVICE,
 578    .instance_size = sizeof(MSF2EmacState),
 579    .instance_init = msf2_emac_init,
 580    .class_init    = msf2_emac_class_init,
 581};
 582
 583static void msf2_emac_register_types(void)
 584{
 585    type_register_static(&msf2_emac_info);
 586}
 587
 588type_init(msf2_emac_register_types)
 589