qemu/accel/tcg/cputlb.c
<<
>>
Prefs
   1/*
   2 *  Common CPU TLB handling
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/main-loop.h"
  22#include "hw/core/tcg-cpu-ops.h"
  23#include "exec/exec-all.h"
  24#include "exec/memory.h"
  25#include "exec/cpu_ldst.h"
  26#include "exec/cputlb.h"
  27#include "exec/memory-internal.h"
  28#include "exec/ram_addr.h"
  29#include "tcg/tcg.h"
  30#include "qemu/error-report.h"
  31#include "exec/log.h"
  32#include "exec/helper-proto.h"
  33#include "qemu/atomic.h"
  34#include "qemu/atomic128.h"
  35#include "exec/translate-all.h"
  36#include "trace/trace-root.h"
  37#include "tb-hash.h"
  38#include "internal.h"
  39#ifdef CONFIG_PLUGIN
  40#include "qemu/plugin-memory.h"
  41#endif
  42#include "tcg/tcg-ldst.h"
  43
  44/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
  45/* #define DEBUG_TLB */
  46/* #define DEBUG_TLB_LOG */
  47
  48#ifdef DEBUG_TLB
  49# define DEBUG_TLB_GATE 1
  50# ifdef DEBUG_TLB_LOG
  51#  define DEBUG_TLB_LOG_GATE 1
  52# else
  53#  define DEBUG_TLB_LOG_GATE 0
  54# endif
  55#else
  56# define DEBUG_TLB_GATE 0
  57# define DEBUG_TLB_LOG_GATE 0
  58#endif
  59
  60#define tlb_debug(fmt, ...) do { \
  61    if (DEBUG_TLB_LOG_GATE) { \
  62        qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
  63                      ## __VA_ARGS__); \
  64    } else if (DEBUG_TLB_GATE) { \
  65        fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
  66    } \
  67} while (0)
  68
  69#define assert_cpu_is_self(cpu) do {                              \
  70        if (DEBUG_TLB_GATE) {                                     \
  71            g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
  72        }                                                         \
  73    } while (0)
  74
  75/* run_on_cpu_data.target_ptr should always be big enough for a
  76 * target_ulong even on 32 bit builds */
  77QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
  78
  79/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
  80 */
  81QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
  82#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
  83
  84static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
  85{
  86    return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
  87}
  88
  89static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
  90{
  91    return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
  92}
  93
  94static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
  95                             size_t max_entries)
  96{
  97    desc->window_begin_ns = ns;
  98    desc->window_max_entries = max_entries;
  99}
 100
 101static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
 102{
 103    unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
 104
 105    for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
 106        qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
 107    }
 108}
 109
 110static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
 111{
 112    /* Discard jump cache entries for any tb which might potentially
 113       overlap the flushed page.  */
 114    tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
 115    tb_jmp_cache_clear_page(cpu, addr);
 116}
 117
 118/**
 119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
 120 * @desc: The CPUTLBDesc portion of the TLB
 121 * @fast: The CPUTLBDescFast portion of the same TLB
 122 *
 123 * Called with tlb_lock_held.
 124 *
 125 * We have two main constraints when resizing a TLB: (1) we only resize it
 126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
 127 * the array or unnecessarily flushing it), which means we do not control how
 128 * frequently the resizing can occur; (2) we don't have access to the guest's
 129 * future scheduling decisions, and therefore have to decide the magnitude of
 130 * the resize based on past observations.
 131 *
 132 * In general, a memory-hungry process can benefit greatly from an appropriately
 133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
 134 * we just have to make the TLB as large as possible; while an oversized TLB
 135 * results in minimal TLB miss rates, it also takes longer to be flushed
 136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
 137 * performance.
 138 *
 139 * To achieve near-optimal performance for all kinds of workloads, we:
 140 *
 141 * 1. Aggressively increase the size of the TLB when the use rate of the
 142 * TLB being flushed is high, since it is likely that in the near future this
 143 * memory-hungry process will execute again, and its memory hungriness will
 144 * probably be similar.
 145 *
 146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
 147 * reasonably large time window. The rationale is that if in such a time window
 148 * we have not observed a high TLB use rate, it is likely that we won't observe
 149 * it in the near future. In that case, once a time window expires we downsize
 150 * the TLB to match the maximum use rate observed in the window.
 151 *
 152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
 153 * since in that range performance is likely near-optimal. Recall that the TLB
 154 * is direct mapped, so we want the use rate to be low (or at least not too
 155 * high), since otherwise we are likely to have a significant amount of
 156 * conflict misses.
 157 */
 158static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
 159                                  int64_t now)
 160{
 161    size_t old_size = tlb_n_entries(fast);
 162    size_t rate;
 163    size_t new_size = old_size;
 164    int64_t window_len_ms = 100;
 165    int64_t window_len_ns = window_len_ms * 1000 * 1000;
 166    bool window_expired = now > desc->window_begin_ns + window_len_ns;
 167
 168    if (desc->n_used_entries > desc->window_max_entries) {
 169        desc->window_max_entries = desc->n_used_entries;
 170    }
 171    rate = desc->window_max_entries * 100 / old_size;
 172
 173    if (rate > 70) {
 174        new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
 175    } else if (rate < 30 && window_expired) {
 176        size_t ceil = pow2ceil(desc->window_max_entries);
 177        size_t expected_rate = desc->window_max_entries * 100 / ceil;
 178
 179        /*
 180         * Avoid undersizing when the max number of entries seen is just below
 181         * a pow2. For instance, if max_entries == 1025, the expected use rate
 182         * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
 183         * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
 184         * later. Thus, make sure that the expected use rate remains below 70%.
 185         * (and since we double the size, that means the lowest rate we'd
 186         * expect to get is 35%, which is still in the 30-70% range where
 187         * we consider that the size is appropriate.)
 188         */
 189        if (expected_rate > 70) {
 190            ceil *= 2;
 191        }
 192        new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
 193    }
 194
 195    if (new_size == old_size) {
 196        if (window_expired) {
 197            tlb_window_reset(desc, now, desc->n_used_entries);
 198        }
 199        return;
 200    }
 201
 202    g_free(fast->table);
 203    g_free(desc->iotlb);
 204
 205    tlb_window_reset(desc, now, 0);
 206    /* desc->n_used_entries is cleared by the caller */
 207    fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 208    fast->table = g_try_new(CPUTLBEntry, new_size);
 209    desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
 210
 211    /*
 212     * If the allocations fail, try smaller sizes. We just freed some
 213     * memory, so going back to half of new_size has a good chance of working.
 214     * Increased memory pressure elsewhere in the system might cause the
 215     * allocations to fail though, so we progressively reduce the allocation
 216     * size, aborting if we cannot even allocate the smallest TLB we support.
 217     */
 218    while (fast->table == NULL || desc->iotlb == NULL) {
 219        if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
 220            error_report("%s: %s", __func__, strerror(errno));
 221            abort();
 222        }
 223        new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
 224        fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 225
 226        g_free(fast->table);
 227        g_free(desc->iotlb);
 228        fast->table = g_try_new(CPUTLBEntry, new_size);
 229        desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
 230    }
 231}
 232
 233static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
 234{
 235    desc->n_used_entries = 0;
 236    desc->large_page_addr = -1;
 237    desc->large_page_mask = -1;
 238    desc->vindex = 0;
 239    memset(fast->table, -1, sizeof_tlb(fast));
 240    memset(desc->vtable, -1, sizeof(desc->vtable));
 241}
 242
 243static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
 244                                        int64_t now)
 245{
 246    CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
 247    CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
 248
 249    tlb_mmu_resize_locked(desc, fast, now);
 250    tlb_mmu_flush_locked(desc, fast);
 251}
 252
 253static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
 254{
 255    size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
 256
 257    tlb_window_reset(desc, now, 0);
 258    desc->n_used_entries = 0;
 259    fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
 260    fast->table = g_new(CPUTLBEntry, n_entries);
 261    desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
 262    tlb_mmu_flush_locked(desc, fast);
 263}
 264
 265static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
 266{
 267    env_tlb(env)->d[mmu_idx].n_used_entries++;
 268}
 269
 270static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
 271{
 272    env_tlb(env)->d[mmu_idx].n_used_entries--;
 273}
 274
 275void tlb_init(CPUState *cpu)
 276{
 277    CPUArchState *env = cpu->env_ptr;
 278    int64_t now = get_clock_realtime();
 279    int i;
 280
 281    qemu_spin_init(&env_tlb(env)->c.lock);
 282
 283    /* All tlbs are initialized flushed. */
 284    env_tlb(env)->c.dirty = 0;
 285
 286    for (i = 0; i < NB_MMU_MODES; i++) {
 287        tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
 288    }
 289}
 290
 291void tlb_destroy(CPUState *cpu)
 292{
 293    CPUArchState *env = cpu->env_ptr;
 294    int i;
 295
 296    qemu_spin_destroy(&env_tlb(env)->c.lock);
 297    for (i = 0; i < NB_MMU_MODES; i++) {
 298        CPUTLBDesc *desc = &env_tlb(env)->d[i];
 299        CPUTLBDescFast *fast = &env_tlb(env)->f[i];
 300
 301        g_free(fast->table);
 302        g_free(desc->iotlb);
 303    }
 304}
 305
 306/* flush_all_helper: run fn across all cpus
 307 *
 308 * If the wait flag is set then the src cpu's helper will be queued as
 309 * "safe" work and the loop exited creating a synchronisation point
 310 * where all queued work will be finished before execution starts
 311 * again.
 312 */
 313static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
 314                             run_on_cpu_data d)
 315{
 316    CPUState *cpu;
 317
 318    CPU_FOREACH(cpu) {
 319        if (cpu != src) {
 320            async_run_on_cpu(cpu, fn, d);
 321        }
 322    }
 323}
 324
 325void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
 326{
 327    CPUState *cpu;
 328    size_t full = 0, part = 0, elide = 0;
 329
 330    CPU_FOREACH(cpu) {
 331        CPUArchState *env = cpu->env_ptr;
 332
 333        full += qatomic_read(&env_tlb(env)->c.full_flush_count);
 334        part += qatomic_read(&env_tlb(env)->c.part_flush_count);
 335        elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
 336    }
 337    *pfull = full;
 338    *ppart = part;
 339    *pelide = elide;
 340}
 341
 342static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
 343{
 344    CPUArchState *env = cpu->env_ptr;
 345    uint16_t asked = data.host_int;
 346    uint16_t all_dirty, work, to_clean;
 347    int64_t now = get_clock_realtime();
 348
 349    assert_cpu_is_self(cpu);
 350
 351    tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
 352
 353    qemu_spin_lock(&env_tlb(env)->c.lock);
 354
 355    all_dirty = env_tlb(env)->c.dirty;
 356    to_clean = asked & all_dirty;
 357    all_dirty &= ~to_clean;
 358    env_tlb(env)->c.dirty = all_dirty;
 359
 360    for (work = to_clean; work != 0; work &= work - 1) {
 361        int mmu_idx = ctz32(work);
 362        tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
 363    }
 364
 365    qemu_spin_unlock(&env_tlb(env)->c.lock);
 366
 367    cpu_tb_jmp_cache_clear(cpu);
 368
 369    if (to_clean == ALL_MMUIDX_BITS) {
 370        qatomic_set(&env_tlb(env)->c.full_flush_count,
 371                   env_tlb(env)->c.full_flush_count + 1);
 372    } else {
 373        qatomic_set(&env_tlb(env)->c.part_flush_count,
 374                   env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
 375        if (to_clean != asked) {
 376            qatomic_set(&env_tlb(env)->c.elide_flush_count,
 377                       env_tlb(env)->c.elide_flush_count +
 378                       ctpop16(asked & ~to_clean));
 379        }
 380    }
 381}
 382
 383void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 384{
 385    tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
 386
 387    if (cpu->created && !qemu_cpu_is_self(cpu)) {
 388        async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
 389                         RUN_ON_CPU_HOST_INT(idxmap));
 390    } else {
 391        tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
 392    }
 393}
 394
 395void tlb_flush(CPUState *cpu)
 396{
 397    tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
 398}
 399
 400void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
 401{
 402    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 403
 404    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 405
 406    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 407    fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
 408}
 409
 410void tlb_flush_all_cpus(CPUState *src_cpu)
 411{
 412    tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
 413}
 414
 415void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
 416{
 417    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 418
 419    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 420
 421    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 422    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 423}
 424
 425void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 426{
 427    tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
 428}
 429
 430static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
 431                                      target_ulong page, target_ulong mask)
 432{
 433    page &= mask;
 434    mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
 435
 436    return (page == (tlb_entry->addr_read & mask) ||
 437            page == (tlb_addr_write(tlb_entry) & mask) ||
 438            page == (tlb_entry->addr_code & mask));
 439}
 440
 441static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
 442                                        target_ulong page)
 443{
 444    return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
 445}
 446
 447/**
 448 * tlb_entry_is_empty - return true if the entry is not in use
 449 * @te: pointer to CPUTLBEntry
 450 */
 451static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
 452{
 453    return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
 454}
 455
 456/* Called with tlb_c.lock held */
 457static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
 458                                        target_ulong page,
 459                                        target_ulong mask)
 460{
 461    if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
 462        memset(tlb_entry, -1, sizeof(*tlb_entry));
 463        return true;
 464    }
 465    return false;
 466}
 467
 468static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
 469                                          target_ulong page)
 470{
 471    return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
 472}
 473
 474/* Called with tlb_c.lock held */
 475static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
 476                                            target_ulong page,
 477                                            target_ulong mask)
 478{
 479    CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
 480    int k;
 481
 482    assert_cpu_is_self(env_cpu(env));
 483    for (k = 0; k < CPU_VTLB_SIZE; k++) {
 484        if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
 485            tlb_n_used_entries_dec(env, mmu_idx);
 486        }
 487    }
 488}
 489
 490static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
 491                                              target_ulong page)
 492{
 493    tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
 494}
 495
 496static void tlb_flush_page_locked(CPUArchState *env, int midx,
 497                                  target_ulong page)
 498{
 499    target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
 500    target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
 501
 502    /* Check if we need to flush due to large pages.  */
 503    if ((page & lp_mask) == lp_addr) {
 504        tlb_debug("forcing full flush midx %d ("
 505                  TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 506                  midx, lp_addr, lp_mask);
 507        tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
 508    } else {
 509        if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
 510            tlb_n_used_entries_dec(env, midx);
 511        }
 512        tlb_flush_vtlb_page_locked(env, midx, page);
 513    }
 514}
 515
 516/**
 517 * tlb_flush_page_by_mmuidx_async_0:
 518 * @cpu: cpu on which to flush
 519 * @addr: page of virtual address to flush
 520 * @idxmap: set of mmu_idx to flush
 521 *
 522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
 523 * at @addr from the tlbs indicated by @idxmap from @cpu.
 524 */
 525static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
 526                                             target_ulong addr,
 527                                             uint16_t idxmap)
 528{
 529    CPUArchState *env = cpu->env_ptr;
 530    int mmu_idx;
 531
 532    assert_cpu_is_self(cpu);
 533
 534    tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
 535
 536    qemu_spin_lock(&env_tlb(env)->c.lock);
 537    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 538        if ((idxmap >> mmu_idx) & 1) {
 539            tlb_flush_page_locked(env, mmu_idx, addr);
 540        }
 541    }
 542    qemu_spin_unlock(&env_tlb(env)->c.lock);
 543
 544    tb_flush_jmp_cache(cpu, addr);
 545}
 546
 547/**
 548 * tlb_flush_page_by_mmuidx_async_1:
 549 * @cpu: cpu on which to flush
 550 * @data: encoded addr + idxmap
 551 *
 552 * Helper for tlb_flush_page_by_mmuidx and friends, called through
 553 * async_run_on_cpu.  The idxmap parameter is encoded in the page
 554 * offset of the target_ptr field.  This limits the set of mmu_idx
 555 * that can be passed via this method.
 556 */
 557static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
 558                                             run_on_cpu_data data)
 559{
 560    target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
 561    target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
 562    uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
 563
 564    tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 565}
 566
 567typedef struct {
 568    target_ulong addr;
 569    uint16_t idxmap;
 570} TLBFlushPageByMMUIdxData;
 571
 572/**
 573 * tlb_flush_page_by_mmuidx_async_2:
 574 * @cpu: cpu on which to flush
 575 * @data: allocated addr + idxmap
 576 *
 577 * Helper for tlb_flush_page_by_mmuidx and friends, called through
 578 * async_run_on_cpu.  The addr+idxmap parameters are stored in a
 579 * TLBFlushPageByMMUIdxData structure that has been allocated
 580 * specifically for this helper.  Free the structure when done.
 581 */
 582static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
 583                                             run_on_cpu_data data)
 584{
 585    TLBFlushPageByMMUIdxData *d = data.host_ptr;
 586
 587    tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
 588    g_free(d);
 589}
 590
 591void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
 592{
 593    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
 594
 595    /* This should already be page aligned */
 596    addr &= TARGET_PAGE_MASK;
 597
 598    if (qemu_cpu_is_self(cpu)) {
 599        tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 600    } else if (idxmap < TARGET_PAGE_SIZE) {
 601        /*
 602         * Most targets have only a few mmu_idx.  In the case where
 603         * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
 604         * allocating memory for this operation.
 605         */
 606        async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
 607                         RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 608    } else {
 609        TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
 610
 611        /* Otherwise allocate a structure, freed by the worker.  */
 612        d->addr = addr;
 613        d->idxmap = idxmap;
 614        async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
 615                         RUN_ON_CPU_HOST_PTR(d));
 616    }
 617}
 618
 619void tlb_flush_page(CPUState *cpu, target_ulong addr)
 620{
 621    tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
 622}
 623
 624void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
 625                                       uint16_t idxmap)
 626{
 627    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 628
 629    /* This should already be page aligned */
 630    addr &= TARGET_PAGE_MASK;
 631
 632    /*
 633     * Allocate memory to hold addr+idxmap only when needed.
 634     * See tlb_flush_page_by_mmuidx for details.
 635     */
 636    if (idxmap < TARGET_PAGE_SIZE) {
 637        flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 638                         RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 639    } else {
 640        CPUState *dst_cpu;
 641
 642        /* Allocate a separate data block for each destination cpu.  */
 643        CPU_FOREACH(dst_cpu) {
 644            if (dst_cpu != src_cpu) {
 645                TLBFlushPageByMMUIdxData *d
 646                    = g_new(TLBFlushPageByMMUIdxData, 1);
 647
 648                d->addr = addr;
 649                d->idxmap = idxmap;
 650                async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 651                                 RUN_ON_CPU_HOST_PTR(d));
 652            }
 653        }
 654    }
 655
 656    tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
 657}
 658
 659void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
 660{
 661    tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
 662}
 663
 664void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 665                                              target_ulong addr,
 666                                              uint16_t idxmap)
 667{
 668    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 669
 670    /* This should already be page aligned */
 671    addr &= TARGET_PAGE_MASK;
 672
 673    /*
 674     * Allocate memory to hold addr+idxmap only when needed.
 675     * See tlb_flush_page_by_mmuidx for details.
 676     */
 677    if (idxmap < TARGET_PAGE_SIZE) {
 678        flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 679                         RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 680        async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 681                              RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 682    } else {
 683        CPUState *dst_cpu;
 684        TLBFlushPageByMMUIdxData *d;
 685
 686        /* Allocate a separate data block for each destination cpu.  */
 687        CPU_FOREACH(dst_cpu) {
 688            if (dst_cpu != src_cpu) {
 689                d = g_new(TLBFlushPageByMMUIdxData, 1);
 690                d->addr = addr;
 691                d->idxmap = idxmap;
 692                async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 693                                 RUN_ON_CPU_HOST_PTR(d));
 694            }
 695        }
 696
 697        d = g_new(TLBFlushPageByMMUIdxData, 1);
 698        d->addr = addr;
 699        d->idxmap = idxmap;
 700        async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
 701                              RUN_ON_CPU_HOST_PTR(d));
 702    }
 703}
 704
 705void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
 706{
 707    tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
 708}
 709
 710static void tlb_flush_range_locked(CPUArchState *env, int midx,
 711                                   target_ulong addr, target_ulong len,
 712                                   unsigned bits)
 713{
 714    CPUTLBDesc *d = &env_tlb(env)->d[midx];
 715    CPUTLBDescFast *f = &env_tlb(env)->f[midx];
 716    target_ulong mask = MAKE_64BIT_MASK(0, bits);
 717
 718    /*
 719     * If @bits is smaller than the tlb size, there may be multiple entries
 720     * within the TLB; otherwise all addresses that match under @mask hit
 721     * the same TLB entry.
 722     * TODO: Perhaps allow bits to be a few bits less than the size.
 723     * For now, just flush the entire TLB.
 724     *
 725     * If @len is larger than the tlb size, then it will take longer to
 726     * test all of the entries in the TLB than it will to flush it all.
 727     */
 728    if (mask < f->mask || len > f->mask) {
 729        tlb_debug("forcing full flush midx %d ("
 730                  TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
 731                  midx, addr, mask, len);
 732        tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
 733        return;
 734    }
 735
 736    /*
 737     * Check if we need to flush due to large pages.
 738     * Because large_page_mask contains all 1's from the msb,
 739     * we only need to test the end of the range.
 740     */
 741    if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
 742        tlb_debug("forcing full flush midx %d ("
 743                  TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 744                  midx, d->large_page_addr, d->large_page_mask);
 745        tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
 746        return;
 747    }
 748
 749    for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
 750        target_ulong page = addr + i;
 751        CPUTLBEntry *entry = tlb_entry(env, midx, page);
 752
 753        if (tlb_flush_entry_mask_locked(entry, page, mask)) {
 754            tlb_n_used_entries_dec(env, midx);
 755        }
 756        tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
 757    }
 758}
 759
 760typedef struct {
 761    target_ulong addr;
 762    target_ulong len;
 763    uint16_t idxmap;
 764    uint16_t bits;
 765} TLBFlushRangeData;
 766
 767static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
 768                                              TLBFlushRangeData d)
 769{
 770    CPUArchState *env = cpu->env_ptr;
 771    int mmu_idx;
 772
 773    assert_cpu_is_self(cpu);
 774
 775    tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
 776              d.addr, d.bits, d.len, d.idxmap);
 777
 778    qemu_spin_lock(&env_tlb(env)->c.lock);
 779    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 780        if ((d.idxmap >> mmu_idx) & 1) {
 781            tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
 782        }
 783    }
 784    qemu_spin_unlock(&env_tlb(env)->c.lock);
 785
 786    /*
 787     * If the length is larger than the jump cache size, then it will take
 788     * longer to clear each entry individually than it will to clear it all.
 789     */
 790    if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
 791        cpu_tb_jmp_cache_clear(cpu);
 792        return;
 793    }
 794
 795    for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
 796        tb_flush_jmp_cache(cpu, d.addr + i);
 797    }
 798}
 799
 800static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
 801                                              run_on_cpu_data data)
 802{
 803    TLBFlushRangeData *d = data.host_ptr;
 804    tlb_flush_range_by_mmuidx_async_0(cpu, *d);
 805    g_free(d);
 806}
 807
 808void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
 809                               target_ulong len, uint16_t idxmap,
 810                               unsigned bits)
 811{
 812    TLBFlushRangeData d;
 813
 814    /*
 815     * If all bits are significant, and len is small,
 816     * this devolves to tlb_flush_page.
 817     */
 818    if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 819        tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
 820        return;
 821    }
 822    /* If no page bits are significant, this devolves to tlb_flush. */
 823    if (bits < TARGET_PAGE_BITS) {
 824        tlb_flush_by_mmuidx(cpu, idxmap);
 825        return;
 826    }
 827
 828    /* This should already be page aligned */
 829    d.addr = addr & TARGET_PAGE_MASK;
 830    d.len = len;
 831    d.idxmap = idxmap;
 832    d.bits = bits;
 833
 834    if (qemu_cpu_is_self(cpu)) {
 835        tlb_flush_range_by_mmuidx_async_0(cpu, d);
 836    } else {
 837        /* Otherwise allocate a structure, freed by the worker.  */
 838        TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 839        async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
 840                         RUN_ON_CPU_HOST_PTR(p));
 841    }
 842}
 843
 844void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
 845                                   uint16_t idxmap, unsigned bits)
 846{
 847    tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
 848}
 849
 850void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
 851                                        target_ulong addr, target_ulong len,
 852                                        uint16_t idxmap, unsigned bits)
 853{
 854    TLBFlushRangeData d;
 855    CPUState *dst_cpu;
 856
 857    /*
 858     * If all bits are significant, and len is small,
 859     * this devolves to tlb_flush_page.
 860     */
 861    if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 862        tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
 863        return;
 864    }
 865    /* If no page bits are significant, this devolves to tlb_flush. */
 866    if (bits < TARGET_PAGE_BITS) {
 867        tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
 868        return;
 869    }
 870
 871    /* This should already be page aligned */
 872    d.addr = addr & TARGET_PAGE_MASK;
 873    d.len = len;
 874    d.idxmap = idxmap;
 875    d.bits = bits;
 876
 877    /* Allocate a separate data block for each destination cpu.  */
 878    CPU_FOREACH(dst_cpu) {
 879        if (dst_cpu != src_cpu) {
 880            TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 881            async_run_on_cpu(dst_cpu,
 882                             tlb_flush_range_by_mmuidx_async_1,
 883                             RUN_ON_CPU_HOST_PTR(p));
 884        }
 885    }
 886
 887    tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
 888}
 889
 890void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
 891                                            target_ulong addr,
 892                                            uint16_t idxmap, unsigned bits)
 893{
 894    tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
 895                                       idxmap, bits);
 896}
 897
 898void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 899                                               target_ulong addr,
 900                                               target_ulong len,
 901                                               uint16_t idxmap,
 902                                               unsigned bits)
 903{
 904    TLBFlushRangeData d, *p;
 905    CPUState *dst_cpu;
 906
 907    /*
 908     * If all bits are significant, and len is small,
 909     * this devolves to tlb_flush_page.
 910     */
 911    if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 912        tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
 913        return;
 914    }
 915    /* If no page bits are significant, this devolves to tlb_flush. */
 916    if (bits < TARGET_PAGE_BITS) {
 917        tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
 918        return;
 919    }
 920
 921    /* This should already be page aligned */
 922    d.addr = addr & TARGET_PAGE_MASK;
 923    d.len = len;
 924    d.idxmap = idxmap;
 925    d.bits = bits;
 926
 927    /* Allocate a separate data block for each destination cpu.  */
 928    CPU_FOREACH(dst_cpu) {
 929        if (dst_cpu != src_cpu) {
 930            p = g_memdup(&d, sizeof(d));
 931            async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
 932                             RUN_ON_CPU_HOST_PTR(p));
 933        }
 934    }
 935
 936    p = g_memdup(&d, sizeof(d));
 937    async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
 938                          RUN_ON_CPU_HOST_PTR(p));
 939}
 940
 941void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 942                                                   target_ulong addr,
 943                                                   uint16_t idxmap,
 944                                                   unsigned bits)
 945{
 946    tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
 947                                              idxmap, bits);
 948}
 949
 950/* update the TLBs so that writes to code in the virtual page 'addr'
 951   can be detected */
 952void tlb_protect_code(ram_addr_t ram_addr)
 953{
 954    cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
 955                                             DIRTY_MEMORY_CODE);
 956}
 957
 958/* update the TLB so that writes in physical page 'phys_addr' are no longer
 959   tested for self modifying code */
 960void tlb_unprotect_code(ram_addr_t ram_addr)
 961{
 962    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 963}
 964
 965
 966/*
 967 * Dirty write flag handling
 968 *
 969 * When the TCG code writes to a location it looks up the address in
 970 * the TLB and uses that data to compute the final address. If any of
 971 * the lower bits of the address are set then the slow path is forced.
 972 * There are a number of reasons to do this but for normal RAM the
 973 * most usual is detecting writes to code regions which may invalidate
 974 * generated code.
 975 *
 976 * Other vCPUs might be reading their TLBs during guest execution, so we update
 977 * te->addr_write with qatomic_set. We don't need to worry about this for
 978 * oversized guests as MTTCG is disabled for them.
 979 *
 980 * Called with tlb_c.lock held.
 981 */
 982static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
 983                                         uintptr_t start, uintptr_t length)
 984{
 985    uintptr_t addr = tlb_entry->addr_write;
 986
 987    if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
 988                 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
 989        addr &= TARGET_PAGE_MASK;
 990        addr += tlb_entry->addend;
 991        if ((addr - start) < length) {
 992#if TCG_OVERSIZED_GUEST
 993            tlb_entry->addr_write |= TLB_NOTDIRTY;
 994#else
 995            qatomic_set(&tlb_entry->addr_write,
 996                       tlb_entry->addr_write | TLB_NOTDIRTY);
 997#endif
 998        }
 999    }
1000}
1001
1002/*
1003 * Called with tlb_c.lock held.
1004 * Called only from the vCPU context, i.e. the TLB's owner thread.
1005 */
1006static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1007{
1008    *d = *s;
1009}
1010
1011/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1012 * the target vCPU).
1013 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1014 * thing actually updated is the target TLB entry ->addr_write flags.
1015 */
1016void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1017{
1018    CPUArchState *env;
1019
1020    int mmu_idx;
1021
1022    env = cpu->env_ptr;
1023    qemu_spin_lock(&env_tlb(env)->c.lock);
1024    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1025        unsigned int i;
1026        unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1027
1028        for (i = 0; i < n; i++) {
1029            tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1030                                         start1, length);
1031        }
1032
1033        for (i = 0; i < CPU_VTLB_SIZE; i++) {
1034            tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1035                                         start1, length);
1036        }
1037    }
1038    qemu_spin_unlock(&env_tlb(env)->c.lock);
1039}
1040
1041/* Called with tlb_c.lock held */
1042static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1043                                         target_ulong vaddr)
1044{
1045    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1046        tlb_entry->addr_write = vaddr;
1047    }
1048}
1049
1050/* update the TLB corresponding to virtual page vaddr
1051   so that it is no longer dirty */
1052void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1053{
1054    CPUArchState *env = cpu->env_ptr;
1055    int mmu_idx;
1056
1057    assert_cpu_is_self(cpu);
1058
1059    vaddr &= TARGET_PAGE_MASK;
1060    qemu_spin_lock(&env_tlb(env)->c.lock);
1061    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1062        tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1063    }
1064
1065    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1066        int k;
1067        for (k = 0; k < CPU_VTLB_SIZE; k++) {
1068            tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1069        }
1070    }
1071    qemu_spin_unlock(&env_tlb(env)->c.lock);
1072}
1073
1074/* Our TLB does not support large pages, so remember the area covered by
1075   large pages and trigger a full TLB flush if these are invalidated.  */
1076static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1077                               target_ulong vaddr, target_ulong size)
1078{
1079    target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1080    target_ulong lp_mask = ~(size - 1);
1081
1082    if (lp_addr == (target_ulong)-1) {
1083        /* No previous large page.  */
1084        lp_addr = vaddr;
1085    } else {
1086        /* Extend the existing region to include the new page.
1087           This is a compromise between unnecessary flushes and
1088           the cost of maintaining a full variable size TLB.  */
1089        lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1090        while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1091            lp_mask <<= 1;
1092        }
1093    }
1094    env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1095    env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1096}
1097
1098/* Add a new TLB entry. At most one entry for a given virtual address
1099 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1100 * supplied size is only used by tlb_flush_page.
1101 *
1102 * Called from TCG-generated code, which is under an RCU read-side
1103 * critical section.
1104 */
1105void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1106                             hwaddr paddr, MemTxAttrs attrs, int prot,
1107                             int mmu_idx, target_ulong size)
1108{
1109    CPUArchState *env = cpu->env_ptr;
1110    CPUTLB *tlb = env_tlb(env);
1111    CPUTLBDesc *desc = &tlb->d[mmu_idx];
1112    MemoryRegionSection *section;
1113    unsigned int index;
1114    target_ulong address;
1115    target_ulong write_address;
1116    uintptr_t addend;
1117    CPUTLBEntry *te, tn;
1118    hwaddr iotlb, xlat, sz, paddr_page;
1119    target_ulong vaddr_page;
1120    int asidx = cpu_asidx_from_attrs(cpu, attrs);
1121    int wp_flags;
1122    bool is_ram, is_romd;
1123
1124    assert_cpu_is_self(cpu);
1125
1126    if (size <= TARGET_PAGE_SIZE) {
1127        sz = TARGET_PAGE_SIZE;
1128    } else {
1129        tlb_add_large_page(env, mmu_idx, vaddr, size);
1130        sz = size;
1131    }
1132    vaddr_page = vaddr & TARGET_PAGE_MASK;
1133    paddr_page = paddr & TARGET_PAGE_MASK;
1134
1135    section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1136                                                &xlat, &sz, attrs, &prot);
1137    assert(sz >= TARGET_PAGE_SIZE);
1138
1139    tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
1140              " prot=%x idx=%d\n",
1141              vaddr, paddr, prot, mmu_idx);
1142
1143    address = vaddr_page;
1144    if (size < TARGET_PAGE_SIZE) {
1145        /* Repeat the MMU check and TLB fill on every access.  */
1146        address |= TLB_INVALID_MASK;
1147    }
1148    if (attrs.byte_swap) {
1149        address |= TLB_BSWAP;
1150    }
1151
1152    is_ram = memory_region_is_ram(section->mr);
1153    is_romd = memory_region_is_romd(section->mr);
1154
1155    if (is_ram || is_romd) {
1156        /* RAM and ROMD both have associated host memory. */
1157        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1158    } else {
1159        /* I/O does not; force the host address to NULL. */
1160        addend = 0;
1161    }
1162
1163    write_address = address;
1164    if (is_ram) {
1165        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1166        /*
1167         * Computing is_clean is expensive; avoid all that unless
1168         * the page is actually writable.
1169         */
1170        if (prot & PAGE_WRITE) {
1171            if (section->readonly) {
1172                write_address |= TLB_DISCARD_WRITE;
1173            } else if (cpu_physical_memory_is_clean(iotlb)) {
1174                write_address |= TLB_NOTDIRTY;
1175            }
1176        }
1177    } else {
1178        /* I/O or ROMD */
1179        iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1180        /*
1181         * Writes to romd devices must go through MMIO to enable write.
1182         * Reads to romd devices go through the ram_ptr found above,
1183         * but of course reads to I/O must go through MMIO.
1184         */
1185        write_address |= TLB_MMIO;
1186        if (!is_romd) {
1187            address = write_address;
1188        }
1189    }
1190
1191    wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1192                                              TARGET_PAGE_SIZE);
1193
1194    index = tlb_index(env, mmu_idx, vaddr_page);
1195    te = tlb_entry(env, mmu_idx, vaddr_page);
1196
1197    /*
1198     * Hold the TLB lock for the rest of the function. We could acquire/release
1199     * the lock several times in the function, but it is faster to amortize the
1200     * acquisition cost by acquiring it just once. Note that this leads to
1201     * a longer critical section, but this is not a concern since the TLB lock
1202     * is unlikely to be contended.
1203     */
1204    qemu_spin_lock(&tlb->c.lock);
1205
1206    /* Note that the tlb is no longer clean.  */
1207    tlb->c.dirty |= 1 << mmu_idx;
1208
1209    /* Make sure there's no cached translation for the new page.  */
1210    tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1211
1212    /*
1213     * Only evict the old entry to the victim tlb if it's for a
1214     * different page; otherwise just overwrite the stale data.
1215     */
1216    if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1217        unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1218        CPUTLBEntry *tv = &desc->vtable[vidx];
1219
1220        /* Evict the old entry into the victim tlb.  */
1221        copy_tlb_helper_locked(tv, te);
1222        desc->viotlb[vidx] = desc->iotlb[index];
1223        tlb_n_used_entries_dec(env, mmu_idx);
1224    }
1225
1226    /* refill the tlb */
1227    /*
1228     * At this point iotlb contains a physical section number in the lower
1229     * TARGET_PAGE_BITS, and either
1230     *  + the ram_addr_t of the page base of the target RAM (RAM)
1231     *  + the offset within section->mr of the page base (I/O, ROMD)
1232     * We subtract the vaddr_page (which is page aligned and thus won't
1233     * disturb the low bits) to give an offset which can be added to the
1234     * (non-page-aligned) vaddr of the eventual memory access to get
1235     * the MemoryRegion offset for the access. Note that the vaddr we
1236     * subtract here is that of the page base, and not the same as the
1237     * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1238     */
1239    desc->iotlb[index].addr = iotlb - vaddr_page;
1240    desc->iotlb[index].attrs = attrs;
1241
1242    /* Now calculate the new entry */
1243    tn.addend = addend - vaddr_page;
1244    if (prot & PAGE_READ) {
1245        tn.addr_read = address;
1246        if (wp_flags & BP_MEM_READ) {
1247            tn.addr_read |= TLB_WATCHPOINT;
1248        }
1249    } else {
1250        tn.addr_read = -1;
1251    }
1252
1253    if (prot & PAGE_EXEC) {
1254        tn.addr_code = address;
1255    } else {
1256        tn.addr_code = -1;
1257    }
1258
1259    tn.addr_write = -1;
1260    if (prot & PAGE_WRITE) {
1261        tn.addr_write = write_address;
1262        if (prot & PAGE_WRITE_INV) {
1263            tn.addr_write |= TLB_INVALID_MASK;
1264        }
1265        if (wp_flags & BP_MEM_WRITE) {
1266            tn.addr_write |= TLB_WATCHPOINT;
1267        }
1268    }
1269
1270    copy_tlb_helper_locked(te, &tn);
1271    tlb_n_used_entries_inc(env, mmu_idx);
1272    qemu_spin_unlock(&tlb->c.lock);
1273}
1274
1275/* Add a new TLB entry, but without specifying the memory
1276 * transaction attributes to be used.
1277 */
1278void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1279                  hwaddr paddr, int prot,
1280                  int mmu_idx, target_ulong size)
1281{
1282    tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1283                            prot, mmu_idx, size);
1284}
1285
1286static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1287{
1288    ram_addr_t ram_addr;
1289
1290    ram_addr = qemu_ram_addr_from_host(ptr);
1291    if (ram_addr == RAM_ADDR_INVALID) {
1292        error_report("Bad ram pointer %p", ptr);
1293        abort();
1294    }
1295    return ram_addr;
1296}
1297
1298/*
1299 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1300 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1301 * be discarded and looked up again (e.g. via tlb_entry()).
1302 */
1303static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1304                     MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1305{
1306    CPUClass *cc = CPU_GET_CLASS(cpu);
1307    bool ok;
1308
1309    /*
1310     * This is not a probe, so only valid return is success; failure
1311     * should result in exception + longjmp to the cpu loop.
1312     */
1313    ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
1314                               access_type, mmu_idx, false, retaddr);
1315    assert(ok);
1316}
1317
1318static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1319                                        MMUAccessType access_type,
1320                                        int mmu_idx, uintptr_t retaddr)
1321{
1322    CPUClass *cc = CPU_GET_CLASS(cpu);
1323
1324    cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
1325}
1326
1327static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1328                                          vaddr addr, unsigned size,
1329                                          MMUAccessType access_type,
1330                                          int mmu_idx, MemTxAttrs attrs,
1331                                          MemTxResult response,
1332                                          uintptr_t retaddr)
1333{
1334    CPUClass *cc = CPU_GET_CLASS(cpu);
1335
1336    if (!cpu->ignore_memory_transaction_failures &&
1337        cc->tcg_ops->do_transaction_failed) {
1338        cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1339                                           access_type, mmu_idx, attrs,
1340                                           response, retaddr);
1341    }
1342}
1343
1344static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1345                         int mmu_idx, target_ulong addr, uintptr_t retaddr,
1346                         MMUAccessType access_type, MemOp op)
1347{
1348    CPUState *cpu = env_cpu(env);
1349    hwaddr mr_offset;
1350    MemoryRegionSection *section;
1351    MemoryRegion *mr;
1352    uint64_t val;
1353    bool locked = false;
1354    MemTxResult r;
1355
1356    section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1357    mr = section->mr;
1358    mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1359    cpu->mem_io_pc = retaddr;
1360    if (!cpu->can_do_io) {
1361        cpu_io_recompile(cpu, retaddr);
1362    }
1363
1364    if (!qemu_mutex_iothread_locked()) {
1365        qemu_mutex_lock_iothread();
1366        locked = true;
1367    }
1368    r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1369    if (r != MEMTX_OK) {
1370        hwaddr physaddr = mr_offset +
1371            section->offset_within_address_space -
1372            section->offset_within_region;
1373
1374        cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1375                               mmu_idx, iotlbentry->attrs, r, retaddr);
1376    }
1377    if (locked) {
1378        qemu_mutex_unlock_iothread();
1379    }
1380
1381    return val;
1382}
1383
1384/*
1385 * Save a potentially trashed IOTLB entry for later lookup by plugin.
1386 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1387 * because of the side effect of io_writex changing memory layout.
1388 */
1389static void save_iotlb_data(CPUState *cs, hwaddr addr,
1390                            MemoryRegionSection *section, hwaddr mr_offset)
1391{
1392#ifdef CONFIG_PLUGIN
1393    SavedIOTLB *saved = &cs->saved_iotlb;
1394    saved->addr = addr;
1395    saved->section = section;
1396    saved->mr_offset = mr_offset;
1397#endif
1398}
1399
1400static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1401                      int mmu_idx, uint64_t val, target_ulong addr,
1402                      uintptr_t retaddr, MemOp op)
1403{
1404    CPUState *cpu = env_cpu(env);
1405    hwaddr mr_offset;
1406    MemoryRegionSection *section;
1407    MemoryRegion *mr;
1408    bool locked = false;
1409    MemTxResult r;
1410
1411    section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1412    mr = section->mr;
1413    mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1414    if (!cpu->can_do_io) {
1415        cpu_io_recompile(cpu, retaddr);
1416    }
1417    cpu->mem_io_pc = retaddr;
1418
1419    /*
1420     * The memory_region_dispatch may trigger a flush/resize
1421     * so for plugins we save the iotlb_data just in case.
1422     */
1423    save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1424
1425    if (!qemu_mutex_iothread_locked()) {
1426        qemu_mutex_lock_iothread();
1427        locked = true;
1428    }
1429    r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1430    if (r != MEMTX_OK) {
1431        hwaddr physaddr = mr_offset +
1432            section->offset_within_address_space -
1433            section->offset_within_region;
1434
1435        cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1436                               MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1437                               retaddr);
1438    }
1439    if (locked) {
1440        qemu_mutex_unlock_iothread();
1441    }
1442}
1443
1444static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1445{
1446#if TCG_OVERSIZED_GUEST
1447    return *(target_ulong *)((uintptr_t)entry + ofs);
1448#else
1449    /* ofs might correspond to .addr_write, so use qatomic_read */
1450    return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1451#endif
1452}
1453
1454/* Return true if ADDR is present in the victim tlb, and has been copied
1455   back to the main tlb.  */
1456static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1457                           size_t elt_ofs, target_ulong page)
1458{
1459    size_t vidx;
1460
1461    assert_cpu_is_self(env_cpu(env));
1462    for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1463        CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1464        target_ulong cmp;
1465
1466        /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1467#if TCG_OVERSIZED_GUEST
1468        cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1469#else
1470        cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1471#endif
1472
1473        if (cmp == page) {
1474            /* Found entry in victim tlb, swap tlb and iotlb.  */
1475            CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1476
1477            qemu_spin_lock(&env_tlb(env)->c.lock);
1478            copy_tlb_helper_locked(&tmptlb, tlb);
1479            copy_tlb_helper_locked(tlb, vtlb);
1480            copy_tlb_helper_locked(vtlb, &tmptlb);
1481            qemu_spin_unlock(&env_tlb(env)->c.lock);
1482
1483            CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1484            CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1485            tmpio = *io; *io = *vio; *vio = tmpio;
1486            return true;
1487        }
1488    }
1489    return false;
1490}
1491
1492/* Macro to call the above, with local variables from the use context.  */
1493#define VICTIM_TLB_HIT(TY, ADDR) \
1494  victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1495                 (ADDR) & TARGET_PAGE_MASK)
1496
1497/*
1498 * Return a ram_addr_t for the virtual address for execution.
1499 *
1500 * Return -1 if we can't translate and execute from an entire page
1501 * of RAM.  This will force us to execute by loading and translating
1502 * one insn at a time, without caching.
1503 *
1504 * NOTE: This function will trigger an exception if the page is
1505 * not executable.
1506 */
1507tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1508                                        void **hostp)
1509{
1510    uintptr_t mmu_idx = cpu_mmu_index(env, true);
1511    uintptr_t index = tlb_index(env, mmu_idx, addr);
1512    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1513    void *p;
1514
1515    if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1516        if (!VICTIM_TLB_HIT(addr_code, addr)) {
1517            tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1518            index = tlb_index(env, mmu_idx, addr);
1519            entry = tlb_entry(env, mmu_idx, addr);
1520
1521            if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1522                /*
1523                 * The MMU protection covers a smaller range than a target
1524                 * page, so we must redo the MMU check for every insn.
1525                 */
1526                return -1;
1527            }
1528        }
1529        assert(tlb_hit(entry->addr_code, addr));
1530    }
1531
1532    if (unlikely(entry->addr_code & TLB_MMIO)) {
1533        /* The region is not backed by RAM.  */
1534        if (hostp) {
1535            *hostp = NULL;
1536        }
1537        return -1;
1538    }
1539
1540    p = (void *)((uintptr_t)addr + entry->addend);
1541    if (hostp) {
1542        *hostp = p;
1543    }
1544    return qemu_ram_addr_from_host_nofail(p);
1545}
1546
1547tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1548{
1549    return get_page_addr_code_hostp(env, addr, NULL);
1550}
1551
1552static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1553                           CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1554{
1555    ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1556
1557    trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1558
1559    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1560        struct page_collection *pages
1561            = page_collection_lock(ram_addr, ram_addr + size);
1562        tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1563        page_collection_unlock(pages);
1564    }
1565
1566    /*
1567     * Set both VGA and migration bits for simplicity and to remove
1568     * the notdirty callback faster.
1569     */
1570    cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1571
1572    /* We remove the notdirty callback only if the code has been flushed. */
1573    if (!cpu_physical_memory_is_clean(ram_addr)) {
1574        trace_memory_notdirty_set_dirty(mem_vaddr);
1575        tlb_set_dirty(cpu, mem_vaddr);
1576    }
1577}
1578
1579static int probe_access_internal(CPUArchState *env, target_ulong addr,
1580                                 int fault_size, MMUAccessType access_type,
1581                                 int mmu_idx, bool nonfault,
1582                                 void **phost, uintptr_t retaddr)
1583{
1584    uintptr_t index = tlb_index(env, mmu_idx, addr);
1585    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1586    target_ulong tlb_addr, page_addr;
1587    size_t elt_ofs;
1588    int flags;
1589
1590    switch (access_type) {
1591    case MMU_DATA_LOAD:
1592        elt_ofs = offsetof(CPUTLBEntry, addr_read);
1593        break;
1594    case MMU_DATA_STORE:
1595        elt_ofs = offsetof(CPUTLBEntry, addr_write);
1596        break;
1597    case MMU_INST_FETCH:
1598        elt_ofs = offsetof(CPUTLBEntry, addr_code);
1599        break;
1600    default:
1601        g_assert_not_reached();
1602    }
1603    tlb_addr = tlb_read_ofs(entry, elt_ofs);
1604
1605    page_addr = addr & TARGET_PAGE_MASK;
1606    if (!tlb_hit_page(tlb_addr, page_addr)) {
1607        if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1608            CPUState *cs = env_cpu(env);
1609            CPUClass *cc = CPU_GET_CLASS(cs);
1610
1611            if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1612                                       mmu_idx, nonfault, retaddr)) {
1613                /* Non-faulting page table read failed.  */
1614                *phost = NULL;
1615                return TLB_INVALID_MASK;
1616            }
1617
1618            /* TLB resize via tlb_fill may have moved the entry.  */
1619            entry = tlb_entry(env, mmu_idx, addr);
1620        }
1621        tlb_addr = tlb_read_ofs(entry, elt_ofs);
1622    }
1623    flags = tlb_addr & TLB_FLAGS_MASK;
1624
1625    /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1626    if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1627        *phost = NULL;
1628        return TLB_MMIO;
1629    }
1630
1631    /* Everything else is RAM. */
1632    *phost = (void *)((uintptr_t)addr + entry->addend);
1633    return flags;
1634}
1635
1636int probe_access_flags(CPUArchState *env, target_ulong addr,
1637                       MMUAccessType access_type, int mmu_idx,
1638                       bool nonfault, void **phost, uintptr_t retaddr)
1639{
1640    int flags;
1641
1642    flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1643                                  nonfault, phost, retaddr);
1644
1645    /* Handle clean RAM pages.  */
1646    if (unlikely(flags & TLB_NOTDIRTY)) {
1647        uintptr_t index = tlb_index(env, mmu_idx, addr);
1648        CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1649
1650        notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1651        flags &= ~TLB_NOTDIRTY;
1652    }
1653
1654    return flags;
1655}
1656
1657void *probe_access(CPUArchState *env, target_ulong addr, int size,
1658                   MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1659{
1660    void *host;
1661    int flags;
1662
1663    g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1664
1665    flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1666                                  false, &host, retaddr);
1667
1668    /* Per the interface, size == 0 merely faults the access. */
1669    if (size == 0) {
1670        return NULL;
1671    }
1672
1673    if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1674        uintptr_t index = tlb_index(env, mmu_idx, addr);
1675        CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1676
1677        /* Handle watchpoints.  */
1678        if (flags & TLB_WATCHPOINT) {
1679            int wp_access = (access_type == MMU_DATA_STORE
1680                             ? BP_MEM_WRITE : BP_MEM_READ);
1681            cpu_check_watchpoint(env_cpu(env), addr, size,
1682                                 iotlbentry->attrs, wp_access, retaddr);
1683        }
1684
1685        /* Handle clean RAM pages.  */
1686        if (flags & TLB_NOTDIRTY) {
1687            notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1688        }
1689    }
1690
1691    return host;
1692}
1693
1694void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1695                        MMUAccessType access_type, int mmu_idx)
1696{
1697    void *host;
1698    int flags;
1699
1700    flags = probe_access_internal(env, addr, 0, access_type,
1701                                  mmu_idx, true, &host, 0);
1702
1703    /* No combination of flags are expected by the caller. */
1704    return flags ? NULL : host;
1705}
1706
1707#ifdef CONFIG_PLUGIN
1708/*
1709 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1710 * This should be a hot path as we will have just looked this path up
1711 * in the softmmu lookup code (or helper). We don't handle re-fills or
1712 * checking the victim table. This is purely informational.
1713 *
1714 * This almost never fails as the memory access being instrumented
1715 * should have just filled the TLB. The one corner case is io_writex
1716 * which can cause TLB flushes and potential resizing of the TLBs
1717 * losing the information we need. In those cases we need to recover
1718 * data from a copy of the iotlbentry. As long as this always occurs
1719 * from the same thread (which a mem callback will be) this is safe.
1720 */
1721
1722bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1723                       bool is_store, struct qemu_plugin_hwaddr *data)
1724{
1725    CPUArchState *env = cpu->env_ptr;
1726    CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1727    uintptr_t index = tlb_index(env, mmu_idx, addr);
1728    target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1729
1730    if (likely(tlb_hit(tlb_addr, addr))) {
1731        /* We must have an iotlb entry for MMIO */
1732        if (tlb_addr & TLB_MMIO) {
1733            CPUIOTLBEntry *iotlbentry;
1734            iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1735            data->is_io = true;
1736            data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1737            data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1738        } else {
1739            data->is_io = false;
1740            data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1741        }
1742        return true;
1743    } else {
1744        SavedIOTLB *saved = &cpu->saved_iotlb;
1745        data->is_io = true;
1746        data->v.io.section = saved->section;
1747        data->v.io.offset = saved->mr_offset;
1748        return true;
1749    }
1750}
1751
1752#endif
1753
1754/*
1755 * Probe for an atomic operation.  Do not allow unaligned operations,
1756 * or io operations to proceed.  Return the host address.
1757 *
1758 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1759 */
1760static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1761                               MemOpIdx oi, int size, int prot,
1762                               uintptr_t retaddr)
1763{
1764    size_t mmu_idx = get_mmuidx(oi);
1765    MemOp mop = get_memop(oi);
1766    int a_bits = get_alignment_bits(mop);
1767    uintptr_t index;
1768    CPUTLBEntry *tlbe;
1769    target_ulong tlb_addr;
1770    void *hostaddr;
1771
1772    /* Adjust the given return address.  */
1773    retaddr -= GETPC_ADJ;
1774
1775    /* Enforce guest required alignment.  */
1776    if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1777        /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1778        cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1779                             mmu_idx, retaddr);
1780    }
1781
1782    /* Enforce qemu required alignment.  */
1783    if (unlikely(addr & (size - 1))) {
1784        /* We get here if guest alignment was not requested,
1785           or was not enforced by cpu_unaligned_access above.
1786           We might widen the access and emulate, but for now
1787           mark an exception and exit the cpu loop.  */
1788        goto stop_the_world;
1789    }
1790
1791    index = tlb_index(env, mmu_idx, addr);
1792    tlbe = tlb_entry(env, mmu_idx, addr);
1793
1794    /* Check TLB entry and enforce page permissions.  */
1795    if (prot & PAGE_WRITE) {
1796        tlb_addr = tlb_addr_write(tlbe);
1797        if (!tlb_hit(tlb_addr, addr)) {
1798            if (!VICTIM_TLB_HIT(addr_write, addr)) {
1799                tlb_fill(env_cpu(env), addr, size,
1800                         MMU_DATA_STORE, mmu_idx, retaddr);
1801                index = tlb_index(env, mmu_idx, addr);
1802                tlbe = tlb_entry(env, mmu_idx, addr);
1803            }
1804            tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1805        }
1806
1807        /* Let the guest notice RMW on a write-only page.  */
1808        if ((prot & PAGE_READ) &&
1809            unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1810            tlb_fill(env_cpu(env), addr, size,
1811                     MMU_DATA_LOAD, mmu_idx, retaddr);
1812            /*
1813             * Since we don't support reads and writes to different addresses,
1814             * and we do have the proper page loaded for write, this shouldn't
1815             * ever return.  But just in case, handle via stop-the-world.
1816             */
1817            goto stop_the_world;
1818        }
1819    } else /* if (prot & PAGE_READ) */ {
1820        tlb_addr = tlbe->addr_read;
1821        if (!tlb_hit(tlb_addr, addr)) {
1822            if (!VICTIM_TLB_HIT(addr_write, addr)) {
1823                tlb_fill(env_cpu(env), addr, size,
1824                         MMU_DATA_LOAD, mmu_idx, retaddr);
1825                index = tlb_index(env, mmu_idx, addr);
1826                tlbe = tlb_entry(env, mmu_idx, addr);
1827            }
1828            tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1829        }
1830    }
1831
1832    /* Notice an IO access or a needs-MMU-lookup access */
1833    if (unlikely(tlb_addr & TLB_MMIO)) {
1834        /* There's really nothing that can be done to
1835           support this apart from stop-the-world.  */
1836        goto stop_the_world;
1837    }
1838
1839    hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1840
1841    if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1842        notdirty_write(env_cpu(env), addr, size,
1843                       &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1844    }
1845
1846    return hostaddr;
1847
1848 stop_the_world:
1849    cpu_loop_exit_atomic(env_cpu(env), retaddr);
1850}
1851
1852/*
1853 * Verify that we have passed the correct MemOp to the correct function.
1854 *
1855 * In the case of the helper_*_mmu functions, we will have done this by
1856 * using the MemOp to look up the helper during code generation.
1857 *
1858 * In the case of the cpu_*_mmu functions, this is up to the caller.
1859 * We could present one function to target code, and dispatch based on
1860 * the MemOp, but so far we have worked hard to avoid an indirect function
1861 * call along the memory path.
1862 */
1863static void validate_memop(MemOpIdx oi, MemOp expected)
1864{
1865#ifdef CONFIG_DEBUG_TCG
1866    MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
1867    assert(have == expected);
1868#endif
1869}
1870
1871/*
1872 * Load Helpers
1873 *
1874 * We support two different access types. SOFTMMU_CODE_ACCESS is
1875 * specifically for reading instructions from system memory. It is
1876 * called by the translation loop and in some helpers where the code
1877 * is disassembled. It shouldn't be called directly by guest code.
1878 */
1879
1880typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1881                                MemOpIdx oi, uintptr_t retaddr);
1882
1883static inline uint64_t QEMU_ALWAYS_INLINE
1884load_memop(const void *haddr, MemOp op)
1885{
1886    switch (op) {
1887    case MO_UB:
1888        return ldub_p(haddr);
1889    case MO_BEUW:
1890        return lduw_be_p(haddr);
1891    case MO_LEUW:
1892        return lduw_le_p(haddr);
1893    case MO_BEUL:
1894        return (uint32_t)ldl_be_p(haddr);
1895    case MO_LEUL:
1896        return (uint32_t)ldl_le_p(haddr);
1897    case MO_BEUQ:
1898        return ldq_be_p(haddr);
1899    case MO_LEUQ:
1900        return ldq_le_p(haddr);
1901    default:
1902        qemu_build_not_reached();
1903    }
1904}
1905
1906static inline uint64_t QEMU_ALWAYS_INLINE
1907load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1908            uintptr_t retaddr, MemOp op, bool code_read,
1909            FullLoadHelper *full_load)
1910{
1911    uintptr_t mmu_idx = get_mmuidx(oi);
1912    uintptr_t index = tlb_index(env, mmu_idx, addr);
1913    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1914    target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1915    const size_t tlb_off = code_read ?
1916        offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1917    const MMUAccessType access_type =
1918        code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1919    unsigned a_bits = get_alignment_bits(get_memop(oi));
1920    void *haddr;
1921    uint64_t res;
1922    size_t size = memop_size(op);
1923
1924    /* Handle CPU specific unaligned behaviour */
1925    if (addr & ((1 << a_bits) - 1)) {
1926        cpu_unaligned_access(env_cpu(env), addr, access_type,
1927                             mmu_idx, retaddr);
1928    }
1929
1930    /* If the TLB entry is for a different page, reload and try again.  */
1931    if (!tlb_hit(tlb_addr, addr)) {
1932        if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1933                            addr & TARGET_PAGE_MASK)) {
1934            tlb_fill(env_cpu(env), addr, size,
1935                     access_type, mmu_idx, retaddr);
1936            index = tlb_index(env, mmu_idx, addr);
1937            entry = tlb_entry(env, mmu_idx, addr);
1938        }
1939        tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1940        tlb_addr &= ~TLB_INVALID_MASK;
1941    }
1942
1943    /* Handle anything that isn't just a straight memory access.  */
1944    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1945        CPUIOTLBEntry *iotlbentry;
1946        bool need_swap;
1947
1948        /* For anything that is unaligned, recurse through full_load.  */
1949        if ((addr & (size - 1)) != 0) {
1950            goto do_unaligned_access;
1951        }
1952
1953        iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1954
1955        /* Handle watchpoints.  */
1956        if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1957            /* On watchpoint hit, this will longjmp out.  */
1958            cpu_check_watchpoint(env_cpu(env), addr, size,
1959                                 iotlbentry->attrs, BP_MEM_READ, retaddr);
1960        }
1961
1962        need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1963
1964        /* Handle I/O access.  */
1965        if (likely(tlb_addr & TLB_MMIO)) {
1966            return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1967                            access_type, op ^ (need_swap * MO_BSWAP));
1968        }
1969
1970        haddr = (void *)((uintptr_t)addr + entry->addend);
1971
1972        /*
1973         * Keep these two load_memop separate to ensure that the compiler
1974         * is able to fold the entire function to a single instruction.
1975         * There is a build-time assert inside to remind you of this.  ;-)
1976         */
1977        if (unlikely(need_swap)) {
1978            return load_memop(haddr, op ^ MO_BSWAP);
1979        }
1980        return load_memop(haddr, op);
1981    }
1982
1983    /* Handle slow unaligned access (it spans two pages or IO).  */
1984    if (size > 1
1985        && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1986                    >= TARGET_PAGE_SIZE)) {
1987        target_ulong addr1, addr2;
1988        uint64_t r1, r2;
1989        unsigned shift;
1990    do_unaligned_access:
1991        addr1 = addr & ~((target_ulong)size - 1);
1992        addr2 = addr1 + size;
1993        r1 = full_load(env, addr1, oi, retaddr);
1994        r2 = full_load(env, addr2, oi, retaddr);
1995        shift = (addr & (size - 1)) * 8;
1996
1997        if (memop_big_endian(op)) {
1998            /* Big-endian combine.  */
1999            res = (r1 << shift) | (r2 >> ((size * 8) - shift));
2000        } else {
2001            /* Little-endian combine.  */
2002            res = (r1 >> shift) | (r2 << ((size * 8) - shift));
2003        }
2004        return res & MAKE_64BIT_MASK(0, size * 8);
2005    }
2006
2007    haddr = (void *)((uintptr_t)addr + entry->addend);
2008    return load_memop(haddr, op);
2009}
2010
2011/*
2012 * For the benefit of TCG generated code, we want to avoid the
2013 * complication of ABI-specific return type promotion and always
2014 * return a value extended to the register size of the host. This is
2015 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2016 * data, and for that we always have uint64_t.
2017 *
2018 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2019 */
2020
2021static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
2022                              MemOpIdx oi, uintptr_t retaddr)
2023{
2024    validate_memop(oi, MO_UB);
2025    return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
2026}
2027
2028tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
2029                                     MemOpIdx oi, uintptr_t retaddr)
2030{
2031    return full_ldub_mmu(env, addr, oi, retaddr);
2032}
2033
2034static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2035                                 MemOpIdx oi, uintptr_t retaddr)
2036{
2037    validate_memop(oi, MO_LEUW);
2038    return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2039                       full_le_lduw_mmu);
2040}
2041
2042tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2043                                    MemOpIdx oi, uintptr_t retaddr)
2044{
2045    return full_le_lduw_mmu(env, addr, oi, retaddr);
2046}
2047
2048static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2049                                 MemOpIdx oi, uintptr_t retaddr)
2050{
2051    validate_memop(oi, MO_BEUW);
2052    return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2053                       full_be_lduw_mmu);
2054}
2055
2056tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2057                                    MemOpIdx oi, uintptr_t retaddr)
2058{
2059    return full_be_lduw_mmu(env, addr, oi, retaddr);
2060}
2061
2062static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2063                                 MemOpIdx oi, uintptr_t retaddr)
2064{
2065    validate_memop(oi, MO_LEUL);
2066    return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2067                       full_le_ldul_mmu);
2068}
2069
2070tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2071                                    MemOpIdx oi, uintptr_t retaddr)
2072{
2073    return full_le_ldul_mmu(env, addr, oi, retaddr);
2074}
2075
2076static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2077                                 MemOpIdx oi, uintptr_t retaddr)
2078{
2079    validate_memop(oi, MO_BEUL);
2080    return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2081                       full_be_ldul_mmu);
2082}
2083
2084tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2085                                    MemOpIdx oi, uintptr_t retaddr)
2086{
2087    return full_be_ldul_mmu(env, addr, oi, retaddr);
2088}
2089
2090uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2091                           MemOpIdx oi, uintptr_t retaddr)
2092{
2093    validate_memop(oi, MO_LEUQ);
2094    return load_helper(env, addr, oi, retaddr, MO_LEUQ, false,
2095                       helper_le_ldq_mmu);
2096}
2097
2098uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2099                           MemOpIdx oi, uintptr_t retaddr)
2100{
2101    validate_memop(oi, MO_BEUQ);
2102    return load_helper(env, addr, oi, retaddr, MO_BEUQ, false,
2103                       helper_be_ldq_mmu);
2104}
2105
2106/*
2107 * Provide signed versions of the load routines as well.  We can of course
2108 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2109 */
2110
2111
2112tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2113                                     MemOpIdx oi, uintptr_t retaddr)
2114{
2115    return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2116}
2117
2118tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2119                                    MemOpIdx oi, uintptr_t retaddr)
2120{
2121    return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2122}
2123
2124tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2125                                    MemOpIdx oi, uintptr_t retaddr)
2126{
2127    return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2128}
2129
2130tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2131                                    MemOpIdx oi, uintptr_t retaddr)
2132{
2133    return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2134}
2135
2136tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2137                                    MemOpIdx oi, uintptr_t retaddr)
2138{
2139    return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2140}
2141
2142/*
2143 * Load helpers for cpu_ldst.h.
2144 */
2145
2146static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2147                                       MemOpIdx oi, uintptr_t retaddr,
2148                                       FullLoadHelper *full_load)
2149{
2150    uint64_t ret;
2151
2152    ret = full_load(env, addr, oi, retaddr);
2153    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2154    return ret;
2155}
2156
2157uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2158{
2159    return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
2160}
2161
2162uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
2163                        MemOpIdx oi, uintptr_t ra)
2164{
2165    return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
2166}
2167
2168uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
2169                        MemOpIdx oi, uintptr_t ra)
2170{
2171    return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
2172}
2173
2174uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
2175                        MemOpIdx oi, uintptr_t ra)
2176{
2177    return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu);
2178}
2179
2180uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
2181                        MemOpIdx oi, uintptr_t ra)
2182{
2183    return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
2184}
2185
2186uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
2187                        MemOpIdx oi, uintptr_t ra)
2188{
2189    return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
2190}
2191
2192uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
2193                        MemOpIdx oi, uintptr_t ra)
2194{
2195    return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
2196}
2197
2198/*
2199 * Store Helpers
2200 */
2201
2202static inline void QEMU_ALWAYS_INLINE
2203store_memop(void *haddr, uint64_t val, MemOp op)
2204{
2205    switch (op) {
2206    case MO_UB:
2207        stb_p(haddr, val);
2208        break;
2209    case MO_BEUW:
2210        stw_be_p(haddr, val);
2211        break;
2212    case MO_LEUW:
2213        stw_le_p(haddr, val);
2214        break;
2215    case MO_BEUL:
2216        stl_be_p(haddr, val);
2217        break;
2218    case MO_LEUL:
2219        stl_le_p(haddr, val);
2220        break;
2221    case MO_BEUQ:
2222        stq_be_p(haddr, val);
2223        break;
2224    case MO_LEUQ:
2225        stq_le_p(haddr, val);
2226        break;
2227    default:
2228        qemu_build_not_reached();
2229    }
2230}
2231
2232static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2233                         MemOpIdx oi, uintptr_t retaddr);
2234
2235static void __attribute__((noinline))
2236store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2237                       uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2238                       bool big_endian)
2239{
2240    const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2241    uintptr_t index, index2;
2242    CPUTLBEntry *entry, *entry2;
2243    target_ulong page2, tlb_addr, tlb_addr2;
2244    MemOpIdx oi;
2245    size_t size2;
2246    int i;
2247
2248    /*
2249     * Ensure the second page is in the TLB.  Note that the first page
2250     * is already guaranteed to be filled, and that the second page
2251     * cannot evict the first.
2252     */
2253    page2 = (addr + size) & TARGET_PAGE_MASK;
2254    size2 = (addr + size) & ~TARGET_PAGE_MASK;
2255    index2 = tlb_index(env, mmu_idx, page2);
2256    entry2 = tlb_entry(env, mmu_idx, page2);
2257
2258    tlb_addr2 = tlb_addr_write(entry2);
2259    if (!tlb_hit_page(tlb_addr2, page2)) {
2260        if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2261            tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2262                     mmu_idx, retaddr);
2263            index2 = tlb_index(env, mmu_idx, page2);
2264            entry2 = tlb_entry(env, mmu_idx, page2);
2265        }
2266        tlb_addr2 = tlb_addr_write(entry2);
2267    }
2268
2269    index = tlb_index(env, mmu_idx, addr);
2270    entry = tlb_entry(env, mmu_idx, addr);
2271    tlb_addr = tlb_addr_write(entry);
2272
2273    /*
2274     * Handle watchpoints.  Since this may trap, all checks
2275     * must happen before any store.
2276     */
2277    if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2278        cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2279                             env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2280                             BP_MEM_WRITE, retaddr);
2281    }
2282    if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2283        cpu_check_watchpoint(env_cpu(env), page2, size2,
2284                             env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2285                             BP_MEM_WRITE, retaddr);
2286    }
2287
2288    /*
2289     * XXX: not efficient, but simple.
2290     * This loop must go in the forward direction to avoid issues
2291     * with self-modifying code in Windows 64-bit.
2292     */
2293    oi = make_memop_idx(MO_UB, mmu_idx);
2294    if (big_endian) {
2295        for (i = 0; i < size; ++i) {
2296            /* Big-endian extract.  */
2297            uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2298            full_stb_mmu(env, addr + i, val8, oi, retaddr);
2299        }
2300    } else {
2301        for (i = 0; i < size; ++i) {
2302            /* Little-endian extract.  */
2303            uint8_t val8 = val >> (i * 8);
2304            full_stb_mmu(env, addr + i, val8, oi, retaddr);
2305        }
2306    }
2307}
2308
2309static inline void QEMU_ALWAYS_INLINE
2310store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2311             MemOpIdx oi, uintptr_t retaddr, MemOp op)
2312{
2313    uintptr_t mmu_idx = get_mmuidx(oi);
2314    uintptr_t index = tlb_index(env, mmu_idx, addr);
2315    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2316    target_ulong tlb_addr = tlb_addr_write(entry);
2317    const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2318    unsigned a_bits = get_alignment_bits(get_memop(oi));
2319    void *haddr;
2320    size_t size = memop_size(op);
2321
2322    /* Handle CPU specific unaligned behaviour */
2323    if (addr & ((1 << a_bits) - 1)) {
2324        cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2325                             mmu_idx, retaddr);
2326    }
2327
2328    /* If the TLB entry is for a different page, reload and try again.  */
2329    if (!tlb_hit(tlb_addr, addr)) {
2330        if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2331            addr & TARGET_PAGE_MASK)) {
2332            tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2333                     mmu_idx, retaddr);
2334            index = tlb_index(env, mmu_idx, addr);
2335            entry = tlb_entry(env, mmu_idx, addr);
2336        }
2337        tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2338    }
2339
2340    /* Handle anything that isn't just a straight memory access.  */
2341    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2342        CPUIOTLBEntry *iotlbentry;
2343        bool need_swap;
2344
2345        /* For anything that is unaligned, recurse through byte stores.  */
2346        if ((addr & (size - 1)) != 0) {
2347            goto do_unaligned_access;
2348        }
2349
2350        iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2351
2352        /* Handle watchpoints.  */
2353        if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2354            /* On watchpoint hit, this will longjmp out.  */
2355            cpu_check_watchpoint(env_cpu(env), addr, size,
2356                                 iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2357        }
2358
2359        need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2360
2361        /* Handle I/O access.  */
2362        if (tlb_addr & TLB_MMIO) {
2363            io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2364                      op ^ (need_swap * MO_BSWAP));
2365            return;
2366        }
2367
2368        /* Ignore writes to ROM.  */
2369        if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2370            return;
2371        }
2372
2373        /* Handle clean RAM pages.  */
2374        if (tlb_addr & TLB_NOTDIRTY) {
2375            notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2376        }
2377
2378        haddr = (void *)((uintptr_t)addr + entry->addend);
2379
2380        /*
2381         * Keep these two store_memop separate to ensure that the compiler
2382         * is able to fold the entire function to a single instruction.
2383         * There is a build-time assert inside to remind you of this.  ;-)
2384         */
2385        if (unlikely(need_swap)) {
2386            store_memop(haddr, val, op ^ MO_BSWAP);
2387        } else {
2388            store_memop(haddr, val, op);
2389        }
2390        return;
2391    }
2392
2393    /* Handle slow unaligned access (it spans two pages or IO).  */
2394    if (size > 1
2395        && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2396                     >= TARGET_PAGE_SIZE)) {
2397    do_unaligned_access:
2398        store_helper_unaligned(env, addr, val, retaddr, size,
2399                               mmu_idx, memop_big_endian(op));
2400        return;
2401    }
2402
2403    haddr = (void *)((uintptr_t)addr + entry->addend);
2404    store_memop(haddr, val, op);
2405}
2406
2407static void __attribute__((noinline))
2408full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2409             MemOpIdx oi, uintptr_t retaddr)
2410{
2411    validate_memop(oi, MO_UB);
2412    store_helper(env, addr, val, oi, retaddr, MO_UB);
2413}
2414
2415void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2416                        MemOpIdx oi, uintptr_t retaddr)
2417{
2418    full_stb_mmu(env, addr, val, oi, retaddr);
2419}
2420
2421static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2422                            MemOpIdx oi, uintptr_t retaddr)
2423{
2424    validate_memop(oi, MO_LEUW);
2425    store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2426}
2427
2428void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2429                       MemOpIdx oi, uintptr_t retaddr)
2430{
2431    full_le_stw_mmu(env, addr, val, oi, retaddr);
2432}
2433
2434static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2435                            MemOpIdx oi, uintptr_t retaddr)
2436{
2437    validate_memop(oi, MO_BEUW);
2438    store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2439}
2440
2441void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2442                       MemOpIdx oi, uintptr_t retaddr)
2443{
2444    full_be_stw_mmu(env, addr, val, oi, retaddr);
2445}
2446
2447static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2448                            MemOpIdx oi, uintptr_t retaddr)
2449{
2450    validate_memop(oi, MO_LEUL);
2451    store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2452}
2453
2454void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2455                       MemOpIdx oi, uintptr_t retaddr)
2456{
2457    full_le_stl_mmu(env, addr, val, oi, retaddr);
2458}
2459
2460static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2461                            MemOpIdx oi, uintptr_t retaddr)
2462{
2463    validate_memop(oi, MO_BEUL);
2464    store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2465}
2466
2467void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2468                       MemOpIdx oi, uintptr_t retaddr)
2469{
2470    full_be_stl_mmu(env, addr, val, oi, retaddr);
2471}
2472
2473void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2474                       MemOpIdx oi, uintptr_t retaddr)
2475{
2476    validate_memop(oi, MO_LEUQ);
2477    store_helper(env, addr, val, oi, retaddr, MO_LEUQ);
2478}
2479
2480void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2481                       MemOpIdx oi, uintptr_t retaddr)
2482{
2483    validate_memop(oi, MO_BEUQ);
2484    store_helper(env, addr, val, oi, retaddr, MO_BEUQ);
2485}
2486
2487/*
2488 * Store Helpers for cpu_ldst.h
2489 */
2490
2491typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
2492                             uint64_t val, MemOpIdx oi, uintptr_t retaddr);
2493
2494static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
2495                                    uint64_t val, MemOpIdx oi, uintptr_t ra,
2496                                    FullStoreHelper *full_store)
2497{
2498    full_store(env, addr, val, oi, ra);
2499    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2500}
2501
2502void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2503                 MemOpIdx oi, uintptr_t retaddr)
2504{
2505    cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
2506}
2507
2508void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2509                    MemOpIdx oi, uintptr_t retaddr)
2510{
2511    cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
2512}
2513
2514void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2515                    MemOpIdx oi, uintptr_t retaddr)
2516{
2517    cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
2518}
2519
2520void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2521                    MemOpIdx oi, uintptr_t retaddr)
2522{
2523    cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
2524}
2525
2526void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2527                    MemOpIdx oi, uintptr_t retaddr)
2528{
2529    cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
2530}
2531
2532void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2533                    MemOpIdx oi, uintptr_t retaddr)
2534{
2535    cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
2536}
2537
2538void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2539                    MemOpIdx oi, uintptr_t retaddr)
2540{
2541    cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
2542}
2543
2544#include "ldst_common.c.inc"
2545
2546/*
2547 * First set of functions passes in OI and RETADDR.
2548 * This makes them callable from other helpers.
2549 */
2550
2551#define ATOMIC_NAME(X) \
2552    glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2553
2554#define ATOMIC_MMU_CLEANUP
2555#define ATOMIC_MMU_IDX   get_mmuidx(oi)
2556
2557#include "atomic_common.c.inc"
2558
2559#define DATA_SIZE 1
2560#include "atomic_template.h"
2561
2562#define DATA_SIZE 2
2563#include "atomic_template.h"
2564
2565#define DATA_SIZE 4
2566#include "atomic_template.h"
2567
2568#ifdef CONFIG_ATOMIC64
2569#define DATA_SIZE 8
2570#include "atomic_template.h"
2571#endif
2572
2573#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2574#define DATA_SIZE 16
2575#include "atomic_template.h"
2576#endif
2577
2578/* Code access functions.  */
2579
2580static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2581                               MemOpIdx oi, uintptr_t retaddr)
2582{
2583    return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2584}
2585
2586uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2587{
2588    MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2589    return full_ldub_code(env, addr, oi, 0);
2590}
2591
2592static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2593                               MemOpIdx oi, uintptr_t retaddr)
2594{
2595    return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2596}
2597
2598uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2599{
2600    MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2601    return full_lduw_code(env, addr, oi, 0);
2602}
2603
2604static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2605                              MemOpIdx oi, uintptr_t retaddr)
2606{
2607    return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2608}
2609
2610uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2611{
2612    MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2613    return full_ldl_code(env, addr, oi, 0);
2614}
2615
2616static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2617                              MemOpIdx oi, uintptr_t retaddr)
2618{
2619    return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code);
2620}
2621
2622uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2623{
2624    MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
2625    return full_ldq_code(env, addr, oi, 0);
2626}
2627