qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qcow2.h"
  30#include "qemu/bswap.h"
  31#include "qemu/memalign.h"
  32#include "trace.h"
  33
  34int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
  35{
  36    BDRVQcow2State *s = bs->opaque;
  37    int new_l1_size, i, ret;
  38
  39    if (exact_size >= s->l1_size) {
  40        return 0;
  41    }
  42
  43    new_l1_size = exact_size;
  44
  45#ifdef DEBUG_ALLOC2
  46    fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
  47#endif
  48
  49    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
  50    ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
  51                                       new_l1_size * L1E_SIZE,
  52                             (s->l1_size - new_l1_size) * L1E_SIZE, 0);
  53    if (ret < 0) {
  54        goto fail;
  55    }
  56
  57    ret = bdrv_flush(bs->file->bs);
  58    if (ret < 0) {
  59        goto fail;
  60    }
  61
  62    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
  63    for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
  64        if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
  65            continue;
  66        }
  67        qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
  68                            s->cluster_size, QCOW2_DISCARD_ALWAYS);
  69        s->l1_table[i] = 0;
  70    }
  71    return 0;
  72
  73fail:
  74    /*
  75     * If the write in the l1_table failed the image may contain a partially
  76     * overwritten l1_table. In this case it would be better to clear the
  77     * l1_table in memory to avoid possible image corruption.
  78     */
  79    memset(s->l1_table + new_l1_size, 0,
  80           (s->l1_size - new_l1_size) * L1E_SIZE);
  81    return ret;
  82}
  83
  84int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  85                        bool exact_size)
  86{
  87    BDRVQcow2State *s = bs->opaque;
  88    int new_l1_size2, ret, i;
  89    uint64_t *new_l1_table;
  90    int64_t old_l1_table_offset, old_l1_size;
  91    int64_t new_l1_table_offset, new_l1_size;
  92    uint8_t data[12];
  93
  94    if (min_size <= s->l1_size)
  95        return 0;
  96
  97    /* Do a sanity check on min_size before trying to calculate new_l1_size
  98     * (this prevents overflows during the while loop for the calculation of
  99     * new_l1_size) */
 100    if (min_size > INT_MAX / L1E_SIZE) {
 101        return -EFBIG;
 102    }
 103
 104    if (exact_size) {
 105        new_l1_size = min_size;
 106    } else {
 107        /* Bump size up to reduce the number of times we have to grow */
 108        new_l1_size = s->l1_size;
 109        if (new_l1_size == 0) {
 110            new_l1_size = 1;
 111        }
 112        while (min_size > new_l1_size) {
 113            new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
 114        }
 115    }
 116
 117    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
 118    if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
 119        return -EFBIG;
 120    }
 121
 122#ifdef DEBUG_ALLOC2
 123    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
 124            s->l1_size, new_l1_size);
 125#endif
 126
 127    new_l1_size2 = L1E_SIZE * new_l1_size;
 128    new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
 129    if (new_l1_table == NULL) {
 130        return -ENOMEM;
 131    }
 132    memset(new_l1_table, 0, new_l1_size2);
 133
 134    if (s->l1_size) {
 135        memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
 136    }
 137
 138    /* write new table (align to cluster) */
 139    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
 140    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
 141    if (new_l1_table_offset < 0) {
 142        qemu_vfree(new_l1_table);
 143        return new_l1_table_offset;
 144    }
 145
 146    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 147    if (ret < 0) {
 148        goto fail;
 149    }
 150
 151    /* the L1 position has not yet been updated, so these clusters must
 152     * indeed be completely free */
 153    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 154                                        new_l1_size2, false);
 155    if (ret < 0) {
 156        goto fail;
 157    }
 158
 159    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 160    for(i = 0; i < s->l1_size; i++)
 161        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 162    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 163                           new_l1_table, new_l1_size2);
 164    if (ret < 0)
 165        goto fail;
 166    for(i = 0; i < s->l1_size; i++)
 167        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 168
 169    /* set new table */
 170    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 171    stl_be_p(data, new_l1_size);
 172    stq_be_p(data + 4, new_l1_table_offset);
 173    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 174                           data, sizeof(data));
 175    if (ret < 0) {
 176        goto fail;
 177    }
 178    qemu_vfree(s->l1_table);
 179    old_l1_table_offset = s->l1_table_offset;
 180    s->l1_table_offset = new_l1_table_offset;
 181    s->l1_table = new_l1_table;
 182    old_l1_size = s->l1_size;
 183    s->l1_size = new_l1_size;
 184    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
 185                        QCOW2_DISCARD_OTHER);
 186    return 0;
 187 fail:
 188    qemu_vfree(new_l1_table);
 189    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 190                        QCOW2_DISCARD_OTHER);
 191    return ret;
 192}
 193
 194/*
 195 * l2_load
 196 *
 197 * @bs: The BlockDriverState
 198 * @offset: A guest offset, used to calculate what slice of the L2
 199 *          table to load.
 200 * @l2_offset: Offset to the L2 table in the image file.
 201 * @l2_slice: Location to store the pointer to the L2 slice.
 202 *
 203 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
 204 * that are loaded by the qcow2 cache). If the slice is in the cache,
 205 * the cache is used; otherwise the L2 slice is loaded from the image
 206 * file.
 207 */
 208static int l2_load(BlockDriverState *bs, uint64_t offset,
 209                   uint64_t l2_offset, uint64_t **l2_slice)
 210{
 211    BDRVQcow2State *s = bs->opaque;
 212    int start_of_slice = l2_entry_size(s) *
 213        (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
 214
 215    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
 216                           (void **)l2_slice);
 217}
 218
 219/*
 220 * Writes an L1 entry to disk (note that depending on the alignment
 221 * requirements this function may write more that just one entry in
 222 * order to prevent bdrv_pwrite from performing a read-modify-write)
 223 */
 224int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 225{
 226    BDRVQcow2State *s = bs->opaque;
 227    int l1_start_index;
 228    int i, ret;
 229    int bufsize = MAX(L1E_SIZE,
 230                      MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
 231    int nentries = bufsize / L1E_SIZE;
 232    g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
 233
 234    if (buf == NULL) {
 235        return -ENOMEM;
 236    }
 237
 238    l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
 239    for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
 240        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 241    }
 242
 243    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 244            s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
 245    if (ret < 0) {
 246        return ret;
 247    }
 248
 249    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 250    ret = bdrv_pwrite_sync(bs->file,
 251                           s->l1_table_offset + L1E_SIZE * l1_start_index,
 252                           buf, bufsize);
 253    if (ret < 0) {
 254        return ret;
 255    }
 256
 257    return 0;
 258}
 259
 260/*
 261 * l2_allocate
 262 *
 263 * Allocate a new l2 entry in the file. If l1_index points to an already
 264 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 265 * table) copy the contents of the old L2 table into the newly allocated one.
 266 * Otherwise the new table is initialized with zeros.
 267 *
 268 */
 269
 270static int l2_allocate(BlockDriverState *bs, int l1_index)
 271{
 272    BDRVQcow2State *s = bs->opaque;
 273    uint64_t old_l2_offset;
 274    uint64_t *l2_slice = NULL;
 275    unsigned slice, slice_size2, n_slices;
 276    int64_t l2_offset;
 277    int ret;
 278
 279    old_l2_offset = s->l1_table[l1_index];
 280
 281    trace_qcow2_l2_allocate(bs, l1_index);
 282
 283    /* allocate a new l2 entry */
 284
 285    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
 286    if (l2_offset < 0) {
 287        ret = l2_offset;
 288        goto fail;
 289    }
 290
 291    /* The offset must fit in the offset field of the L1 table entry */
 292    assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
 293
 294    /* If we're allocating the table at offset 0 then something is wrong */
 295    if (l2_offset == 0) {
 296        qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
 297                                "allocation of L2 table at offset 0");
 298        ret = -EIO;
 299        goto fail;
 300    }
 301
 302    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 303    if (ret < 0) {
 304        goto fail;
 305    }
 306
 307    /* allocate a new entry in the l2 cache */
 308
 309    slice_size2 = s->l2_slice_size * l2_entry_size(s);
 310    n_slices = s->cluster_size / slice_size2;
 311
 312    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 313    for (slice = 0; slice < n_slices; slice++) {
 314        ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
 315                                    l2_offset + slice * slice_size2,
 316                                    (void **) &l2_slice);
 317        if (ret < 0) {
 318            goto fail;
 319        }
 320
 321        if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 322            /* if there was no old l2 table, clear the new slice */
 323            memset(l2_slice, 0, slice_size2);
 324        } else {
 325            uint64_t *old_slice;
 326            uint64_t old_l2_slice_offset =
 327                (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
 328
 329            /* if there was an old l2 table, read a slice from the disk */
 330            BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 331            ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
 332                                  (void **) &old_slice);
 333            if (ret < 0) {
 334                goto fail;
 335            }
 336
 337            memcpy(l2_slice, old_slice, slice_size2);
 338
 339            qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
 340        }
 341
 342        /* write the l2 slice to the file */
 343        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 344
 345        trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 346        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 347        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 348    }
 349
 350    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 351    if (ret < 0) {
 352        goto fail;
 353    }
 354
 355    /* update the L1 entry */
 356    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 357    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 358    ret = qcow2_write_l1_entry(bs, l1_index);
 359    if (ret < 0) {
 360        goto fail;
 361    }
 362
 363    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 364    return 0;
 365
 366fail:
 367    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 368    if (l2_slice != NULL) {
 369        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 370    }
 371    s->l1_table[l1_index] = old_l2_offset;
 372    if (l2_offset > 0) {
 373        qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
 374                            QCOW2_DISCARD_ALWAYS);
 375    }
 376    return ret;
 377}
 378
 379/*
 380 * For a given L2 entry, count the number of contiguous subclusters of
 381 * the same type starting from @sc_from. Compressed clusters are
 382 * treated as if they were divided into subclusters of size
 383 * s->subcluster_size.
 384 *
 385 * Return the number of contiguous subclusters and set @type to the
 386 * subcluster type.
 387 *
 388 * If the L2 entry is invalid return -errno and set @type to
 389 * QCOW2_SUBCLUSTER_INVALID.
 390 */
 391static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
 392                                           uint64_t l2_entry,
 393                                           uint64_t l2_bitmap,
 394                                           unsigned sc_from,
 395                                           QCow2SubclusterType *type)
 396{
 397    BDRVQcow2State *s = bs->opaque;
 398    uint32_t val;
 399
 400    *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
 401
 402    if (*type == QCOW2_SUBCLUSTER_INVALID) {
 403        return -EINVAL;
 404    } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
 405        return s->subclusters_per_cluster - sc_from;
 406    }
 407
 408    switch (*type) {
 409    case QCOW2_SUBCLUSTER_NORMAL:
 410        val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
 411        return cto32(val) - sc_from;
 412
 413    case QCOW2_SUBCLUSTER_ZERO_PLAIN:
 414    case QCOW2_SUBCLUSTER_ZERO_ALLOC:
 415        val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
 416        return cto32(val) - sc_from;
 417
 418    case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
 419    case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
 420        val = ((l2_bitmap >> 32) | l2_bitmap)
 421            & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
 422        return ctz32(val) - sc_from;
 423
 424    default:
 425        g_assert_not_reached();
 426    }
 427}
 428
 429/*
 430 * Return the number of contiguous subclusters of the exact same type
 431 * in a given L2 slice, starting from cluster @l2_index, subcluster
 432 * @sc_index. Allocated subclusters are required to be contiguous in
 433 * the image file.
 434 * At most @nb_clusters are checked (note that this means clusters,
 435 * not subclusters).
 436 * Compressed clusters are always processed one by one but for the
 437 * purpose of this count they are treated as if they were divided into
 438 * subclusters of size s->subcluster_size.
 439 * On failure return -errno and update @l2_index to point to the
 440 * invalid entry.
 441 */
 442static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
 443                                        unsigned sc_index, uint64_t *l2_slice,
 444                                        unsigned *l2_index)
 445{
 446    BDRVQcow2State *s = bs->opaque;
 447    int i, count = 0;
 448    bool check_offset = false;
 449    uint64_t expected_offset = 0;
 450    QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
 451
 452    assert(*l2_index + nb_clusters <= s->l2_slice_size);
 453
 454    for (i = 0; i < nb_clusters; i++) {
 455        unsigned first_sc = (i == 0) ? sc_index : 0;
 456        uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
 457        uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
 458        int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
 459                                                  first_sc, &type);
 460        if (ret < 0) {
 461            *l2_index += i; /* Point to the invalid entry */
 462            return -EIO;
 463        }
 464        if (i == 0) {
 465            if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
 466                /* Compressed clusters are always processed one by one */
 467                return ret;
 468            }
 469            expected_type = type;
 470            expected_offset = l2_entry & L2E_OFFSET_MASK;
 471            check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
 472                            type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
 473                            type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
 474        } else if (type != expected_type) {
 475            break;
 476        } else if (check_offset) {
 477            expected_offset += s->cluster_size;
 478            if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
 479                break;
 480            }
 481        }
 482        count += ret;
 483        /* Stop if there are type changes before the end of the cluster */
 484        if (first_sc + ret < s->subclusters_per_cluster) {
 485            break;
 486        }
 487    }
 488
 489    return count;
 490}
 491
 492static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
 493                                            uint64_t src_cluster_offset,
 494                                            unsigned offset_in_cluster,
 495                                            QEMUIOVector *qiov)
 496{
 497    int ret;
 498
 499    if (qiov->size == 0) {
 500        return 0;
 501    }
 502
 503    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 504
 505    if (!bs->drv) {
 506        return -ENOMEDIUM;
 507    }
 508
 509    /*
 510     * We never deal with requests that don't satisfy
 511     * bdrv_check_qiov_request(), and aligning requests to clusters never
 512     * breaks this condition. So, do some assertions before calling
 513     * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
 514     */
 515    assert(src_cluster_offset <= INT64_MAX);
 516    assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
 517    /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
 518    assert((uint64_t)qiov->size <= INT64_MAX);
 519    bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
 520                            qiov, 0, &error_abort);
 521    /*
 522     * Call .bdrv_co_readv() directly instead of using the public block-layer
 523     * interface.  This avoids double I/O throttling and request tracking,
 524     * which can lead to deadlock when block layer copy-on-read is enabled.
 525     */
 526    ret = bs->drv->bdrv_co_preadv_part(bs,
 527                                       src_cluster_offset + offset_in_cluster,
 528                                       qiov->size, qiov, 0, 0);
 529    if (ret < 0) {
 530        return ret;
 531    }
 532
 533    return 0;
 534}
 535
 536static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
 537                                             uint64_t cluster_offset,
 538                                             unsigned offset_in_cluster,
 539                                             QEMUIOVector *qiov)
 540{
 541    BDRVQcow2State *s = bs->opaque;
 542    int ret;
 543
 544    if (qiov->size == 0) {
 545        return 0;
 546    }
 547
 548    ret = qcow2_pre_write_overlap_check(bs, 0,
 549            cluster_offset + offset_in_cluster, qiov->size, true);
 550    if (ret < 0) {
 551        return ret;
 552    }
 553
 554    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 555    ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
 556                          qiov->size, qiov, 0);
 557    if (ret < 0) {
 558        return ret;
 559    }
 560
 561    return 0;
 562}
 563
 564
 565/*
 566 * get_host_offset
 567 *
 568 * For a given offset of the virtual disk find the equivalent host
 569 * offset in the qcow2 file and store it in *host_offset. Neither
 570 * offset needs to be aligned to a cluster boundary.
 571 *
 572 * If the cluster is unallocated then *host_offset will be 0.
 573 * If the cluster is compressed then *host_offset will contain the l2 entry.
 574 *
 575 * On entry, *bytes is the maximum number of contiguous bytes starting at
 576 * offset that we are interested in.
 577 *
 578 * On exit, *bytes is the number of bytes starting at offset that have the same
 579 * subcluster type and (if applicable) are stored contiguously in the image
 580 * file. The subcluster type is stored in *subcluster_type.
 581 * Compressed clusters are always processed one by one.
 582 *
 583 * Returns 0 on success, -errno in error cases.
 584 */
 585int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
 586                          unsigned int *bytes, uint64_t *host_offset,
 587                          QCow2SubclusterType *subcluster_type)
 588{
 589    BDRVQcow2State *s = bs->opaque;
 590    unsigned int l2_index, sc_index;
 591    uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
 592    int sc;
 593    unsigned int offset_in_cluster;
 594    uint64_t bytes_available, bytes_needed, nb_clusters;
 595    QCow2SubclusterType type;
 596    int ret;
 597
 598    offset_in_cluster = offset_into_cluster(s, offset);
 599    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 600
 601    /* compute how many bytes there are between the start of the cluster
 602     * containing offset and the end of the l2 slice that contains
 603     * the entry pointing to it */
 604    bytes_available =
 605        ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
 606        << s->cluster_bits;
 607
 608    if (bytes_needed > bytes_available) {
 609        bytes_needed = bytes_available;
 610    }
 611
 612    *host_offset = 0;
 613
 614    /* seek to the l2 offset in the l1 table */
 615
 616    l1_index = offset_to_l1_index(s, offset);
 617    if (l1_index >= s->l1_size) {
 618        type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
 619        goto out;
 620    }
 621
 622    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 623    if (!l2_offset) {
 624        type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
 625        goto out;
 626    }
 627
 628    if (offset_into_cluster(s, l2_offset)) {
 629        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 630                                " unaligned (L1 index: %#" PRIx64 ")",
 631                                l2_offset, l1_index);
 632        return -EIO;
 633    }
 634
 635    /* load the l2 slice in memory */
 636
 637    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 638    if (ret < 0) {
 639        return ret;
 640    }
 641
 642    /* find the cluster offset for the given disk offset */
 643
 644    l2_index = offset_to_l2_slice_index(s, offset);
 645    sc_index = offset_to_sc_index(s, offset);
 646    l2_entry = get_l2_entry(s, l2_slice, l2_index);
 647    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
 648
 649    nb_clusters = size_to_clusters(s, bytes_needed);
 650    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 651     * integers; the minimum cluster size is 512, so this assertion is always
 652     * true */
 653    assert(nb_clusters <= INT_MAX);
 654
 655    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
 656    if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
 657                                type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
 658        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 659                                " in pre-v3 image (L2 offset: %#" PRIx64
 660                                ", L2 index: %#x)", l2_offset, l2_index);
 661        ret = -EIO;
 662        goto fail;
 663    }
 664    switch (type) {
 665    case QCOW2_SUBCLUSTER_INVALID:
 666        break; /* This is handled by count_contiguous_subclusters() below */
 667    case QCOW2_SUBCLUSTER_COMPRESSED:
 668        if (has_data_file(bs)) {
 669            qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
 670                                    "entry found in image with external data "
 671                                    "file (L2 offset: %#" PRIx64 ", L2 index: "
 672                                    "%#x)", l2_offset, l2_index);
 673            ret = -EIO;
 674            goto fail;
 675        }
 676        *host_offset = l2_entry;
 677        break;
 678    case QCOW2_SUBCLUSTER_ZERO_PLAIN:
 679    case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
 680        break;
 681    case QCOW2_SUBCLUSTER_ZERO_ALLOC:
 682    case QCOW2_SUBCLUSTER_NORMAL:
 683    case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
 684        uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
 685        *host_offset = host_cluster_offset + offset_in_cluster;
 686        if (offset_into_cluster(s, host_cluster_offset)) {
 687            qcow2_signal_corruption(bs, true, -1, -1,
 688                                    "Cluster allocation offset %#"
 689                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 690                                    ", L2 index: %#x)", host_cluster_offset,
 691                                    l2_offset, l2_index);
 692            ret = -EIO;
 693            goto fail;
 694        }
 695        if (has_data_file(bs) && *host_offset != offset) {
 696            qcow2_signal_corruption(bs, true, -1, -1,
 697                                    "External data file host cluster offset %#"
 698                                    PRIx64 " does not match guest cluster "
 699                                    "offset: %#" PRIx64
 700                                    ", L2 index: %#x)", host_cluster_offset,
 701                                    offset - offset_in_cluster, l2_index);
 702            ret = -EIO;
 703            goto fail;
 704        }
 705        break;
 706    }
 707    default:
 708        abort();
 709    }
 710
 711    sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
 712                                      l2_slice, &l2_index);
 713    if (sc < 0) {
 714        qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
 715                                " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
 716                                l2_offset, l2_index);
 717        ret = -EIO;
 718        goto fail;
 719    }
 720    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 721
 722    bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
 723
 724out:
 725    if (bytes_available > bytes_needed) {
 726        bytes_available = bytes_needed;
 727    }
 728
 729    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 730     * subtracting offset_in_cluster will therefore definitely yield something
 731     * not exceeding UINT_MAX */
 732    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 733    *bytes = bytes_available - offset_in_cluster;
 734
 735    *subcluster_type = type;
 736
 737    return 0;
 738
 739fail:
 740    qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
 741    return ret;
 742}
 743
 744/*
 745 * get_cluster_table
 746 *
 747 * for a given disk offset, load (and allocate if needed)
 748 * the appropriate slice of its l2 table.
 749 *
 750 * the cluster index in the l2 slice is given to the caller.
 751 *
 752 * Returns 0 on success, -errno in failure case
 753 */
 754static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 755                             uint64_t **new_l2_slice,
 756                             int *new_l2_index)
 757{
 758    BDRVQcow2State *s = bs->opaque;
 759    unsigned int l2_index;
 760    uint64_t l1_index, l2_offset;
 761    uint64_t *l2_slice = NULL;
 762    int ret;
 763
 764    /* seek to the l2 offset in the l1 table */
 765
 766    l1_index = offset_to_l1_index(s, offset);
 767    if (l1_index >= s->l1_size) {
 768        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 769        if (ret < 0) {
 770            return ret;
 771        }
 772    }
 773
 774    assert(l1_index < s->l1_size);
 775    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 776    if (offset_into_cluster(s, l2_offset)) {
 777        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 778                                " unaligned (L1 index: %#" PRIx64 ")",
 779                                l2_offset, l1_index);
 780        return -EIO;
 781    }
 782
 783    if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
 784        /* First allocate a new L2 table (and do COW if needed) */
 785        ret = l2_allocate(bs, l1_index);
 786        if (ret < 0) {
 787            return ret;
 788        }
 789
 790        /* Then decrease the refcount of the old table */
 791        if (l2_offset) {
 792            qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
 793                                QCOW2_DISCARD_OTHER);
 794        }
 795
 796        /* Get the offset of the newly-allocated l2 table */
 797        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 798        assert(offset_into_cluster(s, l2_offset) == 0);
 799    }
 800
 801    /* load the l2 slice in memory */
 802    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 803    if (ret < 0) {
 804        return ret;
 805    }
 806
 807    /* find the cluster offset for the given disk offset */
 808
 809    l2_index = offset_to_l2_slice_index(s, offset);
 810
 811    *new_l2_slice = l2_slice;
 812    *new_l2_index = l2_index;
 813
 814    return 0;
 815}
 816
 817/*
 818 * alloc_compressed_cluster_offset
 819 *
 820 * For a given offset on the virtual disk, allocate a new compressed cluster
 821 * and put the host offset of the cluster into *host_offset. If a cluster is
 822 * already allocated at the offset, return an error.
 823 *
 824 * Return 0 on success and -errno in error cases
 825 */
 826int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 827                                          uint64_t offset,
 828                                          int compressed_size,
 829                                          uint64_t *host_offset)
 830{
 831    BDRVQcow2State *s = bs->opaque;
 832    int l2_index, ret;
 833    uint64_t *l2_slice;
 834    int64_t cluster_offset;
 835    int nb_csectors;
 836
 837    if (has_data_file(bs)) {
 838        return 0;
 839    }
 840
 841    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
 842    if (ret < 0) {
 843        return ret;
 844    }
 845
 846    /* Compression can't overwrite anything. Fail if the cluster was already
 847     * allocated. */
 848    cluster_offset = get_l2_entry(s, l2_slice, l2_index);
 849    if (cluster_offset & L2E_OFFSET_MASK) {
 850        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 851        return -EIO;
 852    }
 853
 854    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 855    if (cluster_offset < 0) {
 856        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 857        return cluster_offset;
 858    }
 859
 860    nb_csectors =
 861        (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
 862        (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
 863
 864    /* The offset and size must fit in their fields of the L2 table entry */
 865    assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
 866    assert((nb_csectors & s->csize_mask) == nb_csectors);
 867
 868    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 869                      ((uint64_t)nb_csectors << s->csize_shift);
 870
 871    /* update L2 table */
 872
 873    /* compressed clusters never have the copied flag */
 874
 875    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 876    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 877    set_l2_entry(s, l2_slice, l2_index, cluster_offset);
 878    if (has_subclusters(s)) {
 879        set_l2_bitmap(s, l2_slice, l2_index, 0);
 880    }
 881    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 882
 883    *host_offset = cluster_offset & s->cluster_offset_mask;
 884    return 0;
 885}
 886
 887static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 888{
 889    BDRVQcow2State *s = bs->opaque;
 890    Qcow2COWRegion *start = &m->cow_start;
 891    Qcow2COWRegion *end = &m->cow_end;
 892    unsigned buffer_size;
 893    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 894    bool merge_reads;
 895    uint8_t *start_buffer, *end_buffer;
 896    QEMUIOVector qiov;
 897    int ret;
 898
 899    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 900    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 901    assert(start->offset + start->nb_bytes <= end->offset);
 902
 903    if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
 904        return 0;
 905    }
 906
 907    /* If we have to read both the start and end COW regions and the
 908     * middle region is not too large then perform just one read
 909     * operation */
 910    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 911    if (merge_reads) {
 912        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 913    } else {
 914        /* If we have to do two reads, add some padding in the middle
 915         * if necessary to make sure that the end region is optimally
 916         * aligned. */
 917        size_t align = bdrv_opt_mem_align(bs);
 918        assert(align > 0 && align <= UINT_MAX);
 919        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 920               UINT_MAX - end->nb_bytes);
 921        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 922    }
 923
 924    /* Reserve a buffer large enough to store all the data that we're
 925     * going to read */
 926    start_buffer = qemu_try_blockalign(bs, buffer_size);
 927    if (start_buffer == NULL) {
 928        return -ENOMEM;
 929    }
 930    /* The part of the buffer where the end region is located */
 931    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 932
 933    qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
 934                                qemu_iovec_subvec_niov(m->data_qiov,
 935                                                       m->data_qiov_offset,
 936                                                       data_bytes)
 937                                : 0));
 938
 939    qemu_co_mutex_unlock(&s->lock);
 940    /* First we read the existing data from both COW regions. We
 941     * either read the whole region in one go, or the start and end
 942     * regions separately. */
 943    if (merge_reads) {
 944        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 945        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 946    } else {
 947        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 948        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 949        if (ret < 0) {
 950            goto fail;
 951        }
 952
 953        qemu_iovec_reset(&qiov);
 954        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 955        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 956    }
 957    if (ret < 0) {
 958        goto fail;
 959    }
 960
 961    /* Encrypt the data if necessary before writing it */
 962    if (bs->encrypted) {
 963        ret = qcow2_co_encrypt(bs,
 964                               m->alloc_offset + start->offset,
 965                               m->offset + start->offset,
 966                               start_buffer, start->nb_bytes);
 967        if (ret < 0) {
 968            goto fail;
 969        }
 970
 971        ret = qcow2_co_encrypt(bs,
 972                               m->alloc_offset + end->offset,
 973                               m->offset + end->offset,
 974                               end_buffer, end->nb_bytes);
 975        if (ret < 0) {
 976            goto fail;
 977        }
 978    }
 979
 980    /* And now we can write everything. If we have the guest data we
 981     * can write everything in one single operation */
 982    if (m->data_qiov) {
 983        qemu_iovec_reset(&qiov);
 984        if (start->nb_bytes) {
 985            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 986        }
 987        qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
 988        if (end->nb_bytes) {
 989            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 990        }
 991        /* NOTE: we have a write_aio blkdebug event here followed by
 992         * a cow_write one in do_perform_cow_write(), but there's only
 993         * one single I/O operation */
 994        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 995        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 996    } else {
 997        /* If there's no guest data then write both COW regions separately */
 998        qemu_iovec_reset(&qiov);
 999        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
1000        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
1001        if (ret < 0) {
1002            goto fail;
1003        }
1004
1005        qemu_iovec_reset(&qiov);
1006        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1007        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1008    }
1009
1010fail:
1011    qemu_co_mutex_lock(&s->lock);
1012
1013    /*
1014     * Before we update the L2 table to actually point to the new cluster, we
1015     * need to be sure that the refcounts have been increased and COW was
1016     * handled.
1017     */
1018    if (ret == 0) {
1019        qcow2_cache_depends_on_flush(s->l2_table_cache);
1020    }
1021
1022    qemu_vfree(start_buffer);
1023    qemu_iovec_destroy(&qiov);
1024    return ret;
1025}
1026
1027int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
1028{
1029    BDRVQcow2State *s = bs->opaque;
1030    int i, j = 0, l2_index, ret;
1031    uint64_t *old_cluster, *l2_slice;
1032    uint64_t cluster_offset = m->alloc_offset;
1033
1034    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1035    assert(m->nb_clusters > 0);
1036
1037    old_cluster = g_try_new(uint64_t, m->nb_clusters);
1038    if (old_cluster == NULL) {
1039        ret = -ENOMEM;
1040        goto err;
1041    }
1042
1043    /* copy content of unmodified sectors */
1044    ret = perform_cow(bs, m);
1045    if (ret < 0) {
1046        goto err;
1047    }
1048
1049    /* Update L2 table. */
1050    if (s->use_lazy_refcounts) {
1051        qcow2_mark_dirty(bs);
1052    }
1053    if (qcow2_need_accurate_refcounts(s)) {
1054        qcow2_cache_set_dependency(bs, s->l2_table_cache,
1055                                   s->refcount_block_cache);
1056    }
1057
1058    ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1059    if (ret < 0) {
1060        goto err;
1061    }
1062    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1063
1064    assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1065    assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1066           m->nb_clusters << s->cluster_bits);
1067    for (i = 0; i < m->nb_clusters; i++) {
1068        uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1069        /* if two concurrent writes happen to the same unallocated cluster
1070         * each write allocates separate cluster and writes data concurrently.
1071         * The first one to complete updates l2 table with pointer to its
1072         * cluster the second one has to do RMW (which is done above by
1073         * perform_cow()), update l2 table with its cluster pointer and free
1074         * old cluster. This is what this loop does */
1075        if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1076            old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1077        }
1078
1079        /* The offset must fit in the offset field of the L2 table entry */
1080        assert((offset & L2E_OFFSET_MASK) == offset);
1081
1082        set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1083
1084        /* Update bitmap with the subclusters that were just written */
1085        if (has_subclusters(s) && !m->prealloc) {
1086            uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1087            unsigned written_from = m->cow_start.offset;
1088            unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1089            int first_sc, last_sc;
1090            /* Narrow written_from and written_to down to the current cluster */
1091            written_from = MAX(written_from, i << s->cluster_bits);
1092            written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
1093            assert(written_from < written_to);
1094            first_sc = offset_to_sc_index(s, written_from);
1095            last_sc  = offset_to_sc_index(s, written_to - 1);
1096            l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1097            l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1098            set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1099        }
1100     }
1101
1102
1103    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1104
1105    /*
1106     * If this was a COW, we need to decrease the refcount of the old cluster.
1107     *
1108     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1109     * clusters), the next write will reuse them anyway.
1110     */
1111    if (!m->keep_old_clusters && j != 0) {
1112        for (i = 0; i < j; i++) {
1113            qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1114        }
1115    }
1116
1117    ret = 0;
1118err:
1119    g_free(old_cluster);
1120    return ret;
1121 }
1122
1123/**
1124 * Frees the allocated clusters because the request failed and they won't
1125 * actually be linked.
1126 */
1127void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1128{
1129    BDRVQcow2State *s = bs->opaque;
1130    if (!has_data_file(bs) && !m->keep_old_clusters) {
1131        qcow2_free_clusters(bs, m->alloc_offset,
1132                            m->nb_clusters << s->cluster_bits,
1133                            QCOW2_DISCARD_NEVER);
1134    }
1135}
1136
1137/*
1138 * For a given write request, create a new QCowL2Meta structure, add
1139 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1140 * request does not need copy-on-write or changes to the L2 metadata
1141 * then this function does nothing.
1142 *
1143 * @host_cluster_offset points to the beginning of the first cluster.
1144 *
1145 * @guest_offset and @bytes indicate the offset and length of the
1146 * request.
1147 *
1148 * @l2_slice contains the L2 entries of all clusters involved in this
1149 * write request.
1150 *
1151 * If @keep_old is true it means that the clusters were already
1152 * allocated and will be overwritten. If false then the clusters are
1153 * new and we have to decrease the reference count of the old ones.
1154 *
1155 * Returns 0 on success, -errno on failure.
1156 */
1157static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1158                             uint64_t guest_offset, unsigned bytes,
1159                             uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1160{
1161    BDRVQcow2State *s = bs->opaque;
1162    int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1163    uint64_t l2_entry, l2_bitmap;
1164    unsigned cow_start_from, cow_end_to;
1165    unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1166    unsigned cow_end_from = cow_start_to + bytes;
1167    unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1168    QCowL2Meta *old_m = *m;
1169    QCow2SubclusterType type;
1170    int i;
1171    bool skip_cow = keep_old;
1172
1173    assert(nb_clusters <= s->l2_slice_size - l2_index);
1174
1175    /* Check the type of all affected subclusters */
1176    for (i = 0; i < nb_clusters; i++) {
1177        l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1178        l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1179        if (skip_cow) {
1180            unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1181            unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1182            int first_sc = offset_to_sc_index(s, write_from);
1183            int last_sc = offset_to_sc_index(s, write_to - 1);
1184            int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1185                                                      first_sc, &type);
1186            /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1187            if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1188                skip_cow = false;
1189            }
1190        } else {
1191            /* If we can't skip the cow we can still look for invalid entries */
1192            type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1193        }
1194        if (type == QCOW2_SUBCLUSTER_INVALID) {
1195            int l1_index = offset_to_l1_index(s, guest_offset);
1196            uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1197            qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1198                                    "entry found (L2 offset: %#" PRIx64
1199                                    ", L2 index: %#x)",
1200                                    l2_offset, l2_index + i);
1201            return -EIO;
1202        }
1203    }
1204
1205    if (skip_cow) {
1206        return 0;
1207    }
1208
1209    /* Get the L2 entry of the first cluster */
1210    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1211    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1212    sc_index = offset_to_sc_index(s, guest_offset);
1213    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1214
1215    if (!keep_old) {
1216        switch (type) {
1217        case QCOW2_SUBCLUSTER_COMPRESSED:
1218            cow_start_from = 0;
1219            break;
1220        case QCOW2_SUBCLUSTER_NORMAL:
1221        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1222        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1223            if (has_subclusters(s)) {
1224                /* Skip all leading zero and unallocated subclusters */
1225                uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1226                cow_start_from =
1227                    MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1228            } else {
1229                cow_start_from = 0;
1230            }
1231            break;
1232        case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1233        case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1234            cow_start_from = sc_index << s->subcluster_bits;
1235            break;
1236        default:
1237            g_assert_not_reached();
1238        }
1239    } else {
1240        switch (type) {
1241        case QCOW2_SUBCLUSTER_NORMAL:
1242            cow_start_from = cow_start_to;
1243            break;
1244        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1245        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1246            cow_start_from = sc_index << s->subcluster_bits;
1247            break;
1248        default:
1249            g_assert_not_reached();
1250        }
1251    }
1252
1253    /* Get the L2 entry of the last cluster */
1254    l2_index += nb_clusters - 1;
1255    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1256    l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1257    sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1258    type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1259
1260    if (!keep_old) {
1261        switch (type) {
1262        case QCOW2_SUBCLUSTER_COMPRESSED:
1263            cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1264            break;
1265        case QCOW2_SUBCLUSTER_NORMAL:
1266        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1267        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1268            cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1269            if (has_subclusters(s)) {
1270                /* Skip all trailing zero and unallocated subclusters */
1271                uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1272                cow_end_to -=
1273                    MIN(s->subclusters_per_cluster - sc_index - 1,
1274                        clz32(alloc_bitmap)) << s->subcluster_bits;
1275            }
1276            break;
1277        case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1278        case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1279            cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1280            break;
1281        default:
1282            g_assert_not_reached();
1283        }
1284    } else {
1285        switch (type) {
1286        case QCOW2_SUBCLUSTER_NORMAL:
1287            cow_end_to = cow_end_from;
1288            break;
1289        case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1290        case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1291            cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1292            break;
1293        default:
1294            g_assert_not_reached();
1295        }
1296    }
1297
1298    *m = g_malloc0(sizeof(**m));
1299    **m = (QCowL2Meta) {
1300        .next           = old_m,
1301
1302        .alloc_offset   = host_cluster_offset,
1303        .offset         = start_of_cluster(s, guest_offset),
1304        .nb_clusters    = nb_clusters,
1305
1306        .keep_old_clusters = keep_old,
1307
1308        .cow_start = {
1309            .offset     = cow_start_from,
1310            .nb_bytes   = cow_start_to - cow_start_from,
1311        },
1312        .cow_end = {
1313            .offset     = cow_end_from,
1314            .nb_bytes   = cow_end_to - cow_end_from,
1315        },
1316    };
1317
1318    qemu_co_queue_init(&(*m)->dependent_requests);
1319    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1320
1321    return 0;
1322}
1323
1324/*
1325 * Returns true if writing to the cluster pointed to by @l2_entry
1326 * requires a new allocation (that is, if the cluster is unallocated
1327 * or has refcount > 1 and therefore cannot be written in-place).
1328 */
1329static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1330{
1331    switch (qcow2_get_cluster_type(bs, l2_entry)) {
1332    case QCOW2_CLUSTER_NORMAL:
1333    case QCOW2_CLUSTER_ZERO_ALLOC:
1334        if (l2_entry & QCOW_OFLAG_COPIED) {
1335            return false;
1336        }
1337        /* fallthrough */
1338    case QCOW2_CLUSTER_UNALLOCATED:
1339    case QCOW2_CLUSTER_COMPRESSED:
1340    case QCOW2_CLUSTER_ZERO_PLAIN:
1341        return true;
1342    default:
1343        abort();
1344    }
1345}
1346
1347/*
1348 * Returns the number of contiguous clusters that can be written to
1349 * using one single write request, starting from @l2_index.
1350 * At most @nb_clusters are checked.
1351 *
1352 * If @new_alloc is true this counts clusters that are either
1353 * unallocated, or allocated but with refcount > 1 (so they need to be
1354 * newly allocated and COWed).
1355 *
1356 * If @new_alloc is false this counts clusters that are already
1357 * allocated and can be overwritten in-place (this includes clusters
1358 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1359 */
1360static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1361                                       uint64_t *l2_slice, int l2_index,
1362                                       bool new_alloc)
1363{
1364    BDRVQcow2State *s = bs->opaque;
1365    uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1366    uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1367    int i;
1368
1369    for (i = 0; i < nb_clusters; i++) {
1370        l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1371        if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1372            break;
1373        }
1374        if (!new_alloc) {
1375            if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1376                break;
1377            }
1378            expected_offset += s->cluster_size;
1379        }
1380    }
1381
1382    assert(i <= nb_clusters);
1383    return i;
1384}
1385
1386/*
1387 * Check if there already is an AIO write request in flight which allocates
1388 * the same cluster. In this case we need to wait until the previous
1389 * request has completed and updated the L2 table accordingly.
1390 *
1391 * Returns:
1392 *   0       if there was no dependency. *cur_bytes indicates the number of
1393 *           bytes from guest_offset that can be read before the next
1394 *           dependency must be processed (or the request is complete)
1395 *
1396 *   -EAGAIN if we had to wait for another request, previously gathered
1397 *           information on cluster allocation may be invalid now. The caller
1398 *           must start over anyway, so consider *cur_bytes undefined.
1399 */
1400static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1401    uint64_t *cur_bytes, QCowL2Meta **m)
1402{
1403    BDRVQcow2State *s = bs->opaque;
1404    QCowL2Meta *old_alloc;
1405    uint64_t bytes = *cur_bytes;
1406
1407    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1408
1409        uint64_t start = guest_offset;
1410        uint64_t end = start + bytes;
1411        uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1412        uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1413
1414        if (end <= old_start || start >= old_end) {
1415            /* No intersection */
1416            continue;
1417        }
1418
1419        if (old_alloc->keep_old_clusters &&
1420            (end <= l2meta_cow_start(old_alloc) ||
1421             start >= l2meta_cow_end(old_alloc)))
1422        {
1423            /*
1424             * Clusters intersect but COW areas don't. And cluster itself is
1425             * already allocated. So, there is no actual conflict.
1426             */
1427            continue;
1428        }
1429
1430        /* Conflict */
1431
1432        if (start < old_start) {
1433            /* Stop at the start of a running allocation */
1434            bytes = old_start - start;
1435        } else {
1436            bytes = 0;
1437        }
1438
1439        /*
1440         * Stop if an l2meta already exists. After yielding, it wouldn't
1441         * be valid any more, so we'd have to clean up the old L2Metas
1442         * and deal with requests depending on them before starting to
1443         * gather new ones. Not worth the trouble.
1444         */
1445        if (bytes == 0 && *m) {
1446            *cur_bytes = 0;
1447            return 0;
1448        }
1449
1450        if (bytes == 0) {
1451            /*
1452             * Wait for the dependency to complete. We need to recheck
1453             * the free/allocated clusters when we continue.
1454             */
1455            qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1456            return -EAGAIN;
1457        }
1458    }
1459
1460    /* Make sure that existing clusters and new allocations are only used up to
1461     * the next dependency if we shortened the request above */
1462    *cur_bytes = bytes;
1463
1464    return 0;
1465}
1466
1467/*
1468 * Checks how many already allocated clusters that don't require a new
1469 * allocation there are at the given guest_offset (up to *bytes).
1470 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1471 * beginning at this host offset are counted.
1472 *
1473 * Note that guest_offset may not be cluster aligned. In this case, the
1474 * returned *host_offset points to exact byte referenced by guest_offset and
1475 * therefore isn't cluster aligned as well.
1476 *
1477 * Returns:
1478 *   0:     if no allocated clusters are available at the given offset.
1479 *          *bytes is normally unchanged. It is set to 0 if the cluster
1480 *          is allocated and can be overwritten in-place but doesn't have
1481 *          the right physical offset.
1482 *
1483 *   1:     if allocated clusters that can be overwritten in place are
1484 *          available at the requested offset. *bytes may have decreased
1485 *          and describes the length of the area that can be written to.
1486 *
1487 *  -errno: in error cases
1488 */
1489static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1490    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1491{
1492    BDRVQcow2State *s = bs->opaque;
1493    int l2_index;
1494    uint64_t l2_entry, cluster_offset;
1495    uint64_t *l2_slice;
1496    uint64_t nb_clusters;
1497    unsigned int keep_clusters;
1498    int ret;
1499
1500    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1501                              *bytes);
1502
1503    assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1504                                      == offset_into_cluster(s, *host_offset));
1505
1506    /*
1507     * Calculate the number of clusters to look for. We stop at L2 slice
1508     * boundaries to keep things simple.
1509     */
1510    nb_clusters =
1511        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1512
1513    l2_index = offset_to_l2_slice_index(s, guest_offset);
1514    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1515    /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1516    nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1517
1518    /* Find L2 entry for the first involved cluster */
1519    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1520    if (ret < 0) {
1521        return ret;
1522    }
1523
1524    l2_entry = get_l2_entry(s, l2_slice, l2_index);
1525    cluster_offset = l2_entry & L2E_OFFSET_MASK;
1526
1527    if (!cluster_needs_new_alloc(bs, l2_entry)) {
1528        if (offset_into_cluster(s, cluster_offset)) {
1529            qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1530                                    "%#" PRIx64 " unaligned (guest offset: %#"
1531                                    PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1532                                    "Preallocated zero" : "Data",
1533                                    cluster_offset, guest_offset);
1534            ret = -EIO;
1535            goto out;
1536        }
1537
1538        /* If a specific host_offset is required, check it */
1539        if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1540            *bytes = 0;
1541            ret = 0;
1542            goto out;
1543        }
1544
1545        /* We keep all QCOW_OFLAG_COPIED clusters */
1546        keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1547                                                    l2_index, false);
1548        assert(keep_clusters <= nb_clusters);
1549
1550        *bytes = MIN(*bytes,
1551                 keep_clusters * s->cluster_size
1552                 - offset_into_cluster(s, guest_offset));
1553        assert(*bytes != 0);
1554
1555        ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1556                                *bytes, l2_slice, m, true);
1557        if (ret < 0) {
1558            goto out;
1559        }
1560
1561        ret = 1;
1562    } else {
1563        ret = 0;
1564    }
1565
1566    /* Cleanup */
1567out:
1568    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1569
1570    /* Only return a host offset if we actually made progress. Otherwise we
1571     * would make requirements for handle_alloc() that it can't fulfill */
1572    if (ret > 0) {
1573        *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1574    }
1575
1576    return ret;
1577}
1578
1579/*
1580 * Allocates new clusters for the given guest_offset.
1581 *
1582 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1583 * contain the number of clusters that have been allocated and are contiguous
1584 * in the image file.
1585 *
1586 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1587 * at which the new clusters must start. *nb_clusters can be 0 on return in
1588 * this case if the cluster at host_offset is already in use. If *host_offset
1589 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1590 *
1591 * *host_offset is updated to contain the offset into the image file at which
1592 * the first allocated cluster starts.
1593 *
1594 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1595 * function has been waiting for another request and the allocation must be
1596 * restarted, but the whole request should not be failed.
1597 */
1598static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1599                                   uint64_t *host_offset, uint64_t *nb_clusters)
1600{
1601    BDRVQcow2State *s = bs->opaque;
1602
1603    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1604                                         *host_offset, *nb_clusters);
1605
1606    if (has_data_file(bs)) {
1607        assert(*host_offset == INV_OFFSET ||
1608               *host_offset == start_of_cluster(s, guest_offset));
1609        *host_offset = start_of_cluster(s, guest_offset);
1610        return 0;
1611    }
1612
1613    /* Allocate new clusters */
1614    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1615    if (*host_offset == INV_OFFSET) {
1616        int64_t cluster_offset =
1617            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1618        if (cluster_offset < 0) {
1619            return cluster_offset;
1620        }
1621        *host_offset = cluster_offset;
1622        return 0;
1623    } else {
1624        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1625        if (ret < 0) {
1626            return ret;
1627        }
1628        *nb_clusters = ret;
1629        return 0;
1630    }
1631}
1632
1633/*
1634 * Allocates new clusters for an area that is either still unallocated or
1635 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1636 * clusters are only allocated if the new allocation can match the specified
1637 * host offset.
1638 *
1639 * Note that guest_offset may not be cluster aligned. In this case, the
1640 * returned *host_offset points to exact byte referenced by guest_offset and
1641 * therefore isn't cluster aligned as well.
1642 *
1643 * Returns:
1644 *   0:     if no clusters could be allocated. *bytes is set to 0,
1645 *          *host_offset is left unchanged.
1646 *
1647 *   1:     if new clusters were allocated. *bytes may be decreased if the
1648 *          new allocation doesn't cover all of the requested area.
1649 *          *host_offset is updated to contain the host offset of the first
1650 *          newly allocated cluster.
1651 *
1652 *  -errno: in error cases
1653 */
1654static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1655    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1656{
1657    BDRVQcow2State *s = bs->opaque;
1658    int l2_index;
1659    uint64_t *l2_slice;
1660    uint64_t nb_clusters;
1661    int ret;
1662
1663    uint64_t alloc_cluster_offset;
1664
1665    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1666                             *bytes);
1667    assert(*bytes > 0);
1668
1669    /*
1670     * Calculate the number of clusters to look for. We stop at L2 slice
1671     * boundaries to keep things simple.
1672     */
1673    nb_clusters =
1674        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1675
1676    l2_index = offset_to_l2_slice_index(s, guest_offset);
1677    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1678    /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1679    nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1680
1681    /* Find L2 entry for the first involved cluster */
1682    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1683    if (ret < 0) {
1684        return ret;
1685    }
1686
1687    nb_clusters = count_single_write_clusters(bs, nb_clusters,
1688                                              l2_slice, l2_index, true);
1689
1690    /* This function is only called when there were no non-COW clusters, so if
1691     * we can't find any unallocated or COW clusters either, something is
1692     * wrong with our code. */
1693    assert(nb_clusters > 0);
1694
1695    /* Allocate at a given offset in the image file */
1696    alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1697        start_of_cluster(s, *host_offset);
1698    ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1699                                  &nb_clusters);
1700    if (ret < 0) {
1701        goto out;
1702    }
1703
1704    /* Can't extend contiguous allocation */
1705    if (nb_clusters == 0) {
1706        *bytes = 0;
1707        ret = 0;
1708        goto out;
1709    }
1710
1711    assert(alloc_cluster_offset != INV_OFFSET);
1712
1713    /*
1714     * Save info needed for meta data update.
1715     *
1716     * requested_bytes: Number of bytes from the start of the first
1717     * newly allocated cluster to the end of the (possibly shortened
1718     * before) write request.
1719     *
1720     * avail_bytes: Number of bytes from the start of the first
1721     * newly allocated to the end of the last newly allocated cluster.
1722     *
1723     * nb_bytes: The number of bytes from the start of the first
1724     * newly allocated cluster to the end of the area that the write
1725     * request actually writes to (excluding COW at the end)
1726     */
1727    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1728    int avail_bytes = nb_clusters << s->cluster_bits;
1729    int nb_bytes = MIN(requested_bytes, avail_bytes);
1730
1731    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1732    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1733    assert(*bytes != 0);
1734
1735    ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1736                            l2_slice, m, false);
1737    if (ret < 0) {
1738        goto out;
1739    }
1740
1741    ret = 1;
1742
1743out:
1744    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1745    return ret;
1746}
1747
1748/*
1749 * For a given area on the virtual disk defined by @offset and @bytes,
1750 * find the corresponding area on the qcow2 image, allocating new
1751 * clusters (or subclusters) if necessary. The result can span a
1752 * combination of allocated and previously unallocated clusters.
1753 *
1754 * Note that offset may not be cluster aligned. In this case, the returned
1755 * *host_offset points to exact byte referenced by offset and therefore
1756 * isn't cluster aligned as well.
1757 *
1758 * On return, @host_offset is set to the beginning of the requested
1759 * area. This area is guaranteed to be contiguous on the qcow2 file
1760 * but it can be smaller than initially requested. In this case @bytes
1761 * is updated with the actual size.
1762 *
1763 * If any clusters or subclusters were allocated then @m contains a
1764 * list with the information of all the affected regions. Note that
1765 * this can happen regardless of whether this function succeeds or
1766 * not. The caller is responsible for updating the L2 metadata of the
1767 * allocated clusters (on success) or freeing them (on failure), and
1768 * for clearing the contents of @m afterwards in both cases.
1769 *
1770 * If the request conflicts with another write request in flight, the coroutine
1771 * is queued and will be reentered when the dependency has completed.
1772 *
1773 * Return 0 on success and -errno in error cases
1774 */
1775int qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1776                            unsigned int *bytes, uint64_t *host_offset,
1777                            QCowL2Meta **m)
1778{
1779    BDRVQcow2State *s = bs->opaque;
1780    uint64_t start, remaining;
1781    uint64_t cluster_offset;
1782    uint64_t cur_bytes;
1783    int ret;
1784
1785    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1786
1787again:
1788    start = offset;
1789    remaining = *bytes;
1790    cluster_offset = INV_OFFSET;
1791    *host_offset = INV_OFFSET;
1792    cur_bytes = 0;
1793    *m = NULL;
1794
1795    while (true) {
1796
1797        if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1798            *host_offset = cluster_offset;
1799        }
1800
1801        assert(remaining >= cur_bytes);
1802
1803        start           += cur_bytes;
1804        remaining       -= cur_bytes;
1805
1806        if (cluster_offset != INV_OFFSET) {
1807            cluster_offset += cur_bytes;
1808        }
1809
1810        if (remaining == 0) {
1811            break;
1812        }
1813
1814        cur_bytes = remaining;
1815
1816        /*
1817         * Now start gathering as many contiguous clusters as possible:
1818         *
1819         * 1. Check for overlaps with in-flight allocations
1820         *
1821         *      a) Overlap not in the first cluster -> shorten this request and
1822         *         let the caller handle the rest in its next loop iteration.
1823         *
1824         *      b) Real overlaps of two requests. Yield and restart the search
1825         *         for contiguous clusters (the situation could have changed
1826         *         while we were sleeping)
1827         *
1828         *      c) TODO: Request starts in the same cluster as the in-flight
1829         *         allocation ends. Shorten the COW of the in-fight allocation,
1830         *         set cluster_offset to write to the same cluster and set up
1831         *         the right synchronisation between the in-flight request and
1832         *         the new one.
1833         */
1834        ret = handle_dependencies(bs, start, &cur_bytes, m);
1835        if (ret == -EAGAIN) {
1836            /* Currently handle_dependencies() doesn't yield if we already had
1837             * an allocation. If it did, we would have to clean up the L2Meta
1838             * structs before starting over. */
1839            assert(*m == NULL);
1840            goto again;
1841        } else if (ret < 0) {
1842            return ret;
1843        } else if (cur_bytes == 0) {
1844            break;
1845        } else {
1846            /* handle_dependencies() may have decreased cur_bytes (shortened
1847             * the allocations below) so that the next dependency is processed
1848             * correctly during the next loop iteration. */
1849        }
1850
1851        /*
1852         * 2. Count contiguous COPIED clusters.
1853         */
1854        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1855        if (ret < 0) {
1856            return ret;
1857        } else if (ret) {
1858            continue;
1859        } else if (cur_bytes == 0) {
1860            break;
1861        }
1862
1863        /*
1864         * 3. If the request still hasn't completed, allocate new clusters,
1865         *    considering any cluster_offset of steps 1c or 2.
1866         */
1867        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1868        if (ret < 0) {
1869            return ret;
1870        } else if (ret) {
1871            continue;
1872        } else {
1873            assert(cur_bytes == 0);
1874            break;
1875        }
1876    }
1877
1878    *bytes -= remaining;
1879    assert(*bytes > 0);
1880    assert(*host_offset != INV_OFFSET);
1881    assert(offset_into_cluster(s, *host_offset) ==
1882           offset_into_cluster(s, offset));
1883
1884    return 0;
1885}
1886
1887/*
1888 * This discards as many clusters of nb_clusters as possible at once (i.e.
1889 * all clusters in the same L2 slice) and returns the number of discarded
1890 * clusters.
1891 */
1892static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1893                               uint64_t nb_clusters,
1894                               enum qcow2_discard_type type, bool full_discard)
1895{
1896    BDRVQcow2State *s = bs->opaque;
1897    uint64_t *l2_slice;
1898    int l2_index;
1899    int ret;
1900    int i;
1901
1902    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1903    if (ret < 0) {
1904        return ret;
1905    }
1906
1907    /* Limit nb_clusters to one L2 slice */
1908    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1909    assert(nb_clusters <= INT_MAX);
1910
1911    for (i = 0; i < nb_clusters; i++) {
1912        uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1913        uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1914        uint64_t new_l2_entry = old_l2_entry;
1915        uint64_t new_l2_bitmap = old_l2_bitmap;
1916        QCow2ClusterType cluster_type =
1917            qcow2_get_cluster_type(bs, old_l2_entry);
1918
1919        /*
1920         * If full_discard is true, the cluster should not read back as zeroes,
1921         * but rather fall through to the backing file.
1922         *
1923         * If full_discard is false, make sure that a discarded area reads back
1924         * as zeroes for v3 images (we cannot do it for v2 without actually
1925         * writing a zero-filled buffer). We can skip the operation if the
1926         * cluster is already marked as zero, or if it's unallocated and we
1927         * don't have a backing file.
1928         *
1929         * TODO We might want to use bdrv_block_status(bs) here, but we're
1930         * holding s->lock, so that doesn't work today.
1931         */
1932        if (full_discard) {
1933            new_l2_entry = new_l2_bitmap = 0;
1934        } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1935            if (has_subclusters(s)) {
1936                new_l2_entry = 0;
1937                new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1938            } else {
1939                new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1940            }
1941        }
1942
1943        if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1944            continue;
1945        }
1946
1947        /* First remove L2 entries */
1948        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1949        set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1950        if (has_subclusters(s)) {
1951            set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1952        }
1953        /* Then decrease the refcount */
1954        qcow2_free_any_cluster(bs, old_l2_entry, type);
1955    }
1956
1957    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1958
1959    return nb_clusters;
1960}
1961
1962int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1963                          uint64_t bytes, enum qcow2_discard_type type,
1964                          bool full_discard)
1965{
1966    BDRVQcow2State *s = bs->opaque;
1967    uint64_t end_offset = offset + bytes;
1968    uint64_t nb_clusters;
1969    int64_t cleared;
1970    int ret;
1971
1972    /* Caller must pass aligned values, except at image end */
1973    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1974    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1975           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1976
1977    nb_clusters = size_to_clusters(s, bytes);
1978
1979    s->cache_discards = true;
1980
1981    /* Each L2 slice is handled by its own loop iteration */
1982    while (nb_clusters > 0) {
1983        cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1984                                      full_discard);
1985        if (cleared < 0) {
1986            ret = cleared;
1987            goto fail;
1988        }
1989
1990        nb_clusters -= cleared;
1991        offset += (cleared * s->cluster_size);
1992    }
1993
1994    ret = 0;
1995fail:
1996    s->cache_discards = false;
1997    qcow2_process_discards(bs, ret);
1998
1999    return ret;
2000}
2001
2002/*
2003 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2004 * all clusters in the same L2 slice) and returns the number of zeroed
2005 * clusters.
2006 */
2007static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2008                            uint64_t nb_clusters, int flags)
2009{
2010    BDRVQcow2State *s = bs->opaque;
2011    uint64_t *l2_slice;
2012    int l2_index;
2013    int ret;
2014    int i;
2015
2016    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2017    if (ret < 0) {
2018        return ret;
2019    }
2020
2021    /* Limit nb_clusters to one L2 slice */
2022    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2023    assert(nb_clusters <= INT_MAX);
2024
2025    for (i = 0; i < nb_clusters; i++) {
2026        uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2027        uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2028        QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2029        bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2030            ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2031        uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2032        uint64_t new_l2_bitmap = old_l2_bitmap;
2033
2034        if (has_subclusters(s)) {
2035            new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2036        } else {
2037            new_l2_entry |= QCOW_OFLAG_ZERO;
2038        }
2039
2040        if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2041            continue;
2042        }
2043
2044        /* First update L2 entries */
2045        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2046        set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2047        if (has_subclusters(s)) {
2048            set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2049        }
2050
2051        /* Then decrease the refcount */
2052        if (unmap) {
2053            qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2054        }
2055    }
2056
2057    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2058
2059    return nb_clusters;
2060}
2061
2062static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2063                               unsigned nb_subclusters)
2064{
2065    BDRVQcow2State *s = bs->opaque;
2066    uint64_t *l2_slice;
2067    uint64_t old_l2_bitmap, l2_bitmap;
2068    int l2_index, ret, sc = offset_to_sc_index(s, offset);
2069
2070    /* For full clusters use zero_in_l2_slice() instead */
2071    assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2072    assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2073    assert(offset_into_subcluster(s, offset) == 0);
2074
2075    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2076    if (ret < 0) {
2077        return ret;
2078    }
2079
2080    switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2081    case QCOW2_CLUSTER_COMPRESSED:
2082        ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2083        goto out;
2084    case QCOW2_CLUSTER_NORMAL:
2085    case QCOW2_CLUSTER_UNALLOCATED:
2086        break;
2087    default:
2088        g_assert_not_reached();
2089    }
2090
2091    old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2092
2093    l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2094    l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2095
2096    if (old_l2_bitmap != l2_bitmap) {
2097        set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2098        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2099    }
2100
2101    ret = 0;
2102out:
2103    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2104
2105    return ret;
2106}
2107
2108int qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2109                             uint64_t bytes, int flags)
2110{
2111    BDRVQcow2State *s = bs->opaque;
2112    uint64_t end_offset = offset + bytes;
2113    uint64_t nb_clusters;
2114    unsigned head, tail;
2115    int64_t cleared;
2116    int ret;
2117
2118    /* If we have to stay in sync with an external data file, zero out
2119     * s->data_file first. */
2120    if (data_file_is_raw(bs)) {
2121        assert(has_data_file(bs));
2122        ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2123        if (ret < 0) {
2124            return ret;
2125        }
2126    }
2127
2128    /* Caller must pass aligned values, except at image end */
2129    assert(offset_into_subcluster(s, offset) == 0);
2130    assert(offset_into_subcluster(s, end_offset) == 0 ||
2131           end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2132
2133    /*
2134     * The zero flag is only supported by version 3 and newer. However, if we
2135     * have no backing file, we can resort to discard in version 2.
2136     */
2137    if (s->qcow_version < 3) {
2138        if (!bs->backing) {
2139            return qcow2_cluster_discard(bs, offset, bytes,
2140                                         QCOW2_DISCARD_REQUEST, false);
2141        }
2142        return -ENOTSUP;
2143    }
2144
2145    head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2146    offset += head;
2147
2148    tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2149        end_offset - MAX(offset, start_of_cluster(s, end_offset));
2150    end_offset -= tail;
2151
2152    s->cache_discards = true;
2153
2154    if (head) {
2155        ret = zero_l2_subclusters(bs, offset - head,
2156                                  size_to_subclusters(s, head));
2157        if (ret < 0) {
2158            goto fail;
2159        }
2160    }
2161
2162    /* Each L2 slice is handled by its own loop iteration */
2163    nb_clusters = size_to_clusters(s, end_offset - offset);
2164
2165    while (nb_clusters > 0) {
2166        cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2167        if (cleared < 0) {
2168            ret = cleared;
2169            goto fail;
2170        }
2171
2172        nb_clusters -= cleared;
2173        offset += (cleared * s->cluster_size);
2174    }
2175
2176    if (tail) {
2177        ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2178        if (ret < 0) {
2179            goto fail;
2180        }
2181    }
2182
2183    ret = 0;
2184fail:
2185    s->cache_discards = false;
2186    qcow2_process_discards(bs, ret);
2187
2188    return ret;
2189}
2190
2191/*
2192 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2193 * non-backed non-pre-allocated zero clusters).
2194 *
2195 * l1_entries and *visited_l1_entries are used to keep track of progress for
2196 * status_cb(). l1_entries contains the total number of L1 entries and
2197 * *visited_l1_entries counts all visited L1 entries.
2198 */
2199static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2200                                      int l1_size, int64_t *visited_l1_entries,
2201                                      int64_t l1_entries,
2202                                      BlockDriverAmendStatusCB *status_cb,
2203                                      void *cb_opaque)
2204{
2205    BDRVQcow2State *s = bs->opaque;
2206    bool is_active_l1 = (l1_table == s->l1_table);
2207    uint64_t *l2_slice = NULL;
2208    unsigned slice, slice_size2, n_slices;
2209    int ret;
2210    int i, j;
2211
2212    /* qcow2_downgrade() is not allowed in images with subclusters */
2213    assert(!has_subclusters(s));
2214
2215    slice_size2 = s->l2_slice_size * l2_entry_size(s);
2216    n_slices = s->cluster_size / slice_size2;
2217
2218    if (!is_active_l1) {
2219        /* inactive L2 tables require a buffer to be stored in when loading
2220         * them from disk */
2221        l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2222        if (l2_slice == NULL) {
2223            return -ENOMEM;
2224        }
2225    }
2226
2227    for (i = 0; i < l1_size; i++) {
2228        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2229        uint64_t l2_refcount;
2230
2231        if (!l2_offset) {
2232            /* unallocated */
2233            (*visited_l1_entries)++;
2234            if (status_cb) {
2235                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2236            }
2237            continue;
2238        }
2239
2240        if (offset_into_cluster(s, l2_offset)) {
2241            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2242                                    PRIx64 " unaligned (L1 index: %#x)",
2243                                    l2_offset, i);
2244            ret = -EIO;
2245            goto fail;
2246        }
2247
2248        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2249                                 &l2_refcount);
2250        if (ret < 0) {
2251            goto fail;
2252        }
2253
2254        for (slice = 0; slice < n_slices; slice++) {
2255            uint64_t slice_offset = l2_offset + slice * slice_size2;
2256            bool l2_dirty = false;
2257            if (is_active_l1) {
2258                /* get active L2 tables from cache */
2259                ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2260                                      (void **)&l2_slice);
2261            } else {
2262                /* load inactive L2 tables from disk */
2263                ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
2264            }
2265            if (ret < 0) {
2266                goto fail;
2267            }
2268
2269            for (j = 0; j < s->l2_slice_size; j++) {
2270                uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2271                int64_t offset = l2_entry & L2E_OFFSET_MASK;
2272                QCow2ClusterType cluster_type =
2273                    qcow2_get_cluster_type(bs, l2_entry);
2274
2275                if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2276                    cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2277                    continue;
2278                }
2279
2280                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2281                    if (!bs->backing) {
2282                        /*
2283                         * not backed; therefore we can simply deallocate the
2284                         * cluster. No need to call set_l2_bitmap(), this
2285                         * function doesn't support images with subclusters.
2286                         */
2287                        set_l2_entry(s, l2_slice, j, 0);
2288                        l2_dirty = true;
2289                        continue;
2290                    }
2291
2292                    offset = qcow2_alloc_clusters(bs, s->cluster_size);
2293                    if (offset < 0) {
2294                        ret = offset;
2295                        goto fail;
2296                    }
2297
2298                    /* The offset must fit in the offset field */
2299                    assert((offset & L2E_OFFSET_MASK) == offset);
2300
2301                    if (l2_refcount > 1) {
2302                        /* For shared L2 tables, set the refcount accordingly
2303                         * (it is already 1 and needs to be l2_refcount) */
2304                        ret = qcow2_update_cluster_refcount(
2305                            bs, offset >> s->cluster_bits,
2306                            refcount_diff(1, l2_refcount), false,
2307                            QCOW2_DISCARD_OTHER);
2308                        if (ret < 0) {
2309                            qcow2_free_clusters(bs, offset, s->cluster_size,
2310                                                QCOW2_DISCARD_OTHER);
2311                            goto fail;
2312                        }
2313                    }
2314                }
2315
2316                if (offset_into_cluster(s, offset)) {
2317                    int l2_index = slice * s->l2_slice_size + j;
2318                    qcow2_signal_corruption(
2319                        bs, true, -1, -1,
2320                        "Cluster allocation offset "
2321                        "%#" PRIx64 " unaligned (L2 offset: %#"
2322                        PRIx64 ", L2 index: %#x)", offset,
2323                        l2_offset, l2_index);
2324                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2325                        qcow2_free_clusters(bs, offset, s->cluster_size,
2326                                            QCOW2_DISCARD_ALWAYS);
2327                    }
2328                    ret = -EIO;
2329                    goto fail;
2330                }
2331
2332                ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2333                                                    s->cluster_size, true);
2334                if (ret < 0) {
2335                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2336                        qcow2_free_clusters(bs, offset, s->cluster_size,
2337                                            QCOW2_DISCARD_ALWAYS);
2338                    }
2339                    goto fail;
2340                }
2341
2342                ret = bdrv_pwrite_zeroes(s->data_file, offset,
2343                                         s->cluster_size, 0);
2344                if (ret < 0) {
2345                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2346                        qcow2_free_clusters(bs, offset, s->cluster_size,
2347                                            QCOW2_DISCARD_ALWAYS);
2348                    }
2349                    goto fail;
2350                }
2351
2352                if (l2_refcount == 1) {
2353                    set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2354                } else {
2355                    set_l2_entry(s, l2_slice, j, offset);
2356                }
2357                /*
2358                 * No need to call set_l2_bitmap() after set_l2_entry() because
2359                 * this function doesn't support images with subclusters.
2360                 */
2361                l2_dirty = true;
2362            }
2363
2364            if (is_active_l1) {
2365                if (l2_dirty) {
2366                    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2367                    qcow2_cache_depends_on_flush(s->l2_table_cache);
2368                }
2369                qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2370            } else {
2371                if (l2_dirty) {
2372                    ret = qcow2_pre_write_overlap_check(
2373                        bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2374                        slice_offset, slice_size2, false);
2375                    if (ret < 0) {
2376                        goto fail;
2377                    }
2378
2379                    ret = bdrv_pwrite(bs->file, slice_offset,
2380                                      l2_slice, slice_size2);
2381                    if (ret < 0) {
2382                        goto fail;
2383                    }
2384                }
2385            }
2386        }
2387
2388        (*visited_l1_entries)++;
2389        if (status_cb) {
2390            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2391        }
2392    }
2393
2394    ret = 0;
2395
2396fail:
2397    if (l2_slice) {
2398        if (!is_active_l1) {
2399            qemu_vfree(l2_slice);
2400        } else {
2401            qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2402        }
2403    }
2404    return ret;
2405}
2406
2407/*
2408 * For backed images, expands all zero clusters on the image. For non-backed
2409 * images, deallocates all non-pre-allocated zero clusters (and claims the
2410 * allocation for pre-allocated ones). This is important for downgrading to a
2411 * qcow2 version which doesn't yet support metadata zero clusters.
2412 */
2413int qcow2_expand_zero_clusters(BlockDriverState *bs,
2414                               BlockDriverAmendStatusCB *status_cb,
2415                               void *cb_opaque)
2416{
2417    BDRVQcow2State *s = bs->opaque;
2418    uint64_t *l1_table = NULL;
2419    int64_t l1_entries = 0, visited_l1_entries = 0;
2420    int ret;
2421    int i, j;
2422
2423    if (status_cb) {
2424        l1_entries = s->l1_size;
2425        for (i = 0; i < s->nb_snapshots; i++) {
2426            l1_entries += s->snapshots[i].l1_size;
2427        }
2428    }
2429
2430    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2431                                     &visited_l1_entries, l1_entries,
2432                                     status_cb, cb_opaque);
2433    if (ret < 0) {
2434        goto fail;
2435    }
2436
2437    /* Inactive L1 tables may point to active L2 tables - therefore it is
2438     * necessary to flush the L2 table cache before trying to access the L2
2439     * tables pointed to by inactive L1 entries (else we might try to expand
2440     * zero clusters that have already been expanded); furthermore, it is also
2441     * necessary to empty the L2 table cache, since it may contain tables which
2442     * are now going to be modified directly on disk, bypassing the cache.
2443     * qcow2_cache_empty() does both for us. */
2444    ret = qcow2_cache_empty(bs, s->l2_table_cache);
2445    if (ret < 0) {
2446        goto fail;
2447    }
2448
2449    for (i = 0; i < s->nb_snapshots; i++) {
2450        int l1_size2;
2451        uint64_t *new_l1_table;
2452        Error *local_err = NULL;
2453
2454        ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2455                                   s->snapshots[i].l1_size, L1E_SIZE,
2456                                   QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2457                                   &local_err);
2458        if (ret < 0) {
2459            error_report_err(local_err);
2460            goto fail;
2461        }
2462
2463        l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2464        new_l1_table = g_try_realloc(l1_table, l1_size2);
2465
2466        if (!new_l1_table) {
2467            ret = -ENOMEM;
2468            goto fail;
2469        }
2470
2471        l1_table = new_l1_table;
2472
2473        ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2474                         l1_table, l1_size2);
2475        if (ret < 0) {
2476            goto fail;
2477        }
2478
2479        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2480            be64_to_cpus(&l1_table[j]);
2481        }
2482
2483        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2484                                         &visited_l1_entries, l1_entries,
2485                                         status_cb, cb_opaque);
2486        if (ret < 0) {
2487            goto fail;
2488        }
2489    }
2490
2491    ret = 0;
2492
2493fail:
2494    g_free(l1_table);
2495    return ret;
2496}
2497
2498void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2499                                     uint64_t *coffset, int *csize)
2500{
2501    BDRVQcow2State *s = bs->opaque;
2502    int nb_csectors;
2503
2504    assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2505
2506    *coffset = l2_entry & s->cluster_offset_mask;
2507
2508    nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2509    *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2510        (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2511}
2512