qemu/hw/arm/stellaris.c
<<
>>
Prefs
   1/*
   2 * Luminary Micro Stellaris peripherals
   3 *
   4 * Copyright (c) 2006 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qapi/error.h"
  12#include "hw/sysbus.h"
  13#include "hw/sd/sd.h"
  14#include "hw/ssi/ssi.h"
  15#include "hw/arm/boot.h"
  16#include "qemu/timer.h"
  17#include "hw/i2c/i2c.h"
  18#include "net/net.h"
  19#include "hw/boards.h"
  20#include "qemu/log.h"
  21#include "exec/address-spaces.h"
  22#include "sysemu/sysemu.h"
  23#include "hw/arm/armv7m.h"
  24#include "hw/char/pl011.h"
  25#include "hw/input/gamepad.h"
  26#include "hw/irq.h"
  27#include "hw/watchdog/cmsdk-apb-watchdog.h"
  28#include "migration/vmstate.h"
  29#include "hw/misc/unimp.h"
  30#include "hw/timer/stellaris-gptm.h"
  31#include "hw/qdev-clock.h"
  32#include "qom/object.h"
  33
  34#define GPIO_A 0
  35#define GPIO_B 1
  36#define GPIO_C 2
  37#define GPIO_D 3
  38#define GPIO_E 4
  39#define GPIO_F 5
  40#define GPIO_G 6
  41
  42#define BP_OLED_I2C  0x01
  43#define BP_OLED_SSI  0x02
  44#define BP_GAMEPAD   0x04
  45
  46#define NUM_IRQ_LINES 64
  47
  48typedef const struct {
  49    const char *name;
  50    uint32_t did0;
  51    uint32_t did1;
  52    uint32_t dc0;
  53    uint32_t dc1;
  54    uint32_t dc2;
  55    uint32_t dc3;
  56    uint32_t dc4;
  57    uint32_t peripherals;
  58} stellaris_board_info;
  59
  60/* System controller.  */
  61
  62#define TYPE_STELLARIS_SYS "stellaris-sys"
  63OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
  64
  65struct ssys_state {
  66    SysBusDevice parent_obj;
  67
  68    MemoryRegion iomem;
  69    uint32_t pborctl;
  70    uint32_t ldopctl;
  71    uint32_t int_status;
  72    uint32_t int_mask;
  73    uint32_t resc;
  74    uint32_t rcc;
  75    uint32_t rcc2;
  76    uint32_t rcgc[3];
  77    uint32_t scgc[3];
  78    uint32_t dcgc[3];
  79    uint32_t clkvclr;
  80    uint32_t ldoarst;
  81    qemu_irq irq;
  82    Clock *sysclk;
  83    /* Properties (all read-only registers) */
  84    uint32_t user0;
  85    uint32_t user1;
  86    uint32_t did0;
  87    uint32_t did1;
  88    uint32_t dc0;
  89    uint32_t dc1;
  90    uint32_t dc2;
  91    uint32_t dc3;
  92    uint32_t dc4;
  93};
  94
  95static void ssys_update(ssys_state *s)
  96{
  97  qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
  98}
  99
 100static uint32_t pllcfg_sandstorm[16] = {
 101    0x31c0, /* 1 Mhz */
 102    0x1ae0, /* 1.8432 Mhz */
 103    0x18c0, /* 2 Mhz */
 104    0xd573, /* 2.4576 Mhz */
 105    0x37a6, /* 3.57954 Mhz */
 106    0x1ae2, /* 3.6864 Mhz */
 107    0x0c40, /* 4 Mhz */
 108    0x98bc, /* 4.906 Mhz */
 109    0x935b, /* 4.9152 Mhz */
 110    0x09c0, /* 5 Mhz */
 111    0x4dee, /* 5.12 Mhz */
 112    0x0c41, /* 6 Mhz */
 113    0x75db, /* 6.144 Mhz */
 114    0x1ae6, /* 7.3728 Mhz */
 115    0x0600, /* 8 Mhz */
 116    0x585b /* 8.192 Mhz */
 117};
 118
 119static uint32_t pllcfg_fury[16] = {
 120    0x3200, /* 1 Mhz */
 121    0x1b20, /* 1.8432 Mhz */
 122    0x1900, /* 2 Mhz */
 123    0xf42b, /* 2.4576 Mhz */
 124    0x37e3, /* 3.57954 Mhz */
 125    0x1b21, /* 3.6864 Mhz */
 126    0x0c80, /* 4 Mhz */
 127    0x98ee, /* 4.906 Mhz */
 128    0xd5b4, /* 4.9152 Mhz */
 129    0x0a00, /* 5 Mhz */
 130    0x4e27, /* 5.12 Mhz */
 131    0x1902, /* 6 Mhz */
 132    0xec1c, /* 6.144 Mhz */
 133    0x1b23, /* 7.3728 Mhz */
 134    0x0640, /* 8 Mhz */
 135    0xb11c /* 8.192 Mhz */
 136};
 137
 138#define DID0_VER_MASK        0x70000000
 139#define DID0_VER_0           0x00000000
 140#define DID0_VER_1           0x10000000
 141
 142#define DID0_CLASS_MASK      0x00FF0000
 143#define DID0_CLASS_SANDSTORM 0x00000000
 144#define DID0_CLASS_FURY      0x00010000
 145
 146static int ssys_board_class(const ssys_state *s)
 147{
 148    uint32_t did0 = s->did0;
 149    switch (did0 & DID0_VER_MASK) {
 150    case DID0_VER_0:
 151        return DID0_CLASS_SANDSTORM;
 152    case DID0_VER_1:
 153        switch (did0 & DID0_CLASS_MASK) {
 154        case DID0_CLASS_SANDSTORM:
 155        case DID0_CLASS_FURY:
 156            return did0 & DID0_CLASS_MASK;
 157        }
 158        /* for unknown classes, fall through */
 159    default:
 160        /* This can only happen if the hardwired constant did0 value
 161         * in this board's stellaris_board_info struct is wrong.
 162         */
 163        g_assert_not_reached();
 164    }
 165}
 166
 167static uint64_t ssys_read(void *opaque, hwaddr offset,
 168                          unsigned size)
 169{
 170    ssys_state *s = (ssys_state *)opaque;
 171
 172    switch (offset) {
 173    case 0x000: /* DID0 */
 174        return s->did0;
 175    case 0x004: /* DID1 */
 176        return s->did1;
 177    case 0x008: /* DC0 */
 178        return s->dc0;
 179    case 0x010: /* DC1 */
 180        return s->dc1;
 181    case 0x014: /* DC2 */
 182        return s->dc2;
 183    case 0x018: /* DC3 */
 184        return s->dc3;
 185    case 0x01c: /* DC4 */
 186        return s->dc4;
 187    case 0x030: /* PBORCTL */
 188        return s->pborctl;
 189    case 0x034: /* LDOPCTL */
 190        return s->ldopctl;
 191    case 0x040: /* SRCR0 */
 192        return 0;
 193    case 0x044: /* SRCR1 */
 194        return 0;
 195    case 0x048: /* SRCR2 */
 196        return 0;
 197    case 0x050: /* RIS */
 198        return s->int_status;
 199    case 0x054: /* IMC */
 200        return s->int_mask;
 201    case 0x058: /* MISC */
 202        return s->int_status & s->int_mask;
 203    case 0x05c: /* RESC */
 204        return s->resc;
 205    case 0x060: /* RCC */
 206        return s->rcc;
 207    case 0x064: /* PLLCFG */
 208        {
 209            int xtal;
 210            xtal = (s->rcc >> 6) & 0xf;
 211            switch (ssys_board_class(s)) {
 212            case DID0_CLASS_FURY:
 213                return pllcfg_fury[xtal];
 214            case DID0_CLASS_SANDSTORM:
 215                return pllcfg_sandstorm[xtal];
 216            default:
 217                g_assert_not_reached();
 218            }
 219        }
 220    case 0x070: /* RCC2 */
 221        return s->rcc2;
 222    case 0x100: /* RCGC0 */
 223        return s->rcgc[0];
 224    case 0x104: /* RCGC1 */
 225        return s->rcgc[1];
 226    case 0x108: /* RCGC2 */
 227        return s->rcgc[2];
 228    case 0x110: /* SCGC0 */
 229        return s->scgc[0];
 230    case 0x114: /* SCGC1 */
 231        return s->scgc[1];
 232    case 0x118: /* SCGC2 */
 233        return s->scgc[2];
 234    case 0x120: /* DCGC0 */
 235        return s->dcgc[0];
 236    case 0x124: /* DCGC1 */
 237        return s->dcgc[1];
 238    case 0x128: /* DCGC2 */
 239        return s->dcgc[2];
 240    case 0x150: /* CLKVCLR */
 241        return s->clkvclr;
 242    case 0x160: /* LDOARST */
 243        return s->ldoarst;
 244    case 0x1e0: /* USER0 */
 245        return s->user0;
 246    case 0x1e4: /* USER1 */
 247        return s->user1;
 248    default:
 249        qemu_log_mask(LOG_GUEST_ERROR,
 250                      "SSYS: read at bad offset 0x%x\n", (int)offset);
 251        return 0;
 252    }
 253}
 254
 255static bool ssys_use_rcc2(ssys_state *s)
 256{
 257    return (s->rcc2 >> 31) & 0x1;
 258}
 259
 260/*
 261 * Calculate the system clock period. We only want to propagate
 262 * this change to the rest of the system if we're not being called
 263 * from migration post-load.
 264 */
 265static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
 266{
 267    int period_ns;
 268    /*
 269     * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
 270     * clock is 200MHz, which is a period of 5 ns. Dividing the clock
 271     * frequency by X is the same as multiplying the period by X.
 272     */
 273    if (ssys_use_rcc2(s)) {
 274        period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
 275    } else {
 276        period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
 277    }
 278    clock_set_ns(s->sysclk, period_ns);
 279    if (propagate_clock) {
 280        clock_propagate(s->sysclk);
 281    }
 282}
 283
 284static void ssys_write(void *opaque, hwaddr offset,
 285                       uint64_t value, unsigned size)
 286{
 287    ssys_state *s = (ssys_state *)opaque;
 288
 289    switch (offset) {
 290    case 0x030: /* PBORCTL */
 291        s->pborctl = value & 0xffff;
 292        break;
 293    case 0x034: /* LDOPCTL */
 294        s->ldopctl = value & 0x1f;
 295        break;
 296    case 0x040: /* SRCR0 */
 297    case 0x044: /* SRCR1 */
 298    case 0x048: /* SRCR2 */
 299        qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
 300        break;
 301    case 0x054: /* IMC */
 302        s->int_mask = value & 0x7f;
 303        break;
 304    case 0x058: /* MISC */
 305        s->int_status &= ~value;
 306        break;
 307    case 0x05c: /* RESC */
 308        s->resc = value & 0x3f;
 309        break;
 310    case 0x060: /* RCC */
 311        if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 312            /* PLL enable.  */
 313            s->int_status |= (1 << 6);
 314        }
 315        s->rcc = value;
 316        ssys_calculate_system_clock(s, true);
 317        break;
 318    case 0x070: /* RCC2 */
 319        if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 320            break;
 321        }
 322
 323        if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
 324            /* PLL enable.  */
 325            s->int_status |= (1 << 6);
 326        }
 327        s->rcc2 = value;
 328        ssys_calculate_system_clock(s, true);
 329        break;
 330    case 0x100: /* RCGC0 */
 331        s->rcgc[0] = value;
 332        break;
 333    case 0x104: /* RCGC1 */
 334        s->rcgc[1] = value;
 335        break;
 336    case 0x108: /* RCGC2 */
 337        s->rcgc[2] = value;
 338        break;
 339    case 0x110: /* SCGC0 */
 340        s->scgc[0] = value;
 341        break;
 342    case 0x114: /* SCGC1 */
 343        s->scgc[1] = value;
 344        break;
 345    case 0x118: /* SCGC2 */
 346        s->scgc[2] = value;
 347        break;
 348    case 0x120: /* DCGC0 */
 349        s->dcgc[0] = value;
 350        break;
 351    case 0x124: /* DCGC1 */
 352        s->dcgc[1] = value;
 353        break;
 354    case 0x128: /* DCGC2 */
 355        s->dcgc[2] = value;
 356        break;
 357    case 0x150: /* CLKVCLR */
 358        s->clkvclr = value;
 359        break;
 360    case 0x160: /* LDOARST */
 361        s->ldoarst = value;
 362        break;
 363    default:
 364        qemu_log_mask(LOG_GUEST_ERROR,
 365                      "SSYS: write at bad offset 0x%x\n", (int)offset);
 366    }
 367    ssys_update(s);
 368}
 369
 370static const MemoryRegionOps ssys_ops = {
 371    .read = ssys_read,
 372    .write = ssys_write,
 373    .endianness = DEVICE_NATIVE_ENDIAN,
 374};
 375
 376static void stellaris_sys_reset_enter(Object *obj, ResetType type)
 377{
 378    ssys_state *s = STELLARIS_SYS(obj);
 379
 380    s->pborctl = 0x7ffd;
 381    s->rcc = 0x078e3ac0;
 382
 383    if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
 384        s->rcc2 = 0;
 385    } else {
 386        s->rcc2 = 0x07802810;
 387    }
 388    s->rcgc[0] = 1;
 389    s->scgc[0] = 1;
 390    s->dcgc[0] = 1;
 391}
 392
 393static void stellaris_sys_reset_hold(Object *obj)
 394{
 395    ssys_state *s = STELLARIS_SYS(obj);
 396
 397    /* OK to propagate clocks from the hold phase */
 398    ssys_calculate_system_clock(s, true);
 399}
 400
 401static void stellaris_sys_reset_exit(Object *obj)
 402{
 403}
 404
 405static int stellaris_sys_post_load(void *opaque, int version_id)
 406{
 407    ssys_state *s = opaque;
 408
 409    ssys_calculate_system_clock(s, false);
 410
 411    return 0;
 412}
 413
 414static const VMStateDescription vmstate_stellaris_sys = {
 415    .name = "stellaris_sys",
 416    .version_id = 2,
 417    .minimum_version_id = 1,
 418    .post_load = stellaris_sys_post_load,
 419    .fields = (VMStateField[]) {
 420        VMSTATE_UINT32(pborctl, ssys_state),
 421        VMSTATE_UINT32(ldopctl, ssys_state),
 422        VMSTATE_UINT32(int_mask, ssys_state),
 423        VMSTATE_UINT32(int_status, ssys_state),
 424        VMSTATE_UINT32(resc, ssys_state),
 425        VMSTATE_UINT32(rcc, ssys_state),
 426        VMSTATE_UINT32_V(rcc2, ssys_state, 2),
 427        VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
 428        VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
 429        VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
 430        VMSTATE_UINT32(clkvclr, ssys_state),
 431        VMSTATE_UINT32(ldoarst, ssys_state),
 432        /* No field for sysclk -- handled in post-load instead */
 433        VMSTATE_END_OF_LIST()
 434    }
 435};
 436
 437static Property stellaris_sys_properties[] = {
 438    DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
 439    DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
 440    DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
 441    DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
 442    DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
 443    DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
 444    DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
 445    DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
 446    DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
 447    DEFINE_PROP_END_OF_LIST()
 448};
 449
 450static void stellaris_sys_instance_init(Object *obj)
 451{
 452    ssys_state *s = STELLARIS_SYS(obj);
 453    SysBusDevice *sbd = SYS_BUS_DEVICE(s);
 454
 455    memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
 456    sysbus_init_mmio(sbd, &s->iomem);
 457    sysbus_init_irq(sbd, &s->irq);
 458    s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
 459}
 460
 461/* I2C controller.  */
 462
 463#define TYPE_STELLARIS_I2C "stellaris-i2c"
 464OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
 465
 466struct stellaris_i2c_state {
 467    SysBusDevice parent_obj;
 468
 469    I2CBus *bus;
 470    qemu_irq irq;
 471    MemoryRegion iomem;
 472    uint32_t msa;
 473    uint32_t mcs;
 474    uint32_t mdr;
 475    uint32_t mtpr;
 476    uint32_t mimr;
 477    uint32_t mris;
 478    uint32_t mcr;
 479};
 480
 481#define STELLARIS_I2C_MCS_BUSY    0x01
 482#define STELLARIS_I2C_MCS_ERROR   0x02
 483#define STELLARIS_I2C_MCS_ADRACK  0x04
 484#define STELLARIS_I2C_MCS_DATACK  0x08
 485#define STELLARIS_I2C_MCS_ARBLST  0x10
 486#define STELLARIS_I2C_MCS_IDLE    0x20
 487#define STELLARIS_I2C_MCS_BUSBSY  0x40
 488
 489static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
 490                                   unsigned size)
 491{
 492    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 493
 494    switch (offset) {
 495    case 0x00: /* MSA */
 496        return s->msa;
 497    case 0x04: /* MCS */
 498        /* We don't emulate timing, so the controller is never busy.  */
 499        return s->mcs | STELLARIS_I2C_MCS_IDLE;
 500    case 0x08: /* MDR */
 501        return s->mdr;
 502    case 0x0c: /* MTPR */
 503        return s->mtpr;
 504    case 0x10: /* MIMR */
 505        return s->mimr;
 506    case 0x14: /* MRIS */
 507        return s->mris;
 508    case 0x18: /* MMIS */
 509        return s->mris & s->mimr;
 510    case 0x20: /* MCR */
 511        return s->mcr;
 512    default:
 513        qemu_log_mask(LOG_GUEST_ERROR,
 514                      "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
 515        return 0;
 516    }
 517}
 518
 519static void stellaris_i2c_update(stellaris_i2c_state *s)
 520{
 521    int level;
 522
 523    level = (s->mris & s->mimr) != 0;
 524    qemu_set_irq(s->irq, level);
 525}
 526
 527static void stellaris_i2c_write(void *opaque, hwaddr offset,
 528                                uint64_t value, unsigned size)
 529{
 530    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
 531
 532    switch (offset) {
 533    case 0x00: /* MSA */
 534        s->msa = value & 0xff;
 535        break;
 536    case 0x04: /* MCS */
 537        if ((s->mcr & 0x10) == 0) {
 538            /* Disabled.  Do nothing.  */
 539            break;
 540        }
 541        /* Grab the bus if this is starting a transfer.  */
 542        if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 543            if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
 544                s->mcs |= STELLARIS_I2C_MCS_ARBLST;
 545            } else {
 546                s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
 547                s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
 548            }
 549        }
 550        /* If we don't have the bus then indicate an error.  */
 551        if (!i2c_bus_busy(s->bus)
 552                || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
 553            s->mcs |= STELLARIS_I2C_MCS_ERROR;
 554            break;
 555        }
 556        s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
 557        if (value & 1) {
 558            /* Transfer a byte.  */
 559            /* TODO: Handle errors.  */
 560            if (s->msa & 1) {
 561                /* Recv */
 562                s->mdr = i2c_recv(s->bus);
 563            } else {
 564                /* Send */
 565                i2c_send(s->bus, s->mdr);
 566            }
 567            /* Raise an interrupt.  */
 568            s->mris |= 1;
 569        }
 570        if (value & 4) {
 571            /* Finish transfer.  */
 572            i2c_end_transfer(s->bus);
 573            s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
 574        }
 575        break;
 576    case 0x08: /* MDR */
 577        s->mdr = value & 0xff;
 578        break;
 579    case 0x0c: /* MTPR */
 580        s->mtpr = value & 0xff;
 581        break;
 582    case 0x10: /* MIMR */
 583        s->mimr = 1;
 584        break;
 585    case 0x1c: /* MICR */
 586        s->mris &= ~value;
 587        break;
 588    case 0x20: /* MCR */
 589        if (value & 1) {
 590            qemu_log_mask(LOG_UNIMP,
 591                          "stellaris_i2c: Loopback not implemented\n");
 592        }
 593        if (value & 0x20) {
 594            qemu_log_mask(LOG_UNIMP,
 595                          "stellaris_i2c: Slave mode not implemented\n");
 596        }
 597        s->mcr = value & 0x31;
 598        break;
 599    default:
 600        qemu_log_mask(LOG_GUEST_ERROR,
 601                      "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
 602    }
 603    stellaris_i2c_update(s);
 604}
 605
 606static void stellaris_i2c_reset(stellaris_i2c_state *s)
 607{
 608    if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
 609        i2c_end_transfer(s->bus);
 610
 611    s->msa = 0;
 612    s->mcs = 0;
 613    s->mdr = 0;
 614    s->mtpr = 1;
 615    s->mimr = 0;
 616    s->mris = 0;
 617    s->mcr = 0;
 618    stellaris_i2c_update(s);
 619}
 620
 621static const MemoryRegionOps stellaris_i2c_ops = {
 622    .read = stellaris_i2c_read,
 623    .write = stellaris_i2c_write,
 624    .endianness = DEVICE_NATIVE_ENDIAN,
 625};
 626
 627static const VMStateDescription vmstate_stellaris_i2c = {
 628    .name = "stellaris_i2c",
 629    .version_id = 1,
 630    .minimum_version_id = 1,
 631    .fields = (VMStateField[]) {
 632        VMSTATE_UINT32(msa, stellaris_i2c_state),
 633        VMSTATE_UINT32(mcs, stellaris_i2c_state),
 634        VMSTATE_UINT32(mdr, stellaris_i2c_state),
 635        VMSTATE_UINT32(mtpr, stellaris_i2c_state),
 636        VMSTATE_UINT32(mimr, stellaris_i2c_state),
 637        VMSTATE_UINT32(mris, stellaris_i2c_state),
 638        VMSTATE_UINT32(mcr, stellaris_i2c_state),
 639        VMSTATE_END_OF_LIST()
 640    }
 641};
 642
 643static void stellaris_i2c_init(Object *obj)
 644{
 645    DeviceState *dev = DEVICE(obj);
 646    stellaris_i2c_state *s = STELLARIS_I2C(obj);
 647    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 648    I2CBus *bus;
 649
 650    sysbus_init_irq(sbd, &s->irq);
 651    bus = i2c_init_bus(dev, "i2c");
 652    s->bus = bus;
 653
 654    memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
 655                          "i2c", 0x1000);
 656    sysbus_init_mmio(sbd, &s->iomem);
 657    /* ??? For now we only implement the master interface.  */
 658    stellaris_i2c_reset(s);
 659}
 660
 661/* Analogue to Digital Converter.  This is only partially implemented,
 662   enough for applications that use a combined ADC and timer tick.  */
 663
 664#define STELLARIS_ADC_EM_CONTROLLER 0
 665#define STELLARIS_ADC_EM_COMP       1
 666#define STELLARIS_ADC_EM_EXTERNAL   4
 667#define STELLARIS_ADC_EM_TIMER      5
 668#define STELLARIS_ADC_EM_PWM0       6
 669#define STELLARIS_ADC_EM_PWM1       7
 670#define STELLARIS_ADC_EM_PWM2       8
 671
 672#define STELLARIS_ADC_FIFO_EMPTY    0x0100
 673#define STELLARIS_ADC_FIFO_FULL     0x1000
 674
 675#define TYPE_STELLARIS_ADC "stellaris-adc"
 676typedef struct StellarisADCState stellaris_adc_state;
 677DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
 678                         TYPE_STELLARIS_ADC)
 679
 680struct StellarisADCState {
 681    SysBusDevice parent_obj;
 682
 683    MemoryRegion iomem;
 684    uint32_t actss;
 685    uint32_t ris;
 686    uint32_t im;
 687    uint32_t emux;
 688    uint32_t ostat;
 689    uint32_t ustat;
 690    uint32_t sspri;
 691    uint32_t sac;
 692    struct {
 693        uint32_t state;
 694        uint32_t data[16];
 695    } fifo[4];
 696    uint32_t ssmux[4];
 697    uint32_t ssctl[4];
 698    uint32_t noise;
 699    qemu_irq irq[4];
 700};
 701
 702static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
 703{
 704    int tail;
 705
 706    tail = s->fifo[n].state & 0xf;
 707    if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
 708        s->ustat |= 1 << n;
 709    } else {
 710        s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
 711        s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
 712        if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
 713            s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
 714    }
 715    return s->fifo[n].data[tail];
 716}
 717
 718static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
 719                                     uint32_t value)
 720{
 721    int head;
 722
 723    /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry 
 724       FIFO fir each sequencer.  */
 725    head = (s->fifo[n].state >> 4) & 0xf;
 726    if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
 727        s->ostat |= 1 << n;
 728        return;
 729    }
 730    s->fifo[n].data[head] = value;
 731    head = (head + 1) & 0xf;
 732    s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
 733    s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
 734    if ((s->fifo[n].state & 0xf) == head)
 735        s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
 736}
 737
 738static void stellaris_adc_update(stellaris_adc_state *s)
 739{
 740    int level;
 741    int n;
 742
 743    for (n = 0; n < 4; n++) {
 744        level = (s->ris & s->im & (1 << n)) != 0;
 745        qemu_set_irq(s->irq[n], level);
 746    }
 747}
 748
 749static void stellaris_adc_trigger(void *opaque, int irq, int level)
 750{
 751    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
 752    int n;
 753
 754    for (n = 0; n < 4; n++) {
 755        if ((s->actss & (1 << n)) == 0) {
 756            continue;
 757        }
 758
 759        if (((s->emux >> (n * 4)) & 0xff) != 5) {
 760            continue;
 761        }
 762
 763        /* Some applications use the ADC as a random number source, so introduce
 764           some variation into the signal.  */
 765        s->noise = s->noise * 314159 + 1;
 766        /* ??? actual inputs not implemented.  Return an arbitrary value.  */
 767        stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
 768        s->ris |= (1 << n);
 769        stellaris_adc_update(s);
 770    }
 771}
 772
 773static void stellaris_adc_reset(stellaris_adc_state *s)
 774{
 775    int n;
 776
 777    for (n = 0; n < 4; n++) {
 778        s->ssmux[n] = 0;
 779        s->ssctl[n] = 0;
 780        s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
 781    }
 782}
 783
 784static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
 785                                   unsigned size)
 786{
 787    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
 788
 789    /* TODO: Implement this.  */
 790    if (offset >= 0x40 && offset < 0xc0) {
 791        int n;
 792        n = (offset - 0x40) >> 5;
 793        switch (offset & 0x1f) {
 794        case 0x00: /* SSMUX */
 795            return s->ssmux[n];
 796        case 0x04: /* SSCTL */
 797            return s->ssctl[n];
 798        case 0x08: /* SSFIFO */
 799            return stellaris_adc_fifo_read(s, n);
 800        case 0x0c: /* SSFSTAT */
 801            return s->fifo[n].state;
 802        default:
 803            break;
 804        }
 805    }
 806    switch (offset) {
 807    case 0x00: /* ACTSS */
 808        return s->actss;
 809    case 0x04: /* RIS */
 810        return s->ris;
 811    case 0x08: /* IM */
 812        return s->im;
 813    case 0x0c: /* ISC */
 814        return s->ris & s->im;
 815    case 0x10: /* OSTAT */
 816        return s->ostat;
 817    case 0x14: /* EMUX */
 818        return s->emux;
 819    case 0x18: /* USTAT */
 820        return s->ustat;
 821    case 0x20: /* SSPRI */
 822        return s->sspri;
 823    case 0x30: /* SAC */
 824        return s->sac;
 825    default:
 826        qemu_log_mask(LOG_GUEST_ERROR,
 827                      "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
 828        return 0;
 829    }
 830}
 831
 832static void stellaris_adc_write(void *opaque, hwaddr offset,
 833                                uint64_t value, unsigned size)
 834{
 835    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
 836
 837    /* TODO: Implement this.  */
 838    if (offset >= 0x40 && offset < 0xc0) {
 839        int n;
 840        n = (offset - 0x40) >> 5;
 841        switch (offset & 0x1f) {
 842        case 0x00: /* SSMUX */
 843            s->ssmux[n] = value & 0x33333333;
 844            return;
 845        case 0x04: /* SSCTL */
 846            if (value != 6) {
 847                qemu_log_mask(LOG_UNIMP,
 848                              "ADC: Unimplemented sequence %" PRIx64 "\n",
 849                              value);
 850            }
 851            s->ssctl[n] = value;
 852            return;
 853        default:
 854            break;
 855        }
 856    }
 857    switch (offset) {
 858    case 0x00: /* ACTSS */
 859        s->actss = value & 0xf;
 860        break;
 861    case 0x08: /* IM */
 862        s->im = value;
 863        break;
 864    case 0x0c: /* ISC */
 865        s->ris &= ~value;
 866        break;
 867    case 0x10: /* OSTAT */
 868        s->ostat &= ~value;
 869        break;
 870    case 0x14: /* EMUX */
 871        s->emux = value;
 872        break;
 873    case 0x18: /* USTAT */
 874        s->ustat &= ~value;
 875        break;
 876    case 0x20: /* SSPRI */
 877        s->sspri = value;
 878        break;
 879    case 0x28: /* PSSI */
 880        qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
 881        break;
 882    case 0x30: /* SAC */
 883        s->sac = value;
 884        break;
 885    default:
 886        qemu_log_mask(LOG_GUEST_ERROR,
 887                      "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
 888    }
 889    stellaris_adc_update(s);
 890}
 891
 892static const MemoryRegionOps stellaris_adc_ops = {
 893    .read = stellaris_adc_read,
 894    .write = stellaris_adc_write,
 895    .endianness = DEVICE_NATIVE_ENDIAN,
 896};
 897
 898static const VMStateDescription vmstate_stellaris_adc = {
 899    .name = "stellaris_adc",
 900    .version_id = 1,
 901    .minimum_version_id = 1,
 902    .fields = (VMStateField[]) {
 903        VMSTATE_UINT32(actss, stellaris_adc_state),
 904        VMSTATE_UINT32(ris, stellaris_adc_state),
 905        VMSTATE_UINT32(im, stellaris_adc_state),
 906        VMSTATE_UINT32(emux, stellaris_adc_state),
 907        VMSTATE_UINT32(ostat, stellaris_adc_state),
 908        VMSTATE_UINT32(ustat, stellaris_adc_state),
 909        VMSTATE_UINT32(sspri, stellaris_adc_state),
 910        VMSTATE_UINT32(sac, stellaris_adc_state),
 911        VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
 912        VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
 913        VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
 914        VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
 915        VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
 916        VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
 917        VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
 918        VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
 919        VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
 920        VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
 921        VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
 922        VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
 923        VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
 924        VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
 925        VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
 926        VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
 927        VMSTATE_UINT32(noise, stellaris_adc_state),
 928        VMSTATE_END_OF_LIST()
 929    }
 930};
 931
 932static void stellaris_adc_init(Object *obj)
 933{
 934    DeviceState *dev = DEVICE(obj);
 935    stellaris_adc_state *s = STELLARIS_ADC(obj);
 936    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 937    int n;
 938
 939    for (n = 0; n < 4; n++) {
 940        sysbus_init_irq(sbd, &s->irq[n]);
 941    }
 942
 943    memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
 944                          "adc", 0x1000);
 945    sysbus_init_mmio(sbd, &s->iomem);
 946    stellaris_adc_reset(s);
 947    qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
 948}
 949
 950/* Board init.  */
 951static stellaris_board_info stellaris_boards[] = {
 952  { "LM3S811EVB",
 953    0,
 954    0x0032000e,
 955    0x001f001f, /* dc0 */
 956    0x001132bf,
 957    0x01071013,
 958    0x3f0f01ff,
 959    0x0000001f,
 960    BP_OLED_I2C
 961  },
 962  { "LM3S6965EVB",
 963    0x10010002,
 964    0x1073402e,
 965    0x00ff007f, /* dc0 */
 966    0x001133ff,
 967    0x030f5317,
 968    0x0f0f87ff,
 969    0x5000007f,
 970    BP_OLED_SSI | BP_GAMEPAD
 971  }
 972};
 973
 974static void stellaris_init(MachineState *ms, stellaris_board_info *board)
 975{
 976    static const int uart_irq[] = {5, 6, 33, 34};
 977    static const int timer_irq[] = {19, 21, 23, 35};
 978    static const uint32_t gpio_addr[7] =
 979      { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
 980        0x40024000, 0x40025000, 0x40026000};
 981    static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
 982
 983    /* Memory map of SoC devices, from
 984     * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
 985     * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
 986     *
 987     * 40000000 wdtimer
 988     * 40002000 i2c (unimplemented)
 989     * 40004000 GPIO
 990     * 40005000 GPIO
 991     * 40006000 GPIO
 992     * 40007000 GPIO
 993     * 40008000 SSI
 994     * 4000c000 UART
 995     * 4000d000 UART
 996     * 4000e000 UART
 997     * 40020000 i2c
 998     * 40021000 i2c (unimplemented)
 999     * 40024000 GPIO
1000     * 40025000 GPIO
1001     * 40026000 GPIO
1002     * 40028000 PWM (unimplemented)
1003     * 4002c000 QEI (unimplemented)
1004     * 4002d000 QEI (unimplemented)
1005     * 40030000 gptimer
1006     * 40031000 gptimer
1007     * 40032000 gptimer
1008     * 40033000 gptimer
1009     * 40038000 ADC
1010     * 4003c000 analogue comparator (unimplemented)
1011     * 40048000 ethernet
1012     * 400fc000 hibernation module (unimplemented)
1013     * 400fd000 flash memory control (unimplemented)
1014     * 400fe000 system control
1015     */
1016
1017    DeviceState *gpio_dev[7], *nvic;
1018    qemu_irq gpio_in[7][8];
1019    qemu_irq gpio_out[7][8];
1020    qemu_irq adc;
1021    int sram_size;
1022    int flash_size;
1023    I2CBus *i2c;
1024    DeviceState *dev;
1025    DeviceState *ssys_dev;
1026    int i;
1027    int j;
1028    const uint8_t *macaddr;
1029
1030    MemoryRegion *sram = g_new(MemoryRegion, 1);
1031    MemoryRegion *flash = g_new(MemoryRegion, 1);
1032    MemoryRegion *system_memory = get_system_memory();
1033
1034    flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1035    sram_size = ((board->dc0 >> 18) + 1) * 1024;
1036
1037    /* Flash programming is done via the SCU, so pretend it is ROM.  */
1038    memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1039                           &error_fatal);
1040    memory_region_add_subregion(system_memory, 0, flash);
1041
1042    memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1043                           &error_fatal);
1044    memory_region_add_subregion(system_memory, 0x20000000, sram);
1045
1046    /*
1047     * Create the system-registers object early, because we will
1048     * need its sysclk output.
1049     */
1050    ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1051    /* Most devices come preprogrammed with a MAC address in the user data. */
1052    macaddr = nd_table[0].macaddr.a;
1053    qdev_prop_set_uint32(ssys_dev, "user0",
1054                         macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
1055    qdev_prop_set_uint32(ssys_dev, "user1",
1056                         macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
1057    qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1058    qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1059    qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1060    qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1061    qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1062    qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1063    qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1064    sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1065
1066    nvic = qdev_new(TYPE_ARMV7M);
1067    qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1068    qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1069    qdev_prop_set_bit(nvic, "enable-bitband", true);
1070    qdev_connect_clock_in(nvic, "cpuclk",
1071                          qdev_get_clock_out(ssys_dev, "SYSCLK"));
1072    /* This SoC does not connect the systick reference clock */
1073    object_property_set_link(OBJECT(nvic), "memory",
1074                             OBJECT(get_system_memory()), &error_abort);
1075    /* This will exit with an error if the user passed us a bad cpu_type */
1076    sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1077
1078    /* Now we can wire up the IRQ and MMIO of the system registers */
1079    sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1080    sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1081
1082    if (board->dc1 & (1 << 16)) {
1083        dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1084                                    qdev_get_gpio_in(nvic, 14),
1085                                    qdev_get_gpio_in(nvic, 15),
1086                                    qdev_get_gpio_in(nvic, 16),
1087                                    qdev_get_gpio_in(nvic, 17),
1088                                    NULL);
1089        adc = qdev_get_gpio_in(dev, 0);
1090    } else {
1091        adc = NULL;
1092    }
1093    for (i = 0; i < 4; i++) {
1094        if (board->dc2 & (0x10000 << i)) {
1095            SysBusDevice *sbd;
1096
1097            dev = qdev_new(TYPE_STELLARIS_GPTM);
1098            sbd = SYS_BUS_DEVICE(dev);
1099            qdev_connect_clock_in(dev, "clk",
1100                                  qdev_get_clock_out(ssys_dev, "SYSCLK"));
1101            sysbus_realize_and_unref(sbd, &error_fatal);
1102            sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1103            sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1104            /* TODO: This is incorrect, but we get away with it because
1105               the ADC output is only ever pulsed.  */
1106            qdev_connect_gpio_out(dev, 0, adc);
1107        }
1108    }
1109
1110    if (board->dc1 & (1 << 3)) { /* watchdog present */
1111        dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1112
1113        qdev_connect_clock_in(dev, "WDOGCLK",
1114                              qdev_get_clock_out(ssys_dev, "SYSCLK"));
1115
1116        sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1117        sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1118                        0,
1119                        0x40000000u);
1120        sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1121                           0,
1122                           qdev_get_gpio_in(nvic, 18));
1123    }
1124
1125
1126    for (i = 0; i < 7; i++) {
1127        if (board->dc4 & (1 << i)) {
1128            gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1129                                               qdev_get_gpio_in(nvic,
1130                                                                gpio_irq[i]));
1131            for (j = 0; j < 8; j++) {
1132                gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1133                gpio_out[i][j] = NULL;
1134            }
1135        }
1136    }
1137
1138    if (board->dc2 & (1 << 12)) {
1139        dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1140                                   qdev_get_gpio_in(nvic, 8));
1141        i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1142        if (board->peripherals & BP_OLED_I2C) {
1143            i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1144        }
1145    }
1146
1147    for (i = 0; i < 4; i++) {
1148        if (board->dc2 & (1 << i)) {
1149            pl011_luminary_create(0x4000c000 + i * 0x1000,
1150                                  qdev_get_gpio_in(nvic, uart_irq[i]),
1151                                  serial_hd(i));
1152        }
1153    }
1154    if (board->dc2 & (1 << 4)) {
1155        dev = sysbus_create_simple("pl022", 0x40008000,
1156                                   qdev_get_gpio_in(nvic, 7));
1157        if (board->peripherals & BP_OLED_SSI) {
1158            void *bus;
1159            DeviceState *sddev;
1160            DeviceState *ssddev;
1161            DriveInfo *dinfo;
1162            DeviceState *carddev;
1163            BlockBackend *blk;
1164
1165            /*
1166             * Some boards have both an OLED controller and SD card connected to
1167             * the same SSI port, with the SD card chip select connected to a
1168             * GPIO pin.  Technically the OLED chip select is connected to the
1169             * SSI Fss pin.  We do not bother emulating that as both devices
1170             * should never be selected simultaneously, and our OLED controller
1171             * ignores stray 0xff commands that occur when deselecting the SD
1172             * card.
1173             *
1174             * The h/w wiring is:
1175             *  - GPIO pin D0 is wired to the active-low SD card chip select
1176             *  - GPIO pin A3 is wired to the active-low OLED chip select
1177             *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1178             *    SSI0Fss ("frame signal"), which is an output from the SoC's
1179             *    SSI controller. The SSI controller takes SSI0Fss low when it
1180             *    transmits a frame, so it can work as a chip-select signal.
1181             *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1182             *    (the OLED never sends data to the CPU, so no wiring needed)
1183             *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1184             *    and the OLED display-data-in
1185             *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1186             *    serial-clock input
1187             * So a guest that wants to use the OLED can configure the PL061
1188             * to make pins A2, A3, A5 aux-function, so they are connected
1189             * directly to the SSI controller. When the SSI controller sends
1190             * data it asserts SSI0Fss which selects the OLED.
1191             * A guest that wants to use the SD card configures A2, A4 and A5
1192             * as aux-function, but leaves A3 as a software-controlled GPIO
1193             * line. It asserts the SD card chip-select by using the PL061
1194             * to control pin D0, and lets the SSI controller handle Clk, Tx
1195             * and Rx. (The SSI controller asserts Fss during tx cycles as
1196             * usual, but because A3 is not set to aux-function this is not
1197             * forwarded to the OLED, and so the OLED stays unselected.)
1198             *
1199             * The QEMU implementation instead is:
1200             *  - GPIO pin D0 is wired to the active-low SD card chip select,
1201             *    and also to the OLED chip-select which is implemented
1202             *    as *active-high*
1203             *  - SSI controller signals go to the devices regardless of
1204             *    whether the guest programs A2, A4, A5 as aux-function or not
1205             *
1206             * The problem with this implementation is if the guest doesn't
1207             * care about the SD card and only uses the OLED. In that case it
1208             * may choose never to do anything with D0 (leaving it in its
1209             * default floating state, which reliably leaves the card disabled
1210             * because an SD card has a pullup on CS within the card itself),
1211             * and only set up A2, A3, A5. This for us would mean the OLED
1212             * never gets the chip-select assert it needs. We work around
1213             * this with a manual raise of D0 here (despite board creation
1214             * code being the wrong place to raise IRQ lines) to put the OLED
1215             * into an initially selected state.
1216             *
1217             * In theory the right way to model this would be:
1218             *  - Implement aux-function support in the PL061, with an
1219             *    extra set of AFIN and AFOUT GPIO lines (set up so that
1220             *    if a GPIO line is in auxfn mode the main GPIO in and out
1221             *    track the AFIN and AFOUT lines)
1222             *  - Wire the AFOUT for D0 up to either a line from the
1223             *    SSI controller that's pulled low around every transmit,
1224             *    or at least to an always-0 line here on the board
1225             *  - Make the ssd0323 OLED controller chipselect active-low
1226             */
1227            bus = qdev_get_child_bus(dev, "ssi");
1228            sddev = ssi_create_peripheral(bus, "ssi-sd");
1229
1230            dinfo = drive_get(IF_SD, 0, 0);
1231            blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
1232            carddev = qdev_new(TYPE_SD_CARD);
1233            qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
1234            qdev_prop_set_bit(carddev, "spi", true);
1235            qdev_realize_and_unref(carddev,
1236                                   qdev_get_child_bus(sddev, "sd-bus"),
1237                                   &error_fatal);
1238
1239            ssddev = ssi_create_peripheral(bus, "ssd0323");
1240            gpio_out[GPIO_D][0] = qemu_irq_split(
1241                    qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1242                    qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1243            gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1244
1245            /* Make sure the select pin is high.  */
1246            qemu_irq_raise(gpio_out[GPIO_D][0]);
1247        }
1248    }
1249    if (board->dc4 & (1 << 28)) {
1250        DeviceState *enet;
1251
1252        qemu_check_nic_model(&nd_table[0], "stellaris");
1253
1254        enet = qdev_new("stellaris_enet");
1255        qdev_set_nic_properties(enet, &nd_table[0]);
1256        sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1257        sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1258        sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1259    }
1260    if (board->peripherals & BP_GAMEPAD) {
1261        qemu_irq gpad_irq[5];
1262        static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1263
1264        gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1265        gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1266        gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1267        gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1268        gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1269
1270        stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1271    }
1272    for (i = 0; i < 7; i++) {
1273        if (board->dc4 & (1 << i)) {
1274            for (j = 0; j < 8; j++) {
1275                if (gpio_out[i][j]) {
1276                    qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1277                }
1278            }
1279        }
1280    }
1281
1282    /* Add dummy regions for the devices we don't implement yet,
1283     * so guest accesses don't cause unlogged crashes.
1284     */
1285    create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1286    create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1287    create_unimplemented_device("PWM", 0x40028000, 0x1000);
1288    create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1289    create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1290    create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1291    create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1292    create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1293
1294    armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1295}
1296
1297/* FIXME: Figure out how to generate these from stellaris_boards.  */
1298static void lm3s811evb_init(MachineState *machine)
1299{
1300    stellaris_init(machine, &stellaris_boards[0]);
1301}
1302
1303static void lm3s6965evb_init(MachineState *machine)
1304{
1305    stellaris_init(machine, &stellaris_boards[1]);
1306}
1307
1308static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1309{
1310    MachineClass *mc = MACHINE_CLASS(oc);
1311
1312    mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1313    mc->init = lm3s811evb_init;
1314    mc->ignore_memory_transaction_failures = true;
1315    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1316}
1317
1318static const TypeInfo lm3s811evb_type = {
1319    .name = MACHINE_TYPE_NAME("lm3s811evb"),
1320    .parent = TYPE_MACHINE,
1321    .class_init = lm3s811evb_class_init,
1322};
1323
1324static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1325{
1326    MachineClass *mc = MACHINE_CLASS(oc);
1327
1328    mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1329    mc->init = lm3s6965evb_init;
1330    mc->ignore_memory_transaction_failures = true;
1331    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1332}
1333
1334static const TypeInfo lm3s6965evb_type = {
1335    .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1336    .parent = TYPE_MACHINE,
1337    .class_init = lm3s6965evb_class_init,
1338};
1339
1340static void stellaris_machine_init(void)
1341{
1342    type_register_static(&lm3s811evb_type);
1343    type_register_static(&lm3s6965evb_type);
1344}
1345
1346type_init(stellaris_machine_init)
1347
1348static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1349{
1350    DeviceClass *dc = DEVICE_CLASS(klass);
1351
1352    dc->vmsd = &vmstate_stellaris_i2c;
1353}
1354
1355static const TypeInfo stellaris_i2c_info = {
1356    .name          = TYPE_STELLARIS_I2C,
1357    .parent        = TYPE_SYS_BUS_DEVICE,
1358    .instance_size = sizeof(stellaris_i2c_state),
1359    .instance_init = stellaris_i2c_init,
1360    .class_init    = stellaris_i2c_class_init,
1361};
1362
1363static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1364{
1365    DeviceClass *dc = DEVICE_CLASS(klass);
1366
1367    dc->vmsd = &vmstate_stellaris_adc;
1368}
1369
1370static const TypeInfo stellaris_adc_info = {
1371    .name          = TYPE_STELLARIS_ADC,
1372    .parent        = TYPE_SYS_BUS_DEVICE,
1373    .instance_size = sizeof(stellaris_adc_state),
1374    .instance_init = stellaris_adc_init,
1375    .class_init    = stellaris_adc_class_init,
1376};
1377
1378static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1379{
1380    DeviceClass *dc = DEVICE_CLASS(klass);
1381    ResettableClass *rc = RESETTABLE_CLASS(klass);
1382
1383    dc->vmsd = &vmstate_stellaris_sys;
1384    rc->phases.enter = stellaris_sys_reset_enter;
1385    rc->phases.hold = stellaris_sys_reset_hold;
1386    rc->phases.exit = stellaris_sys_reset_exit;
1387    device_class_set_props(dc, stellaris_sys_properties);
1388}
1389
1390static const TypeInfo stellaris_sys_info = {
1391    .name = TYPE_STELLARIS_SYS,
1392    .parent = TYPE_SYS_BUS_DEVICE,
1393    .instance_size = sizeof(ssys_state),
1394    .instance_init = stellaris_sys_instance_init,
1395    .class_init = stellaris_sys_class_init,
1396};
1397
1398static void stellaris_register_types(void)
1399{
1400    type_register_static(&stellaris_i2c_info);
1401    type_register_static(&stellaris_adc_info);
1402    type_register_static(&stellaris_sys_info);
1403}
1404
1405type_init(stellaris_register_types)
1406