qemu/hw/core/loader.c
<<
>>
Prefs
   1/*
   2 * QEMU Executable loader
   3 *
   4 * Copyright (c) 2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 *
  24 * Gunzip functionality in this file is derived from u-boot:
  25 *
  26 * (C) Copyright 2008 Semihalf
  27 *
  28 * (C) Copyright 2000-2005
  29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  30 *
  31 * This program is free software; you can redistribute it and/or
  32 * modify it under the terms of the GNU General Public License as
  33 * published by the Free Software Foundation; either version 2 of
  34 * the License, or (at your option) any later version.
  35 *
  36 * This program is distributed in the hope that it will be useful,
  37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  39 * GNU General Public License for more details.
  40 *
  41 * You should have received a copy of the GNU General Public License along
  42 * with this program; if not, see <http://www.gnu.org/licenses/>.
  43 */
  44
  45#include "qemu/osdep.h"
  46#include "qemu-common.h"
  47#include "qemu/datadir.h"
  48#include "qapi/error.h"
  49#include "qapi/qapi-commands-machine.h"
  50#include "qapi/type-helpers.h"
  51#include "trace.h"
  52#include "hw/hw.h"
  53#include "disas/disas.h"
  54#include "migration/vmstate.h"
  55#include "monitor/monitor.h"
  56#include "sysemu/reset.h"
  57#include "sysemu/sysemu.h"
  58#include "uboot_image.h"
  59#include "hw/loader.h"
  60#include "hw/nvram/fw_cfg.h"
  61#include "exec/memory.h"
  62#include "hw/boards.h"
  63#include "qemu/cutils.h"
  64#include "sysemu/runstate.h"
  65
  66#include <zlib.h>
  67
  68static int roms_loaded;
  69
  70/* return the size or -1 if error */
  71int64_t get_image_size(const char *filename)
  72{
  73    int fd;
  74    int64_t size;
  75    fd = open(filename, O_RDONLY | O_BINARY);
  76    if (fd < 0)
  77        return -1;
  78    size = lseek(fd, 0, SEEK_END);
  79    close(fd);
  80    return size;
  81}
  82
  83/* return the size or -1 if error */
  84ssize_t load_image_size(const char *filename, void *addr, size_t size)
  85{
  86    int fd;
  87    ssize_t actsize, l = 0;
  88
  89    fd = open(filename, O_RDONLY | O_BINARY);
  90    if (fd < 0) {
  91        return -1;
  92    }
  93
  94    while ((actsize = read(fd, addr + l, size - l)) > 0) {
  95        l += actsize;
  96    }
  97
  98    close(fd);
  99
 100    return actsize < 0 ? -1 : l;
 101}
 102
 103/* read()-like version */
 104ssize_t read_targphys(const char *name,
 105                      int fd, hwaddr dst_addr, size_t nbytes)
 106{
 107    uint8_t *buf;
 108    ssize_t did;
 109
 110    buf = g_malloc(nbytes);
 111    did = read(fd, buf, nbytes);
 112    if (did > 0)
 113        rom_add_blob_fixed("read", buf, did, dst_addr);
 114    g_free(buf);
 115    return did;
 116}
 117
 118int load_image_targphys(const char *filename,
 119                        hwaddr addr, uint64_t max_sz)
 120{
 121    return load_image_targphys_as(filename, addr, max_sz, NULL);
 122}
 123
 124/* return the size or -1 if error */
 125int load_image_targphys_as(const char *filename,
 126                           hwaddr addr, uint64_t max_sz, AddressSpace *as)
 127{
 128    int size;
 129
 130    size = get_image_size(filename);
 131    if (size < 0 || size > max_sz) {
 132        return -1;
 133    }
 134    if (size > 0) {
 135        if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
 136            return -1;
 137        }
 138    }
 139    return size;
 140}
 141
 142int load_image_mr(const char *filename, MemoryRegion *mr)
 143{
 144    int size;
 145
 146    if (!memory_access_is_direct(mr, false)) {
 147        /* Can only load an image into RAM or ROM */
 148        return -1;
 149    }
 150
 151    size = get_image_size(filename);
 152
 153    if (size < 0 || size > memory_region_size(mr)) {
 154        return -1;
 155    }
 156    if (size > 0) {
 157        if (rom_add_file_mr(filename, mr, -1) < 0) {
 158            return -1;
 159        }
 160    }
 161    return size;
 162}
 163
 164void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
 165                      const char *source)
 166{
 167    const char *nulp;
 168    char *ptr;
 169
 170    if (buf_size <= 0) return;
 171    nulp = memchr(source, 0, buf_size);
 172    if (nulp) {
 173        rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
 174    } else {
 175        rom_add_blob_fixed(name, source, buf_size, dest);
 176        ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
 177        *ptr = 0;
 178    }
 179}
 180
 181/* A.OUT loader */
 182
 183struct exec
 184{
 185  uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
 186  uint32_t a_text;   /* length of text, in bytes */
 187  uint32_t a_data;   /* length of data, in bytes */
 188  uint32_t a_bss;    /* length of uninitialized data area, in bytes */
 189  uint32_t a_syms;   /* length of symbol table data in file, in bytes */
 190  uint32_t a_entry;  /* start address */
 191  uint32_t a_trsize; /* length of relocation info for text, in bytes */
 192  uint32_t a_drsize; /* length of relocation info for data, in bytes */
 193};
 194
 195static void bswap_ahdr(struct exec *e)
 196{
 197    bswap32s(&e->a_info);
 198    bswap32s(&e->a_text);
 199    bswap32s(&e->a_data);
 200    bswap32s(&e->a_bss);
 201    bswap32s(&e->a_syms);
 202    bswap32s(&e->a_entry);
 203    bswap32s(&e->a_trsize);
 204    bswap32s(&e->a_drsize);
 205}
 206
 207#define N_MAGIC(exec) ((exec).a_info & 0xffff)
 208#define OMAGIC 0407
 209#define NMAGIC 0410
 210#define ZMAGIC 0413
 211#define QMAGIC 0314
 212#define _N_HDROFF(x) (1024 - sizeof (struct exec))
 213#define N_TXTOFF(x)                                                     \
 214    (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :     \
 215     (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
 216#define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
 217#define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
 218
 219#define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
 220
 221#define N_DATADDR(x, target_page_size) \
 222    (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
 223     : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
 224
 225
 226int load_aout(const char *filename, hwaddr addr, int max_sz,
 227              int bswap_needed, hwaddr target_page_size)
 228{
 229    int fd;
 230    ssize_t size, ret;
 231    struct exec e;
 232    uint32_t magic;
 233
 234    fd = open(filename, O_RDONLY | O_BINARY);
 235    if (fd < 0)
 236        return -1;
 237
 238    size = read(fd, &e, sizeof(e));
 239    if (size < 0)
 240        goto fail;
 241
 242    if (bswap_needed) {
 243        bswap_ahdr(&e);
 244    }
 245
 246    magic = N_MAGIC(e);
 247    switch (magic) {
 248    case ZMAGIC:
 249    case QMAGIC:
 250    case OMAGIC:
 251        if (e.a_text + e.a_data > max_sz)
 252            goto fail;
 253        lseek(fd, N_TXTOFF(e), SEEK_SET);
 254        size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
 255        if (size < 0)
 256            goto fail;
 257        break;
 258    case NMAGIC:
 259        if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
 260            goto fail;
 261        lseek(fd, N_TXTOFF(e), SEEK_SET);
 262        size = read_targphys(filename, fd, addr, e.a_text);
 263        if (size < 0)
 264            goto fail;
 265        ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
 266                            e.a_data);
 267        if (ret < 0)
 268            goto fail;
 269        size += ret;
 270        break;
 271    default:
 272        goto fail;
 273    }
 274    close(fd);
 275    return size;
 276 fail:
 277    close(fd);
 278    return -1;
 279}
 280
 281/* ELF loader */
 282
 283static void *load_at(int fd, off_t offset, size_t size)
 284{
 285    void *ptr;
 286    if (lseek(fd, offset, SEEK_SET) < 0)
 287        return NULL;
 288    ptr = g_malloc(size);
 289    if (read(fd, ptr, size) != size) {
 290        g_free(ptr);
 291        return NULL;
 292    }
 293    return ptr;
 294}
 295
 296#ifdef ELF_CLASS
 297#undef ELF_CLASS
 298#endif
 299
 300#define ELF_CLASS   ELFCLASS32
 301#include "elf.h"
 302
 303#define SZ              32
 304#define elf_word        uint32_t
 305#define elf_sword        int32_t
 306#define bswapSZs        bswap32s
 307#include "hw/elf_ops.h"
 308
 309#undef elfhdr
 310#undef elf_phdr
 311#undef elf_shdr
 312#undef elf_sym
 313#undef elf_rela
 314#undef elf_note
 315#undef elf_word
 316#undef elf_sword
 317#undef bswapSZs
 318#undef SZ
 319#define elfhdr          elf64_hdr
 320#define elf_phdr        elf64_phdr
 321#define elf_note        elf64_note
 322#define elf_shdr        elf64_shdr
 323#define elf_sym         elf64_sym
 324#define elf_rela        elf64_rela
 325#define elf_word        uint64_t
 326#define elf_sword        int64_t
 327#define bswapSZs        bswap64s
 328#define SZ              64
 329#include "hw/elf_ops.h"
 330
 331const char *load_elf_strerror(ssize_t error)
 332{
 333    switch (error) {
 334    case 0:
 335        return "No error";
 336    case ELF_LOAD_FAILED:
 337        return "Failed to load ELF";
 338    case ELF_LOAD_NOT_ELF:
 339        return "The image is not ELF";
 340    case ELF_LOAD_WRONG_ARCH:
 341        return "The image is from incompatible architecture";
 342    case ELF_LOAD_WRONG_ENDIAN:
 343        return "The image has incorrect endianness";
 344    case ELF_LOAD_TOO_BIG:
 345        return "The image segments are too big to load";
 346    default:
 347        return "Unknown error";
 348    }
 349}
 350
 351void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
 352{
 353    int fd;
 354    uint8_t e_ident_local[EI_NIDENT];
 355    uint8_t *e_ident;
 356    size_t hdr_size, off;
 357    bool is64l;
 358
 359    if (!hdr) {
 360        hdr = e_ident_local;
 361    }
 362    e_ident = hdr;
 363
 364    fd = open(filename, O_RDONLY | O_BINARY);
 365    if (fd < 0) {
 366        error_setg_errno(errp, errno, "Failed to open file: %s", filename);
 367        return;
 368    }
 369    if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
 370        error_setg_errno(errp, errno, "Failed to read file: %s", filename);
 371        goto fail;
 372    }
 373    if (e_ident[0] != ELFMAG0 ||
 374        e_ident[1] != ELFMAG1 ||
 375        e_ident[2] != ELFMAG2 ||
 376        e_ident[3] != ELFMAG3) {
 377        error_setg(errp, "Bad ELF magic");
 378        goto fail;
 379    }
 380
 381    is64l = e_ident[EI_CLASS] == ELFCLASS64;
 382    hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
 383    if (is64) {
 384        *is64 = is64l;
 385    }
 386
 387    off = EI_NIDENT;
 388    while (hdr != e_ident_local && off < hdr_size) {
 389        size_t br = read(fd, hdr + off, hdr_size - off);
 390        switch (br) {
 391        case 0:
 392            error_setg(errp, "File too short: %s", filename);
 393            goto fail;
 394        case -1:
 395            error_setg_errno(errp, errno, "Failed to read file: %s",
 396                             filename);
 397            goto fail;
 398        }
 399        off += br;
 400    }
 401
 402fail:
 403    close(fd);
 404}
 405
 406/* return < 0 if error, otherwise the number of bytes loaded in memory */
 407ssize_t load_elf(const char *filename,
 408                 uint64_t (*elf_note_fn)(void *, void *, bool),
 409                 uint64_t (*translate_fn)(void *, uint64_t),
 410                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
 411                 uint64_t *highaddr, uint32_t *pflags, int big_endian,
 412                 int elf_machine, int clear_lsb, int data_swab)
 413{
 414    return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
 415                       pentry, lowaddr, highaddr, pflags, big_endian,
 416                       elf_machine, clear_lsb, data_swab, NULL);
 417}
 418
 419/* return < 0 if error, otherwise the number of bytes loaded in memory */
 420ssize_t load_elf_as(const char *filename,
 421                    uint64_t (*elf_note_fn)(void *, void *, bool),
 422                    uint64_t (*translate_fn)(void *, uint64_t),
 423                    void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
 424                    uint64_t *highaddr, uint32_t *pflags, int big_endian,
 425                    int elf_machine, int clear_lsb, int data_swab,
 426                    AddressSpace *as)
 427{
 428    return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
 429                        pentry, lowaddr, highaddr, pflags, big_endian,
 430                        elf_machine, clear_lsb, data_swab, as, true);
 431}
 432
 433/* return < 0 if error, otherwise the number of bytes loaded in memory */
 434ssize_t load_elf_ram(const char *filename,
 435                     uint64_t (*elf_note_fn)(void *, void *, bool),
 436                     uint64_t (*translate_fn)(void *, uint64_t),
 437                     void *translate_opaque, uint64_t *pentry,
 438                     uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
 439                     int big_endian, int elf_machine, int clear_lsb,
 440                     int data_swab, AddressSpace *as, bool load_rom)
 441{
 442    return load_elf_ram_sym(filename, elf_note_fn,
 443                            translate_fn, translate_opaque,
 444                            pentry, lowaddr, highaddr, pflags, big_endian,
 445                            elf_machine, clear_lsb, data_swab, as,
 446                            load_rom, NULL);
 447}
 448
 449/* return < 0 if error, otherwise the number of bytes loaded in memory */
 450ssize_t load_elf_ram_sym(const char *filename,
 451                         uint64_t (*elf_note_fn)(void *, void *, bool),
 452                         uint64_t (*translate_fn)(void *, uint64_t),
 453                         void *translate_opaque, uint64_t *pentry,
 454                         uint64_t *lowaddr, uint64_t *highaddr,
 455                         uint32_t *pflags, int big_endian, int elf_machine,
 456                         int clear_lsb, int data_swab,
 457                         AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
 458{
 459    int fd, data_order, target_data_order, must_swab;
 460    ssize_t ret = ELF_LOAD_FAILED;
 461    uint8_t e_ident[EI_NIDENT];
 462
 463    fd = open(filename, O_RDONLY | O_BINARY);
 464    if (fd < 0) {
 465        perror(filename);
 466        return -1;
 467    }
 468    if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
 469        goto fail;
 470    if (e_ident[0] != ELFMAG0 ||
 471        e_ident[1] != ELFMAG1 ||
 472        e_ident[2] != ELFMAG2 ||
 473        e_ident[3] != ELFMAG3) {
 474        ret = ELF_LOAD_NOT_ELF;
 475        goto fail;
 476    }
 477#ifdef HOST_WORDS_BIGENDIAN
 478    data_order = ELFDATA2MSB;
 479#else
 480    data_order = ELFDATA2LSB;
 481#endif
 482    must_swab = data_order != e_ident[EI_DATA];
 483    if (big_endian) {
 484        target_data_order = ELFDATA2MSB;
 485    } else {
 486        target_data_order = ELFDATA2LSB;
 487    }
 488
 489    if (target_data_order != e_ident[EI_DATA]) {
 490        ret = ELF_LOAD_WRONG_ENDIAN;
 491        goto fail;
 492    }
 493
 494    lseek(fd, 0, SEEK_SET);
 495    if (e_ident[EI_CLASS] == ELFCLASS64) {
 496        ret = load_elf64(filename, fd, elf_note_fn,
 497                         translate_fn, translate_opaque, must_swab,
 498                         pentry, lowaddr, highaddr, pflags, elf_machine,
 499                         clear_lsb, data_swab, as, load_rom, sym_cb);
 500    } else {
 501        ret = load_elf32(filename, fd, elf_note_fn,
 502                         translate_fn, translate_opaque, must_swab,
 503                         pentry, lowaddr, highaddr, pflags, elf_machine,
 504                         clear_lsb, data_swab, as, load_rom, sym_cb);
 505    }
 506
 507 fail:
 508    close(fd);
 509    return ret;
 510}
 511
 512static void bswap_uboot_header(uboot_image_header_t *hdr)
 513{
 514#ifndef HOST_WORDS_BIGENDIAN
 515    bswap32s(&hdr->ih_magic);
 516    bswap32s(&hdr->ih_hcrc);
 517    bswap32s(&hdr->ih_time);
 518    bswap32s(&hdr->ih_size);
 519    bswap32s(&hdr->ih_load);
 520    bswap32s(&hdr->ih_ep);
 521    bswap32s(&hdr->ih_dcrc);
 522#endif
 523}
 524
 525
 526#define ZALLOC_ALIGNMENT        16
 527
 528static void *zalloc(void *x, unsigned items, unsigned size)
 529{
 530    void *p;
 531
 532    size *= items;
 533    size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
 534
 535    p = g_malloc(size);
 536
 537    return (p);
 538}
 539
 540static void zfree(void *x, void *addr)
 541{
 542    g_free(addr);
 543}
 544
 545
 546#define HEAD_CRC        2
 547#define EXTRA_FIELD     4
 548#define ORIG_NAME       8
 549#define COMMENT         0x10
 550#define RESERVED        0xe0
 551
 552#define DEFLATED        8
 553
 554ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
 555{
 556    z_stream s;
 557    ssize_t dstbytes;
 558    int r, i, flags;
 559
 560    /* skip header */
 561    i = 10;
 562    if (srclen < 4) {
 563        goto toosmall;
 564    }
 565    flags = src[3];
 566    if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
 567        puts ("Error: Bad gzipped data\n");
 568        return -1;
 569    }
 570    if ((flags & EXTRA_FIELD) != 0) {
 571        if (srclen < 12) {
 572            goto toosmall;
 573        }
 574        i = 12 + src[10] + (src[11] << 8);
 575    }
 576    if ((flags & ORIG_NAME) != 0) {
 577        while (i < srclen && src[i++] != 0) {
 578            /* do nothing */
 579        }
 580    }
 581    if ((flags & COMMENT) != 0) {
 582        while (i < srclen && src[i++] != 0) {
 583            /* do nothing */
 584        }
 585    }
 586    if ((flags & HEAD_CRC) != 0) {
 587        i += 2;
 588    }
 589    if (i >= srclen) {
 590        goto toosmall;
 591    }
 592
 593    s.zalloc = zalloc;
 594    s.zfree = zfree;
 595
 596    r = inflateInit2(&s, -MAX_WBITS);
 597    if (r != Z_OK) {
 598        printf ("Error: inflateInit2() returned %d\n", r);
 599        return (-1);
 600    }
 601    s.next_in = src + i;
 602    s.avail_in = srclen - i;
 603    s.next_out = dst;
 604    s.avail_out = dstlen;
 605    r = inflate(&s, Z_FINISH);
 606    if (r != Z_OK && r != Z_STREAM_END) {
 607        printf ("Error: inflate() returned %d\n", r);
 608        return -1;
 609    }
 610    dstbytes = s.next_out - (unsigned char *) dst;
 611    inflateEnd(&s);
 612
 613    return dstbytes;
 614
 615toosmall:
 616    puts("Error: gunzip out of data in header\n");
 617    return -1;
 618}
 619
 620/* Load a U-Boot image.  */
 621static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 622                            int *is_linux, uint8_t image_type,
 623                            uint64_t (*translate_fn)(void *, uint64_t),
 624                            void *translate_opaque, AddressSpace *as)
 625{
 626    int fd;
 627    int size;
 628    hwaddr address;
 629    uboot_image_header_t h;
 630    uboot_image_header_t *hdr = &h;
 631    uint8_t *data = NULL;
 632    int ret = -1;
 633    int do_uncompress = 0;
 634
 635    fd = open(filename, O_RDONLY | O_BINARY);
 636    if (fd < 0)
 637        return -1;
 638
 639    size = read(fd, hdr, sizeof(uboot_image_header_t));
 640    if (size < sizeof(uboot_image_header_t)) {
 641        goto out;
 642    }
 643
 644    bswap_uboot_header(hdr);
 645
 646    if (hdr->ih_magic != IH_MAGIC)
 647        goto out;
 648
 649    if (hdr->ih_type != image_type) {
 650        if (!(image_type == IH_TYPE_KERNEL &&
 651            hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
 652            fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
 653                    image_type);
 654            goto out;
 655        }
 656    }
 657
 658    /* TODO: Implement other image types.  */
 659    switch (hdr->ih_type) {
 660    case IH_TYPE_KERNEL_NOLOAD:
 661        if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
 662            fprintf(stderr, "this image format (kernel_noload) cannot be "
 663                    "loaded on this machine type");
 664            goto out;
 665        }
 666
 667        hdr->ih_load = *loadaddr + sizeof(*hdr);
 668        hdr->ih_ep += hdr->ih_load;
 669        /* fall through */
 670    case IH_TYPE_KERNEL:
 671        address = hdr->ih_load;
 672        if (translate_fn) {
 673            address = translate_fn(translate_opaque, address);
 674        }
 675        if (loadaddr) {
 676            *loadaddr = hdr->ih_load;
 677        }
 678
 679        switch (hdr->ih_comp) {
 680        case IH_COMP_NONE:
 681            break;
 682        case IH_COMP_GZIP:
 683            do_uncompress = 1;
 684            break;
 685        default:
 686            fprintf(stderr,
 687                    "Unable to load u-boot images with compression type %d\n",
 688                    hdr->ih_comp);
 689            goto out;
 690        }
 691
 692        if (ep) {
 693            *ep = hdr->ih_ep;
 694        }
 695
 696        /* TODO: Check CPU type.  */
 697        if (is_linux) {
 698            if (hdr->ih_os == IH_OS_LINUX) {
 699                *is_linux = 1;
 700            } else {
 701                *is_linux = 0;
 702            }
 703        }
 704
 705        break;
 706    case IH_TYPE_RAMDISK:
 707        address = *loadaddr;
 708        break;
 709    default:
 710        fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
 711        goto out;
 712    }
 713
 714    data = g_malloc(hdr->ih_size);
 715
 716    if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
 717        fprintf(stderr, "Error reading file\n");
 718        goto out;
 719    }
 720
 721    if (do_uncompress) {
 722        uint8_t *compressed_data;
 723        size_t max_bytes;
 724        ssize_t bytes;
 725
 726        compressed_data = data;
 727        max_bytes = UBOOT_MAX_GUNZIP_BYTES;
 728        data = g_malloc(max_bytes);
 729
 730        bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
 731        g_free(compressed_data);
 732        if (bytes < 0) {
 733            fprintf(stderr, "Unable to decompress gzipped image!\n");
 734            goto out;
 735        }
 736        hdr->ih_size = bytes;
 737    }
 738
 739    rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
 740
 741    ret = hdr->ih_size;
 742
 743out:
 744    g_free(data);
 745    close(fd);
 746    return ret;
 747}
 748
 749int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 750                int *is_linux,
 751                uint64_t (*translate_fn)(void *, uint64_t),
 752                void *translate_opaque)
 753{
 754    return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
 755                            translate_fn, translate_opaque, NULL);
 756}
 757
 758int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
 759                   int *is_linux,
 760                   uint64_t (*translate_fn)(void *, uint64_t),
 761                   void *translate_opaque, AddressSpace *as)
 762{
 763    return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
 764                            translate_fn, translate_opaque, as);
 765}
 766
 767/* Load a ramdisk.  */
 768int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
 769{
 770    return load_ramdisk_as(filename, addr, max_sz, NULL);
 771}
 772
 773int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
 774                    AddressSpace *as)
 775{
 776    return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
 777                            NULL, NULL, as);
 778}
 779
 780/* Load a gzip-compressed kernel to a dynamically allocated buffer. */
 781int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
 782                              uint8_t **buffer)
 783{
 784    uint8_t *compressed_data = NULL;
 785    uint8_t *data = NULL;
 786    gsize len;
 787    ssize_t bytes;
 788    int ret = -1;
 789
 790    if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
 791                             NULL)) {
 792        goto out;
 793    }
 794
 795    /* Is it a gzip-compressed file? */
 796    if (len < 2 ||
 797        compressed_data[0] != 0x1f ||
 798        compressed_data[1] != 0x8b) {
 799        goto out;
 800    }
 801
 802    if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
 803        max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
 804    }
 805
 806    data = g_malloc(max_sz);
 807    bytes = gunzip(data, max_sz, compressed_data, len);
 808    if (bytes < 0) {
 809        fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
 810                filename);
 811        goto out;
 812    }
 813
 814    /* trim to actual size and return to caller */
 815    *buffer = g_realloc(data, bytes);
 816    ret = bytes;
 817    /* ownership has been transferred to caller */
 818    data = NULL;
 819
 820 out:
 821    g_free(compressed_data);
 822    g_free(data);
 823    return ret;
 824}
 825
 826/* Load a gzip-compressed kernel. */
 827int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
 828{
 829    int bytes;
 830    uint8_t *data;
 831
 832    bytes = load_image_gzipped_buffer(filename, max_sz, &data);
 833    if (bytes != -1) {
 834        rom_add_blob_fixed(filename, data, bytes, addr);
 835        g_free(data);
 836    }
 837    return bytes;
 838}
 839
 840/*
 841 * Functions for reboot-persistent memory regions.
 842 *  - used for vga bios and option roms.
 843 *  - also linux kernel (-kernel / -initrd).
 844 */
 845
 846typedef struct Rom Rom;
 847
 848struct Rom {
 849    char *name;
 850    char *path;
 851
 852    /* datasize is the amount of memory allocated in "data". If datasize is less
 853     * than romsize, it means that the area from datasize to romsize is filled
 854     * with zeros.
 855     */
 856    size_t romsize;
 857    size_t datasize;
 858
 859    uint8_t *data;
 860    MemoryRegion *mr;
 861    AddressSpace *as;
 862    int isrom;
 863    char *fw_dir;
 864    char *fw_file;
 865    GMappedFile *mapped_file;
 866
 867    bool committed;
 868
 869    hwaddr addr;
 870    QTAILQ_ENTRY(Rom) next;
 871};
 872
 873static FWCfgState *fw_cfg;
 874static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
 875
 876/*
 877 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
 878 * rom_add_elf_program())
 879 */
 880static void rom_free_data(Rom *rom)
 881{
 882    if (rom->mapped_file) {
 883        g_mapped_file_unref(rom->mapped_file);
 884        rom->mapped_file = NULL;
 885    } else {
 886        g_free(rom->data);
 887    }
 888
 889    rom->data = NULL;
 890}
 891
 892static void rom_free(Rom *rom)
 893{
 894    rom_free_data(rom);
 895    g_free(rom->path);
 896    g_free(rom->name);
 897    g_free(rom->fw_dir);
 898    g_free(rom->fw_file);
 899    g_free(rom);
 900}
 901
 902static inline bool rom_order_compare(Rom *rom, Rom *item)
 903{
 904    return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
 905           (rom->as == item->as && rom->addr >= item->addr);
 906}
 907
 908static void rom_insert(Rom *rom)
 909{
 910    Rom *item;
 911
 912    if (roms_loaded) {
 913        hw_error ("ROM images must be loaded at startup\n");
 914    }
 915
 916    /* The user didn't specify an address space, this is the default */
 917    if (!rom->as) {
 918        rom->as = &address_space_memory;
 919    }
 920
 921    rom->committed = false;
 922
 923    /* List is ordered by load address in the same address space */
 924    QTAILQ_FOREACH(item, &roms, next) {
 925        if (rom_order_compare(rom, item)) {
 926            continue;
 927        }
 928        QTAILQ_INSERT_BEFORE(item, rom, next);
 929        return;
 930    }
 931    QTAILQ_INSERT_TAIL(&roms, rom, next);
 932}
 933
 934static void fw_cfg_resized(const char *id, uint64_t length, void *host)
 935{
 936    if (fw_cfg) {
 937        fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
 938    }
 939}
 940
 941static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
 942{
 943    void *data;
 944
 945    rom->mr = g_malloc(sizeof(*rom->mr));
 946    memory_region_init_resizeable_ram(rom->mr, owner, name,
 947                                      rom->datasize, rom->romsize,
 948                                      fw_cfg_resized,
 949                                      &error_fatal);
 950    memory_region_set_readonly(rom->mr, ro);
 951    vmstate_register_ram_global(rom->mr);
 952
 953    data = memory_region_get_ram_ptr(rom->mr);
 954    memcpy(data, rom->data, rom->datasize);
 955
 956    return data;
 957}
 958
 959int rom_add_file(const char *file, const char *fw_dir,
 960                 hwaddr addr, int32_t bootindex,
 961                 bool option_rom, MemoryRegion *mr,
 962                 AddressSpace *as)
 963{
 964    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 965    Rom *rom;
 966    int rc, fd = -1;
 967    char devpath[100];
 968
 969    if (as && mr) {
 970        fprintf(stderr, "Specifying an Address Space and Memory Region is " \
 971                "not valid when loading a rom\n");
 972        /* We haven't allocated anything so we don't need any cleanup */
 973        return -1;
 974    }
 975
 976    rom = g_malloc0(sizeof(*rom));
 977    rom->name = g_strdup(file);
 978    rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
 979    rom->as = as;
 980    if (rom->path == NULL) {
 981        rom->path = g_strdup(file);
 982    }
 983
 984    fd = open(rom->path, O_RDONLY | O_BINARY);
 985    if (fd == -1) {
 986        fprintf(stderr, "Could not open option rom '%s': %s\n",
 987                rom->path, strerror(errno));
 988        goto err;
 989    }
 990
 991    if (fw_dir) {
 992        rom->fw_dir  = g_strdup(fw_dir);
 993        rom->fw_file = g_strdup(file);
 994    }
 995    rom->addr     = addr;
 996    rom->romsize  = lseek(fd, 0, SEEK_END);
 997    if (rom->romsize == -1) {
 998        fprintf(stderr, "rom: file %-20s: get size error: %s\n",
 999                rom->name, strerror(errno));
1000        goto err;
1001    }
1002
1003    rom->datasize = rom->romsize;
1004    rom->data     = g_malloc0(rom->datasize);
1005    lseek(fd, 0, SEEK_SET);
1006    rc = read(fd, rom->data, rom->datasize);
1007    if (rc != rom->datasize) {
1008        fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
1009                rom->name, rc, rom->datasize);
1010        goto err;
1011    }
1012    close(fd);
1013    rom_insert(rom);
1014    if (rom->fw_file && fw_cfg) {
1015        const char *basename;
1016        char fw_file_name[FW_CFG_MAX_FILE_PATH];
1017        void *data;
1018
1019        basename = strrchr(rom->fw_file, '/');
1020        if (basename) {
1021            basename++;
1022        } else {
1023            basename = rom->fw_file;
1024        }
1025        snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1026                 basename);
1027        snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1028
1029        if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1030            data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1031        } else {
1032            data = rom->data;
1033        }
1034
1035        fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1036    } else {
1037        if (mr) {
1038            rom->mr = mr;
1039            snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1040        } else {
1041            snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1042        }
1043    }
1044
1045    add_boot_device_path(bootindex, NULL, devpath);
1046    return 0;
1047
1048err:
1049    if (fd != -1)
1050        close(fd);
1051
1052    rom_free(rom);
1053    return -1;
1054}
1055
1056MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1057                   size_t max_len, hwaddr addr, const char *fw_file_name,
1058                   FWCfgCallback fw_callback, void *callback_opaque,
1059                   AddressSpace *as, bool read_only)
1060{
1061    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1062    Rom *rom;
1063    MemoryRegion *mr = NULL;
1064
1065    rom           = g_malloc0(sizeof(*rom));
1066    rom->name     = g_strdup(name);
1067    rom->as       = as;
1068    rom->addr     = addr;
1069    rom->romsize  = max_len ? max_len : len;
1070    rom->datasize = len;
1071    g_assert(rom->romsize >= rom->datasize);
1072    rom->data     = g_malloc0(rom->datasize);
1073    memcpy(rom->data, blob, len);
1074    rom_insert(rom);
1075    if (fw_file_name && fw_cfg) {
1076        char devpath[100];
1077        void *data;
1078
1079        if (read_only) {
1080            snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1081        } else {
1082            snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1083        }
1084
1085        if (mc->rom_file_has_mr) {
1086            data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1087            mr = rom->mr;
1088        } else {
1089            data = rom->data;
1090        }
1091
1092        fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1093                                 fw_callback, NULL, callback_opaque,
1094                                 data, rom->datasize, read_only);
1095    }
1096    return mr;
1097}
1098
1099/* This function is specific for elf program because we don't need to allocate
1100 * all the rom. We just allocate the first part and the rest is just zeros. This
1101 * is why romsize and datasize are different. Also, this function takes its own
1102 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1103 */
1104int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1105                        size_t datasize, size_t romsize, hwaddr addr,
1106                        AddressSpace *as)
1107{
1108    Rom *rom;
1109
1110    rom           = g_malloc0(sizeof(*rom));
1111    rom->name     = g_strdup(name);
1112    rom->addr     = addr;
1113    rom->datasize = datasize;
1114    rom->romsize  = romsize;
1115    rom->data     = data;
1116    rom->as       = as;
1117
1118    if (mapped_file && data) {
1119        g_mapped_file_ref(mapped_file);
1120        rom->mapped_file = mapped_file;
1121    }
1122
1123    rom_insert(rom);
1124    return 0;
1125}
1126
1127int rom_add_vga(const char *file)
1128{
1129    return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1130}
1131
1132int rom_add_option(const char *file, int32_t bootindex)
1133{
1134    return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1135}
1136
1137static void rom_reset(void *unused)
1138{
1139    Rom *rom;
1140
1141    QTAILQ_FOREACH(rom, &roms, next) {
1142        if (rom->fw_file) {
1143            continue;
1144        }
1145        /*
1146         * We don't need to fill in the RAM with ROM data because we'll fill
1147         * the data in during the next incoming migration in all cases.  Note
1148         * that some of those RAMs can actually be modified by the guest.
1149         */
1150        if (runstate_check(RUN_STATE_INMIGRATE)) {
1151            if (rom->data && rom->isrom) {
1152                /*
1153                 * Free it so that a rom_reset after migration doesn't
1154                 * overwrite a potentially modified 'rom'.
1155                 */
1156                rom_free_data(rom);
1157            }
1158            continue;
1159        }
1160
1161        if (rom->data == NULL) {
1162            continue;
1163        }
1164        if (rom->mr) {
1165            void *host = memory_region_get_ram_ptr(rom->mr);
1166            memcpy(host, rom->data, rom->datasize);
1167            memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1168        } else {
1169            address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1170                                    rom->data, rom->datasize);
1171            address_space_set(rom->as, rom->addr + rom->datasize, 0,
1172                              rom->romsize - rom->datasize,
1173                              MEMTXATTRS_UNSPECIFIED);
1174        }
1175        if (rom->isrom) {
1176            /* rom needs to be written only once */
1177            rom_free_data(rom);
1178        }
1179        /*
1180         * The rom loader is really on the same level as firmware in the guest
1181         * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1182         * that the instruction cache for that new region is clear, so that the
1183         * CPU definitely fetches its instructions from the just written data.
1184         */
1185        cpu_flush_icache_range(rom->addr, rom->datasize);
1186
1187        trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1188    }
1189}
1190
1191/* Return true if two consecutive ROMs in the ROM list overlap */
1192static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1193{
1194    if (!last_rom) {
1195        return false;
1196    }
1197    return last_rom->as == this_rom->as &&
1198        last_rom->addr + last_rom->romsize > this_rom->addr;
1199}
1200
1201static const char *rom_as_name(Rom *rom)
1202{
1203    const char *name = rom->as ? rom->as->name : NULL;
1204    return name ?: "anonymous";
1205}
1206
1207static void rom_print_overlap_error_header(void)
1208{
1209    error_report("Some ROM regions are overlapping");
1210    error_printf(
1211        "These ROM regions might have been loaded by "
1212        "direct user request or by default.\n"
1213        "They could be BIOS/firmware images, a guest kernel, "
1214        "initrd or some other file loaded into guest memory.\n"
1215        "Check whether you intended to load all this guest code, and "
1216        "whether it has been built to load to the correct addresses.\n");
1217}
1218
1219static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1220{
1221    error_printf(
1222        "\nThe following two regions overlap (in the %s address space):\n",
1223        rom_as_name(rom));
1224    error_printf(
1225        "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1226        last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1227    error_printf(
1228        "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1229        rom->name, rom->addr, rom->addr + rom->romsize);
1230}
1231
1232int rom_check_and_register_reset(void)
1233{
1234    MemoryRegionSection section;
1235    Rom *rom, *last_rom = NULL;
1236    bool found_overlap = false;
1237
1238    QTAILQ_FOREACH(rom, &roms, next) {
1239        if (rom->fw_file) {
1240            continue;
1241        }
1242        if (!rom->mr) {
1243            if (roms_overlap(last_rom, rom)) {
1244                if (!found_overlap) {
1245                    found_overlap = true;
1246                    rom_print_overlap_error_header();
1247                }
1248                rom_print_one_overlap_error(last_rom, rom);
1249                /* Keep going through the list so we report all overlaps */
1250            }
1251            last_rom = rom;
1252        }
1253        section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1254                                     rom->addr, 1);
1255        rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1256        memory_region_unref(section.mr);
1257    }
1258    if (found_overlap) {
1259        return -1;
1260    }
1261
1262    qemu_register_reset(rom_reset, NULL);
1263    roms_loaded = 1;
1264    return 0;
1265}
1266
1267void rom_set_fw(FWCfgState *f)
1268{
1269    fw_cfg = f;
1270}
1271
1272void rom_set_order_override(int order)
1273{
1274    if (!fw_cfg)
1275        return;
1276    fw_cfg_set_order_override(fw_cfg, order);
1277}
1278
1279void rom_reset_order_override(void)
1280{
1281    if (!fw_cfg)
1282        return;
1283    fw_cfg_reset_order_override(fw_cfg);
1284}
1285
1286void rom_transaction_begin(void)
1287{
1288    Rom *rom;
1289
1290    /* Ignore ROMs added without the transaction API */
1291    QTAILQ_FOREACH(rom, &roms, next) {
1292        rom->committed = true;
1293    }
1294}
1295
1296void rom_transaction_end(bool commit)
1297{
1298    Rom *rom;
1299    Rom *tmp;
1300
1301    QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1302        if (rom->committed) {
1303            continue;
1304        }
1305        if (commit) {
1306            rom->committed = true;
1307        } else {
1308            QTAILQ_REMOVE(&roms, rom, next);
1309            rom_free(rom);
1310        }
1311    }
1312}
1313
1314static Rom *find_rom(hwaddr addr, size_t size)
1315{
1316    Rom *rom;
1317
1318    QTAILQ_FOREACH(rom, &roms, next) {
1319        if (rom->fw_file) {
1320            continue;
1321        }
1322        if (rom->mr) {
1323            continue;
1324        }
1325        if (rom->addr > addr) {
1326            continue;
1327        }
1328        if (rom->addr + rom->romsize < addr + size) {
1329            continue;
1330        }
1331        return rom;
1332    }
1333    return NULL;
1334}
1335
1336typedef struct RomSec {
1337    hwaddr base;
1338    int se; /* start/end flag */
1339} RomSec;
1340
1341
1342/*
1343 * Sort into address order. We break ties between rom-startpoints
1344 * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1345 * transition before the 1->0 transition. Either way round would
1346 * work, but this way saves a little work later by avoiding
1347 * dealing with "gaps" of 0 length.
1348 */
1349static gint sort_secs(gconstpointer a, gconstpointer b)
1350{
1351    RomSec *ra = (RomSec *) a;
1352    RomSec *rb = (RomSec *) b;
1353
1354    if (ra->base == rb->base) {
1355        return ra->se - rb->se;
1356    }
1357    return ra->base > rb->base ? 1 : -1;
1358}
1359
1360static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1361{
1362   RomSec *cand = g_new(RomSec, 1);
1363   cand->base = base;
1364   cand->se = se;
1365   return g_list_prepend(secs, cand);
1366}
1367
1368RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1369{
1370    Rom *rom;
1371    RomSec *cand;
1372    RomGap res = {0, 0};
1373    hwaddr gapstart = base;
1374    GList *it, *secs = NULL;
1375    int count = 0;
1376
1377    QTAILQ_FOREACH(rom, &roms, next) {
1378        /* Ignore blobs being loaded to special places */
1379        if (rom->mr || rom->fw_file) {
1380            continue;
1381        }
1382        /* ignore anything finishing bellow base */
1383        if (rom->addr + rom->romsize <= base) {
1384            continue;
1385        }
1386        /* ignore anything starting above the region */
1387        if (rom->addr >= base + size) {
1388            continue;
1389        }
1390
1391        /* Save the start and end of each relevant ROM */
1392        secs = add_romsec_to_list(secs, rom->addr, 1);
1393
1394        if (rom->addr + rom->romsize < base + size) {
1395            secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1396        }
1397    }
1398
1399    /* sentinel */
1400    secs = add_romsec_to_list(secs, base + size, 1);
1401
1402    secs = g_list_sort(secs, sort_secs);
1403
1404    for (it = g_list_first(secs); it; it = g_list_next(it)) {
1405        cand = (RomSec *) it->data;
1406        if (count == 0 && count + cand->se == 1) {
1407            size_t gap = cand->base - gapstart;
1408            if (gap > res.size) {
1409                res.base = gapstart;
1410                res.size = gap;
1411            }
1412        } else if (count == 1 && count + cand->se == 0) {
1413            gapstart = cand->base;
1414        }
1415        count += cand->se;
1416    }
1417
1418    g_list_free_full(secs, g_free);
1419    return res;
1420}
1421
1422/*
1423 * Copies memory from registered ROMs to dest. Any memory that is contained in
1424 * a ROM between addr and addr + size is copied. Note that this can involve
1425 * multiple ROMs, which need not start at addr and need not end at addr + size.
1426 */
1427int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1428{
1429    hwaddr end = addr + size;
1430    uint8_t *s, *d = dest;
1431    size_t l = 0;
1432    Rom *rom;
1433
1434    QTAILQ_FOREACH(rom, &roms, next) {
1435        if (rom->fw_file) {
1436            continue;
1437        }
1438        if (rom->mr) {
1439            continue;
1440        }
1441        if (rom->addr + rom->romsize < addr) {
1442            continue;
1443        }
1444        if (rom->addr > end || rom->addr < addr) {
1445            break;
1446        }
1447
1448        d = dest + (rom->addr - addr);
1449        s = rom->data;
1450        l = rom->datasize;
1451
1452        if ((d + l) > (dest + size)) {
1453            l = dest - d;
1454        }
1455
1456        if (l > 0) {
1457            memcpy(d, s, l);
1458        }
1459
1460        if (rom->romsize > rom->datasize) {
1461            /* If datasize is less than romsize, it means that we didn't
1462             * allocate all the ROM because the trailing data are only zeros.
1463             */
1464
1465            d += l;
1466            l = rom->romsize - rom->datasize;
1467
1468            if ((d + l) > (dest + size)) {
1469                /* Rom size doesn't fit in the destination area. Adjust to avoid
1470                 * overflow.
1471                 */
1472                l = dest - d;
1473            }
1474
1475            if (l > 0) {
1476                memset(d, 0x0, l);
1477            }
1478        }
1479    }
1480
1481    return (d + l) - dest;
1482}
1483
1484void *rom_ptr(hwaddr addr, size_t size)
1485{
1486    Rom *rom;
1487
1488    rom = find_rom(addr, size);
1489    if (!rom || !rom->data)
1490        return NULL;
1491    return rom->data + (addr - rom->addr);
1492}
1493
1494typedef struct FindRomCBData {
1495    size_t size; /* Amount of data we want from ROM, in bytes */
1496    MemoryRegion *mr; /* MR at the unaliased guest addr */
1497    hwaddr xlat; /* Offset of addr within mr */
1498    void *rom; /* Output: rom data pointer, if found */
1499} FindRomCBData;
1500
1501static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1502                        hwaddr offset_in_region, void *opaque)
1503{
1504    FindRomCBData *cbdata = opaque;
1505    hwaddr alias_addr;
1506
1507    if (mr != cbdata->mr) {
1508        return false;
1509    }
1510
1511    alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1512    cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1513    if (!cbdata->rom) {
1514        return false;
1515    }
1516    /* Found a match, stop iterating */
1517    return true;
1518}
1519
1520void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1521{
1522    /*
1523     * Find any ROM data for the given guest address range.  If there
1524     * is a ROM blob then return a pointer to the host memory
1525     * corresponding to 'addr'; otherwise return NULL.
1526     *
1527     * We look not only for ROM blobs that were loaded directly to
1528     * addr, but also for ROM blobs that were loaded to aliases of
1529     * that memory at other addresses within the AddressSpace.
1530     *
1531     * Note that we do not check @as against the 'as' member in the
1532     * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1533     * AddressSpace which the rom blob should be written to, whereas
1534     * our @as argument is the AddressSpace which we are (effectively)
1535     * reading from, and the same underlying RAM will often be visible
1536     * in multiple AddressSpaces. (A common example is a ROM blob
1537     * written to the 'system' address space but then read back via a
1538     * CPU's cpu->as pointer.) This does mean we might potentially
1539     * return a false-positive match if a ROM blob was loaded into an
1540     * AS which is entirely separate and distinct from the one we're
1541     * querying, but this issue exists also for rom_ptr() and hasn't
1542     * caused any problems in practice.
1543     */
1544    FlatView *fv;
1545    void *rom;
1546    hwaddr len_unused;
1547    FindRomCBData cbdata = {};
1548
1549    /* Easy case: there's data at the actual address */
1550    rom = rom_ptr(addr, size);
1551    if (rom) {
1552        return rom;
1553    }
1554
1555    RCU_READ_LOCK_GUARD();
1556
1557    fv = address_space_to_flatview(as);
1558    cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1559                                   false, MEMTXATTRS_UNSPECIFIED);
1560    if (!cbdata.mr) {
1561        /* Nothing at this address, so there can't be any aliasing */
1562        return NULL;
1563    }
1564    cbdata.size = size;
1565    flatview_for_each_range(fv, find_rom_cb, &cbdata);
1566    return cbdata.rom;
1567}
1568
1569HumanReadableText *qmp_x_query_roms(Error **errp)
1570{
1571    Rom *rom;
1572    g_autoptr(GString) buf = g_string_new("");
1573
1574    QTAILQ_FOREACH(rom, &roms, next) {
1575        if (rom->mr) {
1576            g_string_append_printf(buf, "%s"
1577                                   " size=0x%06zx name=\"%s\"\n",
1578                                   memory_region_name(rom->mr),
1579                                   rom->romsize,
1580                                   rom->name);
1581        } else if (!rom->fw_file) {
1582            g_string_append_printf(buf, "addr=" TARGET_FMT_plx
1583                                   " size=0x%06zx mem=%s name=\"%s\"\n",
1584                                   rom->addr, rom->romsize,
1585                                   rom->isrom ? "rom" : "ram",
1586                                   rom->name);
1587        } else {
1588            g_string_append_printf(buf, "fw=%s/%s"
1589                                   " size=0x%06zx name=\"%s\"\n",
1590                                   rom->fw_dir,
1591                                   rom->fw_file,
1592                                   rom->romsize,
1593                                   rom->name);
1594        }
1595    }
1596
1597    return human_readable_text_from_str(buf);
1598}
1599
1600typedef enum HexRecord HexRecord;
1601enum HexRecord {
1602    DATA_RECORD = 0,
1603    EOF_RECORD,
1604    EXT_SEG_ADDR_RECORD,
1605    START_SEG_ADDR_RECORD,
1606    EXT_LINEAR_ADDR_RECORD,
1607    START_LINEAR_ADDR_RECORD,
1608};
1609
1610/* Each record contains a 16-bit address which is combined with the upper 16
1611 * bits of the implicit "next address" to form a 32-bit address.
1612 */
1613#define NEXT_ADDR_MASK 0xffff0000
1614
1615#define DATA_FIELD_MAX_LEN 0xff
1616#define LEN_EXCEPT_DATA 0x5
1617/* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1618 *       sizeof(checksum) */
1619typedef struct {
1620    uint8_t byte_count;
1621    uint16_t address;
1622    uint8_t record_type;
1623    uint8_t data[DATA_FIELD_MAX_LEN];
1624    uint8_t checksum;
1625} HexLine;
1626
1627/* return 0 or -1 if error */
1628static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1629                         uint32_t *index, const bool in_process)
1630{
1631    /* +-------+---------------+-------+---------------------+--------+
1632     * | byte  |               |record |                     |        |
1633     * | count |    address    | type  |        data         |checksum|
1634     * +-------+---------------+-------+---------------------+--------+
1635     * ^       ^               ^       ^                     ^        ^
1636     * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1637     */
1638    uint8_t value = 0;
1639    uint32_t idx = *index;
1640    /* ignore space */
1641    if (g_ascii_isspace(c)) {
1642        return true;
1643    }
1644    if (!g_ascii_isxdigit(c) || !in_process) {
1645        return false;
1646    }
1647    value = g_ascii_xdigit_value(c);
1648    value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1649    if (idx < 2) {
1650        line->byte_count |= value;
1651    } else if (2 <= idx && idx < 6) {
1652        line->address <<= 4;
1653        line->address += g_ascii_xdigit_value(c);
1654    } else if (6 <= idx && idx < 8) {
1655        line->record_type |= value;
1656    } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1657        line->data[(idx - 8) >> 1] |= value;
1658    } else if (8 + 2 * line->byte_count <= idx &&
1659               idx < 10 + 2 * line->byte_count) {
1660        line->checksum |= value;
1661    } else {
1662        return false;
1663    }
1664    *our_checksum += value;
1665    ++(*index);
1666    return true;
1667}
1668
1669typedef struct {
1670    const char *filename;
1671    HexLine line;
1672    uint8_t *bin_buf;
1673    hwaddr *start_addr;
1674    int total_size;
1675    uint32_t next_address_to_write;
1676    uint32_t current_address;
1677    uint32_t current_rom_index;
1678    uint32_t rom_start_address;
1679    AddressSpace *as;
1680    bool complete;
1681} HexParser;
1682
1683/* return size or -1 if error */
1684static int handle_record_type(HexParser *parser)
1685{
1686    HexLine *line = &(parser->line);
1687    switch (line->record_type) {
1688    case DATA_RECORD:
1689        parser->current_address =
1690            (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1691        /* verify this is a contiguous block of memory */
1692        if (parser->current_address != parser->next_address_to_write) {
1693            if (parser->current_rom_index != 0) {
1694                rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1695                                      parser->current_rom_index,
1696                                      parser->rom_start_address, parser->as);
1697            }
1698            parser->rom_start_address = parser->current_address;
1699            parser->current_rom_index = 0;
1700        }
1701
1702        /* copy from line buffer to output bin_buf */
1703        memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1704               line->byte_count);
1705        parser->current_rom_index += line->byte_count;
1706        parser->total_size += line->byte_count;
1707        /* save next address to write */
1708        parser->next_address_to_write =
1709            parser->current_address + line->byte_count;
1710        break;
1711
1712    case EOF_RECORD:
1713        if (parser->current_rom_index != 0) {
1714            rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1715                                  parser->current_rom_index,
1716                                  parser->rom_start_address, parser->as);
1717        }
1718        parser->complete = true;
1719        return parser->total_size;
1720    case EXT_SEG_ADDR_RECORD:
1721    case EXT_LINEAR_ADDR_RECORD:
1722        if (line->byte_count != 2 && line->address != 0) {
1723            return -1;
1724        }
1725
1726        if (parser->current_rom_index != 0) {
1727            rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1728                                  parser->current_rom_index,
1729                                  parser->rom_start_address, parser->as);
1730        }
1731
1732        /* save next address to write,
1733         * in case of non-contiguous block of memory */
1734        parser->next_address_to_write = (line->data[0] << 12) |
1735                                        (line->data[1] << 4);
1736        if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1737            parser->next_address_to_write <<= 12;
1738        }
1739
1740        parser->rom_start_address = parser->next_address_to_write;
1741        parser->current_rom_index = 0;
1742        break;
1743
1744    case START_SEG_ADDR_RECORD:
1745        if (line->byte_count != 4 && line->address != 0) {
1746            return -1;
1747        }
1748
1749        /* x86 16-bit CS:IP segmented addressing */
1750        *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1751                                ((line->data[2] << 8) | line->data[3]);
1752        break;
1753
1754    case START_LINEAR_ADDR_RECORD:
1755        if (line->byte_count != 4 && line->address != 0) {
1756            return -1;
1757        }
1758
1759        *(parser->start_addr) = ldl_be_p(line->data);
1760        break;
1761
1762    default:
1763        return -1;
1764    }
1765
1766    return parser->total_size;
1767}
1768
1769/* return size or -1 if error */
1770static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1771                          size_t hex_blob_size, AddressSpace *as)
1772{
1773    bool in_process = false; /* avoid re-enter and
1774                              * check whether record begin with ':' */
1775    uint8_t *end = hex_blob + hex_blob_size;
1776    uint8_t our_checksum = 0;
1777    uint32_t record_index = 0;
1778    HexParser parser = {
1779        .filename = filename,
1780        .bin_buf = g_malloc(hex_blob_size),
1781        .start_addr = addr,
1782        .as = as,
1783        .complete = false
1784    };
1785
1786    rom_transaction_begin();
1787
1788    for (; hex_blob < end && !parser.complete; ++hex_blob) {
1789        switch (*hex_blob) {
1790        case '\r':
1791        case '\n':
1792            if (!in_process) {
1793                break;
1794            }
1795
1796            in_process = false;
1797            if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1798                    record_index ||
1799                our_checksum != 0) {
1800                parser.total_size = -1;
1801                goto out;
1802            }
1803
1804            if (handle_record_type(&parser) == -1) {
1805                parser.total_size = -1;
1806                goto out;
1807            }
1808            break;
1809
1810        /* start of a new record. */
1811        case ':':
1812            memset(&parser.line, 0, sizeof(HexLine));
1813            in_process = true;
1814            record_index = 0;
1815            break;
1816
1817        /* decoding lines */
1818        default:
1819            if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1820                              &record_index, in_process)) {
1821                parser.total_size = -1;
1822                goto out;
1823            }
1824            break;
1825        }
1826    }
1827
1828out:
1829    g_free(parser.bin_buf);
1830    rom_transaction_end(parser.total_size != -1);
1831    return parser.total_size;
1832}
1833
1834/* return size or -1 if error */
1835int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1836{
1837    gsize hex_blob_size;
1838    gchar *hex_blob;
1839    int total_size = 0;
1840
1841    if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1842        return -1;
1843    }
1844
1845    total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1846                                hex_blob_size, as);
1847
1848    g_free(hex_blob);
1849    return total_size;
1850}
1851