qemu/hw/net/cadence_gem.c
<<
>>
Prefs
   1/*
   2 * QEMU Cadence GEM emulation
   3 *
   4 * Copyright (c) 2011 Xilinx, Inc.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h> /* For crc32 */
  27
  28#include "hw/irq.h"
  29#include "hw/net/cadence_gem.h"
  30#include "hw/qdev-properties.h"
  31#include "migration/vmstate.h"
  32#include "qapi/error.h"
  33#include "qemu/log.h"
  34#include "qemu/module.h"
  35#include "sysemu/dma.h"
  36#include "net/checksum.h"
  37#include "net/eth.h"
  38
  39#define CADENCE_GEM_ERR_DEBUG 0
  40#define DB_PRINT(...) do {\
  41    if (CADENCE_GEM_ERR_DEBUG) {   \
  42        qemu_log(": %s: ", __func__); \
  43        qemu_log(__VA_ARGS__); \
  44    } \
  45} while (0)
  46
  47#define GEM_NWCTRL        (0x00000000 / 4) /* Network Control reg */
  48#define GEM_NWCFG         (0x00000004 / 4) /* Network Config reg */
  49#define GEM_NWSTATUS      (0x00000008 / 4) /* Network Status reg */
  50#define GEM_USERIO        (0x0000000C / 4) /* User IO reg */
  51#define GEM_DMACFG        (0x00000010 / 4) /* DMA Control reg */
  52#define GEM_TXSTATUS      (0x00000014 / 4) /* TX Status reg */
  53#define GEM_RXQBASE       (0x00000018 / 4) /* RX Q Base address reg */
  54#define GEM_TXQBASE       (0x0000001C / 4) /* TX Q Base address reg */
  55#define GEM_RXSTATUS      (0x00000020 / 4) /* RX Status reg */
  56#define GEM_ISR           (0x00000024 / 4) /* Interrupt Status reg */
  57#define GEM_IER           (0x00000028 / 4) /* Interrupt Enable reg */
  58#define GEM_IDR           (0x0000002C / 4) /* Interrupt Disable reg */
  59#define GEM_IMR           (0x00000030 / 4) /* Interrupt Mask reg */
  60#define GEM_PHYMNTNC      (0x00000034 / 4) /* Phy Maintenance reg */
  61#define GEM_RXPAUSE       (0x00000038 / 4) /* RX Pause Time reg */
  62#define GEM_TXPAUSE       (0x0000003C / 4) /* TX Pause Time reg */
  63#define GEM_TXPARTIALSF   (0x00000040 / 4) /* TX Partial Store and Forward */
  64#define GEM_RXPARTIALSF   (0x00000044 / 4) /* RX Partial Store and Forward */
  65#define GEM_JUMBO_MAX_LEN (0x00000048 / 4) /* Max Jumbo Frame Size */
  66#define GEM_HASHLO        (0x00000080 / 4) /* Hash Low address reg */
  67#define GEM_HASHHI        (0x00000084 / 4) /* Hash High address reg */
  68#define GEM_SPADDR1LO     (0x00000088 / 4) /* Specific addr 1 low reg */
  69#define GEM_SPADDR1HI     (0x0000008C / 4) /* Specific addr 1 high reg */
  70#define GEM_SPADDR2LO     (0x00000090 / 4) /* Specific addr 2 low reg */
  71#define GEM_SPADDR2HI     (0x00000094 / 4) /* Specific addr 2 high reg */
  72#define GEM_SPADDR3LO     (0x00000098 / 4) /* Specific addr 3 low reg */
  73#define GEM_SPADDR3HI     (0x0000009C / 4) /* Specific addr 3 high reg */
  74#define GEM_SPADDR4LO     (0x000000A0 / 4) /* Specific addr 4 low reg */
  75#define GEM_SPADDR4HI     (0x000000A4 / 4) /* Specific addr 4 high reg */
  76#define GEM_TIDMATCH1     (0x000000A8 / 4) /* Type ID1 Match reg */
  77#define GEM_TIDMATCH2     (0x000000AC / 4) /* Type ID2 Match reg */
  78#define GEM_TIDMATCH3     (0x000000B0 / 4) /* Type ID3 Match reg */
  79#define GEM_TIDMATCH4     (0x000000B4 / 4) /* Type ID4 Match reg */
  80#define GEM_WOLAN         (0x000000B8 / 4) /* Wake on LAN reg */
  81#define GEM_IPGSTRETCH    (0x000000BC / 4) /* IPG Stretch reg */
  82#define GEM_SVLAN         (0x000000C0 / 4) /* Stacked VLAN reg */
  83#define GEM_MODID         (0x000000FC / 4) /* Module ID reg */
  84#define GEM_OCTTXLO       (0x00000100 / 4) /* Octects transmitted Low reg */
  85#define GEM_OCTTXHI       (0x00000104 / 4) /* Octects transmitted High reg */
  86#define GEM_TXCNT         (0x00000108 / 4) /* Error-free Frames transmitted */
  87#define GEM_TXBCNT        (0x0000010C / 4) /* Error-free Broadcast Frames */
  88#define GEM_TXMCNT        (0x00000110 / 4) /* Error-free Multicast Frame */
  89#define GEM_TXPAUSECNT    (0x00000114 / 4) /* Pause Frames Transmitted */
  90#define GEM_TX64CNT       (0x00000118 / 4) /* Error-free 64 TX */
  91#define GEM_TX65CNT       (0x0000011C / 4) /* Error-free 65-127 TX */
  92#define GEM_TX128CNT      (0x00000120 / 4) /* Error-free 128-255 TX */
  93#define GEM_TX256CNT      (0x00000124 / 4) /* Error-free 256-511 */
  94#define GEM_TX512CNT      (0x00000128 / 4) /* Error-free 512-1023 TX */
  95#define GEM_TX1024CNT     (0x0000012C / 4) /* Error-free 1024-1518 TX */
  96#define GEM_TX1519CNT     (0x00000130 / 4) /* Error-free larger than 1519 TX */
  97#define GEM_TXURUNCNT     (0x00000134 / 4) /* TX under run error counter */
  98#define GEM_SINGLECOLLCNT (0x00000138 / 4) /* Single Collision Frames */
  99#define GEM_MULTCOLLCNT   (0x0000013C / 4) /* Multiple Collision Frames */
 100#define GEM_EXCESSCOLLCNT (0x00000140 / 4) /* Excessive Collision Frames */
 101#define GEM_LATECOLLCNT   (0x00000144 / 4) /* Late Collision Frames */
 102#define GEM_DEFERTXCNT    (0x00000148 / 4) /* Deferred Transmission Frames */
 103#define GEM_CSENSECNT     (0x0000014C / 4) /* Carrier Sense Error Counter */
 104#define GEM_OCTRXLO       (0x00000150 / 4) /* Octects Received register Low */
 105#define GEM_OCTRXHI       (0x00000154 / 4) /* Octects Received register High */
 106#define GEM_RXCNT         (0x00000158 / 4) /* Error-free Frames Received */
 107#define GEM_RXBROADCNT    (0x0000015C / 4) /* Error-free Broadcast Frames RX */
 108#define GEM_RXMULTICNT    (0x00000160 / 4) /* Error-free Multicast Frames RX */
 109#define GEM_RXPAUSECNT    (0x00000164 / 4) /* Pause Frames Received Counter */
 110#define GEM_RX64CNT       (0x00000168 / 4) /* Error-free 64 byte Frames RX */
 111#define GEM_RX65CNT       (0x0000016C / 4) /* Error-free 65-127B Frames RX */
 112#define GEM_RX128CNT      (0x00000170 / 4) /* Error-free 128-255B Frames RX */
 113#define GEM_RX256CNT      (0x00000174 / 4) /* Error-free 256-512B Frames RX */
 114#define GEM_RX512CNT      (0x00000178 / 4) /* Error-free 512-1023B Frames RX */
 115#define GEM_RX1024CNT     (0x0000017C / 4) /* Error-free 1024-1518B Frames RX */
 116#define GEM_RX1519CNT     (0x00000180 / 4) /* Error-free 1519-max Frames RX */
 117#define GEM_RXUNDERCNT    (0x00000184 / 4) /* Undersize Frames Received */
 118#define GEM_RXOVERCNT     (0x00000188 / 4) /* Oversize Frames Received */
 119#define GEM_RXJABCNT      (0x0000018C / 4) /* Jabbers Received Counter */
 120#define GEM_RXFCSCNT      (0x00000190 / 4) /* Frame Check seq. Error Counter */
 121#define GEM_RXLENERRCNT   (0x00000194 / 4) /* Length Field Error Counter */
 122#define GEM_RXSYMERRCNT   (0x00000198 / 4) /* Symbol Error Counter */
 123#define GEM_RXALIGNERRCNT (0x0000019C / 4) /* Alignment Error Counter */
 124#define GEM_RXRSCERRCNT   (0x000001A0 / 4) /* Receive Resource Error Counter */
 125#define GEM_RXORUNCNT     (0x000001A4 / 4) /* Receive Overrun Counter */
 126#define GEM_RXIPCSERRCNT  (0x000001A8 / 4) /* IP header Checksum Err Counter */
 127#define GEM_RXTCPCCNT     (0x000001AC / 4) /* TCP Checksum Error Counter */
 128#define GEM_RXUDPCCNT     (0x000001B0 / 4) /* UDP Checksum Error Counter */
 129
 130#define GEM_1588S         (0x000001D0 / 4) /* 1588 Timer Seconds */
 131#define GEM_1588NS        (0x000001D4 / 4) /* 1588 Timer Nanoseconds */
 132#define GEM_1588ADJ       (0x000001D8 / 4) /* 1588 Timer Adjust */
 133#define GEM_1588INC       (0x000001DC / 4) /* 1588 Timer Increment */
 134#define GEM_PTPETXS       (0x000001E0 / 4) /* PTP Event Frame Transmitted (s) */
 135#define GEM_PTPETXNS      (0x000001E4 / 4) /*
 136                                            * PTP Event Frame Transmitted (ns)
 137                                            */
 138#define GEM_PTPERXS       (0x000001E8 / 4) /* PTP Event Frame Received (s) */
 139#define GEM_PTPERXNS      (0x000001EC / 4) /* PTP Event Frame Received (ns) */
 140#define GEM_PTPPTXS       (0x000001E0 / 4) /* PTP Peer Frame Transmitted (s) */
 141#define GEM_PTPPTXNS      (0x000001E4 / 4) /* PTP Peer Frame Transmitted (ns) */
 142#define GEM_PTPPRXS       (0x000001E8 / 4) /* PTP Peer Frame Received (s) */
 143#define GEM_PTPPRXNS      (0x000001EC / 4) /* PTP Peer Frame Received (ns) */
 144
 145/* Design Configuration Registers */
 146#define GEM_DESCONF       (0x00000280 / 4)
 147#define GEM_DESCONF2      (0x00000284 / 4)
 148#define GEM_DESCONF3      (0x00000288 / 4)
 149#define GEM_DESCONF4      (0x0000028C / 4)
 150#define GEM_DESCONF5      (0x00000290 / 4)
 151#define GEM_DESCONF6      (0x00000294 / 4)
 152#define GEM_DESCONF6_64B_MASK (1U << 23)
 153#define GEM_DESCONF7      (0x00000298 / 4)
 154
 155#define GEM_INT_Q1_STATUS               (0x00000400 / 4)
 156#define GEM_INT_Q1_MASK                 (0x00000640 / 4)
 157
 158#define GEM_TRANSMIT_Q1_PTR             (0x00000440 / 4)
 159#define GEM_TRANSMIT_Q7_PTR             (GEM_TRANSMIT_Q1_PTR + 6)
 160
 161#define GEM_RECEIVE_Q1_PTR              (0x00000480 / 4)
 162#define GEM_RECEIVE_Q7_PTR              (GEM_RECEIVE_Q1_PTR + 6)
 163
 164#define GEM_TBQPH                       (0x000004C8 / 4)
 165#define GEM_RBQPH                       (0x000004D4 / 4)
 166
 167#define GEM_INT_Q1_ENABLE               (0x00000600 / 4)
 168#define GEM_INT_Q7_ENABLE               (GEM_INT_Q1_ENABLE + 6)
 169
 170#define GEM_INT_Q1_DISABLE              (0x00000620 / 4)
 171#define GEM_INT_Q7_DISABLE              (GEM_INT_Q1_DISABLE + 6)
 172
 173#define GEM_INT_Q1_MASK                 (0x00000640 / 4)
 174#define GEM_INT_Q7_MASK                 (GEM_INT_Q1_MASK + 6)
 175
 176#define GEM_SCREENING_TYPE1_REGISTER_0  (0x00000500 / 4)
 177
 178#define GEM_ST1R_UDP_PORT_MATCH_ENABLE  (1 << 29)
 179#define GEM_ST1R_DSTC_ENABLE            (1 << 28)
 180#define GEM_ST1R_UDP_PORT_MATCH_SHIFT   (12)
 181#define GEM_ST1R_UDP_PORT_MATCH_WIDTH   (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
 182#define GEM_ST1R_DSTC_MATCH_SHIFT       (4)
 183#define GEM_ST1R_DSTC_MATCH_WIDTH       (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
 184#define GEM_ST1R_QUEUE_SHIFT            (0)
 185#define GEM_ST1R_QUEUE_WIDTH            (3 - GEM_ST1R_QUEUE_SHIFT + 1)
 186
 187#define GEM_SCREENING_TYPE2_REGISTER_0  (0x00000540 / 4)
 188
 189#define GEM_ST2R_COMPARE_A_ENABLE       (1 << 18)
 190#define GEM_ST2R_COMPARE_A_SHIFT        (13)
 191#define GEM_ST2R_COMPARE_WIDTH          (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
 192#define GEM_ST2R_ETHERTYPE_ENABLE       (1 << 12)
 193#define GEM_ST2R_ETHERTYPE_INDEX_SHIFT  (9)
 194#define GEM_ST2R_ETHERTYPE_INDEX_WIDTH  (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
 195                                            + 1)
 196#define GEM_ST2R_QUEUE_SHIFT            (0)
 197#define GEM_ST2R_QUEUE_WIDTH            (3 - GEM_ST2R_QUEUE_SHIFT + 1)
 198
 199#define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0     (0x000006e0 / 4)
 200#define GEM_TYPE2_COMPARE_0_WORD_0              (0x00000700 / 4)
 201
 202#define GEM_T2CW1_COMPARE_OFFSET_SHIFT  (7)
 203#define GEM_T2CW1_COMPARE_OFFSET_WIDTH  (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
 204#define GEM_T2CW1_OFFSET_VALUE_SHIFT    (0)
 205#define GEM_T2CW1_OFFSET_VALUE_WIDTH    (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
 206
 207/*****************************************/
 208#define GEM_NWCTRL_TXSTART     0x00000200 /* Transmit Enable */
 209#define GEM_NWCTRL_TXENA       0x00000008 /* Transmit Enable */
 210#define GEM_NWCTRL_RXENA       0x00000004 /* Receive Enable */
 211#define GEM_NWCTRL_LOCALLOOP   0x00000002 /* Local Loopback */
 212
 213#define GEM_NWCFG_STRIP_FCS    0x00020000 /* Strip FCS field */
 214#define GEM_NWCFG_LERR_DISC    0x00010000 /* Discard RX frames with len err */
 215#define GEM_NWCFG_BUFF_OFST_M  0x0000C000 /* Receive buffer offset mask */
 216#define GEM_NWCFG_BUFF_OFST_S  14         /* Receive buffer offset shift */
 217#define GEM_NWCFG_RCV_1538     0x00000100 /* Receive 1538 bytes frame */
 218#define GEM_NWCFG_UCAST_HASH   0x00000080 /* accept unicast if hash match */
 219#define GEM_NWCFG_MCAST_HASH   0x00000040 /* accept multicast if hash match */
 220#define GEM_NWCFG_BCAST_REJ    0x00000020 /* Reject broadcast packets */
 221#define GEM_NWCFG_PROMISC      0x00000010 /* Accept all packets */
 222#define GEM_NWCFG_JUMBO_FRAME  0x00000008 /* Jumbo Frames enable */
 223
 224#define GEM_DMACFG_ADDR_64B    (1U << 30)
 225#define GEM_DMACFG_TX_BD_EXT   (1U << 29)
 226#define GEM_DMACFG_RX_BD_EXT   (1U << 28)
 227#define GEM_DMACFG_RBUFSZ_M    0x00FF0000 /* DMA RX Buffer Size mask */
 228#define GEM_DMACFG_RBUFSZ_S    16         /* DMA RX Buffer Size shift */
 229#define GEM_DMACFG_RBUFSZ_MUL  64         /* DMA RX Buffer Size multiplier */
 230#define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
 231
 232#define GEM_TXSTATUS_TXCMPL    0x00000020 /* Transmit Complete */
 233#define GEM_TXSTATUS_USED      0x00000001 /* sw owned descriptor encountered */
 234
 235#define GEM_RXSTATUS_FRMRCVD   0x00000002 /* Frame received */
 236#define GEM_RXSTATUS_NOBUF     0x00000001 /* Buffer unavailable */
 237
 238/* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
 239#define GEM_INT_TXCMPL        0x00000080 /* Transmit Complete */
 240#define GEM_INT_AMBA_ERR      0x00000040
 241#define GEM_INT_TXUSED         0x00000008
 242#define GEM_INT_RXUSED         0x00000004
 243#define GEM_INT_RXCMPL        0x00000002
 244
 245#define GEM_PHYMNTNC_OP_R      0x20000000 /* read operation */
 246#define GEM_PHYMNTNC_OP_W      0x10000000 /* write operation */
 247#define GEM_PHYMNTNC_ADDR      0x0F800000 /* Address bits */
 248#define GEM_PHYMNTNC_ADDR_SHFT 23
 249#define GEM_PHYMNTNC_REG       0x007C0000 /* register bits */
 250#define GEM_PHYMNTNC_REG_SHIFT 18
 251
 252/* Marvell PHY definitions */
 253#define BOARD_PHY_ADDRESS    0 /* PHY address we will emulate a device at */
 254
 255#define PHY_REG_CONTROL      0
 256#define PHY_REG_STATUS       1
 257#define PHY_REG_PHYID1       2
 258#define PHY_REG_PHYID2       3
 259#define PHY_REG_ANEGADV      4
 260#define PHY_REG_LINKPABIL    5
 261#define PHY_REG_ANEGEXP      6
 262#define PHY_REG_NEXTP        7
 263#define PHY_REG_LINKPNEXTP   8
 264#define PHY_REG_100BTCTRL    9
 265#define PHY_REG_1000BTSTAT   10
 266#define PHY_REG_EXTSTAT      15
 267#define PHY_REG_PHYSPCFC_CTL 16
 268#define PHY_REG_PHYSPCFC_ST  17
 269#define PHY_REG_INT_EN       18
 270#define PHY_REG_INT_ST       19
 271#define PHY_REG_EXT_PHYSPCFC_CTL  20
 272#define PHY_REG_RXERR        21
 273#define PHY_REG_EACD         22
 274#define PHY_REG_LED          24
 275#define PHY_REG_LED_OVRD     25
 276#define PHY_REG_EXT_PHYSPCFC_CTL2 26
 277#define PHY_REG_EXT_PHYSPCFC_ST   27
 278#define PHY_REG_CABLE_DIAG   28
 279
 280#define PHY_REG_CONTROL_RST       0x8000
 281#define PHY_REG_CONTROL_LOOP      0x4000
 282#define PHY_REG_CONTROL_ANEG      0x1000
 283#define PHY_REG_CONTROL_ANRESTART 0x0200
 284
 285#define PHY_REG_STATUS_LINK     0x0004
 286#define PHY_REG_STATUS_ANEGCMPL 0x0020
 287
 288#define PHY_REG_INT_ST_ANEGCMPL 0x0800
 289#define PHY_REG_INT_ST_LINKC    0x0400
 290#define PHY_REG_INT_ST_ENERGY   0x0010
 291
 292/***********************************************************************/
 293#define GEM_RX_REJECT                   (-1)
 294#define GEM_RX_PROMISCUOUS_ACCEPT       (-2)
 295#define GEM_RX_BROADCAST_ACCEPT         (-3)
 296#define GEM_RX_MULTICAST_HASH_ACCEPT    (-4)
 297#define GEM_RX_UNICAST_HASH_ACCEPT      (-5)
 298
 299#define GEM_RX_SAR_ACCEPT               0
 300
 301/***********************************************************************/
 302
 303#define DESC_1_USED 0x80000000
 304#define DESC_1_LENGTH 0x00001FFF
 305
 306#define DESC_1_TX_WRAP 0x40000000
 307#define DESC_1_TX_LAST 0x00008000
 308
 309#define DESC_0_RX_WRAP 0x00000002
 310#define DESC_0_RX_OWNERSHIP 0x00000001
 311
 312#define R_DESC_1_RX_SAR_SHIFT           25
 313#define R_DESC_1_RX_SAR_LENGTH          2
 314#define R_DESC_1_RX_SAR_MATCH           (1 << 27)
 315#define R_DESC_1_RX_UNICAST_HASH        (1 << 29)
 316#define R_DESC_1_RX_MULTICAST_HASH      (1 << 30)
 317#define R_DESC_1_RX_BROADCAST           (1 << 31)
 318
 319#define DESC_1_RX_SOF 0x00004000
 320#define DESC_1_RX_EOF 0x00008000
 321
 322#define GEM_MODID_VALUE 0x00020118
 323
 324static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
 325{
 326    uint64_t ret = desc[0];
 327
 328    if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
 329        ret |= (uint64_t)desc[2] << 32;
 330    }
 331    return ret;
 332}
 333
 334static inline unsigned tx_desc_get_used(uint32_t *desc)
 335{
 336    return (desc[1] & DESC_1_USED) ? 1 : 0;
 337}
 338
 339static inline void tx_desc_set_used(uint32_t *desc)
 340{
 341    desc[1] |= DESC_1_USED;
 342}
 343
 344static inline unsigned tx_desc_get_wrap(uint32_t *desc)
 345{
 346    return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
 347}
 348
 349static inline unsigned tx_desc_get_last(uint32_t *desc)
 350{
 351    return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
 352}
 353
 354static inline unsigned tx_desc_get_length(uint32_t *desc)
 355{
 356    return desc[1] & DESC_1_LENGTH;
 357}
 358
 359static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
 360{
 361    DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
 362    DB_PRINT("bufaddr: 0x%08x\n", *desc);
 363    DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
 364    DB_PRINT("wrap:    %d\n", tx_desc_get_wrap(desc));
 365    DB_PRINT("last:    %d\n", tx_desc_get_last(desc));
 366    DB_PRINT("length:  %d\n", tx_desc_get_length(desc));
 367}
 368
 369static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
 370{
 371    uint64_t ret = desc[0] & ~0x3UL;
 372
 373    if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
 374        ret |= (uint64_t)desc[2] << 32;
 375    }
 376    return ret;
 377}
 378
 379static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
 380{
 381    int ret = 2;
 382
 383    if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
 384        ret += 2;
 385    }
 386    if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
 387                                       : GEM_DMACFG_TX_BD_EXT)) {
 388        ret += 2;
 389    }
 390
 391    assert(ret <= DESC_MAX_NUM_WORDS);
 392    return ret;
 393}
 394
 395static inline unsigned rx_desc_get_wrap(uint32_t *desc)
 396{
 397    return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
 398}
 399
 400static inline unsigned rx_desc_get_ownership(uint32_t *desc)
 401{
 402    return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
 403}
 404
 405static inline void rx_desc_set_ownership(uint32_t *desc)
 406{
 407    desc[0] |= DESC_0_RX_OWNERSHIP;
 408}
 409
 410static inline void rx_desc_set_sof(uint32_t *desc)
 411{
 412    desc[1] |= DESC_1_RX_SOF;
 413}
 414
 415static inline void rx_desc_clear_control(uint32_t *desc)
 416{
 417    desc[1]  = 0;
 418}
 419
 420static inline void rx_desc_set_eof(uint32_t *desc)
 421{
 422    desc[1] |= DESC_1_RX_EOF;
 423}
 424
 425static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
 426{
 427    desc[1] &= ~DESC_1_LENGTH;
 428    desc[1] |= len;
 429}
 430
 431static inline void rx_desc_set_broadcast(uint32_t *desc)
 432{
 433    desc[1] |= R_DESC_1_RX_BROADCAST;
 434}
 435
 436static inline void rx_desc_set_unicast_hash(uint32_t *desc)
 437{
 438    desc[1] |= R_DESC_1_RX_UNICAST_HASH;
 439}
 440
 441static inline void rx_desc_set_multicast_hash(uint32_t *desc)
 442{
 443    desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
 444}
 445
 446static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
 447{
 448    desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
 449                        sar_idx);
 450    desc[1] |= R_DESC_1_RX_SAR_MATCH;
 451}
 452
 453/* The broadcast MAC address: 0xFFFFFFFFFFFF */
 454static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
 455
 456static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx)
 457{
 458    uint32_t size;
 459    if (s->regs[GEM_NWCFG] & GEM_NWCFG_JUMBO_FRAME) {
 460        size = s->regs[GEM_JUMBO_MAX_LEN];
 461        if (size > s->jumbo_max_len) {
 462            size = s->jumbo_max_len;
 463            qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be"
 464                " greater than 0x%" PRIx32 "\n", s->jumbo_max_len);
 465        }
 466    } else if (tx) {
 467        size = 1518;
 468    } else {
 469        size = s->regs[GEM_NWCFG] & GEM_NWCFG_RCV_1538 ? 1538 : 1518;
 470    }
 471    return size;
 472}
 473
 474static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag)
 475{
 476    if (q == 0) {
 477        s->regs[GEM_ISR] |= flag & ~(s->regs[GEM_IMR]);
 478    } else {
 479        s->regs[GEM_INT_Q1_STATUS + q - 1] |= flag &
 480                                      ~(s->regs[GEM_INT_Q1_MASK + q - 1]);
 481    }
 482}
 483
 484/*
 485 * gem_init_register_masks:
 486 * One time initialization.
 487 * Set masks to identify which register bits have magical clear properties
 488 */
 489static void gem_init_register_masks(CadenceGEMState *s)
 490{
 491    unsigned int i;
 492    /* Mask of register bits which are read only */
 493    memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
 494    s->regs_ro[GEM_NWCTRL]   = 0xFFF80000;
 495    s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
 496    s->regs_ro[GEM_DMACFG]   = 0x8E00F000;
 497    s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
 498    s->regs_ro[GEM_RXQBASE]  = 0x00000003;
 499    s->regs_ro[GEM_TXQBASE]  = 0x00000003;
 500    s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
 501    s->regs_ro[GEM_ISR]      = 0xFFFFFFFF;
 502    s->regs_ro[GEM_IMR]      = 0xFFFFFFFF;
 503    s->regs_ro[GEM_MODID]    = 0xFFFFFFFF;
 504    for (i = 0; i < s->num_priority_queues; i++) {
 505        s->regs_ro[GEM_INT_Q1_STATUS + i] = 0xFFFFFFFF;
 506        s->regs_ro[GEM_INT_Q1_ENABLE + i] = 0xFFFFF319;
 507        s->regs_ro[GEM_INT_Q1_DISABLE + i] = 0xFFFFF319;
 508        s->regs_ro[GEM_INT_Q1_MASK + i] = 0xFFFFFFFF;
 509    }
 510
 511    /* Mask of register bits which are clear on read */
 512    memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
 513    s->regs_rtc[GEM_ISR]      = 0xFFFFFFFF;
 514    for (i = 0; i < s->num_priority_queues; i++) {
 515        s->regs_rtc[GEM_INT_Q1_STATUS + i] = 0x00000CE6;
 516    }
 517
 518    /* Mask of register bits which are write 1 to clear */
 519    memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
 520    s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
 521    s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
 522
 523    /* Mask of register bits which are write only */
 524    memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
 525    s->regs_wo[GEM_NWCTRL]   = 0x00073E60;
 526    s->regs_wo[GEM_IER]      = 0x07FFFFFF;
 527    s->regs_wo[GEM_IDR]      = 0x07FFFFFF;
 528    for (i = 0; i < s->num_priority_queues; i++) {
 529        s->regs_wo[GEM_INT_Q1_ENABLE + i] = 0x00000CE6;
 530        s->regs_wo[GEM_INT_Q1_DISABLE + i] = 0x00000CE6;
 531    }
 532}
 533
 534/*
 535 * phy_update_link:
 536 * Make the emulated PHY link state match the QEMU "interface" state.
 537 */
 538static void phy_update_link(CadenceGEMState *s)
 539{
 540    DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
 541
 542    /* Autonegotiation status mirrors link status.  */
 543    if (qemu_get_queue(s->nic)->link_down) {
 544        s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
 545                                         PHY_REG_STATUS_LINK);
 546        s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
 547    } else {
 548        s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
 549                                         PHY_REG_STATUS_LINK);
 550        s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
 551                                        PHY_REG_INT_ST_ANEGCMPL |
 552                                        PHY_REG_INT_ST_ENERGY);
 553    }
 554}
 555
 556static bool gem_can_receive(NetClientState *nc)
 557{
 558    CadenceGEMState *s;
 559    int i;
 560
 561    s = qemu_get_nic_opaque(nc);
 562
 563    /* Do nothing if receive is not enabled. */
 564    if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
 565        if (s->can_rx_state != 1) {
 566            s->can_rx_state = 1;
 567            DB_PRINT("can't receive - no enable\n");
 568        }
 569        return false;
 570    }
 571
 572    for (i = 0; i < s->num_priority_queues; i++) {
 573        if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
 574            break;
 575        }
 576    };
 577
 578    if (i == s->num_priority_queues) {
 579        if (s->can_rx_state != 2) {
 580            s->can_rx_state = 2;
 581            DB_PRINT("can't receive - all the buffer descriptors are busy\n");
 582        }
 583        return false;
 584    }
 585
 586    if (s->can_rx_state != 0) {
 587        s->can_rx_state = 0;
 588        DB_PRINT("can receive\n");
 589    }
 590    return true;
 591}
 592
 593/*
 594 * gem_update_int_status:
 595 * Raise or lower interrupt based on current status.
 596 */
 597static void gem_update_int_status(CadenceGEMState *s)
 598{
 599    int i;
 600
 601    qemu_set_irq(s->irq[0], !!s->regs[GEM_ISR]);
 602
 603    for (i = 1; i < s->num_priority_queues; ++i) {
 604        qemu_set_irq(s->irq[i], !!s->regs[GEM_INT_Q1_STATUS + i - 1]);
 605    }
 606}
 607
 608/*
 609 * gem_receive_updatestats:
 610 * Increment receive statistics.
 611 */
 612static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
 613                                    unsigned bytes)
 614{
 615    uint64_t octets;
 616
 617    /* Total octets (bytes) received */
 618    octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
 619             s->regs[GEM_OCTRXHI];
 620    octets += bytes;
 621    s->regs[GEM_OCTRXLO] = octets >> 32;
 622    s->regs[GEM_OCTRXHI] = octets;
 623
 624    /* Error-free Frames received */
 625    s->regs[GEM_RXCNT]++;
 626
 627    /* Error-free Broadcast Frames counter */
 628    if (!memcmp(packet, broadcast_addr, 6)) {
 629        s->regs[GEM_RXBROADCNT]++;
 630    }
 631
 632    /* Error-free Multicast Frames counter */
 633    if (packet[0] == 0x01) {
 634        s->regs[GEM_RXMULTICNT]++;
 635    }
 636
 637    if (bytes <= 64) {
 638        s->regs[GEM_RX64CNT]++;
 639    } else if (bytes <= 127) {
 640        s->regs[GEM_RX65CNT]++;
 641    } else if (bytes <= 255) {
 642        s->regs[GEM_RX128CNT]++;
 643    } else if (bytes <= 511) {
 644        s->regs[GEM_RX256CNT]++;
 645    } else if (bytes <= 1023) {
 646        s->regs[GEM_RX512CNT]++;
 647    } else if (bytes <= 1518) {
 648        s->regs[GEM_RX1024CNT]++;
 649    } else {
 650        s->regs[GEM_RX1519CNT]++;
 651    }
 652}
 653
 654/*
 655 * Get the MAC Address bit from the specified position
 656 */
 657static unsigned get_bit(const uint8_t *mac, unsigned bit)
 658{
 659    unsigned byte;
 660
 661    byte = mac[bit / 8];
 662    byte >>= (bit & 0x7);
 663    byte &= 1;
 664
 665    return byte;
 666}
 667
 668/*
 669 * Calculate a GEM MAC Address hash index
 670 */
 671static unsigned calc_mac_hash(const uint8_t *mac)
 672{
 673    int index_bit, mac_bit;
 674    unsigned hash_index;
 675
 676    hash_index = 0;
 677    mac_bit = 5;
 678    for (index_bit = 5; index_bit >= 0; index_bit--) {
 679        hash_index |= (get_bit(mac,  mac_bit) ^
 680                               get_bit(mac, mac_bit + 6) ^
 681                               get_bit(mac, mac_bit + 12) ^
 682                               get_bit(mac, mac_bit + 18) ^
 683                               get_bit(mac, mac_bit + 24) ^
 684                               get_bit(mac, mac_bit + 30) ^
 685                               get_bit(mac, mac_bit + 36) ^
 686                               get_bit(mac, mac_bit + 42)) << index_bit;
 687        mac_bit--;
 688    }
 689
 690    return hash_index;
 691}
 692
 693/*
 694 * gem_mac_address_filter:
 695 * Accept or reject this destination address?
 696 * Returns:
 697 * GEM_RX_REJECT: reject
 698 * >= 0: Specific address accept (which matched SAR is returned)
 699 * others for various other modes of accept:
 700 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
 701 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
 702 */
 703static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
 704{
 705    uint8_t *gem_spaddr;
 706    int i, is_mc;
 707
 708    /* Promiscuous mode? */
 709    if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
 710        return GEM_RX_PROMISCUOUS_ACCEPT;
 711    }
 712
 713    if (!memcmp(packet, broadcast_addr, 6)) {
 714        /* Reject broadcast packets? */
 715        if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
 716            return GEM_RX_REJECT;
 717        }
 718        return GEM_RX_BROADCAST_ACCEPT;
 719    }
 720
 721    /* Accept packets -w- hash match? */
 722    is_mc = is_multicast_ether_addr(packet);
 723    if ((is_mc && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
 724        (!is_mc && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
 725        uint64_t buckets;
 726        unsigned hash_index;
 727
 728        hash_index = calc_mac_hash(packet);
 729        buckets = ((uint64_t)s->regs[GEM_HASHHI] << 32) | s->regs[GEM_HASHLO];
 730        if ((buckets >> hash_index) & 1) {
 731            return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT
 732                         : GEM_RX_UNICAST_HASH_ACCEPT;
 733        }
 734    }
 735
 736    /* Check all 4 specific addresses */
 737    gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
 738    for (i = 3; i >= 0; i--) {
 739        if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
 740            return GEM_RX_SAR_ACCEPT + i;
 741        }
 742    }
 743
 744    /* No address match; reject the packet */
 745    return GEM_RX_REJECT;
 746}
 747
 748/* Figure out which queue the received data should be sent to */
 749static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
 750                                 unsigned rxbufsize)
 751{
 752    uint32_t reg;
 753    bool matched, mismatched;
 754    int i, j;
 755
 756    for (i = 0; i < s->num_type1_screeners; i++) {
 757        reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
 758        matched = false;
 759        mismatched = false;
 760
 761        /* Screening is based on UDP Port */
 762        if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
 763            uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
 764            if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
 765                                           GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
 766                matched = true;
 767            } else {
 768                mismatched = true;
 769            }
 770        }
 771
 772        /* Screening is based on DS/TC */
 773        if (reg & GEM_ST1R_DSTC_ENABLE) {
 774            uint8_t dscp = rxbuf_ptr[14 + 1];
 775            if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
 776                                       GEM_ST1R_DSTC_MATCH_WIDTH)) {
 777                matched = true;
 778            } else {
 779                mismatched = true;
 780            }
 781        }
 782
 783        if (matched && !mismatched) {
 784            return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
 785        }
 786    }
 787
 788    for (i = 0; i < s->num_type2_screeners; i++) {
 789        reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
 790        matched = false;
 791        mismatched = false;
 792
 793        if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
 794            uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
 795            int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
 796                                        GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
 797
 798            if (et_idx > s->num_type2_screeners) {
 799                qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
 800                              "register index: %d\n", et_idx);
 801            }
 802            if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
 803                                et_idx]) {
 804                matched = true;
 805            } else {
 806                mismatched = true;
 807            }
 808        }
 809
 810        /* Compare A, B, C */
 811        for (j = 0; j < 3; j++) {
 812            uint32_t cr0, cr1, mask;
 813            uint16_t rx_cmp;
 814            int offset;
 815            int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
 816                                        GEM_ST2R_COMPARE_WIDTH);
 817
 818            if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
 819                continue;
 820            }
 821            if (cr_idx > s->num_type2_screeners) {
 822                qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
 823                              "register index: %d\n", cr_idx);
 824            }
 825
 826            cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
 827            cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
 828            offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
 829                                    GEM_T2CW1_OFFSET_VALUE_WIDTH);
 830
 831            switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
 832                                   GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
 833            case 3: /* Skip UDP header */
 834                qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
 835                              "unimplemented - assuming UDP\n");
 836                offset += 8;
 837                /* Fallthrough */
 838            case 2: /* skip the IP header */
 839                offset += 20;
 840                /* Fallthrough */
 841            case 1: /* Count from after the ethertype */
 842                offset += 14;
 843                break;
 844            case 0:
 845                /* Offset from start of frame */
 846                break;
 847            }
 848
 849            rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
 850            mask = extract32(cr0, 0, 16);
 851
 852            if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
 853                matched = true;
 854            } else {
 855                mismatched = true;
 856            }
 857        }
 858
 859        if (matched && !mismatched) {
 860            return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
 861        }
 862    }
 863
 864    /* We made it here, assume it's queue 0 */
 865    return 0;
 866}
 867
 868static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q)
 869{
 870    uint32_t base_addr = 0;
 871
 872    switch (q) {
 873    case 0:
 874        base_addr = s->regs[tx ? GEM_TXQBASE : GEM_RXQBASE];
 875        break;
 876    case 1 ... (MAX_PRIORITY_QUEUES - 1):
 877        base_addr = s->regs[(tx ? GEM_TRANSMIT_Q1_PTR :
 878                                 GEM_RECEIVE_Q1_PTR) + q - 1];
 879        break;
 880    default:
 881        g_assert_not_reached();
 882    };
 883
 884    return base_addr;
 885}
 886
 887static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q)
 888{
 889    return gem_get_queue_base_addr(s, true, q);
 890}
 891
 892static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q)
 893{
 894    return gem_get_queue_base_addr(s, false, q);
 895}
 896
 897static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
 898{
 899    hwaddr desc_addr = 0;
 900
 901    if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
 902        desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH];
 903    }
 904    desc_addr <<= 32;
 905    desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
 906    return desc_addr;
 907}
 908
 909static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
 910{
 911    return gem_get_desc_addr(s, true, q);
 912}
 913
 914static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
 915{
 916    return gem_get_desc_addr(s, false, q);
 917}
 918
 919static void gem_get_rx_desc(CadenceGEMState *s, int q)
 920{
 921    hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
 922
 923    DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
 924
 925    /* read current descriptor */
 926    address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
 927                       s->rx_desc[q],
 928                       sizeof(uint32_t) * gem_get_desc_len(s, true));
 929
 930    /* Descriptor owned by software ? */
 931    if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
 932        DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
 933        s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
 934        gem_set_isr(s, q, GEM_INT_RXUSED);
 935        /* Handle interrupt consequences */
 936        gem_update_int_status(s);
 937    }
 938}
 939
 940/*
 941 * gem_receive:
 942 * Fit a packet handed to us by QEMU into the receive descriptor ring.
 943 */
 944static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
 945{
 946    CadenceGEMState *s = qemu_get_nic_opaque(nc);
 947    unsigned   rxbufsize, bytes_to_copy;
 948    unsigned   rxbuf_offset;
 949    uint8_t   *rxbuf_ptr;
 950    bool first_desc = true;
 951    int maf;
 952    int q = 0;
 953
 954    /* Is this destination MAC address "for us" ? */
 955    maf = gem_mac_address_filter(s, buf);
 956    if (maf == GEM_RX_REJECT) {
 957        return size;  /* no, drop siliently b/c it's not an error */
 958    }
 959
 960    /* Discard packets with receive length error enabled ? */
 961    if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
 962        unsigned type_len;
 963
 964        /* Fish the ethertype / length field out of the RX packet */
 965        type_len = buf[12] << 8 | buf[13];
 966        /* It is a length field, not an ethertype */
 967        if (type_len < 0x600) {
 968            if (size < type_len) {
 969                /* discard */
 970                return -1;
 971            }
 972        }
 973    }
 974
 975    /*
 976     * Determine configured receive buffer offset (probably 0)
 977     */
 978    rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
 979                   GEM_NWCFG_BUFF_OFST_S;
 980
 981    /* The configure size of each receive buffer.  Determines how many
 982     * buffers needed to hold this packet.
 983     */
 984    rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
 985                 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
 986    bytes_to_copy = size;
 987
 988    /* Hardware allows a zero value here but warns against it. To avoid QEMU
 989     * indefinite loops we enforce a minimum value here
 990     */
 991    if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
 992        rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
 993    }
 994
 995    /* Pad to minimum length. Assume FCS field is stripped, logic
 996     * below will increment it to the real minimum of 64 when
 997     * not FCS stripping
 998     */
 999    if (size < 60) {
1000        size = 60;
1001    }
1002
1003    /* Strip of FCS field ? (usually yes) */
1004    if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
1005        rxbuf_ptr = (void *)buf;
1006    } else {
1007        unsigned crc_val;
1008
1009        if (size > MAX_FRAME_SIZE - sizeof(crc_val)) {
1010            size = MAX_FRAME_SIZE - sizeof(crc_val);
1011        }
1012        bytes_to_copy = size;
1013        /* The application wants the FCS field, which QEMU does not provide.
1014         * We must try and calculate one.
1015         */
1016
1017        memcpy(s->rx_packet, buf, size);
1018        memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size);
1019        rxbuf_ptr = s->rx_packet;
1020        crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60)));
1021        memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val));
1022
1023        bytes_to_copy += 4;
1024        size += 4;
1025    }
1026
1027    DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size);
1028
1029    /* Find which queue we are targeting */
1030    q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
1031
1032    if (size > gem_get_max_buf_len(s, false)) {
1033        qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n");
1034        gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1035        return -1;
1036    }
1037
1038    while (bytes_to_copy) {
1039        hwaddr desc_addr;
1040
1041        /* Do nothing if receive is not enabled. */
1042        if (!gem_can_receive(nc)) {
1043            return -1;
1044        }
1045
1046        DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n",
1047                MIN(bytes_to_copy, rxbufsize),
1048                rx_desc_get_buffer(s, s->rx_desc[q]));
1049
1050        /* Copy packet data to emulated DMA buffer */
1051        address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
1052                                                                  rxbuf_offset,
1053                            MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
1054                            MIN(bytes_to_copy, rxbufsize));
1055        rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
1056        bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
1057
1058        rx_desc_clear_control(s->rx_desc[q]);
1059
1060        /* Update the descriptor.  */
1061        if (first_desc) {
1062            rx_desc_set_sof(s->rx_desc[q]);
1063            first_desc = false;
1064        }
1065        if (bytes_to_copy == 0) {
1066            rx_desc_set_eof(s->rx_desc[q]);
1067            rx_desc_set_length(s->rx_desc[q], size);
1068        }
1069        rx_desc_set_ownership(s->rx_desc[q]);
1070
1071        switch (maf) {
1072        case GEM_RX_PROMISCUOUS_ACCEPT:
1073            break;
1074        case GEM_RX_BROADCAST_ACCEPT:
1075            rx_desc_set_broadcast(s->rx_desc[q]);
1076            break;
1077        case GEM_RX_UNICAST_HASH_ACCEPT:
1078            rx_desc_set_unicast_hash(s->rx_desc[q]);
1079            break;
1080        case GEM_RX_MULTICAST_HASH_ACCEPT:
1081            rx_desc_set_multicast_hash(s->rx_desc[q]);
1082            break;
1083        case GEM_RX_REJECT:
1084            abort();
1085        default: /* SAR */
1086            rx_desc_set_sar(s->rx_desc[q], maf);
1087        }
1088
1089        /* Descriptor write-back.  */
1090        desc_addr = gem_get_rx_desc_addr(s, q);
1091        address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
1092                            s->rx_desc[q],
1093                            sizeof(uint32_t) * gem_get_desc_len(s, true));
1094
1095        /* Next descriptor */
1096        if (rx_desc_get_wrap(s->rx_desc[q])) {
1097            DB_PRINT("wrapping RX descriptor list\n");
1098            s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q);
1099        } else {
1100            DB_PRINT("incrementing RX descriptor list\n");
1101            s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1102        }
1103
1104        gem_get_rx_desc(s, q);
1105    }
1106
1107    /* Count it */
1108    gem_receive_updatestats(s, buf, size);
1109
1110    s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1111    gem_set_isr(s, q, GEM_INT_RXCMPL);
1112
1113    /* Handle interrupt consequences */
1114    gem_update_int_status(s);
1115
1116    return size;
1117}
1118
1119/*
1120 * gem_transmit_updatestats:
1121 * Increment transmit statistics.
1122 */
1123static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1124                                     unsigned bytes)
1125{
1126    uint64_t octets;
1127
1128    /* Total octets (bytes) transmitted */
1129    octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
1130             s->regs[GEM_OCTTXHI];
1131    octets += bytes;
1132    s->regs[GEM_OCTTXLO] = octets >> 32;
1133    s->regs[GEM_OCTTXHI] = octets;
1134
1135    /* Error-free Frames transmitted */
1136    s->regs[GEM_TXCNT]++;
1137
1138    /* Error-free Broadcast Frames counter */
1139    if (!memcmp(packet, broadcast_addr, 6)) {
1140        s->regs[GEM_TXBCNT]++;
1141    }
1142
1143    /* Error-free Multicast Frames counter */
1144    if (packet[0] == 0x01) {
1145        s->regs[GEM_TXMCNT]++;
1146    }
1147
1148    if (bytes <= 64) {
1149        s->regs[GEM_TX64CNT]++;
1150    } else if (bytes <= 127) {
1151        s->regs[GEM_TX65CNT]++;
1152    } else if (bytes <= 255) {
1153        s->regs[GEM_TX128CNT]++;
1154    } else if (bytes <= 511) {
1155        s->regs[GEM_TX256CNT]++;
1156    } else if (bytes <= 1023) {
1157        s->regs[GEM_TX512CNT]++;
1158    } else if (bytes <= 1518) {
1159        s->regs[GEM_TX1024CNT]++;
1160    } else {
1161        s->regs[GEM_TX1519CNT]++;
1162    }
1163}
1164
1165/*
1166 * gem_transmit:
1167 * Fish packets out of the descriptor ring and feed them to QEMU
1168 */
1169static void gem_transmit(CadenceGEMState *s)
1170{
1171    uint32_t desc[DESC_MAX_NUM_WORDS];
1172    hwaddr packet_desc_addr;
1173    uint8_t     *p;
1174    unsigned    total_bytes;
1175    int q = 0;
1176
1177    /* Do nothing if transmit is not enabled. */
1178    if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1179        return;
1180    }
1181
1182    DB_PRINT("\n");
1183
1184    /* The packet we will hand off to QEMU.
1185     * Packets scattered across multiple descriptors are gathered to this
1186     * one contiguous buffer first.
1187     */
1188    p = s->tx_packet;
1189    total_bytes = 0;
1190
1191    for (q = s->num_priority_queues - 1; q >= 0; q--) {
1192        /* read current descriptor */
1193        packet_desc_addr = gem_get_tx_desc_addr(s, q);
1194
1195        DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1196        address_space_read(&s->dma_as, packet_desc_addr,
1197                           MEMTXATTRS_UNSPECIFIED, desc,
1198                           sizeof(uint32_t) * gem_get_desc_len(s, false));
1199        /* Handle all descriptors owned by hardware */
1200        while (tx_desc_get_used(desc) == 0) {
1201
1202            /* Do nothing if transmit is not enabled. */
1203            if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1204                return;
1205            }
1206            print_gem_tx_desc(desc, q);
1207
1208            /* The real hardware would eat this (and possibly crash).
1209             * For QEMU let's lend a helping hand.
1210             */
1211            if ((tx_desc_get_buffer(s, desc) == 0) ||
1212                (tx_desc_get_length(desc) == 0)) {
1213                DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n",
1214                         packet_desc_addr);
1215                break;
1216            }
1217
1218            if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) -
1219                                               (p - s->tx_packet)) {
1220                qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \
1221                         HWADDR_PRIx " too large: size 0x%x space 0x%zx\n",
1222                         packet_desc_addr, tx_desc_get_length(desc),
1223                         gem_get_max_buf_len(s, true) - (p - s->tx_packet));
1224                gem_set_isr(s, q, GEM_INT_AMBA_ERR);
1225                break;
1226            }
1227
1228            /* Gather this fragment of the packet from "dma memory" to our
1229             * contig buffer.
1230             */
1231            address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1232                               MEMTXATTRS_UNSPECIFIED,
1233                               p, tx_desc_get_length(desc));
1234            p += tx_desc_get_length(desc);
1235            total_bytes += tx_desc_get_length(desc);
1236
1237            /* Last descriptor for this packet; hand the whole thing off */
1238            if (tx_desc_get_last(desc)) {
1239                uint32_t desc_first[DESC_MAX_NUM_WORDS];
1240                hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1241
1242                /* Modify the 1st descriptor of this packet to be owned by
1243                 * the processor.
1244                 */
1245                address_space_read(&s->dma_as, desc_addr,
1246                                   MEMTXATTRS_UNSPECIFIED, desc_first,
1247                                   sizeof(desc_first));
1248                tx_desc_set_used(desc_first);
1249                address_space_write(&s->dma_as, desc_addr,
1250                                    MEMTXATTRS_UNSPECIFIED, desc_first,
1251                                    sizeof(desc_first));
1252                /* Advance the hardware current descriptor past this packet */
1253                if (tx_desc_get_wrap(desc)) {
1254                    s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q);
1255                } else {
1256                    s->tx_desc_addr[q] = packet_desc_addr +
1257                                         4 * gem_get_desc_len(s, false);
1258                }
1259                DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1260
1261                s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1262                gem_set_isr(s, q, GEM_INT_TXCMPL);
1263
1264                /* Handle interrupt consequences */
1265                gem_update_int_status(s);
1266
1267                /* Is checksum offload enabled? */
1268                if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1269                    net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL);
1270                }
1271
1272                /* Update MAC statistics */
1273                gem_transmit_updatestats(s, s->tx_packet, total_bytes);
1274
1275                /* Send the packet somewhere */
1276                if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1277                                    GEM_NWCTRL_LOCALLOOP)) {
1278                    qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet,
1279                                        total_bytes);
1280                } else {
1281                    qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet,
1282                                     total_bytes);
1283                }
1284
1285                /* Prepare for next packet */
1286                p = s->tx_packet;
1287                total_bytes = 0;
1288            }
1289
1290            /* read next descriptor */
1291            if (tx_desc_get_wrap(desc)) {
1292
1293                if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
1294                    packet_desc_addr = s->regs[GEM_TBQPH];
1295                    packet_desc_addr <<= 32;
1296                } else {
1297                    packet_desc_addr = 0;
1298                }
1299                packet_desc_addr |= gem_get_tx_queue_base_addr(s, q);
1300            } else {
1301                packet_desc_addr += 4 * gem_get_desc_len(s, false);
1302            }
1303            DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1304            address_space_read(&s->dma_as, packet_desc_addr,
1305                               MEMTXATTRS_UNSPECIFIED, desc,
1306                               sizeof(uint32_t) * gem_get_desc_len(s, false));
1307        }
1308
1309        if (tx_desc_get_used(desc)) {
1310            s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1311            /* IRQ TXUSED is defined only for queue 0 */
1312            if (q == 0) {
1313                gem_set_isr(s, 0, GEM_INT_TXUSED);
1314            }
1315            gem_update_int_status(s);
1316        }
1317    }
1318}
1319
1320static void gem_phy_reset(CadenceGEMState *s)
1321{
1322    memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1323    s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1324    s->phy_regs[PHY_REG_STATUS] = 0x7969;
1325    s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1326    s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1327    s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1328    s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1329    s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1330    s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1331    s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1332    s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1333    s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1334    s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1335    s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1336    s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1337    s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1338    s->phy_regs[PHY_REG_LED] = 0x4100;
1339    s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1340    s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1341
1342    phy_update_link(s);
1343}
1344
1345static void gem_reset(DeviceState *d)
1346{
1347    int i;
1348    CadenceGEMState *s = CADENCE_GEM(d);
1349    const uint8_t *a;
1350    uint32_t queues_mask = 0;
1351
1352    DB_PRINT("\n");
1353
1354    /* Set post reset register values */
1355    memset(&s->regs[0], 0, sizeof(s->regs));
1356    s->regs[GEM_NWCFG] = 0x00080000;
1357    s->regs[GEM_NWSTATUS] = 0x00000006;
1358    s->regs[GEM_DMACFG] = 0x00020784;
1359    s->regs[GEM_IMR] = 0x07ffffff;
1360    s->regs[GEM_TXPAUSE] = 0x0000ffff;
1361    s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1362    s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1363    s->regs[GEM_MODID] = s->revision;
1364    s->regs[GEM_DESCONF] = 0x02D00111;
1365    s->regs[GEM_DESCONF2] = 0x2ab10000 | s->jumbo_max_len;
1366    s->regs[GEM_DESCONF5] = 0x002f2045;
1367    s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK;
1368    s->regs[GEM_INT_Q1_MASK] = 0x00000CE6;
1369    s->regs[GEM_JUMBO_MAX_LEN] = s->jumbo_max_len;
1370
1371    if (s->num_priority_queues > 1) {
1372        queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1373        s->regs[GEM_DESCONF6] |= queues_mask;
1374    }
1375
1376    /* Set MAC address */
1377    a = &s->conf.macaddr.a[0];
1378    s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1379    s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1380
1381    for (i = 0; i < 4; i++) {
1382        s->sar_active[i] = false;
1383    }
1384
1385    gem_phy_reset(s);
1386
1387    gem_update_int_status(s);
1388}
1389
1390static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1391{
1392    DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1393    return s->phy_regs[reg_num];
1394}
1395
1396static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1397{
1398    DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1399
1400    switch (reg_num) {
1401    case PHY_REG_CONTROL:
1402        if (val & PHY_REG_CONTROL_RST) {
1403            /* Phy reset */
1404            gem_phy_reset(s);
1405            val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1406            s->phy_loop = 0;
1407        }
1408        if (val & PHY_REG_CONTROL_ANEG) {
1409            /* Complete autonegotiation immediately */
1410            val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART);
1411            s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1412        }
1413        if (val & PHY_REG_CONTROL_LOOP) {
1414            DB_PRINT("PHY placed in loopback\n");
1415            s->phy_loop = 1;
1416        } else {
1417            s->phy_loop = 0;
1418        }
1419        break;
1420    }
1421    s->phy_regs[reg_num] = val;
1422}
1423
1424/*
1425 * gem_read32:
1426 * Read a GEM register.
1427 */
1428static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1429{
1430    CadenceGEMState *s;
1431    uint32_t retval;
1432    s = (CadenceGEMState *)opaque;
1433
1434    offset >>= 2;
1435    retval = s->regs[offset];
1436
1437    DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1438
1439    switch (offset) {
1440    case GEM_ISR:
1441        DB_PRINT("lowering irqs on ISR read\n");
1442        /* The interrupts get updated at the end of the function. */
1443        break;
1444    case GEM_PHYMNTNC:
1445        if (retval & GEM_PHYMNTNC_OP_R) {
1446            uint32_t phy_addr, reg_num;
1447
1448            phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1449            if (phy_addr == s->phy_addr) {
1450                reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1451                retval &= 0xFFFF0000;
1452                retval |= gem_phy_read(s, reg_num);
1453            } else {
1454                retval |= 0xFFFF; /* No device at this address */
1455            }
1456        }
1457        break;
1458    }
1459
1460    /* Squash read to clear bits */
1461    s->regs[offset] &= ~(s->regs_rtc[offset]);
1462
1463    /* Do not provide write only bits */
1464    retval &= ~(s->regs_wo[offset]);
1465
1466    DB_PRINT("0x%08x\n", retval);
1467    gem_update_int_status(s);
1468    return retval;
1469}
1470
1471/*
1472 * gem_write32:
1473 * Write a GEM register.
1474 */
1475static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1476        unsigned size)
1477{
1478    CadenceGEMState *s = (CadenceGEMState *)opaque;
1479    uint32_t readonly;
1480    int i;
1481
1482    DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1483    offset >>= 2;
1484
1485    /* Squash bits which are read only in write value */
1486    val &= ~(s->regs_ro[offset]);
1487    /* Preserve (only) bits which are read only and wtc in register */
1488    readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1489
1490    /* Copy register write to backing store */
1491    s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1492
1493    /* do w1c */
1494    s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1495
1496    /* Handle register write side effects */
1497    switch (offset) {
1498    case GEM_NWCTRL:
1499        if (val & GEM_NWCTRL_RXENA) {
1500            for (i = 0; i < s->num_priority_queues; ++i) {
1501                gem_get_rx_desc(s, i);
1502            }
1503        }
1504        if (val & GEM_NWCTRL_TXSTART) {
1505            gem_transmit(s);
1506        }
1507        if (!(val & GEM_NWCTRL_TXENA)) {
1508            /* Reset to start of Q when transmit disabled. */
1509            for (i = 0; i < s->num_priority_queues; i++) {
1510                s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i);
1511            }
1512        }
1513        if (gem_can_receive(qemu_get_queue(s->nic))) {
1514            qemu_flush_queued_packets(qemu_get_queue(s->nic));
1515        }
1516        break;
1517
1518    case GEM_TXSTATUS:
1519        gem_update_int_status(s);
1520        break;
1521    case GEM_RXQBASE:
1522        s->rx_desc_addr[0] = val;
1523        break;
1524    case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1525        s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1526        break;
1527    case GEM_TXQBASE:
1528        s->tx_desc_addr[0] = val;
1529        break;
1530    case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1531        s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1532        break;
1533    case GEM_RXSTATUS:
1534        gem_update_int_status(s);
1535        break;
1536    case GEM_IER:
1537        s->regs[GEM_IMR] &= ~val;
1538        gem_update_int_status(s);
1539        break;
1540    case GEM_JUMBO_MAX_LEN:
1541        s->regs[GEM_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK;
1542        break;
1543    case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1544        s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1545        gem_update_int_status(s);
1546        break;
1547    case GEM_IDR:
1548        s->regs[GEM_IMR] |= val;
1549        gem_update_int_status(s);
1550        break;
1551    case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1552        s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1553        gem_update_int_status(s);
1554        break;
1555    case GEM_SPADDR1LO:
1556    case GEM_SPADDR2LO:
1557    case GEM_SPADDR3LO:
1558    case GEM_SPADDR4LO:
1559        s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1560        break;
1561    case GEM_SPADDR1HI:
1562    case GEM_SPADDR2HI:
1563    case GEM_SPADDR3HI:
1564    case GEM_SPADDR4HI:
1565        s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1566        break;
1567    case GEM_PHYMNTNC:
1568        if (val & GEM_PHYMNTNC_OP_W) {
1569            uint32_t phy_addr, reg_num;
1570
1571            phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1572            if (phy_addr == s->phy_addr) {
1573                reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1574                gem_phy_write(s, reg_num, val);
1575            }
1576        }
1577        break;
1578    }
1579
1580    DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1581}
1582
1583static const MemoryRegionOps gem_ops = {
1584    .read = gem_read,
1585    .write = gem_write,
1586    .endianness = DEVICE_LITTLE_ENDIAN,
1587};
1588
1589static void gem_set_link(NetClientState *nc)
1590{
1591    CadenceGEMState *s = qemu_get_nic_opaque(nc);
1592
1593    DB_PRINT("\n");
1594    phy_update_link(s);
1595    gem_update_int_status(s);
1596}
1597
1598static NetClientInfo net_gem_info = {
1599    .type = NET_CLIENT_DRIVER_NIC,
1600    .size = sizeof(NICState),
1601    .can_receive = gem_can_receive,
1602    .receive = gem_receive,
1603    .link_status_changed = gem_set_link,
1604};
1605
1606static void gem_realize(DeviceState *dev, Error **errp)
1607{
1608    CadenceGEMState *s = CADENCE_GEM(dev);
1609    int i;
1610
1611    address_space_init(&s->dma_as,
1612                       s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1613
1614    if (s->num_priority_queues == 0 ||
1615        s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1616        error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1617                   s->num_priority_queues);
1618        return;
1619    } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1620        error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1621                   s->num_type1_screeners);
1622        return;
1623    } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1624        error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1625                   s->num_type2_screeners);
1626        return;
1627    }
1628
1629    for (i = 0; i < s->num_priority_queues; ++i) {
1630        sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1631    }
1632
1633    qemu_macaddr_default_if_unset(&s->conf.macaddr);
1634
1635    s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1636                          object_get_typename(OBJECT(dev)), dev->id, s);
1637
1638    if (s->jumbo_max_len > MAX_FRAME_SIZE) {
1639        error_setg(errp, "jumbo-max-len is greater than %d",
1640                  MAX_FRAME_SIZE);
1641        return;
1642    }
1643}
1644
1645static void gem_init(Object *obj)
1646{
1647    CadenceGEMState *s = CADENCE_GEM(obj);
1648    DeviceState *dev = DEVICE(obj);
1649
1650    DB_PRINT("\n");
1651
1652    gem_init_register_masks(s);
1653    memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1654                          "enet", sizeof(s->regs));
1655
1656    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1657
1658    object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
1659                             (Object **)&s->dma_mr,
1660                             qdev_prop_allow_set_link_before_realize,
1661                             OBJ_PROP_LINK_STRONG);
1662}
1663
1664static const VMStateDescription vmstate_cadence_gem = {
1665    .name = "cadence_gem",
1666    .version_id = 4,
1667    .minimum_version_id = 4,
1668    .fields = (VMStateField[]) {
1669        VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1670        VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1671        VMSTATE_UINT8(phy_loop, CadenceGEMState),
1672        VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1673                             MAX_PRIORITY_QUEUES),
1674        VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1675                             MAX_PRIORITY_QUEUES),
1676        VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1677        VMSTATE_END_OF_LIST(),
1678    }
1679};
1680
1681static Property gem_properties[] = {
1682    DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1683    DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1684                       GEM_MODID_VALUE),
1685    DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS),
1686    DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1687                      num_priority_queues, 1),
1688    DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1689                      num_type1_screeners, 4),
1690    DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1691                      num_type2_screeners, 4),
1692    DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState,
1693                       jumbo_max_len, 10240),
1694    DEFINE_PROP_END_OF_LIST(),
1695};
1696
1697static void gem_class_init(ObjectClass *klass, void *data)
1698{
1699    DeviceClass *dc = DEVICE_CLASS(klass);
1700
1701    dc->realize = gem_realize;
1702    device_class_set_props(dc, gem_properties);
1703    dc->vmsd = &vmstate_cadence_gem;
1704    dc->reset = gem_reset;
1705}
1706
1707static const TypeInfo gem_info = {
1708    .name  = TYPE_CADENCE_GEM,
1709    .parent = TYPE_SYS_BUS_DEVICE,
1710    .instance_size  = sizeof(CadenceGEMState),
1711    .instance_init = gem_init,
1712    .class_init = gem_class_init,
1713};
1714
1715static void gem_register_types(void)
1716{
1717    type_register_static(&gem_info);
1718}
1719
1720type_init(gem_register_types)
1721