qemu/contrib/plugins/cache.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
   3 *
   4 * License: GNU GPL, version 2 or later.
   5 *   See the COPYING file in the top-level directory.
   6 */
   7
   8#include <inttypes.h>
   9#include <stdio.h>
  10#include <glib.h>
  11
  12#include <qemu-plugin.h>
  13
  14#define STRTOLL(x) g_ascii_strtoll(x, NULL, 10)
  15
  16QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
  17
  18static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
  19
  20static GHashTable *miss_ht;
  21
  22static GMutex hashtable_lock;
  23static GRand *rng;
  24
  25static int limit;
  26static bool sys;
  27
  28enum EvictionPolicy {
  29    LRU,
  30    FIFO,
  31    RAND,
  32};
  33
  34enum EvictionPolicy policy;
  35
  36/*
  37 * A CacheSet is a set of cache blocks. A memory block that maps to a set can be
  38 * put in any of the blocks inside the set. The number of block per set is
  39 * called the associativity (assoc).
  40 *
  41 * Each block contains the the stored tag and a valid bit. Since this is not
  42 * a functional simulator, the data itself is not stored. We only identify
  43 * whether a block is in the cache or not by searching for its tag.
  44 *
  45 * In order to search for memory data in the cache, the set identifier and tag
  46 * are extracted from the address and the set is probed to see whether a tag
  47 * match occur.
  48 *
  49 * An address is logically divided into three portions: The block offset,
  50 * the set number, and the tag.
  51 *
  52 * The set number is used to identify the set in which the block may exist.
  53 * The tag is compared against all the tags of a set to search for a match. If a
  54 * match is found, then the access is a hit.
  55 *
  56 * The CacheSet also contains bookkeaping information about eviction details.
  57 */
  58
  59typedef struct {
  60    uint64_t tag;
  61    bool valid;
  62} CacheBlock;
  63
  64typedef struct {
  65    CacheBlock *blocks;
  66    uint64_t *lru_priorities;
  67    uint64_t lru_gen_counter;
  68    GQueue *fifo_queue;
  69} CacheSet;
  70
  71typedef struct {
  72    CacheSet *sets;
  73    int num_sets;
  74    int cachesize;
  75    int assoc;
  76    int blksize_shift;
  77    uint64_t set_mask;
  78    uint64_t tag_mask;
  79    uint64_t accesses;
  80    uint64_t misses;
  81} Cache;
  82
  83typedef struct {
  84    char *disas_str;
  85    const char *symbol;
  86    uint64_t addr;
  87    uint64_t l1_dmisses;
  88    uint64_t l1_imisses;
  89    uint64_t l2_misses;
  90} InsnData;
  91
  92void (*update_hit)(Cache *cache, int set, int blk);
  93void (*update_miss)(Cache *cache, int set, int blk);
  94
  95void (*metadata_init)(Cache *cache);
  96void (*metadata_destroy)(Cache *cache);
  97
  98static int cores;
  99static Cache **l1_dcaches, **l1_icaches;
 100
 101static bool use_l2;
 102static Cache **l2_ucaches;
 103
 104static GMutex *l1_dcache_locks;
 105static GMutex *l1_icache_locks;
 106static GMutex *l2_ucache_locks;
 107
 108static uint64_t l1_dmem_accesses;
 109static uint64_t l1_imem_accesses;
 110static uint64_t l1_imisses;
 111static uint64_t l1_dmisses;
 112
 113static uint64_t l2_mem_accesses;
 114static uint64_t l2_misses;
 115
 116static int pow_of_two(int num)
 117{
 118    g_assert((num & (num - 1)) == 0);
 119    int ret = 0;
 120    while (num /= 2) {
 121        ret++;
 122    }
 123    return ret;
 124}
 125
 126/*
 127 * LRU evection policy: For each set, a generation counter is maintained
 128 * alongside a priority array.
 129 *
 130 * On each set access, the generation counter is incremented.
 131 *
 132 * On a cache hit: The hit-block is assigned the current generation counter,
 133 * indicating that it is the most recently used block.
 134 *
 135 * On a cache miss: The block with the least priority is searched and replaced
 136 * with the newly-cached block, of which the priority is set to the current
 137 * generation number.
 138 */
 139
 140static void lru_priorities_init(Cache *cache)
 141{
 142    int i;
 143
 144    for (i = 0; i < cache->num_sets; i++) {
 145        cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc);
 146        cache->sets[i].lru_gen_counter = 0;
 147    }
 148}
 149
 150static void lru_update_blk(Cache *cache, int set_idx, int blk_idx)
 151{
 152    CacheSet *set = &cache->sets[set_idx];
 153    set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter;
 154    set->lru_gen_counter++;
 155}
 156
 157static int lru_get_lru_block(Cache *cache, int set_idx)
 158{
 159    int i, min_idx, min_priority;
 160
 161    min_priority = cache->sets[set_idx].lru_priorities[0];
 162    min_idx = 0;
 163
 164    for (i = 1; i < cache->assoc; i++) {
 165        if (cache->sets[set_idx].lru_priorities[i] < min_priority) {
 166            min_priority = cache->sets[set_idx].lru_priorities[i];
 167            min_idx = i;
 168        }
 169    }
 170    return min_idx;
 171}
 172
 173static void lru_priorities_destroy(Cache *cache)
 174{
 175    int i;
 176
 177    for (i = 0; i < cache->num_sets; i++) {
 178        g_free(cache->sets[i].lru_priorities);
 179    }
 180}
 181
 182/*
 183 * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that
 184 * stores accesses to the cache.
 185 *
 186 * On a compulsory miss: The block index is enqueued to the fifo_queue to
 187 * indicate that it's the latest cached block.
 188 *
 189 * On a conflict miss: The first-in block is removed from the cache and the new
 190 * block is put in its place and enqueued to the FIFO queue.
 191 */
 192
 193static void fifo_init(Cache *cache)
 194{
 195    int i;
 196
 197    for (i = 0; i < cache->num_sets; i++) {
 198        cache->sets[i].fifo_queue = g_queue_new();
 199    }
 200}
 201
 202static int fifo_get_first_block(Cache *cache, int set)
 203{
 204    GQueue *q = cache->sets[set].fifo_queue;
 205    return GPOINTER_TO_INT(g_queue_pop_tail(q));
 206}
 207
 208static void fifo_update_on_miss(Cache *cache, int set, int blk_idx)
 209{
 210    GQueue *q = cache->sets[set].fifo_queue;
 211    g_queue_push_head(q, GINT_TO_POINTER(blk_idx));
 212}
 213
 214static void fifo_destroy(Cache *cache)
 215{
 216    int i;
 217
 218    for (i = 0; i < cache->num_sets; i++) {
 219        g_queue_free(cache->sets[i].fifo_queue);
 220    }
 221}
 222
 223static inline uint64_t extract_tag(Cache *cache, uint64_t addr)
 224{
 225    return addr & cache->tag_mask;
 226}
 227
 228static inline uint64_t extract_set(Cache *cache, uint64_t addr)
 229{
 230    return (addr & cache->set_mask) >> cache->blksize_shift;
 231}
 232
 233static const char *cache_config_error(int blksize, int assoc, int cachesize)
 234{
 235    if (cachesize % blksize != 0) {
 236        return "cache size must be divisible by block size";
 237    } else if (cachesize % (blksize * assoc) != 0) {
 238        return "cache size must be divisible by set size (assoc * block size)";
 239    } else {
 240        return NULL;
 241    }
 242}
 243
 244static bool bad_cache_params(int blksize, int assoc, int cachesize)
 245{
 246    return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0);
 247}
 248
 249static Cache *cache_init(int blksize, int assoc, int cachesize)
 250{
 251    Cache *cache;
 252    int i;
 253    uint64_t blk_mask;
 254
 255    /*
 256     * This function shall not be called directly, and hence expects suitable
 257     * parameters.
 258     */
 259    g_assert(!bad_cache_params(blksize, assoc, cachesize));
 260
 261    cache = g_new(Cache, 1);
 262    cache->assoc = assoc;
 263    cache->cachesize = cachesize;
 264    cache->num_sets = cachesize / (blksize * assoc);
 265    cache->sets = g_new(CacheSet, cache->num_sets);
 266    cache->blksize_shift = pow_of_two(blksize);
 267    cache->accesses = 0;
 268    cache->misses = 0;
 269
 270    for (i = 0; i < cache->num_sets; i++) {
 271        cache->sets[i].blocks = g_new0(CacheBlock, assoc);
 272    }
 273
 274    blk_mask = blksize - 1;
 275    cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift);
 276    cache->tag_mask = ~(cache->set_mask | blk_mask);
 277
 278    if (metadata_init) {
 279        metadata_init(cache);
 280    }
 281
 282    return cache;
 283}
 284
 285static Cache **caches_init(int blksize, int assoc, int cachesize)
 286{
 287    Cache **caches;
 288    int i;
 289
 290    if (bad_cache_params(blksize, assoc, cachesize)) {
 291        return NULL;
 292    }
 293
 294    caches = g_new(Cache *, cores);
 295
 296    for (i = 0; i < cores; i++) {
 297        caches[i] = cache_init(blksize, assoc, cachesize);
 298    }
 299
 300    return caches;
 301}
 302
 303static int get_invalid_block(Cache *cache, uint64_t set)
 304{
 305    int i;
 306
 307    for (i = 0; i < cache->assoc; i++) {
 308        if (!cache->sets[set].blocks[i].valid) {
 309            return i;
 310        }
 311    }
 312
 313    return -1;
 314}
 315
 316static int get_replaced_block(Cache *cache, int set)
 317{
 318    switch (policy) {
 319    case RAND:
 320        return g_rand_int_range(rng, 0, cache->assoc);
 321    case LRU:
 322        return lru_get_lru_block(cache, set);
 323    case FIFO:
 324        return fifo_get_first_block(cache, set);
 325    default:
 326        g_assert_not_reached();
 327    }
 328}
 329
 330static int in_cache(Cache *cache, uint64_t addr)
 331{
 332    int i;
 333    uint64_t tag, set;
 334
 335    tag = extract_tag(cache, addr);
 336    set = extract_set(cache, addr);
 337
 338    for (i = 0; i < cache->assoc; i++) {
 339        if (cache->sets[set].blocks[i].tag == tag &&
 340                cache->sets[set].blocks[i].valid) {
 341            return i;
 342        }
 343    }
 344
 345    return -1;
 346}
 347
 348/**
 349 * access_cache(): Simulate a cache access
 350 * @cache: The cache under simulation
 351 * @addr: The address of the requested memory location
 352 *
 353 * Returns true if the requsted data is hit in the cache and false when missed.
 354 * The cache is updated on miss for the next access.
 355 */
 356static bool access_cache(Cache *cache, uint64_t addr)
 357{
 358    int hit_blk, replaced_blk;
 359    uint64_t tag, set;
 360
 361    tag = extract_tag(cache, addr);
 362    set = extract_set(cache, addr);
 363
 364    hit_blk = in_cache(cache, addr);
 365    if (hit_blk != -1) {
 366        if (update_hit) {
 367            update_hit(cache, set, hit_blk);
 368        }
 369        return true;
 370    }
 371
 372    replaced_blk = get_invalid_block(cache, set);
 373
 374    if (replaced_blk == -1) {
 375        replaced_blk = get_replaced_block(cache, set);
 376    }
 377
 378    if (update_miss) {
 379        update_miss(cache, set, replaced_blk);
 380    }
 381
 382    cache->sets[set].blocks[replaced_blk].tag = tag;
 383    cache->sets[set].blocks[replaced_blk].valid = true;
 384
 385    return false;
 386}
 387
 388static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info,
 389                            uint64_t vaddr, void *userdata)
 390{
 391    uint64_t effective_addr;
 392    struct qemu_plugin_hwaddr *hwaddr;
 393    int cache_idx;
 394    InsnData *insn;
 395    bool hit_in_l1;
 396
 397    hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
 398    if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
 399        return;
 400    }
 401
 402    effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr;
 403    cache_idx = vcpu_index % cores;
 404
 405    g_mutex_lock(&l1_dcache_locks[cache_idx]);
 406    hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr);
 407    if (!hit_in_l1) {
 408        insn = (InsnData *) userdata;
 409        __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST);
 410        l1_dcaches[cache_idx]->misses++;
 411    }
 412    l1_dcaches[cache_idx]->accesses++;
 413    g_mutex_unlock(&l1_dcache_locks[cache_idx]);
 414
 415    if (hit_in_l1 || !use_l2) {
 416        /* No need to access L2 */
 417        return;
 418    }
 419
 420    g_mutex_lock(&l2_ucache_locks[cache_idx]);
 421    if (!access_cache(l2_ucaches[cache_idx], effective_addr)) {
 422        insn = (InsnData *) userdata;
 423        __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
 424        l2_ucaches[cache_idx]->misses++;
 425    }
 426    l2_ucaches[cache_idx]->accesses++;
 427    g_mutex_unlock(&l2_ucache_locks[cache_idx]);
 428}
 429
 430static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata)
 431{
 432    uint64_t insn_addr;
 433    InsnData *insn;
 434    int cache_idx;
 435    bool hit_in_l1;
 436
 437    insn_addr = ((InsnData *) userdata)->addr;
 438
 439    cache_idx = vcpu_index % cores;
 440    g_mutex_lock(&l1_icache_locks[cache_idx]);
 441    hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr);
 442    if (!hit_in_l1) {
 443        insn = (InsnData *) userdata;
 444        __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST);
 445        l1_icaches[cache_idx]->misses++;
 446    }
 447    l1_icaches[cache_idx]->accesses++;
 448    g_mutex_unlock(&l1_icache_locks[cache_idx]);
 449
 450    if (hit_in_l1 || !use_l2) {
 451        /* No need to access L2 */
 452        return;
 453    }
 454
 455    g_mutex_lock(&l2_ucache_locks[cache_idx]);
 456    if (!access_cache(l2_ucaches[cache_idx], insn_addr)) {
 457        insn = (InsnData *) userdata;
 458        __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
 459        l2_ucaches[cache_idx]->misses++;
 460    }
 461    l2_ucaches[cache_idx]->accesses++;
 462    g_mutex_unlock(&l2_ucache_locks[cache_idx]);
 463}
 464
 465static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
 466{
 467    size_t n_insns;
 468    size_t i;
 469    InsnData *data;
 470
 471    n_insns = qemu_plugin_tb_n_insns(tb);
 472    for (i = 0; i < n_insns; i++) {
 473        struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
 474        uint64_t effective_addr;
 475
 476        if (sys) {
 477            effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn);
 478        } else {
 479            effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn);
 480        }
 481
 482        /*
 483         * Instructions might get translated multiple times, we do not create
 484         * new entries for those instructions. Instead, we fetch the same
 485         * entry from the hash table and register it for the callback again.
 486         */
 487        g_mutex_lock(&hashtable_lock);
 488        data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr));
 489        if (data == NULL) {
 490            data = g_new0(InsnData, 1);
 491            data->disas_str = qemu_plugin_insn_disas(insn);
 492            data->symbol = qemu_plugin_insn_symbol(insn);
 493            data->addr = effective_addr;
 494            g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr),
 495                               (gpointer) data);
 496        }
 497        g_mutex_unlock(&hashtable_lock);
 498
 499        qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access,
 500                                         QEMU_PLUGIN_CB_NO_REGS,
 501                                         rw, data);
 502
 503        qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec,
 504                                               QEMU_PLUGIN_CB_NO_REGS, data);
 505    }
 506}
 507
 508static void insn_free(gpointer data)
 509{
 510    InsnData *insn = (InsnData *) data;
 511    g_free(insn->disas_str);
 512    g_free(insn);
 513}
 514
 515static void cache_free(Cache *cache)
 516{
 517    for (int i = 0; i < cache->num_sets; i++) {
 518        g_free(cache->sets[i].blocks);
 519    }
 520
 521    if (metadata_destroy) {
 522        metadata_destroy(cache);
 523    }
 524
 525    g_free(cache->sets);
 526    g_free(cache);
 527}
 528
 529static void caches_free(Cache **caches)
 530{
 531    int i;
 532
 533    for (i = 0; i < cores; i++) {
 534        cache_free(caches[i]);
 535    }
 536}
 537
 538static void append_stats_line(GString *line, uint64_t l1_daccess,
 539                              uint64_t l1_dmisses, uint64_t l1_iaccess,
 540                              uint64_t l1_imisses,  uint64_t l2_access,
 541                              uint64_t l2_misses)
 542{
 543    double l1_dmiss_rate, l1_imiss_rate, l2_miss_rate;
 544
 545    l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0;
 546    l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0;
 547
 548    g_string_append_printf(line, "%-14lu %-12lu %9.4lf%%  %-14lu %-12lu"
 549                           " %9.4lf%%",
 550                           l1_daccess,
 551                           l1_dmisses,
 552                           l1_daccess ? l1_dmiss_rate : 0.0,
 553                           l1_iaccess,
 554                           l1_imisses,
 555                           l1_iaccess ? l1_imiss_rate : 0.0);
 556
 557    if (use_l2) {
 558        l2_miss_rate =  ((double) l2_misses) / (l2_access) * 100.0;
 559        g_string_append_printf(line, "  %-12lu %-11lu %10.4lf%%",
 560                               l2_access,
 561                               l2_misses,
 562                               l2_access ? l2_miss_rate : 0.0);
 563    }
 564
 565    g_string_append(line, "\n");
 566}
 567
 568static void sum_stats(void)
 569{
 570    int i;
 571
 572    g_assert(cores > 1);
 573    for (i = 0; i < cores; i++) {
 574        l1_imisses += l1_icaches[i]->misses;
 575        l1_dmisses += l1_dcaches[i]->misses;
 576        l1_imem_accesses += l1_icaches[i]->accesses;
 577        l1_dmem_accesses += l1_dcaches[i]->accesses;
 578
 579        if (use_l2) {
 580            l2_misses += l2_ucaches[i]->misses;
 581            l2_mem_accesses += l2_ucaches[i]->accesses;
 582        }
 583    }
 584}
 585
 586static int dcmp(gconstpointer a, gconstpointer b)
 587{
 588    InsnData *insn_a = (InsnData *) a;
 589    InsnData *insn_b = (InsnData *) b;
 590
 591    return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1;
 592}
 593
 594static int icmp(gconstpointer a, gconstpointer b)
 595{
 596    InsnData *insn_a = (InsnData *) a;
 597    InsnData *insn_b = (InsnData *) b;
 598
 599    return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1;
 600}
 601
 602static int l2_cmp(gconstpointer a, gconstpointer b)
 603{
 604    InsnData *insn_a = (InsnData *) a;
 605    InsnData *insn_b = (InsnData *) b;
 606
 607    return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1;
 608}
 609
 610static void log_stats(void)
 611{
 612    int i;
 613    Cache *icache, *dcache, *l2_cache;
 614
 615    g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses,"
 616                                          " dmiss rate, insn accesses,"
 617                                          " insn misses, imiss rate");
 618
 619    if (use_l2) {
 620        g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate");
 621    }
 622
 623    g_string_append(rep, "\n");
 624
 625    for (i = 0; i < cores; i++) {
 626        g_string_append_printf(rep, "%-8d", i);
 627        dcache = l1_dcaches[i];
 628        icache = l1_icaches[i];
 629        l2_cache = use_l2 ? l2_ucaches[i] : NULL;
 630        append_stats_line(rep, dcache->accesses, dcache->misses,
 631                icache->accesses, icache->misses,
 632                l2_cache ? l2_cache->accesses : 0,
 633                l2_cache ? l2_cache->misses : 0);
 634    }
 635
 636    if (cores > 1) {
 637        sum_stats();
 638        g_string_append_printf(rep, "%-8s", "sum");
 639        append_stats_line(rep, l1_dmem_accesses, l1_dmisses,
 640                l1_imem_accesses, l1_imisses,
 641                l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0);
 642    }
 643
 644    g_string_append(rep, "\n");
 645    qemu_plugin_outs(rep->str);
 646}
 647
 648static void log_top_insns(void)
 649{
 650    int i;
 651    GList *curr, *miss_insns;
 652    InsnData *insn;
 653
 654    miss_insns = g_hash_table_get_values(miss_ht);
 655    miss_insns = g_list_sort(miss_insns, dcmp);
 656    g_autoptr(GString) rep = g_string_new("");
 657    g_string_append_printf(rep, "%s", "address, data misses, instruction\n");
 658
 659    for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
 660        insn = (InsnData *) curr->data;
 661        g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
 662        if (insn->symbol) {
 663            g_string_append_printf(rep, " (%s)", insn->symbol);
 664        }
 665        g_string_append_printf(rep, ", %ld, %s\n", insn->l1_dmisses,
 666                               insn->disas_str);
 667    }
 668
 669    miss_insns = g_list_sort(miss_insns, icmp);
 670    g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n");
 671
 672    for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
 673        insn = (InsnData *) curr->data;
 674        g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
 675        if (insn->symbol) {
 676            g_string_append_printf(rep, " (%s)", insn->symbol);
 677        }
 678        g_string_append_printf(rep, ", %ld, %s\n", insn->l1_imisses,
 679                               insn->disas_str);
 680    }
 681
 682    if (!use_l2) {
 683        goto finish;
 684    }
 685
 686    miss_insns = g_list_sort(miss_insns, l2_cmp);
 687    g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n");
 688
 689    for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
 690        insn = (InsnData *) curr->data;
 691        g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
 692        if (insn->symbol) {
 693            g_string_append_printf(rep, " (%s)", insn->symbol);
 694        }
 695        g_string_append_printf(rep, ", %ld, %s\n", insn->l2_misses,
 696                               insn->disas_str);
 697    }
 698
 699finish:
 700    qemu_plugin_outs(rep->str);
 701    g_list_free(miss_insns);
 702}
 703
 704static void plugin_exit(qemu_plugin_id_t id, void *p)
 705{
 706    log_stats();
 707    log_top_insns();
 708
 709    caches_free(l1_dcaches);
 710    caches_free(l1_icaches);
 711
 712    g_free(l1_dcache_locks);
 713    g_free(l1_icache_locks);
 714
 715    if (use_l2) {
 716        caches_free(l2_ucaches);
 717        g_free(l2_ucache_locks);
 718    }
 719
 720    g_hash_table_destroy(miss_ht);
 721}
 722
 723static void policy_init(void)
 724{
 725    switch (policy) {
 726    case LRU:
 727        update_hit = lru_update_blk;
 728        update_miss = lru_update_blk;
 729        metadata_init = lru_priorities_init;
 730        metadata_destroy = lru_priorities_destroy;
 731        break;
 732    case FIFO:
 733        update_miss = fifo_update_on_miss;
 734        metadata_init = fifo_init;
 735        metadata_destroy = fifo_destroy;
 736        break;
 737    case RAND:
 738        rng = g_rand_new();
 739        break;
 740    default:
 741        g_assert_not_reached();
 742    }
 743}
 744
 745QEMU_PLUGIN_EXPORT
 746int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
 747                        int argc, char **argv)
 748{
 749    int i;
 750    int l1_iassoc, l1_iblksize, l1_icachesize;
 751    int l1_dassoc, l1_dblksize, l1_dcachesize;
 752    int l2_assoc, l2_blksize, l2_cachesize;
 753
 754    limit = 32;
 755    sys = info->system_emulation;
 756
 757    l1_dassoc = 8;
 758    l1_dblksize = 64;
 759    l1_dcachesize = l1_dblksize * l1_dassoc * 32;
 760
 761    l1_iassoc = 8;
 762    l1_iblksize = 64;
 763    l1_icachesize = l1_iblksize * l1_iassoc * 32;
 764
 765    l2_assoc = 16;
 766    l2_blksize = 64;
 767    l2_cachesize = l2_assoc * l2_blksize * 2048;
 768
 769    policy = LRU;
 770
 771    cores = sys ? qemu_plugin_n_vcpus() : 1;
 772
 773    for (i = 0; i < argc; i++) {
 774        char *opt = argv[i];
 775        g_autofree char **tokens = g_strsplit(opt, "=", 2);
 776
 777        if (g_strcmp0(tokens[0], "iblksize") == 0) {
 778            l1_iblksize = STRTOLL(tokens[1]);
 779        } else if (g_strcmp0(tokens[0], "iassoc") == 0) {
 780            l1_iassoc = STRTOLL(tokens[1]);
 781        } else if (g_strcmp0(tokens[0], "icachesize") == 0) {
 782            l1_icachesize = STRTOLL(tokens[1]);
 783        } else if (g_strcmp0(tokens[0], "dblksize") == 0) {
 784            l1_dblksize = STRTOLL(tokens[1]);
 785        } else if (g_strcmp0(tokens[0], "dassoc") == 0) {
 786            l1_dassoc = STRTOLL(tokens[1]);
 787        } else if (g_strcmp0(tokens[0], "dcachesize") == 0) {
 788            l1_dcachesize = STRTOLL(tokens[1]);
 789        } else if (g_strcmp0(tokens[0], "limit") == 0) {
 790            limit = STRTOLL(tokens[1]);
 791        } else if (g_strcmp0(tokens[0], "cores") == 0) {
 792            cores = STRTOLL(tokens[1]);
 793        } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) {
 794            use_l2 = true;
 795            l2_cachesize = STRTOLL(tokens[1]);
 796        } else if (g_strcmp0(tokens[0], "l2blksize") == 0) {
 797            use_l2 = true;
 798            l2_blksize = STRTOLL(tokens[1]);
 799        } else if (g_strcmp0(tokens[0], "l2assoc") == 0) {
 800            use_l2 = true;
 801            l2_assoc = STRTOLL(tokens[1]);
 802        } else if (g_strcmp0(tokens[0], "l2") == 0) {
 803            if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) {
 804                fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
 805                return -1;
 806            }
 807        } else if (g_strcmp0(tokens[0], "evict") == 0) {
 808            if (g_strcmp0(tokens[1], "rand") == 0) {
 809                policy = RAND;
 810            } else if (g_strcmp0(tokens[1], "lru") == 0) {
 811                policy = LRU;
 812            } else if (g_strcmp0(tokens[1], "fifo") == 0) {
 813                policy = FIFO;
 814            } else {
 815                fprintf(stderr, "invalid eviction policy: %s\n", opt);
 816                return -1;
 817            }
 818        } else {
 819            fprintf(stderr, "option parsing failed: %s\n", opt);
 820            return -1;
 821        }
 822    }
 823
 824    policy_init();
 825
 826    l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize);
 827    if (!l1_dcaches) {
 828        const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize);
 829        fprintf(stderr, "dcache cannot be constructed from given parameters\n");
 830        fprintf(stderr, "%s\n", err);
 831        return -1;
 832    }
 833
 834    l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize);
 835    if (!l1_icaches) {
 836        const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize);
 837        fprintf(stderr, "icache cannot be constructed from given parameters\n");
 838        fprintf(stderr, "%s\n", err);
 839        return -1;
 840    }
 841
 842    l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL;
 843    if (!l2_ucaches && use_l2) {
 844        const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize);
 845        fprintf(stderr, "L2 cache cannot be constructed from given parameters\n");
 846        fprintf(stderr, "%s\n", err);
 847        return -1;
 848    }
 849
 850    l1_dcache_locks = g_new0(GMutex, cores);
 851    l1_icache_locks = g_new0(GMutex, cores);
 852    l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL;
 853
 854    qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
 855    qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
 856
 857    miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free);
 858
 859    return 0;
 860}
 861