qemu/target/s390x/mmu_helper.c
<<
>>
Prefs
   1/*
   2 * S390x MMU related functions
   3 *
   4 * Copyright (c) 2011 Alexander Graf
   5 * Copyright (c) 2015 Thomas Huth, IBM Corporation
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include "qemu/osdep.h"
  19#include "qemu/error-report.h"
  20#include "exec/address-spaces.h"
  21#include "cpu.h"
  22#include "s390x-internal.h"
  23#include "kvm/kvm_s390x.h"
  24#include "sysemu/kvm.h"
  25#include "sysemu/tcg.h"
  26#include "exec/exec-all.h"
  27#include "trace.h"
  28#include "hw/hw.h"
  29#include "hw/s390x/storage-keys.h"
  30#include "hw/boards.h"
  31
  32/* Fetch/store bits in the translation exception code: */
  33#define FS_READ  0x800
  34#define FS_WRITE 0x400
  35
  36static void trigger_access_exception(CPUS390XState *env, uint32_t type,
  37                                     uint64_t tec)
  38{
  39    S390CPU *cpu = env_archcpu(env);
  40
  41    if (kvm_enabled()) {
  42        kvm_s390_access_exception(cpu, type, tec);
  43    } else {
  44        CPUState *cs = env_cpu(env);
  45        if (type != PGM_ADDRESSING) {
  46            stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
  47        }
  48        trigger_pgm_exception(env, type);
  49    }
  50}
  51
  52/* check whether the address would be proteted by Low-Address Protection */
  53static bool is_low_address(uint64_t addr)
  54{
  55    return addr <= 511 || (addr >= 4096 && addr <= 4607);
  56}
  57
  58/* check whether Low-Address Protection is enabled for mmu_translate() */
  59static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
  60{
  61    if (!(env->cregs[0] & CR0_LOWPROT)) {
  62        return false;
  63    }
  64    if (!(env->psw.mask & PSW_MASK_DAT)) {
  65        return true;
  66    }
  67
  68    /* Check the private-space control bit */
  69    switch (asc) {
  70    case PSW_ASC_PRIMARY:
  71        return !(env->cregs[1] & ASCE_PRIVATE_SPACE);
  72    case PSW_ASC_SECONDARY:
  73        return !(env->cregs[7] & ASCE_PRIVATE_SPACE);
  74    case PSW_ASC_HOME:
  75        return !(env->cregs[13] & ASCE_PRIVATE_SPACE);
  76    default:
  77        /* We don't support access register mode */
  78        error_report("unsupported addressing mode");
  79        exit(1);
  80    }
  81}
  82
  83/**
  84 * Translate real address to absolute (= physical)
  85 * address by taking care of the prefix mapping.
  86 */
  87target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
  88{
  89    if (raddr < 0x2000) {
  90        return raddr + env->psa;    /* Map the lowcore. */
  91    } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
  92        return raddr - env->psa;    /* Map the 0 page. */
  93    }
  94    return raddr;
  95}
  96
  97bool mmu_absolute_addr_valid(target_ulong addr, bool is_write)
  98{
  99    return address_space_access_valid(&address_space_memory,
 100                                      addr & TARGET_PAGE_MASK,
 101                                      TARGET_PAGE_SIZE, is_write,
 102                                      MEMTXATTRS_UNSPECIFIED);
 103}
 104
 105static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr,
 106                                    uint64_t *entry)
 107{
 108    CPUState *cs = env_cpu(env);
 109
 110    /*
 111     * According to the PoP, these table addresses are "unpredictably real
 112     * or absolute". Also, "it is unpredictable whether the address wraps
 113     * or an addressing exception is recognized".
 114     *
 115     * We treat them as absolute addresses and don't wrap them.
 116     */
 117    if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED,
 118                                    entry, sizeof(*entry)) !=
 119                 MEMTX_OK)) {
 120        return false;
 121    }
 122    *entry = be64_to_cpu(*entry);
 123    return true;
 124}
 125
 126static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
 127                              uint64_t asc, uint64_t asce, target_ulong *raddr,
 128                              int *flags)
 129{
 130    const bool edat1 = (env->cregs[0] & CR0_EDAT) &&
 131                       s390_has_feat(S390_FEAT_EDAT);
 132    const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2);
 133    const bool iep = (env->cregs[0] & CR0_IEP) &&
 134                     s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT);
 135    const int asce_tl = asce & ASCE_TABLE_LENGTH;
 136    const int asce_p = asce & ASCE_PRIVATE_SPACE;
 137    hwaddr gaddr = asce & ASCE_ORIGIN;
 138    uint64_t entry;
 139
 140    if (asce & ASCE_REAL_SPACE) {
 141        /* direct mapping */
 142        *raddr = vaddr;
 143        return 0;
 144    }
 145
 146    switch (asce & ASCE_TYPE_MASK) {
 147    case ASCE_TYPE_REGION1:
 148        if (VADDR_REGION1_TL(vaddr) > asce_tl) {
 149            return PGM_REG_FIRST_TRANS;
 150        }
 151        gaddr += VADDR_REGION1_TX(vaddr) * 8;
 152        break;
 153    case ASCE_TYPE_REGION2:
 154        if (VADDR_REGION1_TX(vaddr)) {
 155            return PGM_ASCE_TYPE;
 156        }
 157        if (VADDR_REGION2_TL(vaddr) > asce_tl) {
 158            return PGM_REG_SEC_TRANS;
 159        }
 160        gaddr += VADDR_REGION2_TX(vaddr) * 8;
 161        break;
 162    case ASCE_TYPE_REGION3:
 163        if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) {
 164            return PGM_ASCE_TYPE;
 165        }
 166        if (VADDR_REGION3_TL(vaddr) > asce_tl) {
 167            return PGM_REG_THIRD_TRANS;
 168        }
 169        gaddr += VADDR_REGION3_TX(vaddr) * 8;
 170        break;
 171    case ASCE_TYPE_SEGMENT:
 172        if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) ||
 173            VADDR_REGION3_TX(vaddr)) {
 174            return PGM_ASCE_TYPE;
 175        }
 176        if (VADDR_SEGMENT_TL(vaddr) > asce_tl) {
 177            return PGM_SEGMENT_TRANS;
 178        }
 179        gaddr += VADDR_SEGMENT_TX(vaddr) * 8;
 180        break;
 181    }
 182
 183    switch (asce & ASCE_TYPE_MASK) {
 184    case ASCE_TYPE_REGION1:
 185        if (!read_table_entry(env, gaddr, &entry)) {
 186            return PGM_ADDRESSING;
 187        }
 188        if (entry & REGION_ENTRY_I) {
 189            return PGM_REG_FIRST_TRANS;
 190        }
 191        if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) {
 192            return PGM_TRANS_SPEC;
 193        }
 194        if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
 195            VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
 196            return PGM_REG_SEC_TRANS;
 197        }
 198        if (edat1 && (entry & REGION_ENTRY_P)) {
 199            *flags &= ~PAGE_WRITE;
 200        }
 201        gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8;
 202        /* fall through */
 203    case ASCE_TYPE_REGION2:
 204        if (!read_table_entry(env, gaddr, &entry)) {
 205            return PGM_ADDRESSING;
 206        }
 207        if (entry & REGION_ENTRY_I) {
 208            return PGM_REG_SEC_TRANS;
 209        }
 210        if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) {
 211            return PGM_TRANS_SPEC;
 212        }
 213        if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
 214            VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
 215            return PGM_REG_THIRD_TRANS;
 216        }
 217        if (edat1 && (entry & REGION_ENTRY_P)) {
 218            *flags &= ~PAGE_WRITE;
 219        }
 220        gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8;
 221        /* fall through */
 222    case ASCE_TYPE_REGION3:
 223        if (!read_table_entry(env, gaddr, &entry)) {
 224            return PGM_ADDRESSING;
 225        }
 226        if (entry & REGION_ENTRY_I) {
 227            return PGM_REG_THIRD_TRANS;
 228        }
 229        if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) {
 230            return PGM_TRANS_SPEC;
 231        }
 232        if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) {
 233            return PGM_TRANS_SPEC;
 234        }
 235        if (edat1 && (entry & REGION_ENTRY_P)) {
 236            *flags &= ~PAGE_WRITE;
 237        }
 238        if (edat2 && (entry & REGION3_ENTRY_FC)) {
 239            if (iep && (entry & REGION3_ENTRY_IEP)) {
 240                *flags &= ~PAGE_EXEC;
 241            }
 242            *raddr = (entry & REGION3_ENTRY_RFAA) |
 243                     (vaddr & ~REGION3_ENTRY_RFAA);
 244            return 0;
 245        }
 246        if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 ||
 247            VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) {
 248            return PGM_SEGMENT_TRANS;
 249        }
 250        gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8;
 251        /* fall through */
 252    case ASCE_TYPE_SEGMENT:
 253        if (!read_table_entry(env, gaddr, &entry)) {
 254            return PGM_ADDRESSING;
 255        }
 256        if (entry & SEGMENT_ENTRY_I) {
 257            return PGM_SEGMENT_TRANS;
 258        }
 259        if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) {
 260            return PGM_TRANS_SPEC;
 261        }
 262        if ((entry & SEGMENT_ENTRY_CS) && asce_p) {
 263            return PGM_TRANS_SPEC;
 264        }
 265        if (entry & SEGMENT_ENTRY_P) {
 266            *flags &= ~PAGE_WRITE;
 267        }
 268        if (edat1 && (entry & SEGMENT_ENTRY_FC)) {
 269            if (iep && (entry & SEGMENT_ENTRY_IEP)) {
 270                *flags &= ~PAGE_EXEC;
 271            }
 272            *raddr = (entry & SEGMENT_ENTRY_SFAA) |
 273                     (vaddr & ~SEGMENT_ENTRY_SFAA);
 274            return 0;
 275        }
 276        gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8;
 277        break;
 278    }
 279
 280    if (!read_table_entry(env, gaddr, &entry)) {
 281        return PGM_ADDRESSING;
 282    }
 283    if (entry & PAGE_ENTRY_I) {
 284        return PGM_PAGE_TRANS;
 285    }
 286    if (entry & PAGE_ENTRY_0) {
 287        return PGM_TRANS_SPEC;
 288    }
 289    if (entry & PAGE_ENTRY_P) {
 290        *flags &= ~PAGE_WRITE;
 291    }
 292    if (iep && (entry & PAGE_ENTRY_IEP)) {
 293        *flags &= ~PAGE_EXEC;
 294    }
 295
 296    *raddr = entry & TARGET_PAGE_MASK;
 297    return 0;
 298}
 299
 300static void mmu_handle_skey(target_ulong addr, int rw, int *flags)
 301{
 302    static S390SKeysClass *skeyclass;
 303    static S390SKeysState *ss;
 304    uint8_t key, old_key;
 305    int rc;
 306
 307    /*
 308     * We expect to be called with an absolute address that has already been
 309     * validated, such that we can reliably use it to lookup the storage key.
 310     */
 311    if (unlikely(!ss)) {
 312        ss = s390_get_skeys_device();
 313        skeyclass = S390_SKEYS_GET_CLASS(ss);
 314    }
 315
 316    /*
 317     * Don't enable storage keys if they are still disabled, i.e., no actual
 318     * storage key instruction was issued yet.
 319     */
 320    if (!skeyclass->skeys_are_enabled(ss)) {
 321        return;
 322    }
 323
 324    /*
 325     * Whenever we create a new TLB entry, we set the storage key reference
 326     * bit. In case we allow write accesses, we set the storage key change
 327     * bit. Whenever the guest changes the storage key, we have to flush the
 328     * TLBs of all CPUs (the whole TLB or all affected entries), so that the
 329     * next reference/change will result in an MMU fault and make us properly
 330     * update the storage key here.
 331     *
 332     * Note 1: "record of references ... is not necessarily accurate",
 333     *         "change bit may be set in case no storing has occurred".
 334     *         -> We can set reference/change bits even on exceptions.
 335     * Note 2: certain accesses seem to ignore storage keys. For example,
 336     *         DAT translation does not set reference bits for table accesses.
 337     *
 338     * TODO: key-controlled protection. Only CPU accesses make use of the
 339     *       PSW key. CSS accesses are different - we have to pass in the key.
 340     *
 341     * TODO: we have races between getting and setting the key.
 342     */
 343    rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
 344    if (rc) {
 345        trace_get_skeys_nonzero(rc);
 346        return;
 347    }
 348    old_key = key;
 349
 350    switch (rw) {
 351    case MMU_DATA_LOAD:
 352    case MMU_INST_FETCH:
 353        /*
 354         * The TLB entry has to remain write-protected on read-faults if
 355         * the storage key does not indicate a change already. Otherwise
 356         * we might miss setting the change bit on write accesses.
 357         */
 358        if (!(key & SK_C)) {
 359            *flags &= ~PAGE_WRITE;
 360        }
 361        break;
 362    case MMU_DATA_STORE:
 363        key |= SK_C;
 364        break;
 365    default:
 366        g_assert_not_reached();
 367    }
 368
 369    /* Any store/fetch sets the reference bit */
 370    key |= SK_R;
 371
 372    if (key != old_key) {
 373        rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
 374        if (rc) {
 375            trace_set_skeys_nonzero(rc);
 376        }
 377    }
 378}
 379
 380/**
 381 * Translate a virtual (logical) address into a physical (absolute) address.
 382 * @param vaddr  the virtual address
 383 * @param rw     0 = read, 1 = write, 2 = code fetch, < 0 = load real address
 384 * @param asc    address space control (one of the PSW_ASC_* modes)
 385 * @param raddr  the translated address is stored to this pointer
 386 * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
 387 * @param tec    the translation exception code if stored to this pointer if
 388 *               there is an exception to raise
 389 * @return       0 = success, != 0, the exception to raise
 390 */
 391int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
 392                  target_ulong *raddr, int *flags, uint64_t *tec)
 393{
 394    uint64_t asce;
 395    int r;
 396
 397    *tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) |
 398            (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ);
 399    *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 400
 401    if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
 402        /*
 403         * If any part of this page is currently protected, make sure the
 404         * TLB entry will not be reused.
 405         *
 406         * As the protected range is always the first 512 bytes of the
 407         * two first pages, we are able to catch all writes to these areas
 408         * just by looking at the start address (triggering the tlb miss).
 409         */
 410        *flags |= PAGE_WRITE_INV;
 411        if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
 412            /* LAP sets bit 56 */
 413            *tec |= 0x80;
 414            return PGM_PROTECTION;
 415        }
 416    }
 417
 418    vaddr &= TARGET_PAGE_MASK;
 419
 420    if (!(env->psw.mask & PSW_MASK_DAT)) {
 421        *raddr = vaddr;
 422        goto nodat;
 423    }
 424
 425    switch (asc) {
 426    case PSW_ASC_PRIMARY:
 427        asce = env->cregs[1];
 428        break;
 429    case PSW_ASC_HOME:
 430        asce = env->cregs[13];
 431        break;
 432    case PSW_ASC_SECONDARY:
 433        asce = env->cregs[7];
 434        break;
 435    case PSW_ASC_ACCREG:
 436    default:
 437        hw_error("guest switched to unknown asc mode\n");
 438        break;
 439    }
 440
 441    /* perform the DAT translation */
 442    r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags);
 443    if (unlikely(r)) {
 444        return r;
 445    }
 446
 447    /* check for DAT protection */
 448    if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) {
 449        /* DAT sets bit 61 only */
 450        *tec |= 0x4;
 451        return PGM_PROTECTION;
 452    }
 453
 454    /* check for Instruction-Execution-Protection */
 455    if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) {
 456        /* IEP sets bit 56 and 61 */
 457        *tec |= 0x84;
 458        return PGM_PROTECTION;
 459    }
 460
 461nodat:
 462    if (rw >= 0) {
 463        /* Convert real address -> absolute address */
 464        *raddr = mmu_real2abs(env, *raddr);
 465
 466        if (!mmu_absolute_addr_valid(*raddr, rw == MMU_DATA_STORE)) {
 467            *tec = 0; /* unused */
 468            return PGM_ADDRESSING;
 469        }
 470
 471        mmu_handle_skey(*raddr, rw, flags);
 472    }
 473    return 0;
 474}
 475
 476/**
 477 * translate_pages: Translate a set of consecutive logical page addresses
 478 * to absolute addresses. This function is used for TCG and old KVM without
 479 * the MEMOP interface.
 480 */
 481static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
 482                           target_ulong *pages, bool is_write, uint64_t *tec)
 483{
 484    uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
 485    CPUS390XState *env = &cpu->env;
 486    int ret, i, pflags;
 487
 488    for (i = 0; i < nr_pages; i++) {
 489        ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec);
 490        if (ret) {
 491            return ret;
 492        }
 493        addr += TARGET_PAGE_SIZE;
 494    }
 495
 496    return 0;
 497}
 498
 499int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf,
 500                       int len, bool is_write)
 501{
 502    int ret;
 503
 504    if (kvm_enabled()) {
 505        ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write);
 506    } else {
 507        /* Protected Virtualization is a KVM/Hardware only feature */
 508        g_assert_not_reached();
 509    }
 510    return ret;
 511}
 512
 513/**
 514 * s390_cpu_virt_mem_rw:
 515 * @laddr:     the logical start address
 516 * @ar:        the access register number
 517 * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
 518 * @len:       length that should be transferred
 519 * @is_write:  true = write, false = read
 520 * Returns:    0 on success, non-zero if an exception occurred
 521 *
 522 * Copy from/to guest memory using logical addresses. Note that we inject a
 523 * program interrupt in case there is an error while accessing the memory.
 524 *
 525 * This function will always return (also for TCG), make sure to call
 526 * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop.
 527 */
 528int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
 529                         int len, bool is_write)
 530{
 531    int currlen, nr_pages, i;
 532    target_ulong *pages;
 533    uint64_t tec;
 534    int ret;
 535
 536    if (kvm_enabled()) {
 537        ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
 538        if (ret >= 0) {
 539            return ret;
 540        }
 541    }
 542
 543    nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
 544               + 1;
 545    pages = g_malloc(nr_pages * sizeof(*pages));
 546
 547    ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec);
 548    if (ret) {
 549        trigger_access_exception(&cpu->env, ret, tec);
 550    } else if (hostbuf != NULL) {
 551        /* Copy data by stepping through the area page by page */
 552        for (i = 0; i < nr_pages; i++) {
 553            currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
 554            cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
 555                                   hostbuf, currlen, is_write);
 556            laddr += currlen;
 557            hostbuf += currlen;
 558            len -= currlen;
 559        }
 560    }
 561
 562    g_free(pages);
 563    return ret;
 564}
 565
 566void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra)
 567{
 568    /* KVM will handle the interrupt automatically, TCG has to exit the TB */
 569#ifdef CONFIG_TCG
 570    if (tcg_enabled()) {
 571        cpu_loop_exit_restore(CPU(cpu), ra);
 572    }
 573#endif
 574}
 575
 576/**
 577 * Translate a real address into a physical (absolute) address.
 578 * @param raddr  the real address
 579 * @param rw     0 = read, 1 = write, 2 = code fetch
 580 * @param addr   the translated address is stored to this pointer
 581 * @param flags  the PAGE_READ/WRITE/EXEC flags are stored to this pointer
 582 * @return       0 = success, != 0, the exception to raise
 583 */
 584int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
 585                       target_ulong *addr, int *flags, uint64_t *tec)
 586{
 587    const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
 588
 589    *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 590    if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
 591        /* see comment in mmu_translate() how this works */
 592        *flags |= PAGE_WRITE_INV;
 593        if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
 594            /* LAP sets bit 56 */
 595            *tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80;
 596            return PGM_PROTECTION;
 597        }
 598    }
 599
 600    *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
 601
 602    if (!mmu_absolute_addr_valid(*addr, rw == MMU_DATA_STORE)) {
 603        /* unused */
 604        *tec = 0;
 605        return PGM_ADDRESSING;
 606    }
 607
 608    mmu_handle_skey(*addr, rw, flags);
 609    return 0;
 610}
 611