qemu/hw/core/ptimer.c
<<
>>
Prefs
   1/*
   2 * General purpose implementation of a simple periodic countdown timer.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GNU LGPL.
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "hw/ptimer.h"
  11#include "migration/vmstate.h"
  12#include "qemu/host-utils.h"
  13#include "sysemu/replay.h"
  14#include "sysemu/cpu-timers.h"
  15#include "sysemu/qtest.h"
  16#include "block/aio.h"
  17#include "hw/clock.h"
  18
  19#define DELTA_ADJUST     1
  20#define DELTA_NO_ADJUST -1
  21
  22struct ptimer_state
  23{
  24    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
  25    uint64_t limit;
  26    uint64_t delta;
  27    uint32_t period_frac;
  28    int64_t period;
  29    int64_t last_event;
  30    int64_t next_event;
  31    uint8_t policy_mask;
  32    QEMUTimer *timer;
  33    ptimer_cb callback;
  34    void *callback_opaque;
  35    /*
  36     * These track whether we're in a transaction block, and if we
  37     * need to do a timer reload when the block finishes. They don't
  38     * need to be migrated because migration can never happen in the
  39     * middle of a transaction block.
  40     */
  41    bool in_transaction;
  42    bool need_reload;
  43};
  44
  45/* Use a bottom-half routine to avoid reentrancy issues.  */
  46static void ptimer_trigger(ptimer_state *s)
  47{
  48    s->callback(s->callback_opaque);
  49}
  50
  51static void ptimer_reload(ptimer_state *s, int delta_adjust)
  52{
  53    uint32_t period_frac;
  54    uint64_t period;
  55    uint64_t delta;
  56    bool suppress_trigger = false;
  57
  58    /*
  59     * Note that if delta_adjust is 0 then we must be here because of
  60     * a count register write or timer start, not because of timer expiry.
  61     * In that case the policy might require us to suppress the timer trigger
  62     * that we would otherwise generate for a zero delta.
  63     */
  64    if (delta_adjust == 0 &&
  65        (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
  66        suppress_trigger = true;
  67    }
  68    if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
  69        && !suppress_trigger) {
  70        ptimer_trigger(s);
  71    }
  72
  73    /*
  74     * Note that ptimer_trigger() might call the device callback function,
  75     * which can then modify timer state, so we must not cache any fields
  76     * from ptimer_state until after we have called it.
  77     */
  78    delta = s->delta;
  79    period = s->period;
  80    period_frac = s->period_frac;
  81
  82    if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
  83        delta = s->delta = s->limit;
  84    }
  85
  86    if (s->period == 0) {
  87        if (!qtest_enabled()) {
  88            fprintf(stderr, "Timer with period zero, disabling\n");
  89        }
  90        timer_del(s->timer);
  91        s->enabled = 0;
  92        return;
  93    }
  94
  95    if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
  96        if (delta_adjust != DELTA_NO_ADJUST) {
  97            delta += delta_adjust;
  98        }
  99    }
 100
 101    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
 102        if (s->enabled == 1 && s->limit == 0) {
 103            delta = 1;
 104        }
 105    }
 106
 107    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 108        if (delta_adjust != DELTA_NO_ADJUST) {
 109            delta = 1;
 110        }
 111    }
 112
 113    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
 114        if (s->enabled == 1 && s->limit != 0) {
 115            delta = 1;
 116        }
 117    }
 118
 119    if (delta == 0) {
 120        if (s->enabled == 0) {
 121            /* trigger callback disabled the timer already */
 122            return;
 123        }
 124        if (!qtest_enabled()) {
 125            fprintf(stderr, "Timer with delta zero, disabling\n");
 126        }
 127        timer_del(s->timer);
 128        s->enabled = 0;
 129        return;
 130    }
 131
 132    /*
 133     * Artificially limit timeout rate to something
 134     * achievable under QEMU.  Otherwise, QEMU spends all
 135     * its time generating timer interrupts, and there
 136     * is no forward progress.
 137     * About ten microseconds is the fastest that really works
 138     * on the current generation of host machines.
 139     */
 140
 141    if (s->enabled == 1 && (delta * period < 10000) &&
 142        !icount_enabled() && !qtest_enabled()) {
 143        period = 10000 / delta;
 144        period_frac = 0;
 145    }
 146
 147    s->last_event = s->next_event;
 148    s->next_event = s->last_event + delta * period;
 149    if (period_frac) {
 150        s->next_event += ((int64_t)period_frac * delta) >> 32;
 151    }
 152    timer_mod(s->timer, s->next_event);
 153}
 154
 155static void ptimer_tick(void *opaque)
 156{
 157    ptimer_state *s = (ptimer_state *)opaque;
 158    bool trigger = true;
 159
 160    /*
 161     * We perform all the tick actions within a begin/commit block
 162     * because the callback function that ptimer_trigger() calls
 163     * might make calls into the ptimer APIs that provoke another
 164     * trigger, and we want that to cause the callback function
 165     * to be called iteratively, not recursively.
 166     */
 167    ptimer_transaction_begin(s);
 168
 169    if (s->enabled == 2) {
 170        s->delta = 0;
 171        s->enabled = 0;
 172    } else {
 173        int delta_adjust = DELTA_ADJUST;
 174
 175        if (s->delta == 0 || s->limit == 0) {
 176            /* If a "continuous trigger" policy is not used and limit == 0,
 177               we should error out. delta == 0 means that this tick is
 178               caused by a "no immediate reload" policy, so it shouldn't
 179               be adjusted.  */
 180            delta_adjust = DELTA_NO_ADJUST;
 181        }
 182
 183        if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 184            /* Avoid re-trigger on deferred reload if "no immediate trigger"
 185               policy isn't used.  */
 186            trigger = (delta_adjust == DELTA_ADJUST);
 187        }
 188
 189        s->delta = s->limit;
 190
 191        ptimer_reload(s, delta_adjust);
 192    }
 193
 194    if (trigger) {
 195        ptimer_trigger(s);
 196    }
 197
 198    ptimer_transaction_commit(s);
 199}
 200
 201uint64_t ptimer_get_count(ptimer_state *s)
 202{
 203    uint64_t counter;
 204
 205    if (s->enabled && s->delta != 0) {
 206        int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 207        int64_t next = s->next_event;
 208        int64_t last = s->last_event;
 209        bool expired = (now - next >= 0);
 210        bool oneshot = (s->enabled == 2);
 211
 212        /* Figure out the current counter value.  */
 213        if (expired) {
 214            /* Prevent timer underflowing if it should already have
 215               triggered.  */
 216            counter = 0;
 217        } else {
 218            uint64_t rem;
 219            uint64_t div;
 220            int clz1, clz2;
 221            int shift;
 222            uint32_t period_frac = s->period_frac;
 223            uint64_t period = s->period;
 224
 225            if (!oneshot && (s->delta * period < 10000) &&
 226                !icount_enabled() && !qtest_enabled()) {
 227                period = 10000 / s->delta;
 228                period_frac = 0;
 229            }
 230
 231            /* We need to divide time by period, where time is stored in
 232               rem (64-bit integer) and period is stored in period/period_frac
 233               (64.32 fixed point).
 234
 235               Doing full precision division is hard, so scale values and
 236               do a 64-bit division.  The result should be rounded down,
 237               so that the rounding error never causes the timer to go
 238               backwards.
 239            */
 240
 241            rem = next - now;
 242            div = period;
 243
 244            clz1 = clz64(rem);
 245            clz2 = clz64(div);
 246            shift = clz1 < clz2 ? clz1 : clz2;
 247
 248            rem <<= shift;
 249            div <<= shift;
 250            if (shift >= 32) {
 251                div |= ((uint64_t)period_frac << (shift - 32));
 252            } else {
 253                if (shift != 0)
 254                    div |= (period_frac >> (32 - shift));
 255                /* Look at remaining bits of period_frac and round div up if 
 256                   necessary.  */
 257                if ((uint32_t)(period_frac << shift))
 258                    div += 1;
 259            }
 260            counter = rem / div;
 261
 262            if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
 263                /* Before wrapping around, timer should stay with counter = 0
 264                   for a one period.  */
 265                if (!oneshot && s->delta == s->limit) {
 266                    if (now == last) {
 267                        /* Counter == delta here, check whether it was
 268                           adjusted and if it was, then right now it is
 269                           that "one period".  */
 270                        if (counter == s->limit + DELTA_ADJUST) {
 271                            return 0;
 272                        }
 273                    } else if (counter == s->limit) {
 274                        /* Since the counter is rounded down and now != last,
 275                           the counter == limit means that delta was adjusted
 276                           by +1 and right now it is that adjusted period.  */
 277                        return 0;
 278                    }
 279                }
 280            }
 281        }
 282
 283        if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
 284            /* If now == last then delta == limit, i.e. the counter already
 285               represents the correct value. It would be rounded down a 1ns
 286               later.  */
 287            if (now != last) {
 288                counter += 1;
 289            }
 290        }
 291    } else {
 292        counter = s->delta;
 293    }
 294    return counter;
 295}
 296
 297void ptimer_set_count(ptimer_state *s, uint64_t count)
 298{
 299    assert(s->in_transaction);
 300    s->delta = count;
 301    if (s->enabled) {
 302        s->need_reload = true;
 303    }
 304}
 305
 306void ptimer_run(ptimer_state *s, int oneshot)
 307{
 308    bool was_disabled = !s->enabled;
 309
 310    assert(s->in_transaction);
 311
 312    if (was_disabled && s->period == 0) {
 313        if (!qtest_enabled()) {
 314            fprintf(stderr, "Timer with period zero, disabling\n");
 315        }
 316        return;
 317    }
 318    s->enabled = oneshot ? 2 : 1;
 319    if (was_disabled) {
 320        s->need_reload = true;
 321    }
 322}
 323
 324/* Pause a timer.  Note that this may cause it to "lose" time, even if it
 325   is immediately restarted.  */
 326void ptimer_stop(ptimer_state *s)
 327{
 328    assert(s->in_transaction);
 329
 330    if (!s->enabled)
 331        return;
 332
 333    s->delta = ptimer_get_count(s);
 334    timer_del(s->timer);
 335    s->enabled = 0;
 336    s->need_reload = false;
 337}
 338
 339/* Set counter increment interval in nanoseconds.  */
 340void ptimer_set_period(ptimer_state *s, int64_t period)
 341{
 342    assert(s->in_transaction);
 343    s->delta = ptimer_get_count(s);
 344    s->period = period;
 345    s->period_frac = 0;
 346    if (s->enabled) {
 347        s->need_reload = true;
 348    }
 349}
 350
 351/* Set counter increment interval from a Clock */
 352void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk,
 353                                  unsigned int divisor)
 354{
 355    /*
 356     * The raw clock period is a 64-bit value in units of 2^-32 ns;
 357     * put another way it's a 32.32 fixed-point ns value. Our internal
 358     * representation of the period is 64.32 fixed point ns, so
 359     * the conversion is simple.
 360     */
 361    uint64_t raw_period = clock_get(clk);
 362    uint64_t period_frac;
 363
 364    assert(s->in_transaction);
 365    s->delta = ptimer_get_count(s);
 366    s->period = extract64(raw_period, 32, 32);
 367    period_frac = extract64(raw_period, 0, 32);
 368    /*
 369     * divisor specifies a possible frequency divisor between the
 370     * clock and the timer, so it is a multiplier on the period.
 371     * We do the multiply after splitting the raw period out into
 372     * period and frac to avoid having to do a 32*64->96 multiply.
 373     */
 374    s->period *= divisor;
 375    period_frac *= divisor;
 376    s->period += extract64(period_frac, 32, 32);
 377    s->period_frac = (uint32_t)period_frac;
 378
 379    if (s->enabled) {
 380        s->need_reload = true;
 381    }
 382}
 383
 384/* Set counter frequency in Hz.  */
 385void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 386{
 387    assert(s->in_transaction);
 388    s->delta = ptimer_get_count(s);
 389    s->period = 1000000000ll / freq;
 390    s->period_frac = (1000000000ll << 32) / freq;
 391    if (s->enabled) {
 392        s->need_reload = true;
 393    }
 394}
 395
 396/* Set the initial countdown value.  If reload is nonzero then also set
 397   count = limit.  */
 398void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 399{
 400    assert(s->in_transaction);
 401    s->limit = limit;
 402    if (reload)
 403        s->delta = limit;
 404    if (s->enabled && reload) {
 405        s->need_reload = true;
 406    }
 407}
 408
 409uint64_t ptimer_get_limit(ptimer_state *s)
 410{
 411    return s->limit;
 412}
 413
 414void ptimer_transaction_begin(ptimer_state *s)
 415{
 416    assert(!s->in_transaction);
 417    s->in_transaction = true;
 418    s->need_reload = false;
 419}
 420
 421void ptimer_transaction_commit(ptimer_state *s)
 422{
 423    assert(s->in_transaction);
 424    /*
 425     * We must loop here because ptimer_reload() can call the callback
 426     * function, which might then update ptimer state in a way that
 427     * means we need to do another reload and possibly another callback.
 428     * A disabled timer never needs reloading (and if we don't check
 429     * this then we loop forever if ptimer_reload() disables the timer).
 430     */
 431    while (s->need_reload && s->enabled) {
 432        s->need_reload = false;
 433        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 434        ptimer_reload(s, 0);
 435    }
 436    /* Now we've finished reload we can leave the transaction block. */
 437    s->in_transaction = false;
 438}
 439
 440const VMStateDescription vmstate_ptimer = {
 441    .name = "ptimer",
 442    .version_id = 1,
 443    .minimum_version_id = 1,
 444    .fields = (VMStateField[]) {
 445        VMSTATE_UINT8(enabled, ptimer_state),
 446        VMSTATE_UINT64(limit, ptimer_state),
 447        VMSTATE_UINT64(delta, ptimer_state),
 448        VMSTATE_UINT32(period_frac, ptimer_state),
 449        VMSTATE_INT64(period, ptimer_state),
 450        VMSTATE_INT64(last_event, ptimer_state),
 451        VMSTATE_INT64(next_event, ptimer_state),
 452        VMSTATE_TIMER_PTR(timer, ptimer_state),
 453        VMSTATE_END_OF_LIST()
 454    }
 455};
 456
 457ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
 458                          uint8_t policy_mask)
 459{
 460    ptimer_state *s;
 461
 462    /* The callback function is mandatory. */
 463    assert(callback);
 464
 465    s = g_new0(ptimer_state, 1);
 466    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 467    s->policy_mask = policy_mask;
 468    s->callback = callback;
 469    s->callback_opaque = callback_opaque;
 470
 471    /*
 472     * These two policies are incompatible -- trigger-on-decrement implies
 473     * a timer trigger when the count becomes 0, but no-immediate-trigger
 474     * implies a trigger when the count stops being 0.
 475     */
 476    assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
 477             (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
 478    return s;
 479}
 480
 481void ptimer_free(ptimer_state *s)
 482{
 483    timer_free(s->timer);
 484    g_free(s);
 485}
 486