qemu/block/qed.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "block/qdict.h"
  17#include "qapi/error.h"
  18#include "qemu/timer.h"
  19#include "qemu/bswap.h"
  20#include "qemu/main-loop.h"
  21#include "qemu/module.h"
  22#include "qemu/option.h"
  23#include "qemu/memalign.h"
  24#include "trace.h"
  25#include "qed.h"
  26#include "sysemu/block-backend.h"
  27#include "qapi/qmp/qdict.h"
  28#include "qapi/qobject-input-visitor.h"
  29#include "qapi/qapi-visit-block-core.h"
  30
  31static QemuOptsList qed_create_opts;
  32
  33static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
  34                          const char *filename)
  35{
  36    const QEDHeader *header = (const QEDHeader *)buf;
  37
  38    if (buf_size < sizeof(*header)) {
  39        return 0;
  40    }
  41    if (le32_to_cpu(header->magic) != QED_MAGIC) {
  42        return 0;
  43    }
  44    return 100;
  45}
  46
  47/**
  48 * Check whether an image format is raw
  49 *
  50 * @fmt:    Backing file format, may be NULL
  51 */
  52static bool qed_fmt_is_raw(const char *fmt)
  53{
  54    return fmt && strcmp(fmt, "raw") == 0;
  55}
  56
  57static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
  58{
  59    cpu->magic = le32_to_cpu(le->magic);
  60    cpu->cluster_size = le32_to_cpu(le->cluster_size);
  61    cpu->table_size = le32_to_cpu(le->table_size);
  62    cpu->header_size = le32_to_cpu(le->header_size);
  63    cpu->features = le64_to_cpu(le->features);
  64    cpu->compat_features = le64_to_cpu(le->compat_features);
  65    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
  66    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
  67    cpu->image_size = le64_to_cpu(le->image_size);
  68    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
  69    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
  70}
  71
  72static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
  73{
  74    le->magic = cpu_to_le32(cpu->magic);
  75    le->cluster_size = cpu_to_le32(cpu->cluster_size);
  76    le->table_size = cpu_to_le32(cpu->table_size);
  77    le->header_size = cpu_to_le32(cpu->header_size);
  78    le->features = cpu_to_le64(cpu->features);
  79    le->compat_features = cpu_to_le64(cpu->compat_features);
  80    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
  81    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
  82    le->image_size = cpu_to_le64(cpu->image_size);
  83    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
  84    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
  85}
  86
  87int qed_write_header_sync(BDRVQEDState *s)
  88{
  89    QEDHeader le;
  90    int ret;
  91
  92    qed_header_cpu_to_le(&s->header, &le);
  93    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
  94    if (ret != sizeof(le)) {
  95        return ret;
  96    }
  97    return 0;
  98}
  99
 100/**
 101 * Update header in-place (does not rewrite backing filename or other strings)
 102 *
 103 * This function only updates known header fields in-place and does not affect
 104 * extra data after the QED header.
 105 *
 106 * No new allocating reqs can start while this function runs.
 107 */
 108static int coroutine_fn qed_write_header(BDRVQEDState *s)
 109{
 110    /* We must write full sectors for O_DIRECT but cannot necessarily generate
 111     * the data following the header if an unrecognized compat feature is
 112     * active.  Therefore, first read the sectors containing the header, update
 113     * them, and write back.
 114     */
 115
 116    int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
 117    size_t len = nsectors * BDRV_SECTOR_SIZE;
 118    uint8_t *buf;
 119    int ret;
 120
 121    assert(s->allocating_acb || s->allocating_write_reqs_plugged);
 122
 123    buf = qemu_blockalign(s->bs, len);
 124
 125    ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
 126    if (ret < 0) {
 127        goto out;
 128    }
 129
 130    /* Update header */
 131    qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
 132
 133    ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
 134    if (ret < 0) {
 135        goto out;
 136    }
 137
 138    ret = 0;
 139out:
 140    qemu_vfree(buf);
 141    return ret;
 142}
 143
 144static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
 145{
 146    uint64_t table_entries;
 147    uint64_t l2_size;
 148
 149    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
 150    l2_size = table_entries * cluster_size;
 151
 152    return l2_size * table_entries;
 153}
 154
 155static bool qed_is_cluster_size_valid(uint32_t cluster_size)
 156{
 157    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
 158        cluster_size > QED_MAX_CLUSTER_SIZE) {
 159        return false;
 160    }
 161    if (cluster_size & (cluster_size - 1)) {
 162        return false; /* not power of 2 */
 163    }
 164    return true;
 165}
 166
 167static bool qed_is_table_size_valid(uint32_t table_size)
 168{
 169    if (table_size < QED_MIN_TABLE_SIZE ||
 170        table_size > QED_MAX_TABLE_SIZE) {
 171        return false;
 172    }
 173    if (table_size & (table_size - 1)) {
 174        return false; /* not power of 2 */
 175    }
 176    return true;
 177}
 178
 179static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
 180                                    uint32_t table_size)
 181{
 182    if (image_size % BDRV_SECTOR_SIZE != 0) {
 183        return false; /* not multiple of sector size */
 184    }
 185    if (image_size > qed_max_image_size(cluster_size, table_size)) {
 186        return false; /* image is too large */
 187    }
 188    return true;
 189}
 190
 191/**
 192 * Read a string of known length from the image file
 193 *
 194 * @file:       Image file
 195 * @offset:     File offset to start of string, in bytes
 196 * @n:          String length in bytes
 197 * @buf:        Destination buffer
 198 * @buflen:     Destination buffer length in bytes
 199 * @ret:        0 on success, -errno on failure
 200 *
 201 * The string is NUL-terminated.
 202 */
 203static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
 204                           char *buf, size_t buflen)
 205{
 206    int ret;
 207    if (n >= buflen) {
 208        return -EINVAL;
 209    }
 210    ret = bdrv_pread(file, offset, buf, n);
 211    if (ret < 0) {
 212        return ret;
 213    }
 214    buf[n] = '\0';
 215    return 0;
 216}
 217
 218/**
 219 * Allocate new clusters
 220 *
 221 * @s:          QED state
 222 * @n:          Number of contiguous clusters to allocate
 223 * @ret:        Offset of first allocated cluster
 224 *
 225 * This function only produces the offset where the new clusters should be
 226 * written.  It updates BDRVQEDState but does not make any changes to the image
 227 * file.
 228 *
 229 * Called with table_lock held.
 230 */
 231static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
 232{
 233    uint64_t offset = s->file_size;
 234    s->file_size += n * s->header.cluster_size;
 235    return offset;
 236}
 237
 238QEDTable *qed_alloc_table(BDRVQEDState *s)
 239{
 240    /* Honor O_DIRECT memory alignment requirements */
 241    return qemu_blockalign(s->bs,
 242                           s->header.cluster_size * s->header.table_size);
 243}
 244
 245/**
 246 * Allocate a new zeroed L2 table
 247 *
 248 * Called with table_lock held.
 249 */
 250static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
 251{
 252    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
 253
 254    l2_table->table = qed_alloc_table(s);
 255    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
 256
 257    memset(l2_table->table->offsets, 0,
 258           s->header.cluster_size * s->header.table_size);
 259    return l2_table;
 260}
 261
 262static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
 263{
 264    qemu_co_mutex_lock(&s->table_lock);
 265
 266    /* No reentrancy is allowed.  */
 267    assert(!s->allocating_write_reqs_plugged);
 268    if (s->allocating_acb != NULL) {
 269        /* Another allocating write came concurrently.  This cannot happen
 270         * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
 271         */
 272        qemu_co_mutex_unlock(&s->table_lock);
 273        return false;
 274    }
 275
 276    s->allocating_write_reqs_plugged = true;
 277    qemu_co_mutex_unlock(&s->table_lock);
 278    return true;
 279}
 280
 281static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
 282{
 283    qemu_co_mutex_lock(&s->table_lock);
 284    assert(s->allocating_write_reqs_plugged);
 285    s->allocating_write_reqs_plugged = false;
 286    qemu_co_queue_next(&s->allocating_write_reqs);
 287    qemu_co_mutex_unlock(&s->table_lock);
 288}
 289
 290static void coroutine_fn qed_need_check_timer_entry(void *opaque)
 291{
 292    BDRVQEDState *s = opaque;
 293    int ret;
 294
 295    trace_qed_need_check_timer_cb(s);
 296
 297    if (!qed_plug_allocating_write_reqs(s)) {
 298        return;
 299    }
 300
 301    /* Ensure writes are on disk before clearing flag */
 302    ret = bdrv_co_flush(s->bs->file->bs);
 303    if (ret < 0) {
 304        qed_unplug_allocating_write_reqs(s);
 305        return;
 306    }
 307
 308    s->header.features &= ~QED_F_NEED_CHECK;
 309    ret = qed_write_header(s);
 310    (void) ret;
 311
 312    qed_unplug_allocating_write_reqs(s);
 313
 314    ret = bdrv_co_flush(s->bs);
 315    (void) ret;
 316}
 317
 318static void qed_need_check_timer_cb(void *opaque)
 319{
 320    Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
 321    qemu_coroutine_enter(co);
 322}
 323
 324static void qed_start_need_check_timer(BDRVQEDState *s)
 325{
 326    trace_qed_start_need_check_timer(s);
 327
 328    /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
 329     * migration.
 330     */
 331    timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 332                   NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
 333}
 334
 335/* It's okay to call this multiple times or when no timer is started */
 336static void qed_cancel_need_check_timer(BDRVQEDState *s)
 337{
 338    trace_qed_cancel_need_check_timer(s);
 339    timer_del(s->need_check_timer);
 340}
 341
 342static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
 343{
 344    BDRVQEDState *s = bs->opaque;
 345
 346    qed_cancel_need_check_timer(s);
 347    timer_free(s->need_check_timer);
 348}
 349
 350static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
 351                                        AioContext *new_context)
 352{
 353    BDRVQEDState *s = bs->opaque;
 354
 355    s->need_check_timer = aio_timer_new(new_context,
 356                                        QEMU_CLOCK_VIRTUAL, SCALE_NS,
 357                                        qed_need_check_timer_cb, s);
 358    if (s->header.features & QED_F_NEED_CHECK) {
 359        qed_start_need_check_timer(s);
 360    }
 361}
 362
 363static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
 364{
 365    BDRVQEDState *s = bs->opaque;
 366
 367    /* Fire the timer immediately in order to start doing I/O as soon as the
 368     * header is flushed.
 369     */
 370    if (s->need_check_timer && timer_pending(s->need_check_timer)) {
 371        qed_cancel_need_check_timer(s);
 372        qed_need_check_timer_entry(s);
 373    }
 374}
 375
 376static void bdrv_qed_init_state(BlockDriverState *bs)
 377{
 378    BDRVQEDState *s = bs->opaque;
 379
 380    memset(s, 0, sizeof(BDRVQEDState));
 381    s->bs = bs;
 382    qemu_co_mutex_init(&s->table_lock);
 383    qemu_co_queue_init(&s->allocating_write_reqs);
 384}
 385
 386/* Called with table_lock held.  */
 387static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
 388                                         int flags, Error **errp)
 389{
 390    BDRVQEDState *s = bs->opaque;
 391    QEDHeader le_header;
 392    int64_t file_size;
 393    int ret;
 394
 395    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
 396    if (ret < 0) {
 397        error_setg(errp, "Failed to read QED header");
 398        return ret;
 399    }
 400    qed_header_le_to_cpu(&le_header, &s->header);
 401
 402    if (s->header.magic != QED_MAGIC) {
 403        error_setg(errp, "Image not in QED format");
 404        return -EINVAL;
 405    }
 406    if (s->header.features & ~QED_FEATURE_MASK) {
 407        /* image uses unsupported feature bits */
 408        error_setg(errp, "Unsupported QED features: %" PRIx64,
 409                   s->header.features & ~QED_FEATURE_MASK);
 410        return -ENOTSUP;
 411    }
 412    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
 413        error_setg(errp, "QED cluster size is invalid");
 414        return -EINVAL;
 415    }
 416
 417    /* Round down file size to the last cluster */
 418    file_size = bdrv_getlength(bs->file->bs);
 419    if (file_size < 0) {
 420        error_setg(errp, "Failed to get file length");
 421        return file_size;
 422    }
 423    s->file_size = qed_start_of_cluster(s, file_size);
 424
 425    if (!qed_is_table_size_valid(s->header.table_size)) {
 426        error_setg(errp, "QED table size is invalid");
 427        return -EINVAL;
 428    }
 429    if (!qed_is_image_size_valid(s->header.image_size,
 430                                 s->header.cluster_size,
 431                                 s->header.table_size)) {
 432        error_setg(errp, "QED image size is invalid");
 433        return -EINVAL;
 434    }
 435    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
 436        error_setg(errp, "QED table offset is invalid");
 437        return -EINVAL;
 438    }
 439
 440    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
 441                      sizeof(uint64_t);
 442    s->l2_shift = ctz32(s->header.cluster_size);
 443    s->l2_mask = s->table_nelems - 1;
 444    s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
 445
 446    /* Header size calculation must not overflow uint32_t */
 447    if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
 448        error_setg(errp, "QED header size is too large");
 449        return -EINVAL;
 450    }
 451
 452    if ((s->header.features & QED_F_BACKING_FILE)) {
 453        if ((uint64_t)s->header.backing_filename_offset +
 454            s->header.backing_filename_size >
 455            s->header.cluster_size * s->header.header_size) {
 456            error_setg(errp, "QED backing filename offset is invalid");
 457            return -EINVAL;
 458        }
 459
 460        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
 461                              s->header.backing_filename_size,
 462                              bs->auto_backing_file,
 463                              sizeof(bs->auto_backing_file));
 464        if (ret < 0) {
 465            error_setg(errp, "Failed to read backing filename");
 466            return ret;
 467        }
 468        pstrcpy(bs->backing_file, sizeof(bs->backing_file),
 469                bs->auto_backing_file);
 470
 471        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
 472            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
 473        }
 474    }
 475
 476    /* Reset unknown autoclear feature bits.  This is a backwards
 477     * compatibility mechanism that allows images to be opened by older
 478     * programs, which "knock out" unknown feature bits.  When an image is
 479     * opened by a newer program again it can detect that the autoclear
 480     * feature is no longer valid.
 481     */
 482    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
 483        !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
 484        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
 485
 486        ret = qed_write_header_sync(s);
 487        if (ret) {
 488            error_setg(errp, "Failed to update header");
 489            return ret;
 490        }
 491
 492        /* From here on only known autoclear feature bits are valid */
 493        bdrv_flush(bs->file->bs);
 494    }
 495
 496    s->l1_table = qed_alloc_table(s);
 497    qed_init_l2_cache(&s->l2_cache);
 498
 499    ret = qed_read_l1_table_sync(s);
 500    if (ret) {
 501        error_setg(errp, "Failed to read L1 table");
 502        goto out;
 503    }
 504
 505    /* If image was not closed cleanly, check consistency */
 506    if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
 507        /* Read-only images cannot be fixed.  There is no risk of corruption
 508         * since write operations are not possible.  Therefore, allow
 509         * potentially inconsistent images to be opened read-only.  This can
 510         * aid data recovery from an otherwise inconsistent image.
 511         */
 512        if (!bdrv_is_read_only(bs->file->bs) &&
 513            !(flags & BDRV_O_INACTIVE)) {
 514            BdrvCheckResult result = {0};
 515
 516            ret = qed_check(s, &result, true);
 517            if (ret) {
 518                error_setg(errp, "Image corrupted");
 519                goto out;
 520            }
 521        }
 522    }
 523
 524    bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
 525
 526out:
 527    if (ret) {
 528        qed_free_l2_cache(&s->l2_cache);
 529        qemu_vfree(s->l1_table);
 530    }
 531    return ret;
 532}
 533
 534typedef struct QEDOpenCo {
 535    BlockDriverState *bs;
 536    QDict *options;
 537    int flags;
 538    Error **errp;
 539    int ret;
 540} QEDOpenCo;
 541
 542static void coroutine_fn bdrv_qed_open_entry(void *opaque)
 543{
 544    QEDOpenCo *qoc = opaque;
 545    BDRVQEDState *s = qoc->bs->opaque;
 546
 547    qemu_co_mutex_lock(&s->table_lock);
 548    qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
 549    qemu_co_mutex_unlock(&s->table_lock);
 550}
 551
 552static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
 553                         Error **errp)
 554{
 555    QEDOpenCo qoc = {
 556        .bs = bs,
 557        .options = options,
 558        .flags = flags,
 559        .errp = errp,
 560        .ret = -EINPROGRESS
 561    };
 562
 563    bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds,
 564                               BDRV_CHILD_IMAGE, false, errp);
 565    if (!bs->file) {
 566        return -EINVAL;
 567    }
 568
 569    bdrv_qed_init_state(bs);
 570    if (qemu_in_coroutine()) {
 571        bdrv_qed_open_entry(&qoc);
 572    } else {
 573        assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 574        qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
 575        BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 576    }
 577    BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 578    return qoc.ret;
 579}
 580
 581static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
 582{
 583    BDRVQEDState *s = bs->opaque;
 584
 585    bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
 586    bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
 587}
 588
 589/* We have nothing to do for QED reopen, stubs just return
 590 * success */
 591static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
 592                                   BlockReopenQueue *queue, Error **errp)
 593{
 594    return 0;
 595}
 596
 597static void bdrv_qed_close(BlockDriverState *bs)
 598{
 599    BDRVQEDState *s = bs->opaque;
 600
 601    bdrv_qed_detach_aio_context(bs);
 602
 603    /* Ensure writes reach stable storage */
 604    bdrv_flush(bs->file->bs);
 605
 606    /* Clean shutdown, no check required on next open */
 607    if (s->header.features & QED_F_NEED_CHECK) {
 608        s->header.features &= ~QED_F_NEED_CHECK;
 609        qed_write_header_sync(s);
 610    }
 611
 612    qed_free_l2_cache(&s->l2_cache);
 613    qemu_vfree(s->l1_table);
 614}
 615
 616static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
 617                                           Error **errp)
 618{
 619    BlockdevCreateOptionsQed *qed_opts;
 620    BlockBackend *blk = NULL;
 621    BlockDriverState *bs = NULL;
 622
 623    QEDHeader header;
 624    QEDHeader le_header;
 625    uint8_t *l1_table = NULL;
 626    size_t l1_size;
 627    int ret = 0;
 628
 629    assert(opts->driver == BLOCKDEV_DRIVER_QED);
 630    qed_opts = &opts->u.qed;
 631
 632    /* Validate options and set default values */
 633    if (!qed_opts->has_cluster_size) {
 634        qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
 635    }
 636    if (!qed_opts->has_table_size) {
 637        qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
 638    }
 639
 640    if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
 641        error_setg(errp, "QED cluster size must be within range [%u, %u] "
 642                         "and power of 2",
 643                   QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
 644        return -EINVAL;
 645    }
 646    if (!qed_is_table_size_valid(qed_opts->table_size)) {
 647        error_setg(errp, "QED table size must be within range [%u, %u] "
 648                         "and power of 2",
 649                   QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
 650        return -EINVAL;
 651    }
 652    if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
 653                                 qed_opts->table_size))
 654    {
 655        error_setg(errp, "QED image size must be a non-zero multiple of "
 656                         "cluster size and less than %" PRIu64 " bytes",
 657                   qed_max_image_size(qed_opts->cluster_size,
 658                                      qed_opts->table_size));
 659        return -EINVAL;
 660    }
 661
 662    /* Create BlockBackend to write to the image */
 663    bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
 664    if (bs == NULL) {
 665        return -EIO;
 666    }
 667
 668    blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
 669                          errp);
 670    if (!blk) {
 671        ret = -EPERM;
 672        goto out;
 673    }
 674    blk_set_allow_write_beyond_eof(blk, true);
 675
 676    /* Prepare image format */
 677    header = (QEDHeader) {
 678        .magic = QED_MAGIC,
 679        .cluster_size = qed_opts->cluster_size,
 680        .table_size = qed_opts->table_size,
 681        .header_size = 1,
 682        .features = 0,
 683        .compat_features = 0,
 684        .l1_table_offset = qed_opts->cluster_size,
 685        .image_size = qed_opts->size,
 686    };
 687
 688    l1_size = header.cluster_size * header.table_size;
 689
 690    /*
 691     * The QED format associates file length with allocation status,
 692     * so a new file (which is empty) must have a length of 0.
 693     */
 694    ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
 695    if (ret < 0) {
 696        goto out;
 697    }
 698
 699    if (qed_opts->has_backing_file) {
 700        header.features |= QED_F_BACKING_FILE;
 701        header.backing_filename_offset = sizeof(le_header);
 702        header.backing_filename_size = strlen(qed_opts->backing_file);
 703
 704        if (qed_opts->has_backing_fmt) {
 705            const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
 706            if (qed_fmt_is_raw(backing_fmt)) {
 707                header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
 708            }
 709        }
 710    }
 711
 712    qed_header_cpu_to_le(&header, &le_header);
 713    ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
 714    if (ret < 0) {
 715        goto out;
 716    }
 717    ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
 718                     header.backing_filename_size, 0);
 719    if (ret < 0) {
 720        goto out;
 721    }
 722
 723    l1_table = g_malloc0(l1_size);
 724    ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
 725    if (ret < 0) {
 726        goto out;
 727    }
 728
 729    ret = 0; /* success */
 730out:
 731    g_free(l1_table);
 732    blk_unref(blk);
 733    bdrv_unref(bs);
 734    return ret;
 735}
 736
 737static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
 738                                                const char *filename,
 739                                                QemuOpts *opts,
 740                                                Error **errp)
 741{
 742    BlockdevCreateOptions *create_options = NULL;
 743    QDict *qdict;
 744    Visitor *v;
 745    BlockDriverState *bs = NULL;
 746    int ret;
 747
 748    static const QDictRenames opt_renames[] = {
 749        { BLOCK_OPT_BACKING_FILE,       "backing-file" },
 750        { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
 751        { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
 752        { BLOCK_OPT_TABLE_SIZE,         "table-size" },
 753        { NULL, NULL },
 754    };
 755
 756    /* Parse options and convert legacy syntax */
 757    qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
 758
 759    if (!qdict_rename_keys(qdict, opt_renames, errp)) {
 760        ret = -EINVAL;
 761        goto fail;
 762    }
 763
 764    /* Create and open the file (protocol layer) */
 765    ret = bdrv_create_file(filename, opts, errp);
 766    if (ret < 0) {
 767        goto fail;
 768    }
 769
 770    bs = bdrv_open(filename, NULL, NULL,
 771                   BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
 772    if (bs == NULL) {
 773        ret = -EIO;
 774        goto fail;
 775    }
 776
 777    /* Now get the QAPI type BlockdevCreateOptions */
 778    qdict_put_str(qdict, "driver", "qed");
 779    qdict_put_str(qdict, "file", bs->node_name);
 780
 781    v = qobject_input_visitor_new_flat_confused(qdict, errp);
 782    if (!v) {
 783        ret = -EINVAL;
 784        goto fail;
 785    }
 786
 787    visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
 788    visit_free(v);
 789    if (!create_options) {
 790        ret = -EINVAL;
 791        goto fail;
 792    }
 793
 794    /* Silently round up size */
 795    assert(create_options->driver == BLOCKDEV_DRIVER_QED);
 796    create_options->u.qed.size =
 797        ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
 798
 799    /* Create the qed image (format layer) */
 800    ret = bdrv_qed_co_create(create_options, errp);
 801
 802fail:
 803    qobject_unref(qdict);
 804    bdrv_unref(bs);
 805    qapi_free_BlockdevCreateOptions(create_options);
 806    return ret;
 807}
 808
 809static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
 810                                                 bool want_zero,
 811                                                 int64_t pos, int64_t bytes,
 812                                                 int64_t *pnum, int64_t *map,
 813                                                 BlockDriverState **file)
 814{
 815    BDRVQEDState *s = bs->opaque;
 816    size_t len = MIN(bytes, SIZE_MAX);
 817    int status;
 818    QEDRequest request = { .l2_table = NULL };
 819    uint64_t offset;
 820    int ret;
 821
 822    qemu_co_mutex_lock(&s->table_lock);
 823    ret = qed_find_cluster(s, &request, pos, &len, &offset);
 824
 825    *pnum = len;
 826    switch (ret) {
 827    case QED_CLUSTER_FOUND:
 828        *map = offset | qed_offset_into_cluster(s, pos);
 829        status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
 830        *file = bs->file->bs;
 831        break;
 832    case QED_CLUSTER_ZERO:
 833        status = BDRV_BLOCK_ZERO;
 834        break;
 835    case QED_CLUSTER_L2:
 836    case QED_CLUSTER_L1:
 837        status = 0;
 838        break;
 839    default:
 840        assert(ret < 0);
 841        status = ret;
 842        break;
 843    }
 844
 845    qed_unref_l2_cache_entry(request.l2_table);
 846    qemu_co_mutex_unlock(&s->table_lock);
 847
 848    return status;
 849}
 850
 851static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
 852{
 853    return acb->bs->opaque;
 854}
 855
 856/**
 857 * Read from the backing file or zero-fill if no backing file
 858 *
 859 * @s:              QED state
 860 * @pos:            Byte position in device
 861 * @qiov:           Destination I/O vector
 862 *
 863 * This function reads qiov->size bytes starting at pos from the backing file.
 864 * If there is no backing file then zeroes are read.
 865 */
 866static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
 867                                              QEMUIOVector *qiov)
 868{
 869    if (s->bs->backing) {
 870        BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
 871        return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
 872    }
 873    qemu_iovec_memset(qiov, 0, 0, qiov->size);
 874    return 0;
 875}
 876
 877/**
 878 * Copy data from backing file into the image
 879 *
 880 * @s:          QED state
 881 * @pos:        Byte position in device
 882 * @len:        Number of bytes
 883 * @offset:     Byte offset in image file
 884 */
 885static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
 886                                                   uint64_t pos, uint64_t len,
 887                                                   uint64_t offset)
 888{
 889    QEMUIOVector qiov;
 890    int ret;
 891
 892    /* Skip copy entirely if there is no work to do */
 893    if (len == 0) {
 894        return 0;
 895    }
 896
 897    qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
 898
 899    ret = qed_read_backing_file(s, pos, &qiov);
 900
 901    if (ret) {
 902        goto out;
 903    }
 904
 905    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
 906    ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
 907    if (ret < 0) {
 908        goto out;
 909    }
 910    ret = 0;
 911out:
 912    qemu_vfree(qemu_iovec_buf(&qiov));
 913    return ret;
 914}
 915
 916/**
 917 * Link one or more contiguous clusters into a table
 918 *
 919 * @s:              QED state
 920 * @table:          L2 table
 921 * @index:          First cluster index
 922 * @n:              Number of contiguous clusters
 923 * @cluster:        First cluster offset
 924 *
 925 * The cluster offset may be an allocated byte offset in the image file, the
 926 * zero cluster marker, or the unallocated cluster marker.
 927 *
 928 * Called with table_lock held.
 929 */
 930static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
 931                                             int index, unsigned int n,
 932                                             uint64_t cluster)
 933{
 934    int i;
 935    for (i = index; i < index + n; i++) {
 936        table->offsets[i] = cluster;
 937        if (!qed_offset_is_unalloc_cluster(cluster) &&
 938            !qed_offset_is_zero_cluster(cluster)) {
 939            cluster += s->header.cluster_size;
 940        }
 941    }
 942}
 943
 944/* Called with table_lock held.  */
 945static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
 946{
 947    BDRVQEDState *s = acb_to_s(acb);
 948
 949    /* Free resources */
 950    qemu_iovec_destroy(&acb->cur_qiov);
 951    qed_unref_l2_cache_entry(acb->request.l2_table);
 952
 953    /* Free the buffer we may have allocated for zero writes */
 954    if (acb->flags & QED_AIOCB_ZERO) {
 955        qemu_vfree(acb->qiov->iov[0].iov_base);
 956        acb->qiov->iov[0].iov_base = NULL;
 957    }
 958
 959    /* Start next allocating write request waiting behind this one.  Note that
 960     * requests enqueue themselves when they first hit an unallocated cluster
 961     * but they wait until the entire request is finished before waking up the
 962     * next request in the queue.  This ensures that we don't cycle through
 963     * requests multiple times but rather finish one at a time completely.
 964     */
 965    if (acb == s->allocating_acb) {
 966        s->allocating_acb = NULL;
 967        if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
 968            qemu_co_queue_next(&s->allocating_write_reqs);
 969        } else if (s->header.features & QED_F_NEED_CHECK) {
 970            qed_start_need_check_timer(s);
 971        }
 972    }
 973}
 974
 975/**
 976 * Update L1 table with new L2 table offset and write it out
 977 *
 978 * Called with table_lock held.
 979 */
 980static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
 981{
 982    BDRVQEDState *s = acb_to_s(acb);
 983    CachedL2Table *l2_table = acb->request.l2_table;
 984    uint64_t l2_offset = l2_table->offset;
 985    int index, ret;
 986
 987    index = qed_l1_index(s, acb->cur_pos);
 988    s->l1_table->offsets[index] = l2_table->offset;
 989
 990    ret = qed_write_l1_table(s, index, 1);
 991
 992    /* Commit the current L2 table to the cache */
 993    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
 994
 995    /* This is guaranteed to succeed because we just committed the entry to the
 996     * cache.
 997     */
 998    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
 999    assert(acb->request.l2_table != NULL);
1000
1001    return ret;
1002}
1003
1004
1005/**
1006 * Update L2 table with new cluster offsets and write them out
1007 *
1008 * Called with table_lock held.
1009 */
1010static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1011{
1012    BDRVQEDState *s = acb_to_s(acb);
1013    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1014    int index, ret;
1015
1016    if (need_alloc) {
1017        qed_unref_l2_cache_entry(acb->request.l2_table);
1018        acb->request.l2_table = qed_new_l2_table(s);
1019    }
1020
1021    index = qed_l2_index(s, acb->cur_pos);
1022    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1023                         offset);
1024
1025    if (need_alloc) {
1026        /* Write out the whole new L2 table */
1027        ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1028        if (ret) {
1029            return ret;
1030        }
1031        return qed_aio_write_l1_update(acb);
1032    } else {
1033        /* Write out only the updated part of the L2 table */
1034        ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1035                                 false);
1036        if (ret) {
1037            return ret;
1038        }
1039    }
1040    return 0;
1041}
1042
1043/**
1044 * Write data to the image file
1045 *
1046 * Called with table_lock *not* held.
1047 */
1048static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1049{
1050    BDRVQEDState *s = acb_to_s(acb);
1051    uint64_t offset = acb->cur_cluster +
1052                      qed_offset_into_cluster(s, acb->cur_pos);
1053
1054    trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1055
1056    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1057    return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1058                           &acb->cur_qiov, 0);
1059}
1060
1061/**
1062 * Populate untouched regions of new data cluster
1063 *
1064 * Called with table_lock held.
1065 */
1066static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1067{
1068    BDRVQEDState *s = acb_to_s(acb);
1069    uint64_t start, len, offset;
1070    int ret;
1071
1072    qemu_co_mutex_unlock(&s->table_lock);
1073
1074    /* Populate front untouched region of new data cluster */
1075    start = qed_start_of_cluster(s, acb->cur_pos);
1076    len = qed_offset_into_cluster(s, acb->cur_pos);
1077
1078    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1079    ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1080    if (ret < 0) {
1081        goto out;
1082    }
1083
1084    /* Populate back untouched region of new data cluster */
1085    start = acb->cur_pos + acb->cur_qiov.size;
1086    len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1087    offset = acb->cur_cluster +
1088             qed_offset_into_cluster(s, acb->cur_pos) +
1089             acb->cur_qiov.size;
1090
1091    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1092    ret = qed_copy_from_backing_file(s, start, len, offset);
1093    if (ret < 0) {
1094        goto out;
1095    }
1096
1097    ret = qed_aio_write_main(acb);
1098    if (ret < 0) {
1099        goto out;
1100    }
1101
1102    if (s->bs->backing) {
1103        /*
1104         * Flush new data clusters before updating the L2 table
1105         *
1106         * This flush is necessary when a backing file is in use.  A crash
1107         * during an allocating write could result in empty clusters in the
1108         * image.  If the write only touched a subregion of the cluster,
1109         * then backing image sectors have been lost in the untouched
1110         * region.  The solution is to flush after writing a new data
1111         * cluster and before updating the L2 table.
1112         */
1113        ret = bdrv_co_flush(s->bs->file->bs);
1114    }
1115
1116out:
1117    qemu_co_mutex_lock(&s->table_lock);
1118    return ret;
1119}
1120
1121/**
1122 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1123 */
1124static bool qed_should_set_need_check(BDRVQEDState *s)
1125{
1126    /* The flush before L2 update path ensures consistency */
1127    if (s->bs->backing) {
1128        return false;
1129    }
1130
1131    return !(s->header.features & QED_F_NEED_CHECK);
1132}
1133
1134/**
1135 * Write new data cluster
1136 *
1137 * @acb:        Write request
1138 * @len:        Length in bytes
1139 *
1140 * This path is taken when writing to previously unallocated clusters.
1141 *
1142 * Called with table_lock held.
1143 */
1144static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1145{
1146    BDRVQEDState *s = acb_to_s(acb);
1147    int ret;
1148
1149    /* Cancel timer when the first allocating request comes in */
1150    if (s->allocating_acb == NULL) {
1151        qed_cancel_need_check_timer(s);
1152    }
1153
1154    /* Freeze this request if another allocating write is in progress */
1155    if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1156        if (s->allocating_acb != NULL) {
1157            qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1158            assert(s->allocating_acb == NULL);
1159        }
1160        s->allocating_acb = acb;
1161        return -EAGAIN; /* start over with looking up table entries */
1162    }
1163
1164    acb->cur_nclusters = qed_bytes_to_clusters(s,
1165            qed_offset_into_cluster(s, acb->cur_pos) + len);
1166    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1167
1168    if (acb->flags & QED_AIOCB_ZERO) {
1169        /* Skip ahead if the clusters are already zero */
1170        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1171            return 0;
1172        }
1173        acb->cur_cluster = 1;
1174    } else {
1175        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1176    }
1177
1178    if (qed_should_set_need_check(s)) {
1179        s->header.features |= QED_F_NEED_CHECK;
1180        ret = qed_write_header(s);
1181        if (ret < 0) {
1182            return ret;
1183        }
1184    }
1185
1186    if (!(acb->flags & QED_AIOCB_ZERO)) {
1187        ret = qed_aio_write_cow(acb);
1188        if (ret < 0) {
1189            return ret;
1190        }
1191    }
1192
1193    return qed_aio_write_l2_update(acb, acb->cur_cluster);
1194}
1195
1196/**
1197 * Write data cluster in place
1198 *
1199 * @acb:        Write request
1200 * @offset:     Cluster offset in bytes
1201 * @len:        Length in bytes
1202 *
1203 * This path is taken when writing to already allocated clusters.
1204 *
1205 * Called with table_lock held.
1206 */
1207static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1208                                              size_t len)
1209{
1210    BDRVQEDState *s = acb_to_s(acb);
1211    int r;
1212
1213    qemu_co_mutex_unlock(&s->table_lock);
1214
1215    /* Allocate buffer for zero writes */
1216    if (acb->flags & QED_AIOCB_ZERO) {
1217        struct iovec *iov = acb->qiov->iov;
1218
1219        if (!iov->iov_base) {
1220            iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1221            if (iov->iov_base == NULL) {
1222                r = -ENOMEM;
1223                goto out;
1224            }
1225            memset(iov->iov_base, 0, iov->iov_len);
1226        }
1227    }
1228
1229    /* Calculate the I/O vector */
1230    acb->cur_cluster = offset;
1231    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1232
1233    /* Do the actual write.  */
1234    r = qed_aio_write_main(acb);
1235out:
1236    qemu_co_mutex_lock(&s->table_lock);
1237    return r;
1238}
1239
1240/**
1241 * Write data cluster
1242 *
1243 * @opaque:     Write request
1244 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1245 * @offset:     Cluster offset in bytes
1246 * @len:        Length in bytes
1247 *
1248 * Called with table_lock held.
1249 */
1250static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1251                                           uint64_t offset, size_t len)
1252{
1253    QEDAIOCB *acb = opaque;
1254
1255    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1256
1257    acb->find_cluster_ret = ret;
1258
1259    switch (ret) {
1260    case QED_CLUSTER_FOUND:
1261        return qed_aio_write_inplace(acb, offset, len);
1262
1263    case QED_CLUSTER_L2:
1264    case QED_CLUSTER_L1:
1265    case QED_CLUSTER_ZERO:
1266        return qed_aio_write_alloc(acb, len);
1267
1268    default:
1269        g_assert_not_reached();
1270    }
1271}
1272
1273/**
1274 * Read data cluster
1275 *
1276 * @opaque:     Read request
1277 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1278 * @offset:     Cluster offset in bytes
1279 * @len:        Length in bytes
1280 *
1281 * Called with table_lock held.
1282 */
1283static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1284                                          uint64_t offset, size_t len)
1285{
1286    QEDAIOCB *acb = opaque;
1287    BDRVQEDState *s = acb_to_s(acb);
1288    BlockDriverState *bs = acb->bs;
1289    int r;
1290
1291    qemu_co_mutex_unlock(&s->table_lock);
1292
1293    /* Adjust offset into cluster */
1294    offset += qed_offset_into_cluster(s, acb->cur_pos);
1295
1296    trace_qed_aio_read_data(s, acb, ret, offset, len);
1297
1298    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1299
1300    /* Handle zero cluster and backing file reads, otherwise read
1301     * data cluster directly.
1302     */
1303    if (ret == QED_CLUSTER_ZERO) {
1304        qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1305        r = 0;
1306    } else if (ret != QED_CLUSTER_FOUND) {
1307        r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1308    } else {
1309        BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1310        r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1311                           &acb->cur_qiov, 0);
1312    }
1313
1314    qemu_co_mutex_lock(&s->table_lock);
1315    return r;
1316}
1317
1318/**
1319 * Begin next I/O or complete the request
1320 */
1321static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1322{
1323    BDRVQEDState *s = acb_to_s(acb);
1324    uint64_t offset;
1325    size_t len;
1326    int ret;
1327
1328    qemu_co_mutex_lock(&s->table_lock);
1329    while (1) {
1330        trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1331
1332        acb->qiov_offset += acb->cur_qiov.size;
1333        acb->cur_pos += acb->cur_qiov.size;
1334        qemu_iovec_reset(&acb->cur_qiov);
1335
1336        /* Complete request */
1337        if (acb->cur_pos >= acb->end_pos) {
1338            ret = 0;
1339            break;
1340        }
1341
1342        /* Find next cluster and start I/O */
1343        len = acb->end_pos - acb->cur_pos;
1344        ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1345        if (ret < 0) {
1346            break;
1347        }
1348
1349        if (acb->flags & QED_AIOCB_WRITE) {
1350            ret = qed_aio_write_data(acb, ret, offset, len);
1351        } else {
1352            ret = qed_aio_read_data(acb, ret, offset, len);
1353        }
1354
1355        if (ret < 0 && ret != -EAGAIN) {
1356            break;
1357        }
1358    }
1359
1360    trace_qed_aio_complete(s, acb, ret);
1361    qed_aio_complete(acb);
1362    qemu_co_mutex_unlock(&s->table_lock);
1363    return ret;
1364}
1365
1366static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1367                                       QEMUIOVector *qiov, int nb_sectors,
1368                                       int flags)
1369{
1370    QEDAIOCB acb = {
1371        .bs         = bs,
1372        .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1373        .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1374        .qiov       = qiov,
1375        .flags      = flags,
1376    };
1377    qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1378
1379    trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1380
1381    /* Start request */
1382    return qed_aio_next_io(&acb);
1383}
1384
1385static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1386                                          int64_t sector_num, int nb_sectors,
1387                                          QEMUIOVector *qiov)
1388{
1389    return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1390}
1391
1392static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1393                                           int64_t sector_num, int nb_sectors,
1394                                           QEMUIOVector *qiov, int flags)
1395{
1396    assert(!flags);
1397    return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1398}
1399
1400static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1401                                                  int64_t offset,
1402                                                  int64_t bytes,
1403                                                  BdrvRequestFlags flags)
1404{
1405    BDRVQEDState *s = bs->opaque;
1406
1407    /*
1408     * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1409     * then it will be allocated during request processing.
1410     */
1411    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1412
1413    /*
1414     * QED is not prepared for 63bit write-zero requests, so rely on
1415     * max_pwrite_zeroes.
1416     */
1417    assert(bytes <= INT_MAX);
1418
1419    /* Fall back if the request is not aligned */
1420    if (qed_offset_into_cluster(s, offset) ||
1421        qed_offset_into_cluster(s, bytes)) {
1422        return -ENOTSUP;
1423    }
1424
1425    return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1426                          bytes >> BDRV_SECTOR_BITS,
1427                          QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1428}
1429
1430static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1431                                             int64_t offset,
1432                                             bool exact,
1433                                             PreallocMode prealloc,
1434                                             BdrvRequestFlags flags,
1435                                             Error **errp)
1436{
1437    BDRVQEDState *s = bs->opaque;
1438    uint64_t old_image_size;
1439    int ret;
1440
1441    if (prealloc != PREALLOC_MODE_OFF) {
1442        error_setg(errp, "Unsupported preallocation mode '%s'",
1443                   PreallocMode_str(prealloc));
1444        return -ENOTSUP;
1445    }
1446
1447    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1448                                 s->header.table_size)) {
1449        error_setg(errp, "Invalid image size specified");
1450        return -EINVAL;
1451    }
1452
1453    if ((uint64_t)offset < s->header.image_size) {
1454        error_setg(errp, "Shrinking images is currently not supported");
1455        return -ENOTSUP;
1456    }
1457
1458    old_image_size = s->header.image_size;
1459    s->header.image_size = offset;
1460    ret = qed_write_header_sync(s);
1461    if (ret < 0) {
1462        s->header.image_size = old_image_size;
1463        error_setg_errno(errp, -ret, "Failed to update the image size");
1464    }
1465    return ret;
1466}
1467
1468static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1469{
1470    BDRVQEDState *s = bs->opaque;
1471    return s->header.image_size;
1472}
1473
1474static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1475{
1476    BDRVQEDState *s = bs->opaque;
1477
1478    memset(bdi, 0, sizeof(*bdi));
1479    bdi->cluster_size = s->header.cluster_size;
1480    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1481    return 0;
1482}
1483
1484static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1485                                        const char *backing_file,
1486                                        const char *backing_fmt)
1487{
1488    BDRVQEDState *s = bs->opaque;
1489    QEDHeader new_header, le_header;
1490    void *buffer;
1491    size_t buffer_len, backing_file_len;
1492    int ret;
1493
1494    /* Refuse to set backing filename if unknown compat feature bits are
1495     * active.  If the image uses an unknown compat feature then we may not
1496     * know the layout of data following the header structure and cannot safely
1497     * add a new string.
1498     */
1499    if (backing_file && (s->header.compat_features &
1500                         ~QED_COMPAT_FEATURE_MASK)) {
1501        return -ENOTSUP;
1502    }
1503
1504    memcpy(&new_header, &s->header, sizeof(new_header));
1505
1506    new_header.features &= ~(QED_F_BACKING_FILE |
1507                             QED_F_BACKING_FORMAT_NO_PROBE);
1508
1509    /* Adjust feature flags */
1510    if (backing_file) {
1511        new_header.features |= QED_F_BACKING_FILE;
1512
1513        if (qed_fmt_is_raw(backing_fmt)) {
1514            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1515        }
1516    }
1517
1518    /* Calculate new header size */
1519    backing_file_len = 0;
1520
1521    if (backing_file) {
1522        backing_file_len = strlen(backing_file);
1523    }
1524
1525    buffer_len = sizeof(new_header);
1526    new_header.backing_filename_offset = buffer_len;
1527    new_header.backing_filename_size = backing_file_len;
1528    buffer_len += backing_file_len;
1529
1530    /* Make sure we can rewrite header without failing */
1531    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1532        return -ENOSPC;
1533    }
1534
1535    /* Prepare new header */
1536    buffer = g_malloc(buffer_len);
1537
1538    qed_header_cpu_to_le(&new_header, &le_header);
1539    memcpy(buffer, &le_header, sizeof(le_header));
1540    buffer_len = sizeof(le_header);
1541
1542    if (backing_file) {
1543        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1544        buffer_len += backing_file_len;
1545    }
1546
1547    /* Write new header */
1548    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1549    g_free(buffer);
1550    if (ret == 0) {
1551        memcpy(&s->header, &new_header, sizeof(new_header));
1552    }
1553    return ret;
1554}
1555
1556static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1557                                                      Error **errp)
1558{
1559    BDRVQEDState *s = bs->opaque;
1560    int ret;
1561
1562    bdrv_qed_close(bs);
1563
1564    bdrv_qed_init_state(bs);
1565    qemu_co_mutex_lock(&s->table_lock);
1566    ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1567    qemu_co_mutex_unlock(&s->table_lock);
1568    if (ret < 0) {
1569        error_prepend(errp, "Could not reopen qed layer: ");
1570    }
1571}
1572
1573static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1574                                          BdrvCheckResult *result,
1575                                          BdrvCheckMode fix)
1576{
1577    BDRVQEDState *s = bs->opaque;
1578    int ret;
1579
1580    qemu_co_mutex_lock(&s->table_lock);
1581    ret = qed_check(s, result, !!fix);
1582    qemu_co_mutex_unlock(&s->table_lock);
1583
1584    return ret;
1585}
1586
1587static QemuOptsList qed_create_opts = {
1588    .name = "qed-create-opts",
1589    .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1590    .desc = {
1591        {
1592            .name = BLOCK_OPT_SIZE,
1593            .type = QEMU_OPT_SIZE,
1594            .help = "Virtual disk size"
1595        },
1596        {
1597            .name = BLOCK_OPT_BACKING_FILE,
1598            .type = QEMU_OPT_STRING,
1599            .help = "File name of a base image"
1600        },
1601        {
1602            .name = BLOCK_OPT_BACKING_FMT,
1603            .type = QEMU_OPT_STRING,
1604            .help = "Image format of the base image"
1605        },
1606        {
1607            .name = BLOCK_OPT_CLUSTER_SIZE,
1608            .type = QEMU_OPT_SIZE,
1609            .help = "Cluster size (in bytes)",
1610            .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1611        },
1612        {
1613            .name = BLOCK_OPT_TABLE_SIZE,
1614            .type = QEMU_OPT_SIZE,
1615            .help = "L1/L2 table size (in clusters)"
1616        },
1617        { /* end of list */ }
1618    }
1619};
1620
1621static BlockDriver bdrv_qed = {
1622    .format_name              = "qed",
1623    .instance_size            = sizeof(BDRVQEDState),
1624    .create_opts              = &qed_create_opts,
1625    .is_format                = true,
1626    .supports_backing         = true,
1627
1628    .bdrv_probe               = bdrv_qed_probe,
1629    .bdrv_open                = bdrv_qed_open,
1630    .bdrv_close               = bdrv_qed_close,
1631    .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1632    .bdrv_child_perm          = bdrv_default_perms,
1633    .bdrv_co_create           = bdrv_qed_co_create,
1634    .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1635    .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1636    .bdrv_co_block_status     = bdrv_qed_co_block_status,
1637    .bdrv_co_readv            = bdrv_qed_co_readv,
1638    .bdrv_co_writev           = bdrv_qed_co_writev,
1639    .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1640    .bdrv_co_truncate         = bdrv_qed_co_truncate,
1641    .bdrv_getlength           = bdrv_qed_getlength,
1642    .bdrv_get_info            = bdrv_qed_get_info,
1643    .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1644    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1645    .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1646    .bdrv_co_check            = bdrv_qed_co_check,
1647    .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1648    .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1649    .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1650};
1651
1652static void bdrv_qed_init(void)
1653{
1654    bdrv_register(&bdrv_qed);
1655}
1656
1657block_init(bdrv_qed_init);
1658