qemu/bsd-user/signal.c
<<
>>
Prefs
   1/*
   2 *  Emulation of BSD signals
   3 *
   4 *  Copyright (c) 2003 - 2008 Fabrice Bellard
   5 *  Copyright (c) 2013 Stacey Son
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License as published by
   9 *  the Free Software Foundation; either version 2 of the License, or
  10 *  (at your option) any later version.
  11 *
  12 *  This program is distributed in the hope that it will be useful,
  13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *  GNU General Public License for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License
  18 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/log.h"
  23#include "qemu.h"
  24#include "signal-common.h"
  25#include "trace.h"
  26#include "hw/core/tcg-cpu-ops.h"
  27#include "host-signal.h"
  28
  29static struct target_sigaction sigact_table[TARGET_NSIG];
  30static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
  31static void target_to_host_sigset_internal(sigset_t *d,
  32        const target_sigset_t *s);
  33
  34static inline int on_sig_stack(TaskState *ts, unsigned long sp)
  35{
  36    return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
  37}
  38
  39static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
  40{
  41    return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
  42        on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
  43}
  44
  45/*
  46 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
  47 * (unlike Linux) these functions are just the identity mapping. This might not
  48 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
  49 */
  50int host_to_target_signal(int sig)
  51{
  52    return sig;
  53}
  54
  55int target_to_host_signal(int sig)
  56{
  57    return sig;
  58}
  59
  60static inline void target_sigemptyset(target_sigset_t *set)
  61{
  62    memset(set, 0, sizeof(*set));
  63}
  64
  65static inline void target_sigaddset(target_sigset_t *set, int signum)
  66{
  67    signum--;
  68    uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
  69    set->__bits[signum / TARGET_NSIG_BPW] |= mask;
  70}
  71
  72static inline int target_sigismember(const target_sigset_t *set, int signum)
  73{
  74    signum--;
  75    abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
  76    return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
  77}
  78
  79/* Adjust the signal context to rewind out of safe-syscall if we're in it */
  80static inline void rewind_if_in_safe_syscall(void *puc)
  81{
  82    ucontext_t *uc = (ucontext_t *)puc;
  83    uintptr_t pcreg = host_signal_pc(uc);
  84
  85    if (pcreg > (uintptr_t)safe_syscall_start
  86        && pcreg < (uintptr_t)safe_syscall_end) {
  87        host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
  88    }
  89}
  90
  91/*
  92 * Note: The following take advantage of the BSD signal property that all
  93 * signals are available on all architectures.
  94 */
  95static void host_to_target_sigset_internal(target_sigset_t *d,
  96        const sigset_t *s)
  97{
  98    int i;
  99
 100    target_sigemptyset(d);
 101    for (i = 1; i <= NSIG; i++) {
 102        if (sigismember(s, i)) {
 103            target_sigaddset(d, host_to_target_signal(i));
 104        }
 105    }
 106}
 107
 108void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
 109{
 110    target_sigset_t d1;
 111    int i;
 112
 113    host_to_target_sigset_internal(&d1, s);
 114    for (i = 0; i < _SIG_WORDS; i++) {
 115        d->__bits[i] = tswap32(d1.__bits[i]);
 116    }
 117}
 118
 119static void target_to_host_sigset_internal(sigset_t *d,
 120        const target_sigset_t *s)
 121{
 122    int i;
 123
 124    sigemptyset(d);
 125    for (i = 1; i <= TARGET_NSIG; i++) {
 126        if (target_sigismember(s, i)) {
 127            sigaddset(d, target_to_host_signal(i));
 128        }
 129    }
 130}
 131
 132void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
 133{
 134    target_sigset_t s1;
 135    int i;
 136
 137    for (i = 0; i < TARGET_NSIG_WORDS; i++) {
 138        s1.__bits[i] = tswap32(s->__bits[i]);
 139    }
 140    target_to_host_sigset_internal(d, &s1);
 141}
 142
 143static bool has_trapno(int tsig)
 144{
 145    return tsig == TARGET_SIGILL ||
 146        tsig == TARGET_SIGFPE ||
 147        tsig == TARGET_SIGSEGV ||
 148        tsig == TARGET_SIGBUS ||
 149        tsig == TARGET_SIGTRAP;
 150}
 151
 152/* Siginfo conversion. */
 153
 154/*
 155 * Populate tinfo w/o swapping based on guessing which fields are valid.
 156 */
 157static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
 158        const siginfo_t *info)
 159{
 160    int sig = host_to_target_signal(info->si_signo);
 161    int si_code = info->si_code;
 162    int si_type;
 163
 164    /*
 165     * Make sure we that the variable portion of the target siginfo is zeroed
 166     * out so we don't leak anything into that.
 167     */
 168    memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
 169
 170    /*
 171     * This is awkward, because we have to use a combination of the si_code and
 172     * si_signo to figure out which of the union's members are valid.o We
 173     * therefore make our best guess.
 174     *
 175     * Once we have made our guess, we record it in the top 16 bits of
 176     * the si_code, so that tswap_siginfo() later can use it.
 177     * tswap_siginfo() will strip these top bits out before writing
 178     * si_code to the guest (sign-extending the lower bits).
 179     */
 180    tinfo->si_signo = sig;
 181    tinfo->si_errno = info->si_errno;
 182    tinfo->si_code = info->si_code;
 183    tinfo->si_pid = info->si_pid;
 184    tinfo->si_uid = info->si_uid;
 185    tinfo->si_status = info->si_status;
 186    tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
 187    /*
 188     * si_value is opaque to kernel. On all FreeBSD platforms,
 189     * sizeof(sival_ptr) >= sizeof(sival_int) so the following
 190     * always will copy the larger element.
 191     */
 192    tinfo->si_value.sival_ptr =
 193        (abi_ulong)(unsigned long)info->si_value.sival_ptr;
 194
 195    switch (si_code) {
 196        /*
 197         * All the SI_xxx codes that are defined here are global to
 198         * all the signals (they have values that none of the other,
 199         * more specific signal info will set).
 200         */
 201    case SI_USER:
 202    case SI_LWP:
 203    case SI_KERNEL:
 204    case SI_QUEUE:
 205    case SI_ASYNCIO:
 206        /*
 207         * Only the fixed parts are valid (though FreeBSD doesn't always
 208         * set all the fields to non-zero values.
 209         */
 210        si_type = QEMU_SI_NOINFO;
 211        break;
 212    case SI_TIMER:
 213        tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
 214        tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
 215        si_type = QEMU_SI_TIMER;
 216        break;
 217    case SI_MESGQ:
 218        tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
 219        si_type = QEMU_SI_MESGQ;
 220        break;
 221    default:
 222        /*
 223         * We have to go based on the signal number now to figure out
 224         * what's valid.
 225         */
 226        si_type = QEMU_SI_NOINFO;
 227        if (has_trapno(sig)) {
 228            tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
 229            si_type = QEMU_SI_FAULT;
 230        }
 231#ifdef TARGET_SIGPOLL
 232        /*
 233         * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
 234         * a chance it may popup in the future.
 235         */
 236        if (sig == TARGET_SIGPOLL) {
 237            tinfo->_reason._poll._band = info->_reason._poll._band;
 238            si_type = QEMU_SI_POLL;
 239        }
 240#endif
 241        /*
 242         * Unsure that this can actually be generated, and our support for
 243         * capsicum is somewhere between weak and non-existant, but if we get
 244         * one, then we know what to save.
 245         */
 246#ifdef QEMU_SI_CAPSICUM
 247        if (sig == TARGET_SIGTRAP) {
 248            tinfo->_reason._capsicum._syscall =
 249                info->_reason._capsicum._syscall;
 250            si_type = QEMU_SI_CAPSICUM;
 251        }
 252#endif
 253        break;
 254    }
 255    tinfo->si_code = deposit32(si_code, 24, 8, si_type);
 256}
 257
 258static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
 259{
 260    int si_type = extract32(info->si_code, 24, 8);
 261    int si_code = sextract32(info->si_code, 0, 24);
 262
 263    __put_user(info->si_signo, &tinfo->si_signo);
 264    __put_user(info->si_errno, &tinfo->si_errno);
 265    __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
 266    __put_user(info->si_pid, &tinfo->si_pid);
 267    __put_user(info->si_uid, &tinfo->si_uid);
 268    __put_user(info->si_status, &tinfo->si_status);
 269    __put_user(info->si_addr, &tinfo->si_addr);
 270    /*
 271     * Unswapped, because we passed it through mostly untouched.  si_value is
 272     * opaque to the kernel, so we didn't bother with potentially wasting cycles
 273     * to swap it into host byte order.
 274     */
 275    tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
 276
 277    /*
 278     * We can use our internal marker of which fields in the structure
 279     * are valid, rather than duplicating the guesswork of
 280     * host_to_target_siginfo_noswap() here.
 281     */
 282    switch (si_type) {
 283    case QEMU_SI_NOINFO:        /* No additional info */
 284        break;
 285    case QEMU_SI_FAULT:
 286        __put_user(info->_reason._fault._trapno,
 287                   &tinfo->_reason._fault._trapno);
 288        break;
 289    case QEMU_SI_TIMER:
 290        __put_user(info->_reason._timer._timerid,
 291                   &tinfo->_reason._timer._timerid);
 292        __put_user(info->_reason._timer._overrun,
 293                   &tinfo->_reason._timer._overrun);
 294        break;
 295    case QEMU_SI_MESGQ:
 296        __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
 297        break;
 298    case QEMU_SI_POLL:
 299        /* Note: Not generated on FreeBSD */
 300        __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
 301        break;
 302#ifdef QEMU_SI_CAPSICUM
 303    case QEMU_SI_CAPSICUM:
 304        __put_user(info->_reason._capsicum._syscall,
 305                   &tinfo->_reason._capsicum._syscall);
 306        break;
 307#endif
 308    default:
 309        g_assert_not_reached();
 310    }
 311}
 312
 313int block_signals(void)
 314{
 315    TaskState *ts = (TaskState *)thread_cpu->opaque;
 316    sigset_t set;
 317
 318    /*
 319     * It's OK to block everything including SIGSEGV, because we won't run any
 320     * further guest code before unblocking signals in
 321     * process_pending_signals(). We depend on the FreeBSD behaivor here where
 322     * this will only affect this thread's signal mask. We don't use
 323     * pthread_sigmask which might seem more correct because that routine also
 324     * does odd things with SIGCANCEL to implement pthread_cancel().
 325     */
 326    sigfillset(&set);
 327    sigprocmask(SIG_SETMASK, &set, 0);
 328
 329    return qatomic_xchg(&ts->signal_pending, 1);
 330}
 331
 332/* Returns 1 if given signal should dump core if not handled. */
 333static int core_dump_signal(int sig)
 334{
 335    switch (sig) {
 336    case TARGET_SIGABRT:
 337    case TARGET_SIGFPE:
 338    case TARGET_SIGILL:
 339    case TARGET_SIGQUIT:
 340    case TARGET_SIGSEGV:
 341    case TARGET_SIGTRAP:
 342    case TARGET_SIGBUS:
 343        return 1;
 344    default:
 345        return 0;
 346    }
 347}
 348
 349/* Abort execution with signal. */
 350static void QEMU_NORETURN dump_core_and_abort(int target_sig)
 351{
 352    CPUArchState *env = thread_cpu->env_ptr;
 353    CPUState *cpu = env_cpu(env);
 354    TaskState *ts = cpu->opaque;
 355    int core_dumped = 0;
 356    int host_sig;
 357    struct sigaction act;
 358
 359    host_sig = target_to_host_signal(target_sig);
 360    gdb_signalled(env, target_sig);
 361
 362    /* Dump core if supported by target binary format */
 363    if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
 364        stop_all_tasks();
 365        core_dumped =
 366            ((*ts->bprm->core_dump)(target_sig, env) == 0);
 367    }
 368    if (core_dumped) {
 369        struct rlimit nodump;
 370
 371        /*
 372         * We already dumped the core of target process, we don't want
 373         * a coredump of qemu itself.
 374         */
 375         getrlimit(RLIMIT_CORE, &nodump);
 376         nodump.rlim_cur = 0;
 377         setrlimit(RLIMIT_CORE, &nodump);
 378         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
 379             "- %s\n", target_sig, strsignal(host_sig), "core dumped");
 380    }
 381
 382    /*
 383     * The proper exit code for dying from an uncaught signal is
 384     * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
 385     * a negative value.  To get the proper exit code we need to
 386     * actually die from an uncaught signal.  Here the default signal
 387     * handler is installed, we send ourself a signal and we wait for
 388     * it to arrive.
 389     */
 390    memset(&act, 0, sizeof(act));
 391    sigfillset(&act.sa_mask);
 392    act.sa_handler = SIG_DFL;
 393    sigaction(host_sig, &act, NULL);
 394
 395    kill(getpid(), host_sig);
 396
 397    /*
 398     * Make sure the signal isn't masked (just reuse the mask inside
 399     * of act).
 400     */
 401    sigdelset(&act.sa_mask, host_sig);
 402    sigsuspend(&act.sa_mask);
 403
 404    /* unreachable */
 405    abort();
 406}
 407
 408/*
 409 * Queue a signal so that it will be send to the virtual CPU as soon as
 410 * possible.
 411 */
 412void queue_signal(CPUArchState *env, int sig, int si_type,
 413                  target_siginfo_t *info)
 414{
 415    CPUState *cpu = env_cpu(env);
 416    TaskState *ts = cpu->opaque;
 417
 418    trace_user_queue_signal(env, sig);
 419
 420    info->si_code = deposit32(info->si_code, 24, 8, si_type);
 421
 422    ts->sync_signal.info = *info;
 423    ts->sync_signal.pending = sig;
 424    /* Signal that a new signal is pending. */
 425    qatomic_set(&ts->signal_pending, 1);
 426    return;
 427}
 428
 429static int fatal_signal(int sig)
 430{
 431
 432    switch (sig) {
 433    case TARGET_SIGCHLD:
 434    case TARGET_SIGURG:
 435    case TARGET_SIGWINCH:
 436    case TARGET_SIGINFO:
 437        /* Ignored by default. */
 438        return 0;
 439    case TARGET_SIGCONT:
 440    case TARGET_SIGSTOP:
 441    case TARGET_SIGTSTP:
 442    case TARGET_SIGTTIN:
 443    case TARGET_SIGTTOU:
 444        /* Job control signals.  */
 445        return 0;
 446    default:
 447        return 1;
 448    }
 449}
 450
 451/*
 452 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
 453 * 'force' part is handled in process_pending_signals().
 454 */
 455void force_sig_fault(int sig, int code, abi_ulong addr)
 456{
 457    CPUState *cpu = thread_cpu;
 458    CPUArchState *env = cpu->env_ptr;
 459    target_siginfo_t info = {};
 460
 461    info.si_signo = sig;
 462    info.si_errno = 0;
 463    info.si_code = code;
 464    info.si_addr = addr;
 465    queue_signal(env, sig, QEMU_SI_FAULT, &info);
 466}
 467
 468static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
 469{
 470    CPUArchState *env = thread_cpu->env_ptr;
 471    CPUState *cpu = env_cpu(env);
 472    TaskState *ts = cpu->opaque;
 473    target_siginfo_t tinfo;
 474    ucontext_t *uc = puc;
 475    struct emulated_sigtable *k;
 476    int guest_sig;
 477    uintptr_t pc = 0;
 478    bool sync_sig = false;
 479
 480    /*
 481     * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
 482     * handling wrt signal blocking and unwinding.
 483     */
 484    if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
 485        MMUAccessType access_type;
 486        uintptr_t host_addr;
 487        abi_ptr guest_addr;
 488        bool is_write;
 489
 490        host_addr = (uintptr_t)info->si_addr;
 491
 492        /*
 493         * Convert forcefully to guest address space: addresses outside
 494         * reserved_va are still valid to report via SEGV_MAPERR.
 495         */
 496        guest_addr = h2g_nocheck(host_addr);
 497
 498        pc = host_signal_pc(uc);
 499        is_write = host_signal_write(info, uc);
 500        access_type = adjust_signal_pc(&pc, is_write);
 501
 502        if (host_sig == SIGSEGV) {
 503            bool maperr = true;
 504
 505            if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
 506                /* If this was a write to a TB protected page, restart. */
 507                if (is_write &&
 508                    handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
 509                                                pc, guest_addr)) {
 510                    return;
 511                }
 512
 513                /*
 514                 * With reserved_va, the whole address space is PROT_NONE,
 515                 * which means that we may get ACCERR when we want MAPERR.
 516                 */
 517                if (page_get_flags(guest_addr) & PAGE_VALID) {
 518                    maperr = false;
 519                } else {
 520                    info->si_code = SEGV_MAPERR;
 521                }
 522            }
 523
 524            sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
 525            cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
 526        } else {
 527            sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
 528            if (info->si_code == BUS_ADRALN) {
 529                cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
 530            }
 531        }
 532
 533        sync_sig = true;
 534    }
 535
 536    /* Get the target signal number. */
 537    guest_sig = host_to_target_signal(host_sig);
 538    if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
 539        return;
 540    }
 541    trace_user_host_signal(cpu, host_sig, guest_sig);
 542
 543    host_to_target_siginfo_noswap(&tinfo, info);
 544
 545    k = &ts->sigtab[guest_sig - 1];
 546    k->info = tinfo;
 547    k->pending = guest_sig;
 548    ts->signal_pending = 1;
 549
 550    /*
 551     * For synchronous signals, unwind the cpu state to the faulting
 552     * insn and then exit back to the main loop so that the signal
 553     * is delivered immediately.
 554     */
 555    if (sync_sig) {
 556        cpu->exception_index = EXCP_INTERRUPT;
 557        cpu_loop_exit_restore(cpu, pc);
 558    }
 559
 560    rewind_if_in_safe_syscall(puc);
 561
 562    /*
 563     * Block host signals until target signal handler entered. We
 564     * can't block SIGSEGV or SIGBUS while we're executing guest
 565     * code in case the guest code provokes one in the window between
 566     * now and it getting out to the main loop. Signals will be
 567     * unblocked again in process_pending_signals().
 568     */
 569    sigfillset(&uc->uc_sigmask);
 570    sigdelset(&uc->uc_sigmask, SIGSEGV);
 571    sigdelset(&uc->uc_sigmask, SIGBUS);
 572
 573    /* Interrupt the virtual CPU as soon as possible. */
 574    cpu_exit(thread_cpu);
 575}
 576
 577/* do_sigaltstack() returns target values and errnos. */
 578/* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
 579abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
 580{
 581    TaskState *ts = (TaskState *)thread_cpu->opaque;
 582    int ret;
 583    target_stack_t oss;
 584
 585    if (uoss_addr) {
 586        /* Save current signal stack params */
 587        oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
 588        oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
 589        oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
 590    }
 591
 592    if (uss_addr) {
 593        target_stack_t *uss;
 594        target_stack_t ss;
 595        size_t minstacksize = TARGET_MINSIGSTKSZ;
 596
 597        ret = -TARGET_EFAULT;
 598        if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
 599            goto out;
 600        }
 601        __get_user(ss.ss_sp, &uss->ss_sp);
 602        __get_user(ss.ss_size, &uss->ss_size);
 603        __get_user(ss.ss_flags, &uss->ss_flags);
 604        unlock_user_struct(uss, uss_addr, 0);
 605
 606        ret = -TARGET_EPERM;
 607        if (on_sig_stack(ts, sp)) {
 608            goto out;
 609        }
 610
 611        ret = -TARGET_EINVAL;
 612        if (ss.ss_flags != TARGET_SS_DISABLE
 613            && ss.ss_flags != TARGET_SS_ONSTACK
 614            && ss.ss_flags != 0) {
 615            goto out;
 616        }
 617
 618        if (ss.ss_flags == TARGET_SS_DISABLE) {
 619            ss.ss_size = 0;
 620            ss.ss_sp = 0;
 621        } else {
 622            ret = -TARGET_ENOMEM;
 623            if (ss.ss_size < minstacksize) {
 624                goto out;
 625            }
 626        }
 627
 628        ts->sigaltstack_used.ss_sp = ss.ss_sp;
 629        ts->sigaltstack_used.ss_size = ss.ss_size;
 630    }
 631
 632    if (uoss_addr) {
 633        ret = -TARGET_EFAULT;
 634        if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
 635            goto out;
 636        }
 637    }
 638
 639    ret = 0;
 640out:
 641    return ret;
 642}
 643
 644/* do_sigaction() return host values and errnos */
 645int do_sigaction(int sig, const struct target_sigaction *act,
 646        struct target_sigaction *oact)
 647{
 648    struct target_sigaction *k;
 649    struct sigaction act1;
 650    int host_sig;
 651    int ret = 0;
 652
 653    if (sig < 1 || sig > TARGET_NSIG) {
 654        return -TARGET_EINVAL;
 655    }
 656
 657    if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
 658        act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
 659        return -TARGET_EINVAL;
 660    }
 661
 662    if (block_signals()) {
 663        return -TARGET_ERESTART;
 664    }
 665
 666    k = &sigact_table[sig - 1];
 667    if (oact) {
 668        oact->_sa_handler = tswapal(k->_sa_handler);
 669        oact->sa_flags = tswap32(k->sa_flags);
 670        oact->sa_mask = k->sa_mask;
 671    }
 672    if (act) {
 673        k->_sa_handler = tswapal(act->_sa_handler);
 674        k->sa_flags = tswap32(act->sa_flags);
 675        k->sa_mask = act->sa_mask;
 676
 677        /* Update the host signal state. */
 678        host_sig = target_to_host_signal(sig);
 679        if (host_sig != SIGSEGV && host_sig != SIGBUS) {
 680            memset(&act1, 0, sizeof(struct sigaction));
 681            sigfillset(&act1.sa_mask);
 682            act1.sa_flags = SA_SIGINFO;
 683            if (k->sa_flags & TARGET_SA_RESTART) {
 684                act1.sa_flags |= SA_RESTART;
 685            }
 686            /*
 687             *  Note: It is important to update the host kernel signal mask to
 688             *  avoid getting unexpected interrupted system calls.
 689             */
 690            if (k->_sa_handler == TARGET_SIG_IGN) {
 691                act1.sa_sigaction = (void *)SIG_IGN;
 692            } else if (k->_sa_handler == TARGET_SIG_DFL) {
 693                if (fatal_signal(sig)) {
 694                    act1.sa_sigaction = host_signal_handler;
 695                } else {
 696                    act1.sa_sigaction = (void *)SIG_DFL;
 697                }
 698            } else {
 699                act1.sa_sigaction = host_signal_handler;
 700            }
 701            ret = sigaction(host_sig, &act1, NULL);
 702        }
 703    }
 704    return ret;
 705}
 706
 707static inline abi_ulong get_sigframe(struct target_sigaction *ka,
 708        CPUArchState *env, size_t frame_size)
 709{
 710    TaskState *ts = (TaskState *)thread_cpu->opaque;
 711    abi_ulong sp;
 712
 713    /* Use default user stack */
 714    sp = get_sp_from_cpustate(env);
 715
 716    if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
 717        sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
 718    }
 719
 720/* TODO: make this a target_arch function / define */
 721#if defined(TARGET_ARM)
 722    return (sp - frame_size) & ~7;
 723#elif defined(TARGET_AARCH64)
 724    return (sp - frame_size) & ~15;
 725#else
 726    return sp - frame_size;
 727#endif
 728}
 729
 730/* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
 731
 732static void setup_frame(int sig, int code, struct target_sigaction *ka,
 733    target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
 734{
 735    struct target_sigframe *frame;
 736    abi_ulong frame_addr;
 737    int i;
 738
 739    frame_addr = get_sigframe(ka, env, sizeof(*frame));
 740    trace_user_setup_frame(env, frame_addr);
 741    if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
 742        unlock_user_struct(frame, frame_addr, 1);
 743        dump_core_and_abort(TARGET_SIGILL);
 744        return;
 745    }
 746
 747    memset(frame, 0, sizeof(*frame));
 748    setup_sigframe_arch(env, frame_addr, frame, 0);
 749
 750    for (i = 0; i < TARGET_NSIG_WORDS; i++) {
 751        __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
 752    }
 753
 754    if (tinfo) {
 755        frame->sf_si.si_signo = tinfo->si_signo;
 756        frame->sf_si.si_errno = tinfo->si_errno;
 757        frame->sf_si.si_code = tinfo->si_code;
 758        frame->sf_si.si_pid = tinfo->si_pid;
 759        frame->sf_si.si_uid = tinfo->si_uid;
 760        frame->sf_si.si_status = tinfo->si_status;
 761        frame->sf_si.si_addr = tinfo->si_addr;
 762        /* see host_to_target_siginfo_noswap() for more details */
 763        frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
 764        /*
 765         * At this point, whatever is in the _reason union is complete
 766         * and in target order, so just copy the whole thing over, even
 767         * if it's too large for this specific signal.
 768         * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
 769         * that's so.
 770         */
 771        memcpy(&frame->sf_si._reason, &tinfo->_reason,
 772               sizeof(tinfo->_reason));
 773    }
 774
 775    set_sigtramp_args(env, sig, frame, frame_addr, ka);
 776
 777    unlock_user_struct(frame, frame_addr, 1);
 778}
 779
 780static int reset_signal_mask(target_ucontext_t *ucontext)
 781{
 782    int i;
 783    sigset_t blocked;
 784    target_sigset_t target_set;
 785    TaskState *ts = (TaskState *)thread_cpu->opaque;
 786
 787    for (i = 0; i < TARGET_NSIG_WORDS; i++) {
 788        if (__get_user(target_set.__bits[i],
 789                    &ucontext->uc_sigmask.__bits[i])) {
 790            return -TARGET_EFAULT;
 791        }
 792    }
 793    target_to_host_sigset_internal(&blocked, &target_set);
 794    ts->signal_mask = blocked;
 795
 796    return 0;
 797}
 798
 799/* See sys/$M/$M/exec_machdep.c sigreturn() */
 800long do_sigreturn(CPUArchState *env, abi_ulong addr)
 801{
 802    long ret;
 803    abi_ulong target_ucontext;
 804    target_ucontext_t *ucontext = NULL;
 805
 806    /* Get the target ucontext address from the stack frame */
 807    ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
 808    if (is_error(ret)) {
 809        return ret;
 810    }
 811    trace_user_do_sigreturn(env, addr);
 812    if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
 813        goto badframe;
 814    }
 815
 816    /* Set the register state back to before the signal. */
 817    if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
 818        goto badframe;
 819    }
 820
 821    /* And reset the signal mask. */
 822    if (reset_signal_mask(ucontext)) {
 823        goto badframe;
 824    }
 825
 826    unlock_user_struct(ucontext, target_ucontext, 0);
 827    return -TARGET_EJUSTRETURN;
 828
 829badframe:
 830    if (ucontext != NULL) {
 831        unlock_user_struct(ucontext, target_ucontext, 0);
 832    }
 833    return -TARGET_EFAULT;
 834}
 835
 836void signal_init(void)
 837{
 838    TaskState *ts = (TaskState *)thread_cpu->opaque;
 839    struct sigaction act;
 840    struct sigaction oact;
 841    int i;
 842    int host_sig;
 843
 844    /* Set the signal mask from the host mask. */
 845    sigprocmask(0, 0, &ts->signal_mask);
 846
 847    sigfillset(&act.sa_mask);
 848    act.sa_sigaction = host_signal_handler;
 849    act.sa_flags = SA_SIGINFO;
 850
 851    for (i = 1; i <= TARGET_NSIG; i++) {
 852#ifdef CONFIG_GPROF
 853        if (i == TARGET_SIGPROF) {
 854            continue;
 855        }
 856#endif
 857        host_sig = target_to_host_signal(i);
 858        sigaction(host_sig, NULL, &oact);
 859        if (oact.sa_sigaction == (void *)SIG_IGN) {
 860            sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
 861        } else if (oact.sa_sigaction == (void *)SIG_DFL) {
 862            sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
 863        }
 864        /*
 865         * If there's already a handler installed then something has
 866         * gone horribly wrong, so don't even try to handle that case.
 867         * Install some handlers for our own use.  We need at least
 868         * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
 869         * trap all signals because it affects syscall interrupt
 870         * behavior.  But do trap all default-fatal signals.
 871         */
 872        if (fatal_signal(i)) {
 873            sigaction(host_sig, &act, NULL);
 874        }
 875    }
 876}
 877
 878static void handle_pending_signal(CPUArchState *env, int sig,
 879                                  struct emulated_sigtable *k)
 880{
 881    CPUState *cpu = env_cpu(env);
 882    TaskState *ts = cpu->opaque;
 883    struct target_sigaction *sa;
 884    int code;
 885    sigset_t set;
 886    abi_ulong handler;
 887    target_siginfo_t tinfo;
 888    target_sigset_t target_old_set;
 889
 890    trace_user_handle_signal(env, sig);
 891
 892    k->pending = 0;
 893
 894    sig = gdb_handlesig(cpu, sig);
 895    if (!sig) {
 896        sa = NULL;
 897        handler = TARGET_SIG_IGN;
 898    } else {
 899        sa = &sigact_table[sig - 1];
 900        handler = sa->_sa_handler;
 901    }
 902
 903    if (do_strace) {
 904        print_taken_signal(sig, &k->info);
 905    }
 906
 907    if (handler == TARGET_SIG_DFL) {
 908        /*
 909         * default handler : ignore some signal. The other are job
 910         * control or fatal.
 911         */
 912        if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
 913            sig == TARGET_SIGTTOU) {
 914            kill(getpid(), SIGSTOP);
 915        } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
 916                   sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
 917                   sig != TARGET_SIGCONT) {
 918            dump_core_and_abort(sig);
 919        }
 920    } else if (handler == TARGET_SIG_IGN) {
 921        /* ignore sig */
 922    } else if (handler == TARGET_SIG_ERR) {
 923        dump_core_and_abort(sig);
 924    } else {
 925        /* compute the blocked signals during the handler execution */
 926        sigset_t *blocked_set;
 927
 928        target_to_host_sigset(&set, &sa->sa_mask);
 929        /*
 930         * SA_NODEFER indicates that the current signal should not be
 931         * blocked during the handler.
 932         */
 933        if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
 934            sigaddset(&set, target_to_host_signal(sig));
 935        }
 936
 937        /*
 938         * Save the previous blocked signal state to restore it at the
 939         * end of the signal execution (see do_sigreturn).
 940         */
 941        host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
 942
 943        blocked_set = ts->in_sigsuspend ?
 944            &ts->sigsuspend_mask : &ts->signal_mask;
 945        sigorset(&ts->signal_mask, blocked_set, &set);
 946        ts->in_sigsuspend = false;
 947        sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
 948
 949        /* XXX VM86 on x86 ??? */
 950
 951        code = k->info.si_code; /* From host, so no si_type */
 952        /* prepare the stack frame of the virtual CPU */
 953        if (sa->sa_flags & TARGET_SA_SIGINFO) {
 954            tswap_siginfo(&tinfo, &k->info);
 955            setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
 956        } else {
 957            setup_frame(sig, code, sa, &target_old_set, NULL, env);
 958        }
 959        if (sa->sa_flags & TARGET_SA_RESETHAND) {
 960            sa->_sa_handler = TARGET_SIG_DFL;
 961        }
 962    }
 963}
 964
 965void process_pending_signals(CPUArchState *env)
 966{
 967    CPUState *cpu = env_cpu(env);
 968    int sig;
 969    sigset_t *blocked_set, set;
 970    struct emulated_sigtable *k;
 971    TaskState *ts = cpu->opaque;
 972
 973    while (qatomic_read(&ts->signal_pending)) {
 974        sigfillset(&set);
 975        sigprocmask(SIG_SETMASK, &set, 0);
 976
 977    restart_scan:
 978        sig = ts->sync_signal.pending;
 979        if (sig) {
 980            /*
 981             * Synchronous signals are forced by the emulated CPU in some way.
 982             * If they are set to ignore, restore the default handler (see
 983             * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
 984             * though maybe this is done only when forcing exit for non SIGCHLD.
 985             */
 986            if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
 987                sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
 988                sigdelset(&ts->signal_mask, target_to_host_signal(sig));
 989                sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
 990            }
 991            handle_pending_signal(env, sig, &ts->sync_signal);
 992        }
 993
 994        k = ts->sigtab;
 995        for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
 996            blocked_set = ts->in_sigsuspend ?
 997                &ts->sigsuspend_mask : &ts->signal_mask;
 998            if (k->pending &&
 999                !sigismember(blocked_set, target_to_host_signal(sig))) {
1000                handle_pending_signal(env, sig, k);
1001                /*
1002                 * Restart scan from the beginning, as handle_pending_signal
1003                 * might have resulted in a new synchronous signal (eg SIGSEGV).
1004                 */
1005                goto restart_scan;
1006            }
1007        }
1008
1009        /*
1010         * Unblock signals and check one more time. Unblocking signals may cause
1011         * us to take another host signal, which will set signal_pending again.
1012         */
1013        qatomic_set(&ts->signal_pending, 0);
1014        ts->in_sigsuspend = false;
1015        set = ts->signal_mask;
1016        sigdelset(&set, SIGSEGV);
1017        sigdelset(&set, SIGBUS);
1018        sigprocmask(SIG_SETMASK, &set, 0);
1019    }
1020    ts->in_sigsuspend = false;
1021}
1022
1023void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1024                           MMUAccessType access_type, bool maperr, uintptr_t ra)
1025{
1026    const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1027
1028    if (tcg_ops->record_sigsegv) {
1029        tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1030    }
1031
1032    force_sig_fault(TARGET_SIGSEGV,
1033                    maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1034                    addr);
1035    cpu->exception_index = EXCP_INTERRUPT;
1036    cpu_loop_exit_restore(cpu, ra);
1037}
1038
1039void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1040                          MMUAccessType access_type, uintptr_t ra)
1041{
1042    const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1043
1044    if (tcg_ops->record_sigbus) {
1045        tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1046    }
1047
1048    force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1049    cpu->exception_index = EXCP_INTERRUPT;
1050    cpu_loop_exit_restore(cpu, ra);
1051}
1052