qemu/accel/kvm/kvm-all.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright IBM, Corp. 2008
   5 *           Red Hat, Inc. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Glauber Costa     <gcosta@redhat.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 *
  14 */
  15
  16#include "qemu/osdep.h"
  17#include <sys/ioctl.h>
  18#include <poll.h>
  19
  20#include <linux/kvm.h>
  21
  22#include "qemu/atomic.h"
  23#include "qemu/option.h"
  24#include "qemu/config-file.h"
  25#include "qemu/error-report.h"
  26#include "qapi/error.h"
  27#include "hw/pci/msi.h"
  28#include "hw/pci/msix.h"
  29#include "hw/s390x/adapter.h"
  30#include "exec/gdbstub.h"
  31#include "sysemu/kvm_int.h"
  32#include "sysemu/runstate.h"
  33#include "sysemu/cpus.h"
  34#include "qemu/bswap.h"
  35#include "exec/memory.h"
  36#include "exec/ram_addr.h"
  37#include "qemu/event_notifier.h"
  38#include "qemu/main-loop.h"
  39#include "trace.h"
  40#include "hw/irq.h"
  41#include "qapi/visitor.h"
  42#include "qapi/qapi-types-common.h"
  43#include "qapi/qapi-visit-common.h"
  44#include "sysemu/reset.h"
  45#include "qemu/guest-random.h"
  46#include "sysemu/hw_accel.h"
  47#include "kvm-cpus.h"
  48
  49#include "hw/boards.h"
  50
  51/* This check must be after config-host.h is included */
  52#ifdef CONFIG_EVENTFD
  53#include <sys/eventfd.h>
  54#endif
  55
  56/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
  57 * need to use the real host PAGE_SIZE, as that's what KVM will use.
  58 */
  59#ifdef PAGE_SIZE
  60#undef PAGE_SIZE
  61#endif
  62#define PAGE_SIZE qemu_real_host_page_size
  63
  64#ifndef KVM_GUESTDBG_BLOCKIRQ
  65#define KVM_GUESTDBG_BLOCKIRQ 0
  66#endif
  67
  68//#define DEBUG_KVM
  69
  70#ifdef DEBUG_KVM
  71#define DPRINTF(fmt, ...) \
  72    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  73#else
  74#define DPRINTF(fmt, ...) \
  75    do { } while (0)
  76#endif
  77
  78#define KVM_MSI_HASHTAB_SIZE    256
  79
  80struct KVMParkedVcpu {
  81    unsigned long vcpu_id;
  82    int kvm_fd;
  83    QLIST_ENTRY(KVMParkedVcpu) node;
  84};
  85
  86enum KVMDirtyRingReaperState {
  87    KVM_DIRTY_RING_REAPER_NONE = 0,
  88    /* The reaper is sleeping */
  89    KVM_DIRTY_RING_REAPER_WAIT,
  90    /* The reaper is reaping for dirty pages */
  91    KVM_DIRTY_RING_REAPER_REAPING,
  92};
  93
  94/*
  95 * KVM reaper instance, responsible for collecting the KVM dirty bits
  96 * via the dirty ring.
  97 */
  98struct KVMDirtyRingReaper {
  99    /* The reaper thread */
 100    QemuThread reaper_thr;
 101    volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
 102    volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
 103};
 104
 105struct KVMState
 106{
 107    AccelState parent_obj;
 108
 109    int nr_slots;
 110    int fd;
 111    int vmfd;
 112    int coalesced_mmio;
 113    int coalesced_pio;
 114    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
 115    bool coalesced_flush_in_progress;
 116    int vcpu_events;
 117    int robust_singlestep;
 118    int debugregs;
 119#ifdef KVM_CAP_SET_GUEST_DEBUG
 120    QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
 121#endif
 122    int max_nested_state_len;
 123    int many_ioeventfds;
 124    int intx_set_mask;
 125    int kvm_shadow_mem;
 126    bool kernel_irqchip_allowed;
 127    bool kernel_irqchip_required;
 128    OnOffAuto kernel_irqchip_split;
 129    bool sync_mmu;
 130    uint64_t manual_dirty_log_protect;
 131    /* The man page (and posix) say ioctl numbers are signed int, but
 132     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
 133     * unsigned, and treating them as signed here can break things */
 134    unsigned irq_set_ioctl;
 135    unsigned int sigmask_len;
 136    GHashTable *gsimap;
 137#ifdef KVM_CAP_IRQ_ROUTING
 138    struct kvm_irq_routing *irq_routes;
 139    int nr_allocated_irq_routes;
 140    unsigned long *used_gsi_bitmap;
 141    unsigned int gsi_count;
 142    QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
 143#endif
 144    KVMMemoryListener memory_listener;
 145    QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
 146
 147    /* For "info mtree -f" to tell if an MR is registered in KVM */
 148    int nr_as;
 149    struct KVMAs {
 150        KVMMemoryListener *ml;
 151        AddressSpace *as;
 152    } *as;
 153    uint64_t kvm_dirty_ring_bytes;  /* Size of the per-vcpu dirty ring */
 154    uint32_t kvm_dirty_ring_size;   /* Number of dirty GFNs per ring */
 155    struct KVMDirtyRingReaper reaper;
 156};
 157
 158KVMState *kvm_state;
 159bool kvm_kernel_irqchip;
 160bool kvm_split_irqchip;
 161bool kvm_async_interrupts_allowed;
 162bool kvm_halt_in_kernel_allowed;
 163bool kvm_eventfds_allowed;
 164bool kvm_irqfds_allowed;
 165bool kvm_resamplefds_allowed;
 166bool kvm_msi_via_irqfd_allowed;
 167bool kvm_gsi_routing_allowed;
 168bool kvm_gsi_direct_mapping;
 169bool kvm_allowed;
 170bool kvm_readonly_mem_allowed;
 171bool kvm_vm_attributes_allowed;
 172bool kvm_direct_msi_allowed;
 173bool kvm_ioeventfd_any_length_allowed;
 174bool kvm_msi_use_devid;
 175bool kvm_has_guest_debug;
 176int kvm_sstep_flags;
 177static bool kvm_immediate_exit;
 178static hwaddr kvm_max_slot_size = ~0;
 179
 180static const KVMCapabilityInfo kvm_required_capabilites[] = {
 181    KVM_CAP_INFO(USER_MEMORY),
 182    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 183    KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
 184    KVM_CAP_LAST_INFO
 185};
 186
 187static NotifierList kvm_irqchip_change_notifiers =
 188    NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
 189
 190struct KVMResampleFd {
 191    int gsi;
 192    EventNotifier *resample_event;
 193    QLIST_ENTRY(KVMResampleFd) node;
 194};
 195typedef struct KVMResampleFd KVMResampleFd;
 196
 197/*
 198 * Only used with split irqchip where we need to do the resample fd
 199 * kick for the kernel from userspace.
 200 */
 201static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
 202    QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
 203
 204static QemuMutex kml_slots_lock;
 205
 206#define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
 207#define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
 208
 209static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
 210
 211static inline void kvm_resample_fd_remove(int gsi)
 212{
 213    KVMResampleFd *rfd;
 214
 215    QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
 216        if (rfd->gsi == gsi) {
 217            QLIST_REMOVE(rfd, node);
 218            g_free(rfd);
 219            break;
 220        }
 221    }
 222}
 223
 224static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
 225{
 226    KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
 227
 228    rfd->gsi = gsi;
 229    rfd->resample_event = event;
 230
 231    QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
 232}
 233
 234void kvm_resample_fd_notify(int gsi)
 235{
 236    KVMResampleFd *rfd;
 237
 238    QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
 239        if (rfd->gsi == gsi) {
 240            event_notifier_set(rfd->resample_event);
 241            trace_kvm_resample_fd_notify(gsi);
 242            return;
 243        }
 244    }
 245}
 246
 247int kvm_get_max_memslots(void)
 248{
 249    KVMState *s = KVM_STATE(current_accel());
 250
 251    return s->nr_slots;
 252}
 253
 254/* Called with KVMMemoryListener.slots_lock held */
 255static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
 256{
 257    KVMState *s = kvm_state;
 258    int i;
 259
 260    for (i = 0; i < s->nr_slots; i++) {
 261        if (kml->slots[i].memory_size == 0) {
 262            return &kml->slots[i];
 263        }
 264    }
 265
 266    return NULL;
 267}
 268
 269bool kvm_has_free_slot(MachineState *ms)
 270{
 271    KVMState *s = KVM_STATE(ms->accelerator);
 272    bool result;
 273    KVMMemoryListener *kml = &s->memory_listener;
 274
 275    kvm_slots_lock();
 276    result = !!kvm_get_free_slot(kml);
 277    kvm_slots_unlock();
 278
 279    return result;
 280}
 281
 282/* Called with KVMMemoryListener.slots_lock held */
 283static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
 284{
 285    KVMSlot *slot = kvm_get_free_slot(kml);
 286
 287    if (slot) {
 288        return slot;
 289    }
 290
 291    fprintf(stderr, "%s: no free slot available\n", __func__);
 292    abort();
 293}
 294
 295static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
 296                                         hwaddr start_addr,
 297                                         hwaddr size)
 298{
 299    KVMState *s = kvm_state;
 300    int i;
 301
 302    for (i = 0; i < s->nr_slots; i++) {
 303        KVMSlot *mem = &kml->slots[i];
 304
 305        if (start_addr == mem->start_addr && size == mem->memory_size) {
 306            return mem;
 307        }
 308    }
 309
 310    return NULL;
 311}
 312
 313/*
 314 * Calculate and align the start address and the size of the section.
 315 * Return the size. If the size is 0, the aligned section is empty.
 316 */
 317static hwaddr kvm_align_section(MemoryRegionSection *section,
 318                                hwaddr *start)
 319{
 320    hwaddr size = int128_get64(section->size);
 321    hwaddr delta, aligned;
 322
 323    /* kvm works in page size chunks, but the function may be called
 324       with sub-page size and unaligned start address. Pad the start
 325       address to next and truncate size to previous page boundary. */
 326    aligned = ROUND_UP(section->offset_within_address_space,
 327                       qemu_real_host_page_size);
 328    delta = aligned - section->offset_within_address_space;
 329    *start = aligned;
 330    if (delta > size) {
 331        return 0;
 332    }
 333
 334    return (size - delta) & qemu_real_host_page_mask;
 335}
 336
 337int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 338                                       hwaddr *phys_addr)
 339{
 340    KVMMemoryListener *kml = &s->memory_listener;
 341    int i, ret = 0;
 342
 343    kvm_slots_lock();
 344    for (i = 0; i < s->nr_slots; i++) {
 345        KVMSlot *mem = &kml->slots[i];
 346
 347        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 348            *phys_addr = mem->start_addr + (ram - mem->ram);
 349            ret = 1;
 350            break;
 351        }
 352    }
 353    kvm_slots_unlock();
 354
 355    return ret;
 356}
 357
 358static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
 359{
 360    KVMState *s = kvm_state;
 361    struct kvm_userspace_memory_region mem;
 362    int ret;
 363
 364    mem.slot = slot->slot | (kml->as_id << 16);
 365    mem.guest_phys_addr = slot->start_addr;
 366    mem.userspace_addr = (unsigned long)slot->ram;
 367    mem.flags = slot->flags;
 368
 369    if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
 370        /* Set the slot size to 0 before setting the slot to the desired
 371         * value. This is needed based on KVM commit 75d61fbc. */
 372        mem.memory_size = 0;
 373        ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 374        if (ret < 0) {
 375            goto err;
 376        }
 377    }
 378    mem.memory_size = slot->memory_size;
 379    ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 380    slot->old_flags = mem.flags;
 381err:
 382    trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
 383                              mem.memory_size, mem.userspace_addr, ret);
 384    if (ret < 0) {
 385        error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
 386                     " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
 387                     __func__, mem.slot, slot->start_addr,
 388                     (uint64_t)mem.memory_size, strerror(errno));
 389    }
 390    return ret;
 391}
 392
 393static int do_kvm_destroy_vcpu(CPUState *cpu)
 394{
 395    KVMState *s = kvm_state;
 396    long mmap_size;
 397    struct KVMParkedVcpu *vcpu = NULL;
 398    int ret = 0;
 399
 400    DPRINTF("kvm_destroy_vcpu\n");
 401
 402    ret = kvm_arch_destroy_vcpu(cpu);
 403    if (ret < 0) {
 404        goto err;
 405    }
 406
 407    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 408    if (mmap_size < 0) {
 409        ret = mmap_size;
 410        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 411        goto err;
 412    }
 413
 414    ret = munmap(cpu->kvm_run, mmap_size);
 415    if (ret < 0) {
 416        goto err;
 417    }
 418
 419    if (cpu->kvm_dirty_gfns) {
 420        ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
 421        if (ret < 0) {
 422            goto err;
 423        }
 424    }
 425
 426    vcpu = g_malloc0(sizeof(*vcpu));
 427    vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
 428    vcpu->kvm_fd = cpu->kvm_fd;
 429    QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
 430err:
 431    return ret;
 432}
 433
 434void kvm_destroy_vcpu(CPUState *cpu)
 435{
 436    if (do_kvm_destroy_vcpu(cpu) < 0) {
 437        error_report("kvm_destroy_vcpu failed");
 438        exit(EXIT_FAILURE);
 439    }
 440}
 441
 442static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
 443{
 444    struct KVMParkedVcpu *cpu;
 445
 446    QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
 447        if (cpu->vcpu_id == vcpu_id) {
 448            int kvm_fd;
 449
 450            QLIST_REMOVE(cpu, node);
 451            kvm_fd = cpu->kvm_fd;
 452            g_free(cpu);
 453            return kvm_fd;
 454        }
 455    }
 456
 457    return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
 458}
 459
 460int kvm_init_vcpu(CPUState *cpu, Error **errp)
 461{
 462    KVMState *s = kvm_state;
 463    long mmap_size;
 464    int ret;
 465
 466    trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
 467
 468    ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
 469    if (ret < 0) {
 470        error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
 471                         kvm_arch_vcpu_id(cpu));
 472        goto err;
 473    }
 474
 475    cpu->kvm_fd = ret;
 476    cpu->kvm_state = s;
 477    cpu->vcpu_dirty = true;
 478    cpu->dirty_pages = 0;
 479
 480    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 481    if (mmap_size < 0) {
 482        ret = mmap_size;
 483        error_setg_errno(errp, -mmap_size,
 484                         "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
 485        goto err;
 486    }
 487
 488    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 489                        cpu->kvm_fd, 0);
 490    if (cpu->kvm_run == MAP_FAILED) {
 491        ret = -errno;
 492        error_setg_errno(errp, ret,
 493                         "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
 494                         kvm_arch_vcpu_id(cpu));
 495        goto err;
 496    }
 497
 498    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 499        s->coalesced_mmio_ring =
 500            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 501    }
 502
 503    if (s->kvm_dirty_ring_size) {
 504        /* Use MAP_SHARED to share pages with the kernel */
 505        cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
 506                                   PROT_READ | PROT_WRITE, MAP_SHARED,
 507                                   cpu->kvm_fd,
 508                                   PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
 509        if (cpu->kvm_dirty_gfns == MAP_FAILED) {
 510            ret = -errno;
 511            DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
 512            goto err;
 513        }
 514    }
 515
 516    ret = kvm_arch_init_vcpu(cpu);
 517    if (ret < 0) {
 518        error_setg_errno(errp, -ret,
 519                         "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
 520                         kvm_arch_vcpu_id(cpu));
 521    }
 522err:
 523    return ret;
 524}
 525
 526/*
 527 * dirty pages logging control
 528 */
 529
 530static int kvm_mem_flags(MemoryRegion *mr)
 531{
 532    bool readonly = mr->readonly || memory_region_is_romd(mr);
 533    int flags = 0;
 534
 535    if (memory_region_get_dirty_log_mask(mr) != 0) {
 536        flags |= KVM_MEM_LOG_DIRTY_PAGES;
 537    }
 538    if (readonly && kvm_readonly_mem_allowed) {
 539        flags |= KVM_MEM_READONLY;
 540    }
 541    return flags;
 542}
 543
 544/* Called with KVMMemoryListener.slots_lock held */
 545static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
 546                                 MemoryRegion *mr)
 547{
 548    mem->flags = kvm_mem_flags(mr);
 549
 550    /* If nothing changed effectively, no need to issue ioctl */
 551    if (mem->flags == mem->old_flags) {
 552        return 0;
 553    }
 554
 555    kvm_slot_init_dirty_bitmap(mem);
 556    return kvm_set_user_memory_region(kml, mem, false);
 557}
 558
 559static int kvm_section_update_flags(KVMMemoryListener *kml,
 560                                    MemoryRegionSection *section)
 561{
 562    hwaddr start_addr, size, slot_size;
 563    KVMSlot *mem;
 564    int ret = 0;
 565
 566    size = kvm_align_section(section, &start_addr);
 567    if (!size) {
 568        return 0;
 569    }
 570
 571    kvm_slots_lock();
 572
 573    while (size && !ret) {
 574        slot_size = MIN(kvm_max_slot_size, size);
 575        mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
 576        if (!mem) {
 577            /* We don't have a slot if we want to trap every access. */
 578            goto out;
 579        }
 580
 581        ret = kvm_slot_update_flags(kml, mem, section->mr);
 582        start_addr += slot_size;
 583        size -= slot_size;
 584    }
 585
 586out:
 587    kvm_slots_unlock();
 588    return ret;
 589}
 590
 591static void kvm_log_start(MemoryListener *listener,
 592                          MemoryRegionSection *section,
 593                          int old, int new)
 594{
 595    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 596    int r;
 597
 598    if (old != 0) {
 599        return;
 600    }
 601
 602    r = kvm_section_update_flags(kml, section);
 603    if (r < 0) {
 604        abort();
 605    }
 606}
 607
 608static void kvm_log_stop(MemoryListener *listener,
 609                          MemoryRegionSection *section,
 610                          int old, int new)
 611{
 612    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 613    int r;
 614
 615    if (new != 0) {
 616        return;
 617    }
 618
 619    r = kvm_section_update_flags(kml, section);
 620    if (r < 0) {
 621        abort();
 622    }
 623}
 624
 625/* get kvm's dirty pages bitmap and update qemu's */
 626static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
 627{
 628    ram_addr_t start = slot->ram_start_offset;
 629    ram_addr_t pages = slot->memory_size / qemu_real_host_page_size;
 630
 631    cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
 632}
 633
 634static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
 635{
 636    memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
 637}
 638
 639#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 640
 641/* Allocate the dirty bitmap for a slot  */
 642static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
 643{
 644    if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
 645        return;
 646    }
 647
 648    /*
 649     * XXX bad kernel interface alert
 650     * For dirty bitmap, kernel allocates array of size aligned to
 651     * bits-per-long.  But for case when the kernel is 64bits and
 652     * the userspace is 32bits, userspace can't align to the same
 653     * bits-per-long, since sizeof(long) is different between kernel
 654     * and user space.  This way, userspace will provide buffer which
 655     * may be 4 bytes less than the kernel will use, resulting in
 656     * userspace memory corruption (which is not detectable by valgrind
 657     * too, in most cases).
 658     * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 659     * a hope that sizeof(long) won't become >8 any time soon.
 660     *
 661     * Note: the granule of kvm dirty log is qemu_real_host_page_size.
 662     * And mem->memory_size is aligned to it (otherwise this mem can't
 663     * be registered to KVM).
 664     */
 665    hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
 666                                        /*HOST_LONG_BITS*/ 64) / 8;
 667    mem->dirty_bmap = g_malloc0(bitmap_size);
 668    mem->dirty_bmap_size = bitmap_size;
 669}
 670
 671/*
 672 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
 673 * succeeded, false otherwise
 674 */
 675static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
 676{
 677    struct kvm_dirty_log d = {};
 678    int ret;
 679
 680    d.dirty_bitmap = slot->dirty_bmap;
 681    d.slot = slot->slot | (slot->as_id << 16);
 682    ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
 683
 684    if (ret == -ENOENT) {
 685        /* kernel does not have dirty bitmap in this slot */
 686        ret = 0;
 687    }
 688    if (ret) {
 689        error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
 690                          __func__, ret);
 691    }
 692    return ret == 0;
 693}
 694
 695/* Should be with all slots_lock held for the address spaces. */
 696static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
 697                                     uint32_t slot_id, uint64_t offset)
 698{
 699    KVMMemoryListener *kml;
 700    KVMSlot *mem;
 701
 702    if (as_id >= s->nr_as) {
 703        return;
 704    }
 705
 706    kml = s->as[as_id].ml;
 707    mem = &kml->slots[slot_id];
 708
 709    if (!mem->memory_size || offset >=
 710        (mem->memory_size / qemu_real_host_page_size)) {
 711        return;
 712    }
 713
 714    set_bit(offset, mem->dirty_bmap);
 715}
 716
 717static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
 718{
 719    return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
 720}
 721
 722static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
 723{
 724    gfn->flags = KVM_DIRTY_GFN_F_RESET;
 725}
 726
 727/*
 728 * Should be with all slots_lock held for the address spaces.  It returns the
 729 * dirty page we've collected on this dirty ring.
 730 */
 731static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
 732{
 733    struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
 734    uint32_t ring_size = s->kvm_dirty_ring_size;
 735    uint32_t count = 0, fetch = cpu->kvm_fetch_index;
 736
 737    assert(dirty_gfns && ring_size);
 738    trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
 739
 740    while (true) {
 741        cur = &dirty_gfns[fetch % ring_size];
 742        if (!dirty_gfn_is_dirtied(cur)) {
 743            break;
 744        }
 745        kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
 746                                 cur->offset);
 747        dirty_gfn_set_collected(cur);
 748        trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
 749        fetch++;
 750        count++;
 751    }
 752    cpu->kvm_fetch_index = fetch;
 753    cpu->dirty_pages += count;
 754
 755    return count;
 756}
 757
 758/* Must be with slots_lock held */
 759static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
 760{
 761    int ret;
 762    CPUState *cpu;
 763    uint64_t total = 0;
 764    int64_t stamp;
 765
 766    stamp = get_clock();
 767
 768    CPU_FOREACH(cpu) {
 769        total += kvm_dirty_ring_reap_one(s, cpu);
 770    }
 771
 772    if (total) {
 773        ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
 774        assert(ret == total);
 775    }
 776
 777    stamp = get_clock() - stamp;
 778
 779    if (total) {
 780        trace_kvm_dirty_ring_reap(total, stamp / 1000);
 781    }
 782
 783    return total;
 784}
 785
 786/*
 787 * Currently for simplicity, we must hold BQL before calling this.  We can
 788 * consider to drop the BQL if we're clear with all the race conditions.
 789 */
 790static uint64_t kvm_dirty_ring_reap(KVMState *s)
 791{
 792    uint64_t total;
 793
 794    /*
 795     * We need to lock all kvm slots for all address spaces here,
 796     * because:
 797     *
 798     * (1) We need to mark dirty for dirty bitmaps in multiple slots
 799     *     and for tons of pages, so it's better to take the lock here
 800     *     once rather than once per page.  And more importantly,
 801     *
 802     * (2) We must _NOT_ publish dirty bits to the other threads
 803     *     (e.g., the migration thread) via the kvm memory slot dirty
 804     *     bitmaps before correctly re-protect those dirtied pages.
 805     *     Otherwise we can have potential risk of data corruption if
 806     *     the page data is read in the other thread before we do
 807     *     reset below.
 808     */
 809    kvm_slots_lock();
 810    total = kvm_dirty_ring_reap_locked(s);
 811    kvm_slots_unlock();
 812
 813    return total;
 814}
 815
 816static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
 817{
 818    /* No need to do anything */
 819}
 820
 821/*
 822 * Kick all vcpus out in a synchronized way.  When returned, we
 823 * guarantee that every vcpu has been kicked and at least returned to
 824 * userspace once.
 825 */
 826static void kvm_cpu_synchronize_kick_all(void)
 827{
 828    CPUState *cpu;
 829
 830    CPU_FOREACH(cpu) {
 831        run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
 832    }
 833}
 834
 835/*
 836 * Flush all the existing dirty pages to the KVM slot buffers.  When
 837 * this call returns, we guarantee that all the touched dirty pages
 838 * before calling this function have been put into the per-kvmslot
 839 * dirty bitmap.
 840 *
 841 * This function must be called with BQL held.
 842 */
 843static void kvm_dirty_ring_flush(void)
 844{
 845    trace_kvm_dirty_ring_flush(0);
 846    /*
 847     * The function needs to be serialized.  Since this function
 848     * should always be with BQL held, serialization is guaranteed.
 849     * However, let's be sure of it.
 850     */
 851    assert(qemu_mutex_iothread_locked());
 852    /*
 853     * First make sure to flush the hardware buffers by kicking all
 854     * vcpus out in a synchronous way.
 855     */
 856    kvm_cpu_synchronize_kick_all();
 857    kvm_dirty_ring_reap(kvm_state);
 858    trace_kvm_dirty_ring_flush(1);
 859}
 860
 861/**
 862 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
 863 *
 864 * This function will first try to fetch dirty bitmap from the kernel,
 865 * and then updates qemu's dirty bitmap.
 866 *
 867 * NOTE: caller must be with kml->slots_lock held.
 868 *
 869 * @kml: the KVM memory listener object
 870 * @section: the memory section to sync the dirty bitmap with
 871 */
 872static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
 873                                           MemoryRegionSection *section)
 874{
 875    KVMState *s = kvm_state;
 876    KVMSlot *mem;
 877    hwaddr start_addr, size;
 878    hwaddr slot_size;
 879
 880    size = kvm_align_section(section, &start_addr);
 881    while (size) {
 882        slot_size = MIN(kvm_max_slot_size, size);
 883        mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
 884        if (!mem) {
 885            /* We don't have a slot if we want to trap every access. */
 886            return;
 887        }
 888        if (kvm_slot_get_dirty_log(s, mem)) {
 889            kvm_slot_sync_dirty_pages(mem);
 890        }
 891        start_addr += slot_size;
 892        size -= slot_size;
 893    }
 894}
 895
 896/* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
 897#define KVM_CLEAR_LOG_SHIFT  6
 898#define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
 899#define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
 900
 901static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
 902                                  uint64_t size)
 903{
 904    KVMState *s = kvm_state;
 905    uint64_t end, bmap_start, start_delta, bmap_npages;
 906    struct kvm_clear_dirty_log d;
 907    unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
 908    int ret;
 909
 910    /*
 911     * We need to extend either the start or the size or both to
 912     * satisfy the KVM interface requirement.  Firstly, do the start
 913     * page alignment on 64 host pages
 914     */
 915    bmap_start = start & KVM_CLEAR_LOG_MASK;
 916    start_delta = start - bmap_start;
 917    bmap_start /= psize;
 918
 919    /*
 920     * The kernel interface has restriction on the size too, that either:
 921     *
 922     * (1) the size is 64 host pages aligned (just like the start), or
 923     * (2) the size fills up until the end of the KVM memslot.
 924     */
 925    bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
 926        << KVM_CLEAR_LOG_SHIFT;
 927    end = mem->memory_size / psize;
 928    if (bmap_npages > end - bmap_start) {
 929        bmap_npages = end - bmap_start;
 930    }
 931    start_delta /= psize;
 932
 933    /*
 934     * Prepare the bitmap to clear dirty bits.  Here we must guarantee
 935     * that we won't clear any unknown dirty bits otherwise we might
 936     * accidentally clear some set bits which are not yet synced from
 937     * the kernel into QEMU's bitmap, then we'll lose track of the
 938     * guest modifications upon those pages (which can directly lead
 939     * to guest data loss or panic after migration).
 940     *
 941     * Layout of the KVMSlot.dirty_bmap:
 942     *
 943     *                   |<-------- bmap_npages -----------..>|
 944     *                                                     [1]
 945     *                     start_delta         size
 946     *  |----------------|-------------|------------------|------------|
 947     *  ^                ^             ^                               ^
 948     *  |                |             |                               |
 949     * start          bmap_start     (start)                         end
 950     * of memslot                                             of memslot
 951     *
 952     * [1] bmap_npages can be aligned to either 64 pages or the end of slot
 953     */
 954
 955    assert(bmap_start % BITS_PER_LONG == 0);
 956    /* We should never do log_clear before log_sync */
 957    assert(mem->dirty_bmap);
 958    if (start_delta || bmap_npages - size / psize) {
 959        /* Slow path - we need to manipulate a temp bitmap */
 960        bmap_clear = bitmap_new(bmap_npages);
 961        bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
 962                                    bmap_start, start_delta + size / psize);
 963        /*
 964         * We need to fill the holes at start because that was not
 965         * specified by the caller and we extended the bitmap only for
 966         * 64 pages alignment
 967         */
 968        bitmap_clear(bmap_clear, 0, start_delta);
 969        d.dirty_bitmap = bmap_clear;
 970    } else {
 971        /*
 972         * Fast path - both start and size align well with BITS_PER_LONG
 973         * (or the end of memory slot)
 974         */
 975        d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
 976    }
 977
 978    d.first_page = bmap_start;
 979    /* It should never overflow.  If it happens, say something */
 980    assert(bmap_npages <= UINT32_MAX);
 981    d.num_pages = bmap_npages;
 982    d.slot = mem->slot | (as_id << 16);
 983
 984    ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
 985    if (ret < 0 && ret != -ENOENT) {
 986        error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
 987                     "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
 988                     __func__, d.slot, (uint64_t)d.first_page,
 989                     (uint32_t)d.num_pages, ret);
 990    } else {
 991        ret = 0;
 992        trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
 993    }
 994
 995    /*
 996     * After we have updated the remote dirty bitmap, we update the
 997     * cached bitmap as well for the memslot, then if another user
 998     * clears the same region we know we shouldn't clear it again on
 999     * the remote otherwise it's data loss as well.
1000     */
1001    bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1002                 size / psize);
1003    /* This handles the NULL case well */
1004    g_free(bmap_clear);
1005    return ret;
1006}
1007
1008
1009/**
1010 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1011 *
1012 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1013 * protection in the host kernel because in that case this operation
1014 * will be done within log_sync().
1015 *
1016 * @kml:     the kvm memory listener
1017 * @section: the memory range to clear dirty bitmap
1018 */
1019static int kvm_physical_log_clear(KVMMemoryListener *kml,
1020                                  MemoryRegionSection *section)
1021{
1022    KVMState *s = kvm_state;
1023    uint64_t start, size, offset, count;
1024    KVMSlot *mem;
1025    int ret = 0, i;
1026
1027    if (!s->manual_dirty_log_protect) {
1028        /* No need to do explicit clear */
1029        return ret;
1030    }
1031
1032    start = section->offset_within_address_space;
1033    size = int128_get64(section->size);
1034
1035    if (!size) {
1036        /* Nothing more we can do... */
1037        return ret;
1038    }
1039
1040    kvm_slots_lock();
1041
1042    for (i = 0; i < s->nr_slots; i++) {
1043        mem = &kml->slots[i];
1044        /* Discard slots that are empty or do not overlap the section */
1045        if (!mem->memory_size ||
1046            mem->start_addr > start + size - 1 ||
1047            start > mem->start_addr + mem->memory_size - 1) {
1048            continue;
1049        }
1050
1051        if (start >= mem->start_addr) {
1052            /* The slot starts before section or is aligned to it.  */
1053            offset = start - mem->start_addr;
1054            count = MIN(mem->memory_size - offset, size);
1055        } else {
1056            /* The slot starts after section.  */
1057            offset = 0;
1058            count = MIN(mem->memory_size, size - (mem->start_addr - start));
1059        }
1060        ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1061        if (ret < 0) {
1062            break;
1063        }
1064    }
1065
1066    kvm_slots_unlock();
1067
1068    return ret;
1069}
1070
1071static void kvm_coalesce_mmio_region(MemoryListener *listener,
1072                                     MemoryRegionSection *secion,
1073                                     hwaddr start, hwaddr size)
1074{
1075    KVMState *s = kvm_state;
1076
1077    if (s->coalesced_mmio) {
1078        struct kvm_coalesced_mmio_zone zone;
1079
1080        zone.addr = start;
1081        zone.size = size;
1082        zone.pad = 0;
1083
1084        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1085    }
1086}
1087
1088static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1089                                       MemoryRegionSection *secion,
1090                                       hwaddr start, hwaddr size)
1091{
1092    KVMState *s = kvm_state;
1093
1094    if (s->coalesced_mmio) {
1095        struct kvm_coalesced_mmio_zone zone;
1096
1097        zone.addr = start;
1098        zone.size = size;
1099        zone.pad = 0;
1100
1101        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1102    }
1103}
1104
1105static void kvm_coalesce_pio_add(MemoryListener *listener,
1106                                MemoryRegionSection *section,
1107                                hwaddr start, hwaddr size)
1108{
1109    KVMState *s = kvm_state;
1110
1111    if (s->coalesced_pio) {
1112        struct kvm_coalesced_mmio_zone zone;
1113
1114        zone.addr = start;
1115        zone.size = size;
1116        zone.pio = 1;
1117
1118        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1119    }
1120}
1121
1122static void kvm_coalesce_pio_del(MemoryListener *listener,
1123                                MemoryRegionSection *section,
1124                                hwaddr start, hwaddr size)
1125{
1126    KVMState *s = kvm_state;
1127
1128    if (s->coalesced_pio) {
1129        struct kvm_coalesced_mmio_zone zone;
1130
1131        zone.addr = start;
1132        zone.size = size;
1133        zone.pio = 1;
1134
1135        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1136     }
1137}
1138
1139static MemoryListener kvm_coalesced_pio_listener = {
1140    .name = "kvm-coalesced-pio",
1141    .coalesced_io_add = kvm_coalesce_pio_add,
1142    .coalesced_io_del = kvm_coalesce_pio_del,
1143};
1144
1145int kvm_check_extension(KVMState *s, unsigned int extension)
1146{
1147    int ret;
1148
1149    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1150    if (ret < 0) {
1151        ret = 0;
1152    }
1153
1154    return ret;
1155}
1156
1157int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1158{
1159    int ret;
1160
1161    ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1162    if (ret < 0) {
1163        /* VM wide version not implemented, use global one instead */
1164        ret = kvm_check_extension(s, extension);
1165    }
1166
1167    return ret;
1168}
1169
1170typedef struct HWPoisonPage {
1171    ram_addr_t ram_addr;
1172    QLIST_ENTRY(HWPoisonPage) list;
1173} HWPoisonPage;
1174
1175static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1176    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1177
1178static void kvm_unpoison_all(void *param)
1179{
1180    HWPoisonPage *page, *next_page;
1181
1182    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1183        QLIST_REMOVE(page, list);
1184        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1185        g_free(page);
1186    }
1187}
1188
1189void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1190{
1191    HWPoisonPage *page;
1192
1193    QLIST_FOREACH(page, &hwpoison_page_list, list) {
1194        if (page->ram_addr == ram_addr) {
1195            return;
1196        }
1197    }
1198    page = g_new(HWPoisonPage, 1);
1199    page->ram_addr = ram_addr;
1200    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1201}
1202
1203static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1204{
1205#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
1206    /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
1207     * endianness, but the memory core hands them in target endianness.
1208     * For example, PPC is always treated as big-endian even if running
1209     * on KVM and on PPC64LE.  Correct here.
1210     */
1211    switch (size) {
1212    case 2:
1213        val = bswap16(val);
1214        break;
1215    case 4:
1216        val = bswap32(val);
1217        break;
1218    }
1219#endif
1220    return val;
1221}
1222
1223static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1224                                  bool assign, uint32_t size, bool datamatch)
1225{
1226    int ret;
1227    struct kvm_ioeventfd iofd = {
1228        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1229        .addr = addr,
1230        .len = size,
1231        .flags = 0,
1232        .fd = fd,
1233    };
1234
1235    trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1236                                 datamatch);
1237    if (!kvm_enabled()) {
1238        return -ENOSYS;
1239    }
1240
1241    if (datamatch) {
1242        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1243    }
1244    if (!assign) {
1245        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1246    }
1247
1248    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1249
1250    if (ret < 0) {
1251        return -errno;
1252    }
1253
1254    return 0;
1255}
1256
1257static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1258                                 bool assign, uint32_t size, bool datamatch)
1259{
1260    struct kvm_ioeventfd kick = {
1261        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1262        .addr = addr,
1263        .flags = KVM_IOEVENTFD_FLAG_PIO,
1264        .len = size,
1265        .fd = fd,
1266    };
1267    int r;
1268    trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1269    if (!kvm_enabled()) {
1270        return -ENOSYS;
1271    }
1272    if (datamatch) {
1273        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1274    }
1275    if (!assign) {
1276        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1277    }
1278    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1279    if (r < 0) {
1280        return r;
1281    }
1282    return 0;
1283}
1284
1285
1286static int kvm_check_many_ioeventfds(void)
1287{
1288    /* Userspace can use ioeventfd for io notification.  This requires a host
1289     * that supports eventfd(2) and an I/O thread; since eventfd does not
1290     * support SIGIO it cannot interrupt the vcpu.
1291     *
1292     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1293     * can avoid creating too many ioeventfds.
1294     */
1295#if defined(CONFIG_EVENTFD)
1296    int ioeventfds[7];
1297    int i, ret = 0;
1298    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1299        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1300        if (ioeventfds[i] < 0) {
1301            break;
1302        }
1303        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1304        if (ret < 0) {
1305            close(ioeventfds[i]);
1306            break;
1307        }
1308    }
1309
1310    /* Decide whether many devices are supported or not */
1311    ret = i == ARRAY_SIZE(ioeventfds);
1312
1313    while (i-- > 0) {
1314        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1315        close(ioeventfds[i]);
1316    }
1317    return ret;
1318#else
1319    return 0;
1320#endif
1321}
1322
1323static const KVMCapabilityInfo *
1324kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1325{
1326    while (list->name) {
1327        if (!kvm_check_extension(s, list->value)) {
1328            return list;
1329        }
1330        list++;
1331    }
1332    return NULL;
1333}
1334
1335void kvm_set_max_memslot_size(hwaddr max_slot_size)
1336{
1337    g_assert(
1338        ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1339    );
1340    kvm_max_slot_size = max_slot_size;
1341}
1342
1343static void kvm_set_phys_mem(KVMMemoryListener *kml,
1344                             MemoryRegionSection *section, bool add)
1345{
1346    KVMSlot *mem;
1347    int err;
1348    MemoryRegion *mr = section->mr;
1349    bool writeable = !mr->readonly && !mr->rom_device;
1350    hwaddr start_addr, size, slot_size, mr_offset;
1351    ram_addr_t ram_start_offset;
1352    void *ram;
1353
1354    if (!memory_region_is_ram(mr)) {
1355        if (writeable || !kvm_readonly_mem_allowed) {
1356            return;
1357        } else if (!mr->romd_mode) {
1358            /* If the memory device is not in romd_mode, then we actually want
1359             * to remove the kvm memory slot so all accesses will trap. */
1360            add = false;
1361        }
1362    }
1363
1364    size = kvm_align_section(section, &start_addr);
1365    if (!size) {
1366        return;
1367    }
1368
1369    /* The offset of the kvmslot within the memory region */
1370    mr_offset = section->offset_within_region + start_addr -
1371        section->offset_within_address_space;
1372
1373    /* use aligned delta to align the ram address and offset */
1374    ram = memory_region_get_ram_ptr(mr) + mr_offset;
1375    ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1376
1377    kvm_slots_lock();
1378
1379    if (!add) {
1380        do {
1381            slot_size = MIN(kvm_max_slot_size, size);
1382            mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1383            if (!mem) {
1384                goto out;
1385            }
1386            if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1387                /*
1388                 * NOTE: We should be aware of the fact that here we're only
1389                 * doing a best effort to sync dirty bits.  No matter whether
1390                 * we're using dirty log or dirty ring, we ignored two facts:
1391                 *
1392                 * (1) dirty bits can reside in hardware buffers (PML)
1393                 *
1394                 * (2) after we collected dirty bits here, pages can be dirtied
1395                 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1396                 * remove the slot.
1397                 *
1398                 * Not easy.  Let's cross the fingers until it's fixed.
1399                 */
1400                if (kvm_state->kvm_dirty_ring_size) {
1401                    kvm_dirty_ring_reap_locked(kvm_state);
1402                } else {
1403                    kvm_slot_get_dirty_log(kvm_state, mem);
1404                }
1405                kvm_slot_sync_dirty_pages(mem);
1406            }
1407
1408            /* unregister the slot */
1409            g_free(mem->dirty_bmap);
1410            mem->dirty_bmap = NULL;
1411            mem->memory_size = 0;
1412            mem->flags = 0;
1413            err = kvm_set_user_memory_region(kml, mem, false);
1414            if (err) {
1415                fprintf(stderr, "%s: error unregistering slot: %s\n",
1416                        __func__, strerror(-err));
1417                abort();
1418            }
1419            start_addr += slot_size;
1420            size -= slot_size;
1421        } while (size);
1422        goto out;
1423    }
1424
1425    /* register the new slot */
1426    do {
1427        slot_size = MIN(kvm_max_slot_size, size);
1428        mem = kvm_alloc_slot(kml);
1429        mem->as_id = kml->as_id;
1430        mem->memory_size = slot_size;
1431        mem->start_addr = start_addr;
1432        mem->ram_start_offset = ram_start_offset;
1433        mem->ram = ram;
1434        mem->flags = kvm_mem_flags(mr);
1435        kvm_slot_init_dirty_bitmap(mem);
1436        err = kvm_set_user_memory_region(kml, mem, true);
1437        if (err) {
1438            fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1439                    strerror(-err));
1440            abort();
1441        }
1442        start_addr += slot_size;
1443        ram_start_offset += slot_size;
1444        ram += slot_size;
1445        size -= slot_size;
1446    } while (size);
1447
1448out:
1449    kvm_slots_unlock();
1450}
1451
1452static void *kvm_dirty_ring_reaper_thread(void *data)
1453{
1454    KVMState *s = data;
1455    struct KVMDirtyRingReaper *r = &s->reaper;
1456
1457    rcu_register_thread();
1458
1459    trace_kvm_dirty_ring_reaper("init");
1460
1461    while (true) {
1462        r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1463        trace_kvm_dirty_ring_reaper("wait");
1464        /*
1465         * TODO: provide a smarter timeout rather than a constant?
1466         */
1467        sleep(1);
1468
1469        trace_kvm_dirty_ring_reaper("wakeup");
1470        r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1471
1472        qemu_mutex_lock_iothread();
1473        kvm_dirty_ring_reap(s);
1474        qemu_mutex_unlock_iothread();
1475
1476        r->reaper_iteration++;
1477    }
1478
1479    trace_kvm_dirty_ring_reaper("exit");
1480
1481    rcu_unregister_thread();
1482
1483    return NULL;
1484}
1485
1486static int kvm_dirty_ring_reaper_init(KVMState *s)
1487{
1488    struct KVMDirtyRingReaper *r = &s->reaper;
1489
1490    qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1491                       kvm_dirty_ring_reaper_thread,
1492                       s, QEMU_THREAD_JOINABLE);
1493
1494    return 0;
1495}
1496
1497static void kvm_region_add(MemoryListener *listener,
1498                           MemoryRegionSection *section)
1499{
1500    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1501
1502    memory_region_ref(section->mr);
1503    kvm_set_phys_mem(kml, section, true);
1504}
1505
1506static void kvm_region_del(MemoryListener *listener,
1507                           MemoryRegionSection *section)
1508{
1509    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1510
1511    kvm_set_phys_mem(kml, section, false);
1512    memory_region_unref(section->mr);
1513}
1514
1515static void kvm_log_sync(MemoryListener *listener,
1516                         MemoryRegionSection *section)
1517{
1518    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1519
1520    kvm_slots_lock();
1521    kvm_physical_sync_dirty_bitmap(kml, section);
1522    kvm_slots_unlock();
1523}
1524
1525static void kvm_log_sync_global(MemoryListener *l)
1526{
1527    KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1528    KVMState *s = kvm_state;
1529    KVMSlot *mem;
1530    int i;
1531
1532    /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1533    kvm_dirty_ring_flush();
1534
1535    /*
1536     * TODO: make this faster when nr_slots is big while there are
1537     * only a few used slots (small VMs).
1538     */
1539    kvm_slots_lock();
1540    for (i = 0; i < s->nr_slots; i++) {
1541        mem = &kml->slots[i];
1542        if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1543            kvm_slot_sync_dirty_pages(mem);
1544            /*
1545             * This is not needed by KVM_GET_DIRTY_LOG because the
1546             * ioctl will unconditionally overwrite the whole region.
1547             * However kvm dirty ring has no such side effect.
1548             */
1549            kvm_slot_reset_dirty_pages(mem);
1550        }
1551    }
1552    kvm_slots_unlock();
1553}
1554
1555static void kvm_log_clear(MemoryListener *listener,
1556                          MemoryRegionSection *section)
1557{
1558    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1559    int r;
1560
1561    r = kvm_physical_log_clear(kml, section);
1562    if (r < 0) {
1563        error_report_once("%s: kvm log clear failed: mr=%s "
1564                          "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1565                          section->mr->name, section->offset_within_region,
1566                          int128_get64(section->size));
1567        abort();
1568    }
1569}
1570
1571static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1572                                  MemoryRegionSection *section,
1573                                  bool match_data, uint64_t data,
1574                                  EventNotifier *e)
1575{
1576    int fd = event_notifier_get_fd(e);
1577    int r;
1578
1579    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1580                               data, true, int128_get64(section->size),
1581                               match_data);
1582    if (r < 0) {
1583        fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1584                __func__, strerror(-r), -r);
1585        abort();
1586    }
1587}
1588
1589static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1590                                  MemoryRegionSection *section,
1591                                  bool match_data, uint64_t data,
1592                                  EventNotifier *e)
1593{
1594    int fd = event_notifier_get_fd(e);
1595    int r;
1596
1597    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1598                               data, false, int128_get64(section->size),
1599                               match_data);
1600    if (r < 0) {
1601        fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1602                __func__, strerror(-r), -r);
1603        abort();
1604    }
1605}
1606
1607static void kvm_io_ioeventfd_add(MemoryListener *listener,
1608                                 MemoryRegionSection *section,
1609                                 bool match_data, uint64_t data,
1610                                 EventNotifier *e)
1611{
1612    int fd = event_notifier_get_fd(e);
1613    int r;
1614
1615    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1616                              data, true, int128_get64(section->size),
1617                              match_data);
1618    if (r < 0) {
1619        fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1620                __func__, strerror(-r), -r);
1621        abort();
1622    }
1623}
1624
1625static void kvm_io_ioeventfd_del(MemoryListener *listener,
1626                                 MemoryRegionSection *section,
1627                                 bool match_data, uint64_t data,
1628                                 EventNotifier *e)
1629
1630{
1631    int fd = event_notifier_get_fd(e);
1632    int r;
1633
1634    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1635                              data, false, int128_get64(section->size),
1636                              match_data);
1637    if (r < 0) {
1638        fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1639                __func__, strerror(-r), -r);
1640        abort();
1641    }
1642}
1643
1644void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1645                                  AddressSpace *as, int as_id, const char *name)
1646{
1647    int i;
1648
1649    kml->slots = g_new0(KVMSlot, s->nr_slots);
1650    kml->as_id = as_id;
1651
1652    for (i = 0; i < s->nr_slots; i++) {
1653        kml->slots[i].slot = i;
1654    }
1655
1656    kml->listener.region_add = kvm_region_add;
1657    kml->listener.region_del = kvm_region_del;
1658    kml->listener.log_start = kvm_log_start;
1659    kml->listener.log_stop = kvm_log_stop;
1660    kml->listener.priority = 10;
1661    kml->listener.name = name;
1662
1663    if (s->kvm_dirty_ring_size) {
1664        kml->listener.log_sync_global = kvm_log_sync_global;
1665    } else {
1666        kml->listener.log_sync = kvm_log_sync;
1667        kml->listener.log_clear = kvm_log_clear;
1668    }
1669
1670    memory_listener_register(&kml->listener, as);
1671
1672    for (i = 0; i < s->nr_as; ++i) {
1673        if (!s->as[i].as) {
1674            s->as[i].as = as;
1675            s->as[i].ml = kml;
1676            break;
1677        }
1678    }
1679}
1680
1681static MemoryListener kvm_io_listener = {
1682    .name = "kvm-io",
1683    .eventfd_add = kvm_io_ioeventfd_add,
1684    .eventfd_del = kvm_io_ioeventfd_del,
1685    .priority = 10,
1686};
1687
1688int kvm_set_irq(KVMState *s, int irq, int level)
1689{
1690    struct kvm_irq_level event;
1691    int ret;
1692
1693    assert(kvm_async_interrupts_enabled());
1694
1695    event.level = level;
1696    event.irq = irq;
1697    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1698    if (ret < 0) {
1699        perror("kvm_set_irq");
1700        abort();
1701    }
1702
1703    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1704}
1705
1706#ifdef KVM_CAP_IRQ_ROUTING
1707typedef struct KVMMSIRoute {
1708    struct kvm_irq_routing_entry kroute;
1709    QTAILQ_ENTRY(KVMMSIRoute) entry;
1710} KVMMSIRoute;
1711
1712static void set_gsi(KVMState *s, unsigned int gsi)
1713{
1714    set_bit(gsi, s->used_gsi_bitmap);
1715}
1716
1717static void clear_gsi(KVMState *s, unsigned int gsi)
1718{
1719    clear_bit(gsi, s->used_gsi_bitmap);
1720}
1721
1722void kvm_init_irq_routing(KVMState *s)
1723{
1724    int gsi_count, i;
1725
1726    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1727    if (gsi_count > 0) {
1728        /* Round up so we can search ints using ffs */
1729        s->used_gsi_bitmap = bitmap_new(gsi_count);
1730        s->gsi_count = gsi_count;
1731    }
1732
1733    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1734    s->nr_allocated_irq_routes = 0;
1735
1736    if (!kvm_direct_msi_allowed) {
1737        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1738            QTAILQ_INIT(&s->msi_hashtab[i]);
1739        }
1740    }
1741
1742    kvm_arch_init_irq_routing(s);
1743}
1744
1745void kvm_irqchip_commit_routes(KVMState *s)
1746{
1747    int ret;
1748
1749    if (kvm_gsi_direct_mapping()) {
1750        return;
1751    }
1752
1753    if (!kvm_gsi_routing_enabled()) {
1754        return;
1755    }
1756
1757    s->irq_routes->flags = 0;
1758    trace_kvm_irqchip_commit_routes();
1759    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1760    assert(ret == 0);
1761}
1762
1763static void kvm_add_routing_entry(KVMState *s,
1764                                  struct kvm_irq_routing_entry *entry)
1765{
1766    struct kvm_irq_routing_entry *new;
1767    int n, size;
1768
1769    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1770        n = s->nr_allocated_irq_routes * 2;
1771        if (n < 64) {
1772            n = 64;
1773        }
1774        size = sizeof(struct kvm_irq_routing);
1775        size += n * sizeof(*new);
1776        s->irq_routes = g_realloc(s->irq_routes, size);
1777        s->nr_allocated_irq_routes = n;
1778    }
1779    n = s->irq_routes->nr++;
1780    new = &s->irq_routes->entries[n];
1781
1782    *new = *entry;
1783
1784    set_gsi(s, entry->gsi);
1785}
1786
1787static int kvm_update_routing_entry(KVMState *s,
1788                                    struct kvm_irq_routing_entry *new_entry)
1789{
1790    struct kvm_irq_routing_entry *entry;
1791    int n;
1792
1793    for (n = 0; n < s->irq_routes->nr; n++) {
1794        entry = &s->irq_routes->entries[n];
1795        if (entry->gsi != new_entry->gsi) {
1796            continue;
1797        }
1798
1799        if(!memcmp(entry, new_entry, sizeof *entry)) {
1800            return 0;
1801        }
1802
1803        *entry = *new_entry;
1804
1805        return 0;
1806    }
1807
1808    return -ESRCH;
1809}
1810
1811void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1812{
1813    struct kvm_irq_routing_entry e = {};
1814
1815    assert(pin < s->gsi_count);
1816
1817    e.gsi = irq;
1818    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1819    e.flags = 0;
1820    e.u.irqchip.irqchip = irqchip;
1821    e.u.irqchip.pin = pin;
1822    kvm_add_routing_entry(s, &e);
1823}
1824
1825void kvm_irqchip_release_virq(KVMState *s, int virq)
1826{
1827    struct kvm_irq_routing_entry *e;
1828    int i;
1829
1830    if (kvm_gsi_direct_mapping()) {
1831        return;
1832    }
1833
1834    for (i = 0; i < s->irq_routes->nr; i++) {
1835        e = &s->irq_routes->entries[i];
1836        if (e->gsi == virq) {
1837            s->irq_routes->nr--;
1838            *e = s->irq_routes->entries[s->irq_routes->nr];
1839        }
1840    }
1841    clear_gsi(s, virq);
1842    kvm_arch_release_virq_post(virq);
1843    trace_kvm_irqchip_release_virq(virq);
1844}
1845
1846void kvm_irqchip_add_change_notifier(Notifier *n)
1847{
1848    notifier_list_add(&kvm_irqchip_change_notifiers, n);
1849}
1850
1851void kvm_irqchip_remove_change_notifier(Notifier *n)
1852{
1853    notifier_remove(n);
1854}
1855
1856void kvm_irqchip_change_notify(void)
1857{
1858    notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1859}
1860
1861static unsigned int kvm_hash_msi(uint32_t data)
1862{
1863    /* This is optimized for IA32 MSI layout. However, no other arch shall
1864     * repeat the mistake of not providing a direct MSI injection API. */
1865    return data & 0xff;
1866}
1867
1868static void kvm_flush_dynamic_msi_routes(KVMState *s)
1869{
1870    KVMMSIRoute *route, *next;
1871    unsigned int hash;
1872
1873    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1874        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1875            kvm_irqchip_release_virq(s, route->kroute.gsi);
1876            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1877            g_free(route);
1878        }
1879    }
1880}
1881
1882static int kvm_irqchip_get_virq(KVMState *s)
1883{
1884    int next_virq;
1885
1886    /*
1887     * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1888     * GSI numbers are more than the number of IRQ route. Allocating a GSI
1889     * number can succeed even though a new route entry cannot be added.
1890     * When this happens, flush dynamic MSI entries to free IRQ route entries.
1891     */
1892    if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1893        kvm_flush_dynamic_msi_routes(s);
1894    }
1895
1896    /* Return the lowest unused GSI in the bitmap */
1897    next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1898    if (next_virq >= s->gsi_count) {
1899        return -ENOSPC;
1900    } else {
1901        return next_virq;
1902    }
1903}
1904
1905static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1906{
1907    unsigned int hash = kvm_hash_msi(msg.data);
1908    KVMMSIRoute *route;
1909
1910    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1911        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1912            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1913            route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1914            return route;
1915        }
1916    }
1917    return NULL;
1918}
1919
1920int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1921{
1922    struct kvm_msi msi;
1923    KVMMSIRoute *route;
1924
1925    if (kvm_direct_msi_allowed) {
1926        msi.address_lo = (uint32_t)msg.address;
1927        msi.address_hi = msg.address >> 32;
1928        msi.data = le32_to_cpu(msg.data);
1929        msi.flags = 0;
1930        memset(msi.pad, 0, sizeof(msi.pad));
1931
1932        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1933    }
1934
1935    route = kvm_lookup_msi_route(s, msg);
1936    if (!route) {
1937        int virq;
1938
1939        virq = kvm_irqchip_get_virq(s);
1940        if (virq < 0) {
1941            return virq;
1942        }
1943
1944        route = g_new0(KVMMSIRoute, 1);
1945        route->kroute.gsi = virq;
1946        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1947        route->kroute.flags = 0;
1948        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1949        route->kroute.u.msi.address_hi = msg.address >> 32;
1950        route->kroute.u.msi.data = le32_to_cpu(msg.data);
1951
1952        kvm_add_routing_entry(s, &route->kroute);
1953        kvm_irqchip_commit_routes(s);
1954
1955        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1956                           entry);
1957    }
1958
1959    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1960
1961    return kvm_set_irq(s, route->kroute.gsi, 1);
1962}
1963
1964int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1965{
1966    struct kvm_irq_routing_entry kroute = {};
1967    int virq;
1968    KVMState *s = c->s;
1969    MSIMessage msg = {0, 0};
1970
1971    if (pci_available && dev) {
1972        msg = pci_get_msi_message(dev, vector);
1973    }
1974
1975    if (kvm_gsi_direct_mapping()) {
1976        return kvm_arch_msi_data_to_gsi(msg.data);
1977    }
1978
1979    if (!kvm_gsi_routing_enabled()) {
1980        return -ENOSYS;
1981    }
1982
1983    virq = kvm_irqchip_get_virq(s);
1984    if (virq < 0) {
1985        return virq;
1986    }
1987
1988    kroute.gsi = virq;
1989    kroute.type = KVM_IRQ_ROUTING_MSI;
1990    kroute.flags = 0;
1991    kroute.u.msi.address_lo = (uint32_t)msg.address;
1992    kroute.u.msi.address_hi = msg.address >> 32;
1993    kroute.u.msi.data = le32_to_cpu(msg.data);
1994    if (pci_available && kvm_msi_devid_required()) {
1995        kroute.flags = KVM_MSI_VALID_DEVID;
1996        kroute.u.msi.devid = pci_requester_id(dev);
1997    }
1998    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1999        kvm_irqchip_release_virq(s, virq);
2000        return -EINVAL;
2001    }
2002
2003    trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2004                                    vector, virq);
2005
2006    kvm_add_routing_entry(s, &kroute);
2007    kvm_arch_add_msi_route_post(&kroute, vector, dev);
2008    c->changes++;
2009
2010    return virq;
2011}
2012
2013int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2014                                 PCIDevice *dev)
2015{
2016    struct kvm_irq_routing_entry kroute = {};
2017
2018    if (kvm_gsi_direct_mapping()) {
2019        return 0;
2020    }
2021
2022    if (!kvm_irqchip_in_kernel()) {
2023        return -ENOSYS;
2024    }
2025
2026    kroute.gsi = virq;
2027    kroute.type = KVM_IRQ_ROUTING_MSI;
2028    kroute.flags = 0;
2029    kroute.u.msi.address_lo = (uint32_t)msg.address;
2030    kroute.u.msi.address_hi = msg.address >> 32;
2031    kroute.u.msi.data = le32_to_cpu(msg.data);
2032    if (pci_available && kvm_msi_devid_required()) {
2033        kroute.flags = KVM_MSI_VALID_DEVID;
2034        kroute.u.msi.devid = pci_requester_id(dev);
2035    }
2036    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2037        return -EINVAL;
2038    }
2039
2040    trace_kvm_irqchip_update_msi_route(virq);
2041
2042    return kvm_update_routing_entry(s, &kroute);
2043}
2044
2045static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2046                                    EventNotifier *resample, int virq,
2047                                    bool assign)
2048{
2049    int fd = event_notifier_get_fd(event);
2050    int rfd = resample ? event_notifier_get_fd(resample) : -1;
2051
2052    struct kvm_irqfd irqfd = {
2053        .fd = fd,
2054        .gsi = virq,
2055        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2056    };
2057
2058    if (rfd != -1) {
2059        assert(assign);
2060        if (kvm_irqchip_is_split()) {
2061            /*
2062             * When the slow irqchip (e.g. IOAPIC) is in the
2063             * userspace, KVM kernel resamplefd will not work because
2064             * the EOI of the interrupt will be delivered to userspace
2065             * instead, so the KVM kernel resamplefd kick will be
2066             * skipped.  The userspace here mimics what the kernel
2067             * provides with resamplefd, remember the resamplefd and
2068             * kick it when we receive EOI of this IRQ.
2069             *
2070             * This is hackery because IOAPIC is mostly bypassed
2071             * (except EOI broadcasts) when irqfd is used.  However
2072             * this can bring much performance back for split irqchip
2073             * with INTx IRQs (for VFIO, this gives 93% perf of the
2074             * full fast path, which is 46% perf boost comparing to
2075             * the INTx slow path).
2076             */
2077            kvm_resample_fd_insert(virq, resample);
2078        } else {
2079            irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2080            irqfd.resamplefd = rfd;
2081        }
2082    } else if (!assign) {
2083        if (kvm_irqchip_is_split()) {
2084            kvm_resample_fd_remove(virq);
2085        }
2086    }
2087
2088    if (!kvm_irqfds_enabled()) {
2089        return -ENOSYS;
2090    }
2091
2092    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2093}
2094
2095int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2096{
2097    struct kvm_irq_routing_entry kroute = {};
2098    int virq;
2099
2100    if (!kvm_gsi_routing_enabled()) {
2101        return -ENOSYS;
2102    }
2103
2104    virq = kvm_irqchip_get_virq(s);
2105    if (virq < 0) {
2106        return virq;
2107    }
2108
2109    kroute.gsi = virq;
2110    kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2111    kroute.flags = 0;
2112    kroute.u.adapter.summary_addr = adapter->summary_addr;
2113    kroute.u.adapter.ind_addr = adapter->ind_addr;
2114    kroute.u.adapter.summary_offset = adapter->summary_offset;
2115    kroute.u.adapter.ind_offset = adapter->ind_offset;
2116    kroute.u.adapter.adapter_id = adapter->adapter_id;
2117
2118    kvm_add_routing_entry(s, &kroute);
2119
2120    return virq;
2121}
2122
2123int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2124{
2125    struct kvm_irq_routing_entry kroute = {};
2126    int virq;
2127
2128    if (!kvm_gsi_routing_enabled()) {
2129        return -ENOSYS;
2130    }
2131    if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2132        return -ENOSYS;
2133    }
2134    virq = kvm_irqchip_get_virq(s);
2135    if (virq < 0) {
2136        return virq;
2137    }
2138
2139    kroute.gsi = virq;
2140    kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2141    kroute.flags = 0;
2142    kroute.u.hv_sint.vcpu = vcpu;
2143    kroute.u.hv_sint.sint = sint;
2144
2145    kvm_add_routing_entry(s, &kroute);
2146    kvm_irqchip_commit_routes(s);
2147
2148    return virq;
2149}
2150
2151#else /* !KVM_CAP_IRQ_ROUTING */
2152
2153void kvm_init_irq_routing(KVMState *s)
2154{
2155}
2156
2157void kvm_irqchip_release_virq(KVMState *s, int virq)
2158{
2159}
2160
2161int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2162{
2163    abort();
2164}
2165
2166int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2167{
2168    return -ENOSYS;
2169}
2170
2171int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2172{
2173    return -ENOSYS;
2174}
2175
2176int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2177{
2178    return -ENOSYS;
2179}
2180
2181static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2182                                    EventNotifier *resample, int virq,
2183                                    bool assign)
2184{
2185    abort();
2186}
2187
2188int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2189{
2190    return -ENOSYS;
2191}
2192#endif /* !KVM_CAP_IRQ_ROUTING */
2193
2194int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2195                                       EventNotifier *rn, int virq)
2196{
2197    return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2198}
2199
2200int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2201                                          int virq)
2202{
2203    return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2204}
2205
2206int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2207                                   EventNotifier *rn, qemu_irq irq)
2208{
2209    gpointer key, gsi;
2210    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2211
2212    if (!found) {
2213        return -ENXIO;
2214    }
2215    return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2216}
2217
2218int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2219                                      qemu_irq irq)
2220{
2221    gpointer key, gsi;
2222    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2223
2224    if (!found) {
2225        return -ENXIO;
2226    }
2227    return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2228}
2229
2230void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2231{
2232    g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2233}
2234
2235static void kvm_irqchip_create(KVMState *s)
2236{
2237    int ret;
2238
2239    assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2240    if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2241        ;
2242    } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2243        ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2244        if (ret < 0) {
2245            fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2246            exit(1);
2247        }
2248    } else {
2249        return;
2250    }
2251
2252    /* First probe and see if there's a arch-specific hook to create the
2253     * in-kernel irqchip for us */
2254    ret = kvm_arch_irqchip_create(s);
2255    if (ret == 0) {
2256        if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2257            perror("Split IRQ chip mode not supported.");
2258            exit(1);
2259        } else {
2260            ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2261        }
2262    }
2263    if (ret < 0) {
2264        fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2265        exit(1);
2266    }
2267
2268    kvm_kernel_irqchip = true;
2269    /* If we have an in-kernel IRQ chip then we must have asynchronous
2270     * interrupt delivery (though the reverse is not necessarily true)
2271     */
2272    kvm_async_interrupts_allowed = true;
2273    kvm_halt_in_kernel_allowed = true;
2274
2275    kvm_init_irq_routing(s);
2276
2277    s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2278}
2279
2280/* Find number of supported CPUs using the recommended
2281 * procedure from the kernel API documentation to cope with
2282 * older kernels that may be missing capabilities.
2283 */
2284static int kvm_recommended_vcpus(KVMState *s)
2285{
2286    int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2287    return (ret) ? ret : 4;
2288}
2289
2290static int kvm_max_vcpus(KVMState *s)
2291{
2292    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2293    return (ret) ? ret : kvm_recommended_vcpus(s);
2294}
2295
2296static int kvm_max_vcpu_id(KVMState *s)
2297{
2298    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2299    return (ret) ? ret : kvm_max_vcpus(s);
2300}
2301
2302bool kvm_vcpu_id_is_valid(int vcpu_id)
2303{
2304    KVMState *s = KVM_STATE(current_accel());
2305    return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2306}
2307
2308bool kvm_dirty_ring_enabled(void)
2309{
2310    return kvm_state->kvm_dirty_ring_size ? true : false;
2311}
2312
2313static int kvm_init(MachineState *ms)
2314{
2315    MachineClass *mc = MACHINE_GET_CLASS(ms);
2316    static const char upgrade_note[] =
2317        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2318        "(see http://sourceforge.net/projects/kvm).\n";
2319    struct {
2320        const char *name;
2321        int num;
2322    } num_cpus[] = {
2323        { "SMP",          ms->smp.cpus },
2324        { "hotpluggable", ms->smp.max_cpus },
2325        { NULL, }
2326    }, *nc = num_cpus;
2327    int soft_vcpus_limit, hard_vcpus_limit;
2328    KVMState *s;
2329    const KVMCapabilityInfo *missing_cap;
2330    int ret;
2331    int type = 0;
2332    uint64_t dirty_log_manual_caps;
2333
2334    qemu_mutex_init(&kml_slots_lock);
2335
2336    s = KVM_STATE(ms->accelerator);
2337
2338    /*
2339     * On systems where the kernel can support different base page
2340     * sizes, host page size may be different from TARGET_PAGE_SIZE,
2341     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2342     * page size for the system though.
2343     */
2344    assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2345
2346    s->sigmask_len = 8;
2347
2348#ifdef KVM_CAP_SET_GUEST_DEBUG
2349    QTAILQ_INIT(&s->kvm_sw_breakpoints);
2350#endif
2351    QLIST_INIT(&s->kvm_parked_vcpus);
2352    s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2353    if (s->fd == -1) {
2354        fprintf(stderr, "Could not access KVM kernel module: %m\n");
2355        ret = -errno;
2356        goto err;
2357    }
2358
2359    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2360    if (ret < KVM_API_VERSION) {
2361        if (ret >= 0) {
2362            ret = -EINVAL;
2363        }
2364        fprintf(stderr, "kvm version too old\n");
2365        goto err;
2366    }
2367
2368    if (ret > KVM_API_VERSION) {
2369        ret = -EINVAL;
2370        fprintf(stderr, "kvm version not supported\n");
2371        goto err;
2372    }
2373
2374    kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2375    s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2376
2377    /* If unspecified, use the default value */
2378    if (!s->nr_slots) {
2379        s->nr_slots = 32;
2380    }
2381
2382    s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2383    if (s->nr_as <= 1) {
2384        s->nr_as = 1;
2385    }
2386    s->as = g_new0(struct KVMAs, s->nr_as);
2387
2388    if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2389        g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2390                                                            "kvm-type",
2391                                                            &error_abort);
2392        type = mc->kvm_type(ms, kvm_type);
2393    } else if (mc->kvm_type) {
2394        type = mc->kvm_type(ms, NULL);
2395    }
2396
2397    do {
2398        ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2399    } while (ret == -EINTR);
2400
2401    if (ret < 0) {
2402        fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2403                strerror(-ret));
2404
2405#ifdef TARGET_S390X
2406        if (ret == -EINVAL) {
2407            fprintf(stderr,
2408                    "Host kernel setup problem detected. Please verify:\n");
2409            fprintf(stderr, "- for kernels supporting the switch_amode or"
2410                    " user_mode parameters, whether\n");
2411            fprintf(stderr,
2412                    "  user space is running in primary address space\n");
2413            fprintf(stderr,
2414                    "- for kernels supporting the vm.allocate_pgste sysctl, "
2415                    "whether it is enabled\n");
2416        }
2417#elif defined(TARGET_PPC)
2418        if (ret == -EINVAL) {
2419            fprintf(stderr,
2420                    "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2421                    (type == 2) ? "pr" : "hv");
2422        }
2423#endif
2424        goto err;
2425    }
2426
2427    s->vmfd = ret;
2428
2429    /* check the vcpu limits */
2430    soft_vcpus_limit = kvm_recommended_vcpus(s);
2431    hard_vcpus_limit = kvm_max_vcpus(s);
2432
2433    while (nc->name) {
2434        if (nc->num > soft_vcpus_limit) {
2435            warn_report("Number of %s cpus requested (%d) exceeds "
2436                        "the recommended cpus supported by KVM (%d)",
2437                        nc->name, nc->num, soft_vcpus_limit);
2438
2439            if (nc->num > hard_vcpus_limit) {
2440                fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2441                        "the maximum cpus supported by KVM (%d)\n",
2442                        nc->name, nc->num, hard_vcpus_limit);
2443                exit(1);
2444            }
2445        }
2446        nc++;
2447    }
2448
2449    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2450    if (!missing_cap) {
2451        missing_cap =
2452            kvm_check_extension_list(s, kvm_arch_required_capabilities);
2453    }
2454    if (missing_cap) {
2455        ret = -EINVAL;
2456        fprintf(stderr, "kvm does not support %s\n%s",
2457                missing_cap->name, upgrade_note);
2458        goto err;
2459    }
2460
2461    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2462    s->coalesced_pio = s->coalesced_mmio &&
2463                       kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2464
2465    /*
2466     * Enable KVM dirty ring if supported, otherwise fall back to
2467     * dirty logging mode
2468     */
2469    if (s->kvm_dirty_ring_size > 0) {
2470        uint64_t ring_bytes;
2471
2472        ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2473
2474        /* Read the max supported pages */
2475        ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2476        if (ret > 0) {
2477            if (ring_bytes > ret) {
2478                error_report("KVM dirty ring size %" PRIu32 " too big "
2479                             "(maximum is %ld).  Please use a smaller value.",
2480                             s->kvm_dirty_ring_size,
2481                             (long)ret / sizeof(struct kvm_dirty_gfn));
2482                ret = -EINVAL;
2483                goto err;
2484            }
2485
2486            ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2487            if (ret) {
2488                error_report("Enabling of KVM dirty ring failed: %s. "
2489                             "Suggested minimum value is 1024.", strerror(-ret));
2490                goto err;
2491            }
2492
2493            s->kvm_dirty_ring_bytes = ring_bytes;
2494         } else {
2495             warn_report("KVM dirty ring not available, using bitmap method");
2496             s->kvm_dirty_ring_size = 0;
2497        }
2498    }
2499
2500    /*
2501     * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2502     * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2503     * page is wr-protected initially, which is against how kvm dirty ring is
2504     * usage - kvm dirty ring requires all pages are wr-protected at the very
2505     * beginning.  Enabling this feature for dirty ring causes data corruption.
2506     *
2507     * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2508     * we may expect a higher stall time when starting the migration.  In the
2509     * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2510     * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2511     * guest pages.
2512     */
2513    if (!s->kvm_dirty_ring_size) {
2514        dirty_log_manual_caps =
2515            kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2516        dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2517                                  KVM_DIRTY_LOG_INITIALLY_SET);
2518        s->manual_dirty_log_protect = dirty_log_manual_caps;
2519        if (dirty_log_manual_caps) {
2520            ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2521                                    dirty_log_manual_caps);
2522            if (ret) {
2523                warn_report("Trying to enable capability %"PRIu64" of "
2524                            "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2525                            "Falling back to the legacy mode. ",
2526                            dirty_log_manual_caps);
2527                s->manual_dirty_log_protect = 0;
2528            }
2529        }
2530    }
2531
2532#ifdef KVM_CAP_VCPU_EVENTS
2533    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2534#endif
2535
2536    s->robust_singlestep =
2537        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2538
2539#ifdef KVM_CAP_DEBUGREGS
2540    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2541#endif
2542
2543    s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2544
2545#ifdef KVM_CAP_IRQ_ROUTING
2546    kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2547#endif
2548
2549    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2550
2551    s->irq_set_ioctl = KVM_IRQ_LINE;
2552    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2553        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2554    }
2555
2556    kvm_readonly_mem_allowed =
2557        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2558
2559    kvm_eventfds_allowed =
2560        (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2561
2562    kvm_irqfds_allowed =
2563        (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2564
2565    kvm_resamplefds_allowed =
2566        (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2567
2568    kvm_vm_attributes_allowed =
2569        (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2570
2571    kvm_ioeventfd_any_length_allowed =
2572        (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2573
2574#ifdef KVM_CAP_SET_GUEST_DEBUG
2575    kvm_has_guest_debug =
2576        (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2577#endif
2578
2579    kvm_sstep_flags = 0;
2580    if (kvm_has_guest_debug) {
2581        kvm_sstep_flags = SSTEP_ENABLE;
2582
2583#if defined KVM_CAP_SET_GUEST_DEBUG2
2584        int guest_debug_flags =
2585            kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2586
2587        if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2588            kvm_sstep_flags |= SSTEP_NOIRQ;
2589        }
2590#endif
2591    }
2592
2593    kvm_state = s;
2594
2595    ret = kvm_arch_init(ms, s);
2596    if (ret < 0) {
2597        goto err;
2598    }
2599
2600    if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2601        s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2602    }
2603
2604    qemu_register_reset(kvm_unpoison_all, NULL);
2605
2606    if (s->kernel_irqchip_allowed) {
2607        kvm_irqchip_create(s);
2608    }
2609
2610    if (kvm_eventfds_allowed) {
2611        s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2612        s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2613    }
2614    s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2615    s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2616
2617    kvm_memory_listener_register(s, &s->memory_listener,
2618                                 &address_space_memory, 0, "kvm-memory");
2619    if (kvm_eventfds_allowed) {
2620        memory_listener_register(&kvm_io_listener,
2621                                 &address_space_io);
2622    }
2623    memory_listener_register(&kvm_coalesced_pio_listener,
2624                             &address_space_io);
2625
2626    s->many_ioeventfds = kvm_check_many_ioeventfds();
2627
2628    s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2629    if (!s->sync_mmu) {
2630        ret = ram_block_discard_disable(true);
2631        assert(!ret);
2632    }
2633
2634    if (s->kvm_dirty_ring_size) {
2635        ret = kvm_dirty_ring_reaper_init(s);
2636        if (ret) {
2637            goto err;
2638        }
2639    }
2640
2641    return 0;
2642
2643err:
2644    assert(ret < 0);
2645    if (s->vmfd >= 0) {
2646        close(s->vmfd);
2647    }
2648    if (s->fd != -1) {
2649        close(s->fd);
2650    }
2651    g_free(s->memory_listener.slots);
2652
2653    return ret;
2654}
2655
2656void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2657{
2658    s->sigmask_len = sigmask_len;
2659}
2660
2661static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2662                          int size, uint32_t count)
2663{
2664    int i;
2665    uint8_t *ptr = data;
2666
2667    for (i = 0; i < count; i++) {
2668        address_space_rw(&address_space_io, port, attrs,
2669                         ptr, size,
2670                         direction == KVM_EXIT_IO_OUT);
2671        ptr += size;
2672    }
2673}
2674
2675static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2676{
2677    fprintf(stderr, "KVM internal error. Suberror: %d\n",
2678            run->internal.suberror);
2679
2680    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2681        int i;
2682
2683        for (i = 0; i < run->internal.ndata; ++i) {
2684            fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2685                    i, (uint64_t)run->internal.data[i]);
2686        }
2687    }
2688    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2689        fprintf(stderr, "emulation failure\n");
2690        if (!kvm_arch_stop_on_emulation_error(cpu)) {
2691            cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2692            return EXCP_INTERRUPT;
2693        }
2694    }
2695    /* FIXME: Should trigger a qmp message to let management know
2696     * something went wrong.
2697     */
2698    return -1;
2699}
2700
2701void kvm_flush_coalesced_mmio_buffer(void)
2702{
2703    KVMState *s = kvm_state;
2704
2705    if (s->coalesced_flush_in_progress) {
2706        return;
2707    }
2708
2709    s->coalesced_flush_in_progress = true;
2710
2711    if (s->coalesced_mmio_ring) {
2712        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2713        while (ring->first != ring->last) {
2714            struct kvm_coalesced_mmio *ent;
2715
2716            ent = &ring->coalesced_mmio[ring->first];
2717
2718            if (ent->pio == 1) {
2719                address_space_write(&address_space_io, ent->phys_addr,
2720                                    MEMTXATTRS_UNSPECIFIED, ent->data,
2721                                    ent->len);
2722            } else {
2723                cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2724            }
2725            smp_wmb();
2726            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2727        }
2728    }
2729
2730    s->coalesced_flush_in_progress = false;
2731}
2732
2733bool kvm_cpu_check_are_resettable(void)
2734{
2735    return kvm_arch_cpu_check_are_resettable();
2736}
2737
2738static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2739{
2740    if (!cpu->vcpu_dirty) {
2741        kvm_arch_get_registers(cpu);
2742        cpu->vcpu_dirty = true;
2743    }
2744}
2745
2746void kvm_cpu_synchronize_state(CPUState *cpu)
2747{
2748    if (!cpu->vcpu_dirty) {
2749        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2750    }
2751}
2752
2753static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2754{
2755    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2756    cpu->vcpu_dirty = false;
2757}
2758
2759void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2760{
2761    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2762}
2763
2764static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2765{
2766    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2767    cpu->vcpu_dirty = false;
2768}
2769
2770void kvm_cpu_synchronize_post_init(CPUState *cpu)
2771{
2772    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2773}
2774
2775static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2776{
2777    cpu->vcpu_dirty = true;
2778}
2779
2780void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2781{
2782    run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2783}
2784
2785#ifdef KVM_HAVE_MCE_INJECTION
2786static __thread void *pending_sigbus_addr;
2787static __thread int pending_sigbus_code;
2788static __thread bool have_sigbus_pending;
2789#endif
2790
2791static void kvm_cpu_kick(CPUState *cpu)
2792{
2793    qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2794}
2795
2796static void kvm_cpu_kick_self(void)
2797{
2798    if (kvm_immediate_exit) {
2799        kvm_cpu_kick(current_cpu);
2800    } else {
2801        qemu_cpu_kick_self();
2802    }
2803}
2804
2805static void kvm_eat_signals(CPUState *cpu)
2806{
2807    struct timespec ts = { 0, 0 };
2808    siginfo_t siginfo;
2809    sigset_t waitset;
2810    sigset_t chkset;
2811    int r;
2812
2813    if (kvm_immediate_exit) {
2814        qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2815        /* Write kvm_run->immediate_exit before the cpu->exit_request
2816         * write in kvm_cpu_exec.
2817         */
2818        smp_wmb();
2819        return;
2820    }
2821
2822    sigemptyset(&waitset);
2823    sigaddset(&waitset, SIG_IPI);
2824
2825    do {
2826        r = sigtimedwait(&waitset, &siginfo, &ts);
2827        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2828            perror("sigtimedwait");
2829            exit(1);
2830        }
2831
2832        r = sigpending(&chkset);
2833        if (r == -1) {
2834            perror("sigpending");
2835            exit(1);
2836        }
2837    } while (sigismember(&chkset, SIG_IPI));
2838}
2839
2840int kvm_cpu_exec(CPUState *cpu)
2841{
2842    struct kvm_run *run = cpu->kvm_run;
2843    int ret, run_ret;
2844
2845    DPRINTF("kvm_cpu_exec()\n");
2846
2847    if (kvm_arch_process_async_events(cpu)) {
2848        qatomic_set(&cpu->exit_request, 0);
2849        return EXCP_HLT;
2850    }
2851
2852    qemu_mutex_unlock_iothread();
2853    cpu_exec_start(cpu);
2854
2855    do {
2856        MemTxAttrs attrs;
2857
2858        if (cpu->vcpu_dirty) {
2859            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2860            cpu->vcpu_dirty = false;
2861        }
2862
2863        kvm_arch_pre_run(cpu, run);
2864        if (qatomic_read(&cpu->exit_request)) {
2865            DPRINTF("interrupt exit requested\n");
2866            /*
2867             * KVM requires us to reenter the kernel after IO exits to complete
2868             * instruction emulation. This self-signal will ensure that we
2869             * leave ASAP again.
2870             */
2871            kvm_cpu_kick_self();
2872        }
2873
2874        /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2875         * Matching barrier in kvm_eat_signals.
2876         */
2877        smp_rmb();
2878
2879        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2880
2881        attrs = kvm_arch_post_run(cpu, run);
2882
2883#ifdef KVM_HAVE_MCE_INJECTION
2884        if (unlikely(have_sigbus_pending)) {
2885            qemu_mutex_lock_iothread();
2886            kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2887                                    pending_sigbus_addr);
2888            have_sigbus_pending = false;
2889            qemu_mutex_unlock_iothread();
2890        }
2891#endif
2892
2893        if (run_ret < 0) {
2894            if (run_ret == -EINTR || run_ret == -EAGAIN) {
2895                DPRINTF("io window exit\n");
2896                kvm_eat_signals(cpu);
2897                ret = EXCP_INTERRUPT;
2898                break;
2899            }
2900            fprintf(stderr, "error: kvm run failed %s\n",
2901                    strerror(-run_ret));
2902#ifdef TARGET_PPC
2903            if (run_ret == -EBUSY) {
2904                fprintf(stderr,
2905                        "This is probably because your SMT is enabled.\n"
2906                        "VCPU can only run on primary threads with all "
2907                        "secondary threads offline.\n");
2908            }
2909#endif
2910            ret = -1;
2911            break;
2912        }
2913
2914        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2915        switch (run->exit_reason) {
2916        case KVM_EXIT_IO:
2917            DPRINTF("handle_io\n");
2918            /* Called outside BQL */
2919            kvm_handle_io(run->io.port, attrs,
2920                          (uint8_t *)run + run->io.data_offset,
2921                          run->io.direction,
2922                          run->io.size,
2923                          run->io.count);
2924            ret = 0;
2925            break;
2926        case KVM_EXIT_MMIO:
2927            DPRINTF("handle_mmio\n");
2928            /* Called outside BQL */
2929            address_space_rw(&address_space_memory,
2930                             run->mmio.phys_addr, attrs,
2931                             run->mmio.data,
2932                             run->mmio.len,
2933                             run->mmio.is_write);
2934            ret = 0;
2935            break;
2936        case KVM_EXIT_IRQ_WINDOW_OPEN:
2937            DPRINTF("irq_window_open\n");
2938            ret = EXCP_INTERRUPT;
2939            break;
2940        case KVM_EXIT_SHUTDOWN:
2941            DPRINTF("shutdown\n");
2942            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2943            ret = EXCP_INTERRUPT;
2944            break;
2945        case KVM_EXIT_UNKNOWN:
2946            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2947                    (uint64_t)run->hw.hardware_exit_reason);
2948            ret = -1;
2949            break;
2950        case KVM_EXIT_INTERNAL_ERROR:
2951            ret = kvm_handle_internal_error(cpu, run);
2952            break;
2953        case KVM_EXIT_DIRTY_RING_FULL:
2954            /*
2955             * We shouldn't continue if the dirty ring of this vcpu is
2956             * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2957             */
2958            trace_kvm_dirty_ring_full(cpu->cpu_index);
2959            qemu_mutex_lock_iothread();
2960            kvm_dirty_ring_reap(kvm_state);
2961            qemu_mutex_unlock_iothread();
2962            ret = 0;
2963            break;
2964        case KVM_EXIT_SYSTEM_EVENT:
2965            switch (run->system_event.type) {
2966            case KVM_SYSTEM_EVENT_SHUTDOWN:
2967                qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2968                ret = EXCP_INTERRUPT;
2969                break;
2970            case KVM_SYSTEM_EVENT_RESET:
2971                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2972                ret = EXCP_INTERRUPT;
2973                break;
2974            case KVM_SYSTEM_EVENT_CRASH:
2975                kvm_cpu_synchronize_state(cpu);
2976                qemu_mutex_lock_iothread();
2977                qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2978                qemu_mutex_unlock_iothread();
2979                ret = 0;
2980                break;
2981            default:
2982                DPRINTF("kvm_arch_handle_exit\n");
2983                ret = kvm_arch_handle_exit(cpu, run);
2984                break;
2985            }
2986            break;
2987        default:
2988            DPRINTF("kvm_arch_handle_exit\n");
2989            ret = kvm_arch_handle_exit(cpu, run);
2990            break;
2991        }
2992    } while (ret == 0);
2993
2994    cpu_exec_end(cpu);
2995    qemu_mutex_lock_iothread();
2996
2997    if (ret < 0) {
2998        cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2999        vm_stop(RUN_STATE_INTERNAL_ERROR);
3000    }
3001
3002    qatomic_set(&cpu->exit_request, 0);
3003    return ret;
3004}
3005
3006int kvm_ioctl(KVMState *s, int type, ...)
3007{
3008    int ret;
3009    void *arg;
3010    va_list ap;
3011
3012    va_start(ap, type);
3013    arg = va_arg(ap, void *);
3014    va_end(ap);
3015
3016    trace_kvm_ioctl(type, arg);
3017    ret = ioctl(s->fd, type, arg);
3018    if (ret == -1) {
3019        ret = -errno;
3020    }
3021    return ret;
3022}
3023
3024int kvm_vm_ioctl(KVMState *s, int type, ...)
3025{
3026    int ret;
3027    void *arg;
3028    va_list ap;
3029
3030    va_start(ap, type);
3031    arg = va_arg(ap, void *);
3032    va_end(ap);
3033
3034    trace_kvm_vm_ioctl(type, arg);
3035    ret = ioctl(s->vmfd, type, arg);
3036    if (ret == -1) {
3037        ret = -errno;
3038    }
3039    return ret;
3040}
3041
3042int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3043{
3044    int ret;
3045    void *arg;
3046    va_list ap;
3047
3048    va_start(ap, type);
3049    arg = va_arg(ap, void *);
3050    va_end(ap);
3051
3052    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3053    ret = ioctl(cpu->kvm_fd, type, arg);
3054    if (ret == -1) {
3055        ret = -errno;
3056    }
3057    return ret;
3058}
3059
3060int kvm_device_ioctl(int fd, int type, ...)
3061{
3062    int ret;
3063    void *arg;
3064    va_list ap;
3065
3066    va_start(ap, type);
3067    arg = va_arg(ap, void *);
3068    va_end(ap);
3069
3070    trace_kvm_device_ioctl(fd, type, arg);
3071    ret = ioctl(fd, type, arg);
3072    if (ret == -1) {
3073        ret = -errno;
3074    }
3075    return ret;
3076}
3077
3078int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3079{
3080    int ret;
3081    struct kvm_device_attr attribute = {
3082        .group = group,
3083        .attr = attr,
3084    };
3085
3086    if (!kvm_vm_attributes_allowed) {
3087        return 0;
3088    }
3089
3090    ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3091    /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3092    return ret ? 0 : 1;
3093}
3094
3095int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3096{
3097    struct kvm_device_attr attribute = {
3098        .group = group,
3099        .attr = attr,
3100        .flags = 0,
3101    };
3102
3103    return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3104}
3105
3106int kvm_device_access(int fd, int group, uint64_t attr,
3107                      void *val, bool write, Error **errp)
3108{
3109    struct kvm_device_attr kvmattr;
3110    int err;
3111
3112    kvmattr.flags = 0;
3113    kvmattr.group = group;
3114    kvmattr.attr = attr;
3115    kvmattr.addr = (uintptr_t)val;
3116
3117    err = kvm_device_ioctl(fd,
3118                           write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3119                           &kvmattr);
3120    if (err < 0) {
3121        error_setg_errno(errp, -err,
3122                         "KVM_%s_DEVICE_ATTR failed: Group %d "
3123                         "attr 0x%016" PRIx64,
3124                         write ? "SET" : "GET", group, attr);
3125    }
3126    return err;
3127}
3128
3129bool kvm_has_sync_mmu(void)
3130{
3131    return kvm_state->sync_mmu;
3132}
3133
3134int kvm_has_vcpu_events(void)
3135{
3136    return kvm_state->vcpu_events;
3137}
3138
3139int kvm_has_robust_singlestep(void)
3140{
3141    return kvm_state->robust_singlestep;
3142}
3143
3144int kvm_has_debugregs(void)
3145{
3146    return kvm_state->debugregs;
3147}
3148
3149int kvm_max_nested_state_length(void)
3150{
3151    return kvm_state->max_nested_state_len;
3152}
3153
3154int kvm_has_many_ioeventfds(void)
3155{
3156    if (!kvm_enabled()) {
3157        return 0;
3158    }
3159    return kvm_state->many_ioeventfds;
3160}
3161
3162int kvm_has_gsi_routing(void)
3163{
3164#ifdef KVM_CAP_IRQ_ROUTING
3165    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3166#else
3167    return false;
3168#endif
3169}
3170
3171int kvm_has_intx_set_mask(void)
3172{
3173    return kvm_state->intx_set_mask;
3174}
3175
3176bool kvm_arm_supports_user_irq(void)
3177{
3178    return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3179}
3180
3181#ifdef KVM_CAP_SET_GUEST_DEBUG
3182struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3183                                                 target_ulong pc)
3184{
3185    struct kvm_sw_breakpoint *bp;
3186
3187    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3188        if (bp->pc == pc) {
3189            return bp;
3190        }
3191    }
3192    return NULL;
3193}
3194
3195int kvm_sw_breakpoints_active(CPUState *cpu)
3196{
3197    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3198}
3199
3200struct kvm_set_guest_debug_data {
3201    struct kvm_guest_debug dbg;
3202    int err;
3203};
3204
3205static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3206{
3207    struct kvm_set_guest_debug_data *dbg_data =
3208        (struct kvm_set_guest_debug_data *) data.host_ptr;
3209
3210    dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3211                                   &dbg_data->dbg);
3212}
3213
3214int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3215{
3216    struct kvm_set_guest_debug_data data;
3217
3218    data.dbg.control = reinject_trap;
3219
3220    if (cpu->singlestep_enabled) {
3221        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3222
3223        if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3224            data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3225        }
3226    }
3227    kvm_arch_update_guest_debug(cpu, &data.dbg);
3228
3229    run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3230               RUN_ON_CPU_HOST_PTR(&data));
3231    return data.err;
3232}
3233
3234int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3235                          target_ulong len, int type)
3236{
3237    struct kvm_sw_breakpoint *bp;
3238    int err;
3239
3240    if (type == GDB_BREAKPOINT_SW) {
3241        bp = kvm_find_sw_breakpoint(cpu, addr);
3242        if (bp) {
3243            bp->use_count++;
3244            return 0;
3245        }
3246
3247        bp = g_new(struct kvm_sw_breakpoint, 1);
3248        bp->pc = addr;
3249        bp->use_count = 1;
3250        err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3251        if (err) {
3252            g_free(bp);
3253            return err;
3254        }
3255
3256        QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3257    } else {
3258        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3259        if (err) {
3260            return err;
3261        }
3262    }
3263
3264    CPU_FOREACH(cpu) {
3265        err = kvm_update_guest_debug(cpu, 0);
3266        if (err) {
3267            return err;
3268        }
3269    }
3270    return 0;
3271}
3272
3273int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3274                          target_ulong len, int type)
3275{
3276    struct kvm_sw_breakpoint *bp;
3277    int err;
3278
3279    if (type == GDB_BREAKPOINT_SW) {
3280        bp = kvm_find_sw_breakpoint(cpu, addr);
3281        if (!bp) {
3282            return -ENOENT;
3283        }
3284
3285        if (bp->use_count > 1) {
3286            bp->use_count--;
3287            return 0;
3288        }
3289
3290        err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3291        if (err) {
3292            return err;
3293        }
3294
3295        QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3296        g_free(bp);
3297    } else {
3298        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3299        if (err) {
3300            return err;
3301        }
3302    }
3303
3304    CPU_FOREACH(cpu) {
3305        err = kvm_update_guest_debug(cpu, 0);
3306        if (err) {
3307            return err;
3308        }
3309    }
3310    return 0;
3311}
3312
3313void kvm_remove_all_breakpoints(CPUState *cpu)
3314{
3315    struct kvm_sw_breakpoint *bp, *next;
3316    KVMState *s = cpu->kvm_state;
3317    CPUState *tmpcpu;
3318
3319    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3320        if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3321            /* Try harder to find a CPU that currently sees the breakpoint. */
3322            CPU_FOREACH(tmpcpu) {
3323                if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3324                    break;
3325                }
3326            }
3327        }
3328        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3329        g_free(bp);
3330    }
3331    kvm_arch_remove_all_hw_breakpoints();
3332
3333    CPU_FOREACH(cpu) {
3334        kvm_update_guest_debug(cpu, 0);
3335    }
3336}
3337
3338#else /* !KVM_CAP_SET_GUEST_DEBUG */
3339
3340int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3341{
3342    return -EINVAL;
3343}
3344
3345int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3346                          target_ulong len, int type)
3347{
3348    return -EINVAL;
3349}
3350
3351int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3352                          target_ulong len, int type)
3353{
3354    return -EINVAL;
3355}
3356
3357void kvm_remove_all_breakpoints(CPUState *cpu)
3358{
3359}
3360#endif /* !KVM_CAP_SET_GUEST_DEBUG */
3361
3362static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3363{
3364    KVMState *s = kvm_state;
3365    struct kvm_signal_mask *sigmask;
3366    int r;
3367
3368    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3369
3370    sigmask->len = s->sigmask_len;
3371    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3372    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3373    g_free(sigmask);
3374
3375    return r;
3376}
3377
3378static void kvm_ipi_signal(int sig)
3379{
3380    if (current_cpu) {
3381        assert(kvm_immediate_exit);
3382        kvm_cpu_kick(current_cpu);
3383    }
3384}
3385
3386void kvm_init_cpu_signals(CPUState *cpu)
3387{
3388    int r;
3389    sigset_t set;
3390    struct sigaction sigact;
3391
3392    memset(&sigact, 0, sizeof(sigact));
3393    sigact.sa_handler = kvm_ipi_signal;
3394    sigaction(SIG_IPI, &sigact, NULL);
3395
3396    pthread_sigmask(SIG_BLOCK, NULL, &set);
3397#if defined KVM_HAVE_MCE_INJECTION
3398    sigdelset(&set, SIGBUS);
3399    pthread_sigmask(SIG_SETMASK, &set, NULL);
3400#endif
3401    sigdelset(&set, SIG_IPI);
3402    if (kvm_immediate_exit) {
3403        r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3404    } else {
3405        r = kvm_set_signal_mask(cpu, &set);
3406    }
3407    if (r) {
3408        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3409        exit(1);
3410    }
3411}
3412
3413/* Called asynchronously in VCPU thread.  */
3414int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3415{
3416#ifdef KVM_HAVE_MCE_INJECTION
3417    if (have_sigbus_pending) {
3418        return 1;
3419    }
3420    have_sigbus_pending = true;
3421    pending_sigbus_addr = addr;
3422    pending_sigbus_code = code;
3423    qatomic_set(&cpu->exit_request, 1);
3424    return 0;
3425#else
3426    return 1;
3427#endif
3428}
3429
3430/* Called synchronously (via signalfd) in main thread.  */
3431int kvm_on_sigbus(int code, void *addr)
3432{
3433#ifdef KVM_HAVE_MCE_INJECTION
3434    /* Action required MCE kills the process if SIGBUS is blocked.  Because
3435     * that's what happens in the I/O thread, where we handle MCE via signalfd,
3436     * we can only get action optional here.
3437     */
3438    assert(code != BUS_MCEERR_AR);
3439    kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3440    return 0;
3441#else
3442    return 1;
3443#endif
3444}
3445
3446int kvm_create_device(KVMState *s, uint64_t type, bool test)
3447{
3448    int ret;
3449    struct kvm_create_device create_dev;
3450
3451    create_dev.type = type;
3452    create_dev.fd = -1;
3453    create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3454
3455    if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3456        return -ENOTSUP;
3457    }
3458
3459    ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3460    if (ret) {
3461        return ret;
3462    }
3463
3464    return test ? 0 : create_dev.fd;
3465}
3466
3467bool kvm_device_supported(int vmfd, uint64_t type)
3468{
3469    struct kvm_create_device create_dev = {
3470        .type = type,
3471        .fd = -1,
3472        .flags = KVM_CREATE_DEVICE_TEST,
3473    };
3474
3475    if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3476        return false;
3477    }
3478
3479    return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3480}
3481
3482int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3483{
3484    struct kvm_one_reg reg;
3485    int r;
3486
3487    reg.id = id;
3488    reg.addr = (uintptr_t) source;
3489    r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3490    if (r) {
3491        trace_kvm_failed_reg_set(id, strerror(-r));
3492    }
3493    return r;
3494}
3495
3496int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3497{
3498    struct kvm_one_reg reg;
3499    int r;
3500
3501    reg.id = id;
3502    reg.addr = (uintptr_t) target;
3503    r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3504    if (r) {
3505        trace_kvm_failed_reg_get(id, strerror(-r));
3506    }
3507    return r;
3508}
3509
3510static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3511                                 hwaddr start_addr, hwaddr size)
3512{
3513    KVMState *kvm = KVM_STATE(ms->accelerator);
3514    int i;
3515
3516    for (i = 0; i < kvm->nr_as; ++i) {
3517        if (kvm->as[i].as == as && kvm->as[i].ml) {
3518            size = MIN(kvm_max_slot_size, size);
3519            return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3520                                                    start_addr, size);
3521        }
3522    }
3523
3524    return false;
3525}
3526
3527static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3528                                   const char *name, void *opaque,
3529                                   Error **errp)
3530{
3531    KVMState *s = KVM_STATE(obj);
3532    int64_t value = s->kvm_shadow_mem;
3533
3534    visit_type_int(v, name, &value, errp);
3535}
3536
3537static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3538                                   const char *name, void *opaque,
3539                                   Error **errp)
3540{
3541    KVMState *s = KVM_STATE(obj);
3542    int64_t value;
3543
3544    if (s->fd != -1) {
3545        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3546        return;
3547    }
3548
3549    if (!visit_type_int(v, name, &value, errp)) {
3550        return;
3551    }
3552
3553    s->kvm_shadow_mem = value;
3554}
3555
3556static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3557                                   const char *name, void *opaque,
3558                                   Error **errp)
3559{
3560    KVMState *s = KVM_STATE(obj);
3561    OnOffSplit mode;
3562
3563    if (s->fd != -1) {
3564        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3565        return;
3566    }
3567
3568    if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3569        return;
3570    }
3571    switch (mode) {
3572    case ON_OFF_SPLIT_ON:
3573        s->kernel_irqchip_allowed = true;
3574        s->kernel_irqchip_required = true;
3575        s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3576        break;
3577    case ON_OFF_SPLIT_OFF:
3578        s->kernel_irqchip_allowed = false;
3579        s->kernel_irqchip_required = false;
3580        s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3581        break;
3582    case ON_OFF_SPLIT_SPLIT:
3583        s->kernel_irqchip_allowed = true;
3584        s->kernel_irqchip_required = true;
3585        s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3586        break;
3587    default:
3588        /* The value was checked in visit_type_OnOffSplit() above. If
3589         * we get here, then something is wrong in QEMU.
3590         */
3591        abort();
3592    }
3593}
3594
3595bool kvm_kernel_irqchip_allowed(void)
3596{
3597    return kvm_state->kernel_irqchip_allowed;
3598}
3599
3600bool kvm_kernel_irqchip_required(void)
3601{
3602    return kvm_state->kernel_irqchip_required;
3603}
3604
3605bool kvm_kernel_irqchip_split(void)
3606{
3607    return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3608}
3609
3610static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3611                                    const char *name, void *opaque,
3612                                    Error **errp)
3613{
3614    KVMState *s = KVM_STATE(obj);
3615    uint32_t value = s->kvm_dirty_ring_size;
3616
3617    visit_type_uint32(v, name, &value, errp);
3618}
3619
3620static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3621                                    const char *name, void *opaque,
3622                                    Error **errp)
3623{
3624    KVMState *s = KVM_STATE(obj);
3625    Error *error = NULL;
3626    uint32_t value;
3627
3628    if (s->fd != -1) {
3629        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3630        return;
3631    }
3632
3633    visit_type_uint32(v, name, &value, &error);
3634    if (error) {
3635        error_propagate(errp, error);
3636        return;
3637    }
3638    if (value & (value - 1)) {
3639        error_setg(errp, "dirty-ring-size must be a power of two.");
3640        return;
3641    }
3642
3643    s->kvm_dirty_ring_size = value;
3644}
3645
3646static void kvm_accel_instance_init(Object *obj)
3647{
3648    KVMState *s = KVM_STATE(obj);
3649
3650    s->fd = -1;
3651    s->vmfd = -1;
3652    s->kvm_shadow_mem = -1;
3653    s->kernel_irqchip_allowed = true;
3654    s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3655    /* KVM dirty ring is by default off */
3656    s->kvm_dirty_ring_size = 0;
3657}
3658
3659static void kvm_accel_class_init(ObjectClass *oc, void *data)
3660{
3661    AccelClass *ac = ACCEL_CLASS(oc);
3662    ac->name = "KVM";
3663    ac->init_machine = kvm_init;
3664    ac->has_memory = kvm_accel_has_memory;
3665    ac->allowed = &kvm_allowed;
3666
3667    object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3668        NULL, kvm_set_kernel_irqchip,
3669        NULL, NULL);
3670    object_class_property_set_description(oc, "kernel-irqchip",
3671        "Configure KVM in-kernel irqchip");
3672
3673    object_class_property_add(oc, "kvm-shadow-mem", "int",
3674        kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3675        NULL, NULL);
3676    object_class_property_set_description(oc, "kvm-shadow-mem",
3677        "KVM shadow MMU size");
3678
3679    object_class_property_add(oc, "dirty-ring-size", "uint32",
3680        kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3681        NULL, NULL);
3682    object_class_property_set_description(oc, "dirty-ring-size",
3683        "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3684}
3685
3686static const TypeInfo kvm_accel_type = {
3687    .name = TYPE_KVM_ACCEL,
3688    .parent = TYPE_ACCEL,
3689    .instance_init = kvm_accel_instance_init,
3690    .class_init = kvm_accel_class_init,
3691    .instance_size = sizeof(KVMState),
3692};
3693
3694static void kvm_type_init(void)
3695{
3696    type_register_static(&kvm_accel_type);
3697}
3698
3699type_init(kvm_type_init);
3700