qemu/hw/nvme/ctrl.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
  13 *
  14 *  https://nvmexpress.org/developers/nvme-specification/
  15 *
  16 *
  17 * Notes on coding style
  18 * ---------------------
  19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
  20 * NVMe subsystem use thes format from the NVMe specifications in the comments
  21 * (i.e. 'h' suffix instead of '0x' prefix).
  22 *
  23 * Usage
  24 * -----
  25 * See docs/system/nvme.rst for extensive documentation.
  26 *
  27 * Add options:
  28 *      -drive file=<file>,if=none,id=<drive_id>
  29 *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
  30 *      -device nvme,serial=<serial>,id=<bus_name>, \
  31 *              cmb_size_mb=<cmb_size_mb[optional]>, \
  32 *              [pmrdev=<mem_backend_file_id>,] \
  33 *              max_ioqpairs=<N[optional]>, \
  34 *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
  35 *              mdts=<N[optional]>,vsl=<N[optional]>, \
  36 *              zoned.zasl=<N[optional]>, \
  37 *              zoned.auto_transition=<on|off[optional]>, \
  38 *              subsys=<subsys_id>
  39 *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
  40 *              zoned=<true|false[optional]>, \
  41 *              subsys=<subsys_id>,detached=<true|false[optional]>
  42 *
  43 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
  44 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
  45 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
  46 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
  47 *
  48 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
  49 * For example:
  50 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
  51 *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
  52 *
  53 * The PMR will use BAR 4/5 exclusively.
  54 *
  55 * To place controller(s) and namespace(s) to a subsystem, then provide
  56 * nvme-subsys device as above.
  57 *
  58 * nvme subsystem device parameters
  59 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  60 * - `nqn`
  61 *   This parameter provides the `<nqn_id>` part of the string
  62 *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
  63 *   of subsystem controllers. Note that `<nqn_id>` should be unique per
  64 *   subsystem, but this is not enforced by QEMU. If not specified, it will
  65 *   default to the value of the `id` parameter (`<subsys_id>`).
  66 *
  67 * nvme device parameters
  68 * ~~~~~~~~~~~~~~~~~~~~~~
  69 * - `subsys`
  70 *   Specifying this parameter attaches the controller to the subsystem and
  71 *   the SUBNQN field in the controller will report the NQN of the subsystem
  72 *   device. This also enables multi controller capability represented in
  73 *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
  74 *   Namesapce Sharing Capabilities).
  75 *
  76 * - `aerl`
  77 *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
  78 *   of concurrently outstanding Asynchronous Event Request commands support
  79 *   by the controller. This is a 0's based value.
  80 *
  81 * - `aer_max_queued`
  82 *   This is the maximum number of events that the device will enqueue for
  83 *   completion when there are no outstanding AERs. When the maximum number of
  84 *   enqueued events are reached, subsequent events will be dropped.
  85 *
  86 * - `mdts`
  87 *   Indicates the maximum data transfer size for a command that transfers data
  88 *   between host-accessible memory and the controller. The value is specified
  89 *   as a power of two (2^n) and is in units of the minimum memory page size
  90 *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
  91 *
  92 * - `vsl`
  93 *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
  94 *   this value is specified as a power of two (2^n) and is in units of the
  95 *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
  96 *   KiB).
  97 *
  98 * - `zoned.zasl`
  99 *   Indicates the maximum data transfer size for the Zone Append command. Like
 100 *   `mdts`, the value is specified as a power of two (2^n) and is in units of
 101 *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
 102 *   defaulting to the value of `mdts`).
 103 *
 104 * - `zoned.auto_transition`
 105 *   Indicates if zones in zone state implicitly opened can be automatically
 106 *   transitioned to zone state closed for resource management purposes.
 107 *   Defaults to 'on'.
 108 *
 109 * nvme namespace device parameters
 110 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 111 * - `shared`
 112 *   When the parent nvme device (as defined explicitly by the 'bus' parameter
 113 *   or implicitly by the most recently defined NvmeBus) is linked to an
 114 *   nvme-subsys device, the namespace will be attached to all controllers in
 115 *   the subsystem. If set to 'off' (the default), the namespace will remain a
 116 *   private namespace and may only be attached to a single controller at a
 117 *   time.
 118 *
 119 * - `detached`
 120 *   This parameter is only valid together with the `subsys` parameter. If left
 121 *   at the default value (`false/off`), the namespace will be attached to all
 122 *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
 123 *   namespace will be available in the subsystem but not attached to any
 124 *   controllers.
 125 *
 126 * Setting `zoned` to true selects Zoned Command Set at the namespace.
 127 * In this case, the following namespace properties are available to configure
 128 * zoned operation:
 129 *     zoned.zone_size=<zone size in bytes, default: 128MiB>
 130 *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
 131 *
 132 *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
 133 *         The value 0 (default) forces zone capacity to be the same as zone
 134 *         size. The value of this property may not exceed zone size.
 135 *
 136 *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
 137 *         This value needs to be specified in 64B units. If it is zero,
 138 *         namespace(s) will not support zone descriptor extensions.
 139 *
 140 *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
 141 *         The default value means there is no limit to the number of
 142 *         concurrently active zones.
 143 *
 144 *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
 145 *         The default value means there is no limit to the number of
 146 *         concurrently open zones.
 147 *
 148 *     zoned.cross_read=<enable RAZB, default: false>
 149 *         Setting this property to true enables Read Across Zone Boundaries.
 150 */
 151
 152#include "qemu/osdep.h"
 153#include "qemu/cutils.h"
 154#include "qemu/error-report.h"
 155#include "qemu/log.h"
 156#include "qemu/units.h"
 157#include "qapi/error.h"
 158#include "qapi/visitor.h"
 159#include "sysemu/sysemu.h"
 160#include "sysemu/block-backend.h"
 161#include "sysemu/hostmem.h"
 162#include "hw/pci/msix.h"
 163#include "migration/vmstate.h"
 164
 165#include "nvme.h"
 166#include "dif.h"
 167#include "trace.h"
 168
 169#define NVME_MAX_IOQPAIRS 0xffff
 170#define NVME_DB_SIZE  4
 171#define NVME_SPEC_VER 0x00010400
 172#define NVME_CMB_BIR 2
 173#define NVME_PMR_BIR 4
 174#define NVME_TEMPERATURE 0x143
 175#define NVME_TEMPERATURE_WARNING 0x157
 176#define NVME_TEMPERATURE_CRITICAL 0x175
 177#define NVME_NUM_FW_SLOTS 1
 178#define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
 179
 180#define NVME_GUEST_ERR(trace, fmt, ...) \
 181    do { \
 182        (trace_##trace)(__VA_ARGS__); \
 183        qemu_log_mask(LOG_GUEST_ERROR, #trace \
 184            " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
 185    } while (0)
 186
 187static const bool nvme_feature_support[NVME_FID_MAX] = {
 188    [NVME_ARBITRATION]              = true,
 189    [NVME_POWER_MANAGEMENT]         = true,
 190    [NVME_TEMPERATURE_THRESHOLD]    = true,
 191    [NVME_ERROR_RECOVERY]           = true,
 192    [NVME_VOLATILE_WRITE_CACHE]     = true,
 193    [NVME_NUMBER_OF_QUEUES]         = true,
 194    [NVME_INTERRUPT_COALESCING]     = true,
 195    [NVME_INTERRUPT_VECTOR_CONF]    = true,
 196    [NVME_WRITE_ATOMICITY]          = true,
 197    [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
 198    [NVME_TIMESTAMP]                = true,
 199    [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
 200    [NVME_COMMAND_SET_PROFILE]      = true,
 201};
 202
 203static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
 204    [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
 205    [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
 206    [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
 207    [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
 208    [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
 209    [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
 210    [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
 211    [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
 212};
 213
 214static const uint32_t nvme_cse_acs[256] = {
 215    [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
 216    [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
 217    [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
 218    [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
 219    [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
 220    [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
 221    [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
 222    [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 223    [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 224    [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
 225    [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
 226    [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 227};
 228
 229static const uint32_t nvme_cse_iocs_none[256];
 230
 231static const uint32_t nvme_cse_iocs_nvm[256] = {
 232    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 233    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 234    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 235    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 236    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 237    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 238    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 239    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 240};
 241
 242static const uint32_t nvme_cse_iocs_zoned[256] = {
 243    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 244    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 245    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 246    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 247    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 248    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 249    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 250    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 251    [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 252    [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 253    [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
 254};
 255
 256static void nvme_process_sq(void *opaque);
 257
 258static uint16_t nvme_sqid(NvmeRequest *req)
 259{
 260    return le16_to_cpu(req->sq->sqid);
 261}
 262
 263static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
 264                                   NvmeZoneState state)
 265{
 266    if (QTAILQ_IN_USE(zone, entry)) {
 267        switch (nvme_get_zone_state(zone)) {
 268        case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 269            QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
 270            break;
 271        case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 272            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
 273            break;
 274        case NVME_ZONE_STATE_CLOSED:
 275            QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
 276            break;
 277        case NVME_ZONE_STATE_FULL:
 278            QTAILQ_REMOVE(&ns->full_zones, zone, entry);
 279        default:
 280            ;
 281        }
 282    }
 283
 284    nvme_set_zone_state(zone, state);
 285
 286    switch (state) {
 287    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 288        QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
 289        break;
 290    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 291        QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
 292        break;
 293    case NVME_ZONE_STATE_CLOSED:
 294        QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
 295        break;
 296    case NVME_ZONE_STATE_FULL:
 297        QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
 298    case NVME_ZONE_STATE_READ_ONLY:
 299        break;
 300    default:
 301        zone->d.za = 0;
 302    }
 303}
 304
 305static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
 306                                         uint32_t opn, uint32_t zrwa)
 307{
 308    if (ns->params.max_active_zones != 0 &&
 309        ns->nr_active_zones + act > ns->params.max_active_zones) {
 310        trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
 311        return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
 312    }
 313
 314    if (ns->params.max_open_zones != 0 &&
 315        ns->nr_open_zones + opn > ns->params.max_open_zones) {
 316        trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
 317        return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
 318    }
 319
 320    if (zrwa > ns->zns.numzrwa) {
 321        return NVME_NOZRWA | NVME_DNR;
 322    }
 323
 324    return NVME_SUCCESS;
 325}
 326
 327/*
 328 * Check if we can open a zone without exceeding open/active limits.
 329 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
 330 */
 331static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
 332{
 333    return nvme_zns_check_resources(ns, act, opn, 0);
 334}
 335
 336static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
 337{
 338    hwaddr hi, lo;
 339
 340    if (!n->cmb.cmse) {
 341        return false;
 342    }
 343
 344    lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 345    hi = lo + int128_get64(n->cmb.mem.size);
 346
 347    return addr >= lo && addr < hi;
 348}
 349
 350static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
 351{
 352    hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 353    return &n->cmb.buf[addr - base];
 354}
 355
 356static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
 357{
 358    hwaddr hi;
 359
 360    if (!n->pmr.cmse) {
 361        return false;
 362    }
 363
 364    hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
 365
 366    return addr >= n->pmr.cba && addr < hi;
 367}
 368
 369static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
 370{
 371    return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
 372}
 373
 374static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
 375{
 376    hwaddr hi, lo;
 377
 378    /*
 379     * The purpose of this check is to guard against invalid "local" access to
 380     * the iomem (i.e. controller registers). Thus, we check against the range
 381     * covered by the 'bar0' MemoryRegion since that is currently composed of
 382     * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
 383     * that if the device model is ever changed to allow the CMB to be located
 384     * in BAR0 as well, then this must be changed.
 385     */
 386    lo = n->bar0.addr;
 387    hi = lo + int128_get64(n->bar0.size);
 388
 389    return addr >= lo && addr < hi;
 390}
 391
 392static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
 393{
 394    hwaddr hi = addr + size - 1;
 395    if (hi < addr) {
 396        return 1;
 397    }
 398
 399    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 400        memcpy(buf, nvme_addr_to_cmb(n, addr), size);
 401        return 0;
 402    }
 403
 404    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 405        memcpy(buf, nvme_addr_to_pmr(n, addr), size);
 406        return 0;
 407    }
 408
 409    return pci_dma_read(&n->parent_obj, addr, buf, size);
 410}
 411
 412static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
 413{
 414    hwaddr hi = addr + size - 1;
 415    if (hi < addr) {
 416        return 1;
 417    }
 418
 419    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 420        memcpy(nvme_addr_to_cmb(n, addr), buf, size);
 421        return 0;
 422    }
 423
 424    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 425        memcpy(nvme_addr_to_pmr(n, addr), buf, size);
 426        return 0;
 427    }
 428
 429    return pci_dma_write(&n->parent_obj, addr, buf, size);
 430}
 431
 432static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
 433{
 434    return nsid &&
 435        (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
 436}
 437
 438static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
 439{
 440    return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
 441}
 442
 443static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
 444{
 445    return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
 446}
 447
 448static void nvme_inc_cq_tail(NvmeCQueue *cq)
 449{
 450    cq->tail++;
 451    if (cq->tail >= cq->size) {
 452        cq->tail = 0;
 453        cq->phase = !cq->phase;
 454    }
 455}
 456
 457static void nvme_inc_sq_head(NvmeSQueue *sq)
 458{
 459    sq->head = (sq->head + 1) % sq->size;
 460}
 461
 462static uint8_t nvme_cq_full(NvmeCQueue *cq)
 463{
 464    return (cq->tail + 1) % cq->size == cq->head;
 465}
 466
 467static uint8_t nvme_sq_empty(NvmeSQueue *sq)
 468{
 469    return sq->head == sq->tail;
 470}
 471
 472static void nvme_irq_check(NvmeCtrl *n)
 473{
 474    uint32_t intms = ldl_le_p(&n->bar.intms);
 475
 476    if (msix_enabled(&(n->parent_obj))) {
 477        return;
 478    }
 479    if (~intms & n->irq_status) {
 480        pci_irq_assert(&n->parent_obj);
 481    } else {
 482        pci_irq_deassert(&n->parent_obj);
 483    }
 484}
 485
 486static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
 487{
 488    if (cq->irq_enabled) {
 489        if (msix_enabled(&(n->parent_obj))) {
 490            trace_pci_nvme_irq_msix(cq->vector);
 491            msix_notify(&(n->parent_obj), cq->vector);
 492        } else {
 493            trace_pci_nvme_irq_pin();
 494            assert(cq->vector < 32);
 495            n->irq_status |= 1 << cq->vector;
 496            nvme_irq_check(n);
 497        }
 498    } else {
 499        trace_pci_nvme_irq_masked();
 500    }
 501}
 502
 503static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
 504{
 505    if (cq->irq_enabled) {
 506        if (msix_enabled(&(n->parent_obj))) {
 507            return;
 508        } else {
 509            assert(cq->vector < 32);
 510            if (!n->cq_pending) {
 511                n->irq_status &= ~(1 << cq->vector);
 512            }
 513            nvme_irq_check(n);
 514        }
 515    }
 516}
 517
 518static void nvme_req_clear(NvmeRequest *req)
 519{
 520    req->ns = NULL;
 521    req->opaque = NULL;
 522    req->aiocb = NULL;
 523    memset(&req->cqe, 0x0, sizeof(req->cqe));
 524    req->status = NVME_SUCCESS;
 525}
 526
 527static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
 528{
 529    if (dma) {
 530        pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
 531        sg->flags = NVME_SG_DMA;
 532    } else {
 533        qemu_iovec_init(&sg->iov, 0);
 534    }
 535
 536    sg->flags |= NVME_SG_ALLOC;
 537}
 538
 539static inline void nvme_sg_unmap(NvmeSg *sg)
 540{
 541    if (!(sg->flags & NVME_SG_ALLOC)) {
 542        return;
 543    }
 544
 545    if (sg->flags & NVME_SG_DMA) {
 546        qemu_sglist_destroy(&sg->qsg);
 547    } else {
 548        qemu_iovec_destroy(&sg->iov);
 549    }
 550
 551    memset(sg, 0x0, sizeof(*sg));
 552}
 553
 554/*
 555 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
 556 * holds both data and metadata. This function splits the data and metadata
 557 * into two separate QSG/IOVs.
 558 */
 559static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
 560                          NvmeSg *mdata)
 561{
 562    NvmeSg *dst = data;
 563    uint32_t trans_len, count = ns->lbasz;
 564    uint64_t offset = 0;
 565    bool dma = sg->flags & NVME_SG_DMA;
 566    size_t sge_len;
 567    size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
 568    int sg_idx = 0;
 569
 570    assert(sg->flags & NVME_SG_ALLOC);
 571
 572    while (sg_len) {
 573        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
 574
 575        trans_len = MIN(sg_len, count);
 576        trans_len = MIN(trans_len, sge_len - offset);
 577
 578        if (dst) {
 579            if (dma) {
 580                qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
 581                                trans_len);
 582            } else {
 583                qemu_iovec_add(&dst->iov,
 584                               sg->iov.iov[sg_idx].iov_base + offset,
 585                               trans_len);
 586            }
 587        }
 588
 589        sg_len -= trans_len;
 590        count -= trans_len;
 591        offset += trans_len;
 592
 593        if (count == 0) {
 594            dst = (dst == data) ? mdata : data;
 595            count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
 596        }
 597
 598        if (sge_len == offset) {
 599            offset = 0;
 600            sg_idx++;
 601        }
 602    }
 603}
 604
 605static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 606                                  size_t len)
 607{
 608    if (!len) {
 609        return NVME_SUCCESS;
 610    }
 611
 612    trace_pci_nvme_map_addr_cmb(addr, len);
 613
 614    if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
 615        return NVME_DATA_TRAS_ERROR;
 616    }
 617
 618    qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
 619
 620    return NVME_SUCCESS;
 621}
 622
 623static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 624                                  size_t len)
 625{
 626    if (!len) {
 627        return NVME_SUCCESS;
 628    }
 629
 630    if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
 631        return NVME_DATA_TRAS_ERROR;
 632    }
 633
 634    qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
 635
 636    return NVME_SUCCESS;
 637}
 638
 639static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
 640{
 641    bool cmb = false, pmr = false;
 642
 643    if (!len) {
 644        return NVME_SUCCESS;
 645    }
 646
 647    trace_pci_nvme_map_addr(addr, len);
 648
 649    if (nvme_addr_is_iomem(n, addr)) {
 650        return NVME_DATA_TRAS_ERROR;
 651    }
 652
 653    if (nvme_addr_is_cmb(n, addr)) {
 654        cmb = true;
 655    } else if (nvme_addr_is_pmr(n, addr)) {
 656        pmr = true;
 657    }
 658
 659    if (cmb || pmr) {
 660        if (sg->flags & NVME_SG_DMA) {
 661            return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 662        }
 663
 664        if (sg->iov.niov + 1 > IOV_MAX) {
 665            goto max_mappings_exceeded;
 666        }
 667
 668        if (cmb) {
 669            return nvme_map_addr_cmb(n, &sg->iov, addr, len);
 670        } else {
 671            return nvme_map_addr_pmr(n, &sg->iov, addr, len);
 672        }
 673    }
 674
 675    if (!(sg->flags & NVME_SG_DMA)) {
 676        return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 677    }
 678
 679    if (sg->qsg.nsg + 1 > IOV_MAX) {
 680        goto max_mappings_exceeded;
 681    }
 682
 683    qemu_sglist_add(&sg->qsg, addr, len);
 684
 685    return NVME_SUCCESS;
 686
 687max_mappings_exceeded:
 688    NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
 689                   "number of mappings exceed 1024");
 690    return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
 691}
 692
 693static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
 694{
 695    return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
 696}
 697
 698static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
 699                             uint64_t prp2, uint32_t len)
 700{
 701    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 702    trans_len = MIN(len, trans_len);
 703    int num_prps = (len >> n->page_bits) + 1;
 704    uint16_t status;
 705    int ret;
 706
 707    trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
 708
 709    nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
 710
 711    status = nvme_map_addr(n, sg, prp1, trans_len);
 712    if (status) {
 713        goto unmap;
 714    }
 715
 716    len -= trans_len;
 717    if (len) {
 718        if (len > n->page_size) {
 719            uint64_t prp_list[n->max_prp_ents];
 720            uint32_t nents, prp_trans;
 721            int i = 0;
 722
 723            /*
 724             * The first PRP list entry, pointed to by PRP2 may contain offset.
 725             * Hence, we need to calculate the number of entries in based on
 726             * that offset.
 727             */
 728            nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
 729            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 730            ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 731            if (ret) {
 732                trace_pci_nvme_err_addr_read(prp2);
 733                status = NVME_DATA_TRAS_ERROR;
 734                goto unmap;
 735            }
 736            while (len != 0) {
 737                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 738
 739                if (i == nents - 1 && len > n->page_size) {
 740                    if (unlikely(prp_ent & (n->page_size - 1))) {
 741                        trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 742                        status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 743                        goto unmap;
 744                    }
 745
 746                    i = 0;
 747                    nents = (len + n->page_size - 1) >> n->page_bits;
 748                    nents = MIN(nents, n->max_prp_ents);
 749                    prp_trans = nents * sizeof(uint64_t);
 750                    ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
 751                                         prp_trans);
 752                    if (ret) {
 753                        trace_pci_nvme_err_addr_read(prp_ent);
 754                        status = NVME_DATA_TRAS_ERROR;
 755                        goto unmap;
 756                    }
 757                    prp_ent = le64_to_cpu(prp_list[i]);
 758                }
 759
 760                if (unlikely(prp_ent & (n->page_size - 1))) {
 761                    trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 762                    status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 763                    goto unmap;
 764                }
 765
 766                trans_len = MIN(len, n->page_size);
 767                status = nvme_map_addr(n, sg, prp_ent, trans_len);
 768                if (status) {
 769                    goto unmap;
 770                }
 771
 772                len -= trans_len;
 773                i++;
 774            }
 775        } else {
 776            if (unlikely(prp2 & (n->page_size - 1))) {
 777                trace_pci_nvme_err_invalid_prp2_align(prp2);
 778                status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 779                goto unmap;
 780            }
 781            status = nvme_map_addr(n, sg, prp2, len);
 782            if (status) {
 783                goto unmap;
 784            }
 785        }
 786    }
 787
 788    return NVME_SUCCESS;
 789
 790unmap:
 791    nvme_sg_unmap(sg);
 792    return status;
 793}
 794
 795/*
 796 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
 797 * number of bytes mapped in len.
 798 */
 799static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
 800                                  NvmeSglDescriptor *segment, uint64_t nsgld,
 801                                  size_t *len, NvmeCmd *cmd)
 802{
 803    dma_addr_t addr, trans_len;
 804    uint32_t dlen;
 805    uint16_t status;
 806
 807    for (int i = 0; i < nsgld; i++) {
 808        uint8_t type = NVME_SGL_TYPE(segment[i].type);
 809
 810        switch (type) {
 811        case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
 812            if (cmd->opcode == NVME_CMD_WRITE) {
 813                continue;
 814            }
 815        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
 816            break;
 817        case NVME_SGL_DESCR_TYPE_SEGMENT:
 818        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 819            return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
 820        default:
 821            return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
 822        }
 823
 824        dlen = le32_to_cpu(segment[i].len);
 825
 826        if (!dlen) {
 827            continue;
 828        }
 829
 830        if (*len == 0) {
 831            /*
 832             * All data has been mapped, but the SGL contains additional
 833             * segments and/or descriptors. The controller might accept
 834             * ignoring the rest of the SGL.
 835             */
 836            uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
 837            if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
 838                break;
 839            }
 840
 841            trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
 842            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 843        }
 844
 845        trans_len = MIN(*len, dlen);
 846
 847        if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
 848            goto next;
 849        }
 850
 851        addr = le64_to_cpu(segment[i].addr);
 852
 853        if (UINT64_MAX - addr < dlen) {
 854            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 855        }
 856
 857        status = nvme_map_addr(n, sg, addr, trans_len);
 858        if (status) {
 859            return status;
 860        }
 861
 862next:
 863        *len -= trans_len;
 864    }
 865
 866    return NVME_SUCCESS;
 867}
 868
 869static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
 870                             size_t len, NvmeCmd *cmd)
 871{
 872    /*
 873     * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
 874     * dynamically allocating a potentially huge SGL. The spec allows the SGL
 875     * to be larger (as in number of bytes required to describe the SGL
 876     * descriptors and segment chain) than the command transfer size, so it is
 877     * not bounded by MDTS.
 878     */
 879    const int SEG_CHUNK_SIZE = 256;
 880
 881    NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
 882    uint64_t nsgld;
 883    uint32_t seg_len;
 884    uint16_t status;
 885    hwaddr addr;
 886    int ret;
 887
 888    sgld = &sgl;
 889    addr = le64_to_cpu(sgl.addr);
 890
 891    trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
 892
 893    nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
 894
 895    /*
 896     * If the entire transfer can be described with a single data block it can
 897     * be mapped directly.
 898     */
 899    if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
 900        status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
 901        if (status) {
 902            goto unmap;
 903        }
 904
 905        goto out;
 906    }
 907
 908    for (;;) {
 909        switch (NVME_SGL_TYPE(sgld->type)) {
 910        case NVME_SGL_DESCR_TYPE_SEGMENT:
 911        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 912            break;
 913        default:
 914            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 915        }
 916
 917        seg_len = le32_to_cpu(sgld->len);
 918
 919        /* check the length of the (Last) Segment descriptor */
 920        if ((!seg_len || seg_len & 0xf) &&
 921            (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
 922            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 923        }
 924
 925        if (UINT64_MAX - addr < seg_len) {
 926            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 927        }
 928
 929        nsgld = seg_len / sizeof(NvmeSglDescriptor);
 930
 931        while (nsgld > SEG_CHUNK_SIZE) {
 932            if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
 933                trace_pci_nvme_err_addr_read(addr);
 934                status = NVME_DATA_TRAS_ERROR;
 935                goto unmap;
 936            }
 937
 938            status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
 939                                       &len, cmd);
 940            if (status) {
 941                goto unmap;
 942            }
 943
 944            nsgld -= SEG_CHUNK_SIZE;
 945            addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
 946        }
 947
 948        ret = nvme_addr_read(n, addr, segment, nsgld *
 949                             sizeof(NvmeSglDescriptor));
 950        if (ret) {
 951            trace_pci_nvme_err_addr_read(addr);
 952            status = NVME_DATA_TRAS_ERROR;
 953            goto unmap;
 954        }
 955
 956        last_sgld = &segment[nsgld - 1];
 957
 958        /*
 959         * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
 960         * then we are done.
 961         */
 962        switch (NVME_SGL_TYPE(last_sgld->type)) {
 963        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
 964        case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
 965            status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
 966            if (status) {
 967                goto unmap;
 968            }
 969
 970            goto out;
 971
 972        default:
 973            break;
 974        }
 975
 976        /*
 977         * If the last descriptor was not a Data Block or Bit Bucket, then the
 978         * current segment must not be a Last Segment.
 979         */
 980        if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
 981            status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 982            goto unmap;
 983        }
 984
 985        sgld = last_sgld;
 986        addr = le64_to_cpu(sgld->addr);
 987
 988        /*
 989         * Do not map the last descriptor; it will be a Segment or Last Segment
 990         * descriptor and is handled by the next iteration.
 991         */
 992        status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
 993        if (status) {
 994            goto unmap;
 995        }
 996    }
 997
 998out:
 999    /* if there is any residual left in len, the SGL was too short */
1000    if (len) {
1001        status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1002        goto unmap;
1003    }
1004
1005    return NVME_SUCCESS;
1006
1007unmap:
1008    nvme_sg_unmap(sg);
1009    return status;
1010}
1011
1012uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1013                       NvmeCmd *cmd)
1014{
1015    uint64_t prp1, prp2;
1016
1017    switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1018    case NVME_PSDT_PRP:
1019        prp1 = le64_to_cpu(cmd->dptr.prp1);
1020        prp2 = le64_to_cpu(cmd->dptr.prp2);
1021
1022        return nvme_map_prp(n, sg, prp1, prp2, len);
1023    case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1024    case NVME_PSDT_SGL_MPTR_SGL:
1025        return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1026    default:
1027        return NVME_INVALID_FIELD;
1028    }
1029}
1030
1031static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1032                              NvmeCmd *cmd)
1033{
1034    int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1035    hwaddr mptr = le64_to_cpu(cmd->mptr);
1036    uint16_t status;
1037
1038    if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1039        NvmeSglDescriptor sgl;
1040
1041        if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1042            return NVME_DATA_TRAS_ERROR;
1043        }
1044
1045        status = nvme_map_sgl(n, sg, sgl, len, cmd);
1046        if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1047            status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1048        }
1049
1050        return status;
1051    }
1052
1053    nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1054    status = nvme_map_addr(n, sg, mptr, len);
1055    if (status) {
1056        nvme_sg_unmap(sg);
1057    }
1058
1059    return status;
1060}
1061
1062static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1063{
1064    NvmeNamespace *ns = req->ns;
1065    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1066    bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1067    bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1068    size_t len = nvme_l2b(ns, nlb);
1069    uint16_t status;
1070
1071    if (nvme_ns_ext(ns) &&
1072        !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1073        NvmeSg sg;
1074
1075        len += nvme_m2b(ns, nlb);
1076
1077        status = nvme_map_dptr(n, &sg, len, &req->cmd);
1078        if (status) {
1079            return status;
1080        }
1081
1082        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1083        nvme_sg_split(&sg, ns, &req->sg, NULL);
1084        nvme_sg_unmap(&sg);
1085
1086        return NVME_SUCCESS;
1087    }
1088
1089    return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1090}
1091
1092static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1093{
1094    NvmeNamespace *ns = req->ns;
1095    size_t len = nvme_m2b(ns, nlb);
1096    uint16_t status;
1097
1098    if (nvme_ns_ext(ns)) {
1099        NvmeSg sg;
1100
1101        len += nvme_l2b(ns, nlb);
1102
1103        status = nvme_map_dptr(n, &sg, len, &req->cmd);
1104        if (status) {
1105            return status;
1106        }
1107
1108        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1109        nvme_sg_split(&sg, ns, NULL, &req->sg);
1110        nvme_sg_unmap(&sg);
1111
1112        return NVME_SUCCESS;
1113    }
1114
1115    return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1116}
1117
1118static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1119                                    uint32_t len, uint32_t bytes,
1120                                    int32_t skip_bytes, int64_t offset,
1121                                    NvmeTxDirection dir)
1122{
1123    hwaddr addr;
1124    uint32_t trans_len, count = bytes;
1125    bool dma = sg->flags & NVME_SG_DMA;
1126    int64_t sge_len;
1127    int sg_idx = 0;
1128    int ret;
1129
1130    assert(sg->flags & NVME_SG_ALLOC);
1131
1132    while (len) {
1133        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1134
1135        if (sge_len - offset < 0) {
1136            offset -= sge_len;
1137            sg_idx++;
1138            continue;
1139        }
1140
1141        if (sge_len == offset) {
1142            offset = 0;
1143            sg_idx++;
1144            continue;
1145        }
1146
1147        trans_len = MIN(len, count);
1148        trans_len = MIN(trans_len, sge_len - offset);
1149
1150        if (dma) {
1151            addr = sg->qsg.sg[sg_idx].base + offset;
1152        } else {
1153            addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1154        }
1155
1156        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1157            ret = nvme_addr_read(n, addr, ptr, trans_len);
1158        } else {
1159            ret = nvme_addr_write(n, addr, ptr, trans_len);
1160        }
1161
1162        if (ret) {
1163            return NVME_DATA_TRAS_ERROR;
1164        }
1165
1166        ptr += trans_len;
1167        len -= trans_len;
1168        count -= trans_len;
1169        offset += trans_len;
1170
1171        if (count == 0) {
1172            count = bytes;
1173            offset += skip_bytes;
1174        }
1175    }
1176
1177    return NVME_SUCCESS;
1178}
1179
1180static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1181                        NvmeTxDirection dir)
1182{
1183    assert(sg->flags & NVME_SG_ALLOC);
1184
1185    if (sg->flags & NVME_SG_DMA) {
1186        const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1187        dma_addr_t residual;
1188
1189        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1190            dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1191        } else {
1192            dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1193        }
1194
1195        if (unlikely(residual)) {
1196            trace_pci_nvme_err_invalid_dma();
1197            return NVME_INVALID_FIELD | NVME_DNR;
1198        }
1199    } else {
1200        size_t bytes;
1201
1202        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1203            bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1204        } else {
1205            bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1206        }
1207
1208        if (unlikely(bytes != len)) {
1209            trace_pci_nvme_err_invalid_dma();
1210            return NVME_INVALID_FIELD | NVME_DNR;
1211        }
1212    }
1213
1214    return NVME_SUCCESS;
1215}
1216
1217static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1218                                NvmeRequest *req)
1219{
1220    uint16_t status;
1221
1222    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1223    if (status) {
1224        return status;
1225    }
1226
1227    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1228}
1229
1230static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1231                                NvmeRequest *req)
1232{
1233    uint16_t status;
1234
1235    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1236    if (status) {
1237        return status;
1238    }
1239
1240    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1241}
1242
1243uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1244                          NvmeTxDirection dir, NvmeRequest *req)
1245{
1246    NvmeNamespace *ns = req->ns;
1247    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1248    bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1249    bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1250
1251    if (nvme_ns_ext(ns) &&
1252        !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1253        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1254                                   ns->lbaf.ms, 0, dir);
1255    }
1256
1257    return nvme_tx(n, &req->sg, ptr, len, dir);
1258}
1259
1260uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1261                           NvmeTxDirection dir, NvmeRequest *req)
1262{
1263    NvmeNamespace *ns = req->ns;
1264    uint16_t status;
1265
1266    if (nvme_ns_ext(ns)) {
1267        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1268                                   ns->lbasz, ns->lbasz, dir);
1269    }
1270
1271    nvme_sg_unmap(&req->sg);
1272
1273    status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1274    if (status) {
1275        return status;
1276    }
1277
1278    return nvme_tx(n, &req->sg, ptr, len, dir);
1279}
1280
1281static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1282                                 BlockCompletionFunc *cb, NvmeRequest *req)
1283{
1284    assert(req->sg.flags & NVME_SG_ALLOC);
1285
1286    if (req->sg.flags & NVME_SG_DMA) {
1287        req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1288                                  cb, req);
1289    } else {
1290        req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1291    }
1292}
1293
1294static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1295                                  BlockCompletionFunc *cb, NvmeRequest *req)
1296{
1297    assert(req->sg.flags & NVME_SG_ALLOC);
1298
1299    if (req->sg.flags & NVME_SG_DMA) {
1300        req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1301                                   cb, req);
1302    } else {
1303        req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1304    }
1305}
1306
1307static void nvme_post_cqes(void *opaque)
1308{
1309    NvmeCQueue *cq = opaque;
1310    NvmeCtrl *n = cq->ctrl;
1311    NvmeRequest *req, *next;
1312    bool pending = cq->head != cq->tail;
1313    int ret;
1314
1315    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1316        NvmeSQueue *sq;
1317        hwaddr addr;
1318
1319        if (nvme_cq_full(cq)) {
1320            break;
1321        }
1322
1323        sq = req->sq;
1324        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1325        req->cqe.sq_id = cpu_to_le16(sq->sqid);
1326        req->cqe.sq_head = cpu_to_le16(sq->head);
1327        addr = cq->dma_addr + cq->tail * n->cqe_size;
1328        ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1329                            sizeof(req->cqe));
1330        if (ret) {
1331            trace_pci_nvme_err_addr_write(addr);
1332            trace_pci_nvme_err_cfs();
1333            stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1334            break;
1335        }
1336        QTAILQ_REMOVE(&cq->req_list, req, entry);
1337        nvme_inc_cq_tail(cq);
1338        nvme_sg_unmap(&req->sg);
1339        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1340    }
1341    if (cq->tail != cq->head) {
1342        if (cq->irq_enabled && !pending) {
1343            n->cq_pending++;
1344        }
1345
1346        nvme_irq_assert(n, cq);
1347    }
1348}
1349
1350static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1351{
1352    assert(cq->cqid == req->sq->cqid);
1353    trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1354                                          le32_to_cpu(req->cqe.result),
1355                                          le32_to_cpu(req->cqe.dw1),
1356                                          req->status);
1357
1358    if (req->status) {
1359        trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1360                                      req->status, req->cmd.opcode);
1361    }
1362
1363    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1364    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1365    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1366}
1367
1368static void nvme_process_aers(void *opaque)
1369{
1370    NvmeCtrl *n = opaque;
1371    NvmeAsyncEvent *event, *next;
1372
1373    trace_pci_nvme_process_aers(n->aer_queued);
1374
1375    QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1376        NvmeRequest *req;
1377        NvmeAerResult *result;
1378
1379        /* can't post cqe if there is nothing to complete */
1380        if (!n->outstanding_aers) {
1381            trace_pci_nvme_no_outstanding_aers();
1382            break;
1383        }
1384
1385        /* ignore if masked (cqe posted, but event not cleared) */
1386        if (n->aer_mask & (1 << event->result.event_type)) {
1387            trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1388            continue;
1389        }
1390
1391        QTAILQ_REMOVE(&n->aer_queue, event, entry);
1392        n->aer_queued--;
1393
1394        n->aer_mask |= 1 << event->result.event_type;
1395        n->outstanding_aers--;
1396
1397        req = n->aer_reqs[n->outstanding_aers];
1398
1399        result = (NvmeAerResult *) &req->cqe.result;
1400        result->event_type = event->result.event_type;
1401        result->event_info = event->result.event_info;
1402        result->log_page = event->result.log_page;
1403        g_free(event);
1404
1405        trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1406                                    result->log_page);
1407
1408        nvme_enqueue_req_completion(&n->admin_cq, req);
1409    }
1410}
1411
1412static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1413                               uint8_t event_info, uint8_t log_page)
1414{
1415    NvmeAsyncEvent *event;
1416
1417    trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1418
1419    if (n->aer_queued == n->params.aer_max_queued) {
1420        trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1421        return;
1422    }
1423
1424    event = g_new(NvmeAsyncEvent, 1);
1425    event->result = (NvmeAerResult) {
1426        .event_type = event_type,
1427        .event_info = event_info,
1428        .log_page   = log_page,
1429    };
1430
1431    QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1432    n->aer_queued++;
1433
1434    nvme_process_aers(n);
1435}
1436
1437static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1438{
1439    uint8_t aer_info;
1440
1441    /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1442    if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1443        return;
1444    }
1445
1446    switch (event) {
1447    case NVME_SMART_SPARE:
1448        aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1449        break;
1450    case NVME_SMART_TEMPERATURE:
1451        aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1452        break;
1453    case NVME_SMART_RELIABILITY:
1454    case NVME_SMART_MEDIA_READ_ONLY:
1455    case NVME_SMART_FAILED_VOLATILE_MEDIA:
1456    case NVME_SMART_PMR_UNRELIABLE:
1457        aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1458        break;
1459    default:
1460        return;
1461    }
1462
1463    nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1464}
1465
1466static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1467{
1468    n->aer_mask &= ~(1 << event_type);
1469    if (!QTAILQ_EMPTY(&n->aer_queue)) {
1470        nvme_process_aers(n);
1471    }
1472}
1473
1474static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1475{
1476    uint8_t mdts = n->params.mdts;
1477
1478    if (mdts && len > n->page_size << mdts) {
1479        trace_pci_nvme_err_mdts(len);
1480        return NVME_INVALID_FIELD | NVME_DNR;
1481    }
1482
1483    return NVME_SUCCESS;
1484}
1485
1486static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1487                                         uint32_t nlb)
1488{
1489    uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1490
1491    if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1492        trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1493        return NVME_LBA_RANGE | NVME_DNR;
1494    }
1495
1496    return NVME_SUCCESS;
1497}
1498
1499static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1500                                 uint32_t nlb, int flags)
1501{
1502    BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1503
1504    int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1505    int64_t offset = nvme_l2b(ns, slba);
1506    int ret;
1507
1508    /*
1509     * `pnum` holds the number of bytes after offset that shares the same
1510     * allocation status as the byte at offset. If `pnum` is different from
1511     * `bytes`, we should check the allocation status of the next range and
1512     * continue this until all bytes have been checked.
1513     */
1514    do {
1515        bytes -= pnum;
1516
1517        ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1518        if (ret < 0) {
1519            return ret;
1520        }
1521
1522
1523        trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1524                                    !!(ret & BDRV_BLOCK_ZERO));
1525
1526        if (!(ret & flags)) {
1527            return 1;
1528        }
1529
1530        offset += pnum;
1531    } while (pnum != bytes);
1532
1533    return 0;
1534}
1535
1536static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1537                                 uint32_t nlb)
1538{
1539    int ret;
1540    Error *err = NULL;
1541
1542    ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1543    if (ret) {
1544        if (ret < 0) {
1545            error_setg_errno(&err, -ret, "unable to get block status");
1546            error_report_err(err);
1547
1548            return NVME_INTERNAL_DEV_ERROR;
1549        }
1550
1551        return NVME_DULB;
1552    }
1553
1554    return NVME_SUCCESS;
1555}
1556
1557static void nvme_aio_err(NvmeRequest *req, int ret)
1558{
1559    uint16_t status = NVME_SUCCESS;
1560    Error *local_err = NULL;
1561
1562    switch (req->cmd.opcode) {
1563    case NVME_CMD_READ:
1564        status = NVME_UNRECOVERED_READ;
1565        break;
1566    case NVME_CMD_FLUSH:
1567    case NVME_CMD_WRITE:
1568    case NVME_CMD_WRITE_ZEROES:
1569    case NVME_CMD_ZONE_APPEND:
1570        status = NVME_WRITE_FAULT;
1571        break;
1572    default:
1573        status = NVME_INTERNAL_DEV_ERROR;
1574        break;
1575    }
1576
1577    trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1578
1579    error_setg_errno(&local_err, -ret, "aio failed");
1580    error_report_err(local_err);
1581
1582    /*
1583     * Set the command status code to the first encountered error but allow a
1584     * subsequent Internal Device Error to trump it.
1585     */
1586    if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1587        return;
1588    }
1589
1590    req->status = status;
1591}
1592
1593static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1594{
1595    return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1596                                    slba / ns->zone_size;
1597}
1598
1599static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1600{
1601    uint32_t zone_idx = nvme_zone_idx(ns, slba);
1602
1603    if (zone_idx >= ns->num_zones) {
1604        return NULL;
1605    }
1606
1607    return &ns->zone_array[zone_idx];
1608}
1609
1610static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1611{
1612    uint64_t zslba = zone->d.zslba;
1613
1614    switch (nvme_get_zone_state(zone)) {
1615    case NVME_ZONE_STATE_EMPTY:
1616    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1617    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1618    case NVME_ZONE_STATE_CLOSED:
1619        return NVME_SUCCESS;
1620    case NVME_ZONE_STATE_FULL:
1621        trace_pci_nvme_err_zone_is_full(zslba);
1622        return NVME_ZONE_FULL;
1623    case NVME_ZONE_STATE_OFFLINE:
1624        trace_pci_nvme_err_zone_is_offline(zslba);
1625        return NVME_ZONE_OFFLINE;
1626    case NVME_ZONE_STATE_READ_ONLY:
1627        trace_pci_nvme_err_zone_is_read_only(zslba);
1628        return NVME_ZONE_READ_ONLY;
1629    default:
1630        assert(false);
1631    }
1632
1633    return NVME_INTERNAL_DEV_ERROR;
1634}
1635
1636static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1637                                      uint64_t slba, uint32_t nlb)
1638{
1639    uint64_t zcap = nvme_zone_wr_boundary(zone);
1640    uint16_t status;
1641
1642    status = nvme_check_zone_state_for_write(zone);
1643    if (status) {
1644        return status;
1645    }
1646
1647    if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1648        uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1649
1650        if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1651            trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1652            return NVME_ZONE_INVALID_WRITE;
1653        }
1654    } else {
1655        if (unlikely(slba != zone->w_ptr)) {
1656            trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1657                                               zone->w_ptr);
1658            return NVME_ZONE_INVALID_WRITE;
1659        }
1660    }
1661
1662    if (unlikely((slba + nlb) > zcap)) {
1663        trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1664        return NVME_ZONE_BOUNDARY_ERROR;
1665    }
1666
1667    return NVME_SUCCESS;
1668}
1669
1670static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1671{
1672    switch (nvme_get_zone_state(zone)) {
1673    case NVME_ZONE_STATE_EMPTY:
1674    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1675    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1676    case NVME_ZONE_STATE_FULL:
1677    case NVME_ZONE_STATE_CLOSED:
1678    case NVME_ZONE_STATE_READ_ONLY:
1679        return NVME_SUCCESS;
1680    case NVME_ZONE_STATE_OFFLINE:
1681        trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1682        return NVME_ZONE_OFFLINE;
1683    default:
1684        assert(false);
1685    }
1686
1687    return NVME_INTERNAL_DEV_ERROR;
1688}
1689
1690static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1691                                     uint32_t nlb)
1692{
1693    NvmeZone *zone;
1694    uint64_t bndry, end;
1695    uint16_t status;
1696
1697    zone = nvme_get_zone_by_slba(ns, slba);
1698    assert(zone);
1699
1700    bndry = nvme_zone_rd_boundary(ns, zone);
1701    end = slba + nlb;
1702
1703    status = nvme_check_zone_state_for_read(zone);
1704    if (status) {
1705        ;
1706    } else if (unlikely(end > bndry)) {
1707        if (!ns->params.cross_zone_read) {
1708            status = NVME_ZONE_BOUNDARY_ERROR;
1709        } else {
1710            /*
1711             * Read across zone boundary - check that all subsequent
1712             * zones that are being read have an appropriate state.
1713             */
1714            do {
1715                zone++;
1716                status = nvme_check_zone_state_for_read(zone);
1717                if (status) {
1718                    break;
1719                }
1720            } while (end > nvme_zone_rd_boundary(ns, zone));
1721        }
1722    }
1723
1724    return status;
1725}
1726
1727static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1728{
1729    switch (nvme_get_zone_state(zone)) {
1730    case NVME_ZONE_STATE_FULL:
1731        return NVME_SUCCESS;
1732
1733    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1734    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1735        nvme_aor_dec_open(ns);
1736        /* fallthrough */
1737    case NVME_ZONE_STATE_CLOSED:
1738        nvme_aor_dec_active(ns);
1739
1740        if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1741            zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1742            if (ns->params.numzrwa) {
1743                ns->zns.numzrwa++;
1744            }
1745        }
1746
1747        /* fallthrough */
1748    case NVME_ZONE_STATE_EMPTY:
1749        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1750        return NVME_SUCCESS;
1751
1752    default:
1753        return NVME_ZONE_INVAL_TRANSITION;
1754    }
1755}
1756
1757static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1758{
1759    switch (nvme_get_zone_state(zone)) {
1760    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1761    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1762        nvme_aor_dec_open(ns);
1763        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1764        /* fall through */
1765    case NVME_ZONE_STATE_CLOSED:
1766        return NVME_SUCCESS;
1767
1768    default:
1769        return NVME_ZONE_INVAL_TRANSITION;
1770    }
1771}
1772
1773static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1774{
1775    switch (nvme_get_zone_state(zone)) {
1776    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1777    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1778        nvme_aor_dec_open(ns);
1779        /* fallthrough */
1780    case NVME_ZONE_STATE_CLOSED:
1781        nvme_aor_dec_active(ns);
1782
1783        if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1784            if (ns->params.numzrwa) {
1785                ns->zns.numzrwa++;
1786            }
1787        }
1788
1789        /* fallthrough */
1790    case NVME_ZONE_STATE_FULL:
1791        zone->w_ptr = zone->d.zslba;
1792        zone->d.wp = zone->w_ptr;
1793        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1794        /* fallthrough */
1795    case NVME_ZONE_STATE_EMPTY:
1796        return NVME_SUCCESS;
1797
1798    default:
1799        return NVME_ZONE_INVAL_TRANSITION;
1800    }
1801}
1802
1803static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1804{
1805    NvmeZone *zone;
1806
1807    if (ns->params.max_open_zones &&
1808        ns->nr_open_zones == ns->params.max_open_zones) {
1809        zone = QTAILQ_FIRST(&ns->imp_open_zones);
1810        if (zone) {
1811            /*
1812             * Automatically close this implicitly open zone.
1813             */
1814            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1815            nvme_zrm_close(ns, zone);
1816        }
1817    }
1818}
1819
1820enum {
1821    NVME_ZRM_AUTO = 1 << 0,
1822    NVME_ZRM_ZRWA = 1 << 1,
1823};
1824
1825static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1826                                    NvmeZone *zone, int flags)
1827{
1828    int act = 0;
1829    uint16_t status;
1830
1831    switch (nvme_get_zone_state(zone)) {
1832    case NVME_ZONE_STATE_EMPTY:
1833        act = 1;
1834
1835        /* fallthrough */
1836
1837    case NVME_ZONE_STATE_CLOSED:
1838        if (n->params.auto_transition_zones) {
1839            nvme_zrm_auto_transition_zone(ns);
1840        }
1841        status = nvme_zns_check_resources(ns, act, 1,
1842                                          (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1843        if (status) {
1844            return status;
1845        }
1846
1847        if (act) {
1848            nvme_aor_inc_active(ns);
1849        }
1850
1851        nvme_aor_inc_open(ns);
1852
1853        if (flags & NVME_ZRM_AUTO) {
1854            nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1855            return NVME_SUCCESS;
1856        }
1857
1858        /* fallthrough */
1859
1860    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1861        if (flags & NVME_ZRM_AUTO) {
1862            return NVME_SUCCESS;
1863        }
1864
1865        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1866
1867        /* fallthrough */
1868
1869    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1870        if (flags & NVME_ZRM_ZRWA) {
1871            ns->zns.numzrwa--;
1872
1873            zone->d.za |= NVME_ZA_ZRWA_VALID;
1874        }
1875
1876        return NVME_SUCCESS;
1877
1878    default:
1879        return NVME_ZONE_INVAL_TRANSITION;
1880    }
1881}
1882
1883static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1884                                     NvmeZone *zone)
1885{
1886    return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1887}
1888
1889static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1890                                 uint32_t nlb)
1891{
1892    zone->d.wp += nlb;
1893
1894    if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1895        nvme_zrm_finish(ns, zone);
1896    }
1897}
1898
1899static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1900                                           uint32_t nlbc)
1901{
1902    uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1903
1904    nlbc = nzrwafgs * ns->zns.zrwafg;
1905
1906    trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1907
1908    zone->w_ptr += nlbc;
1909
1910    nvme_advance_zone_wp(ns, zone, nlbc);
1911}
1912
1913static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1914{
1915    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1916    NvmeZone *zone;
1917    uint64_t slba;
1918    uint32_t nlb;
1919
1920    slba = le64_to_cpu(rw->slba);
1921    nlb = le16_to_cpu(rw->nlb) + 1;
1922    zone = nvme_get_zone_by_slba(ns, slba);
1923    assert(zone);
1924
1925    if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1926        uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1927        uint64_t elba = slba + nlb - 1;
1928
1929        if (elba > ezrwa) {
1930            nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1931        }
1932
1933        return;
1934    }
1935
1936    nvme_advance_zone_wp(ns, zone, nlb);
1937}
1938
1939static inline bool nvme_is_write(NvmeRequest *req)
1940{
1941    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1942
1943    return rw->opcode == NVME_CMD_WRITE ||
1944           rw->opcode == NVME_CMD_ZONE_APPEND ||
1945           rw->opcode == NVME_CMD_WRITE_ZEROES;
1946}
1947
1948static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1949{
1950    return qemu_get_aio_context();
1951}
1952
1953static void nvme_misc_cb(void *opaque, int ret)
1954{
1955    NvmeRequest *req = opaque;
1956
1957    trace_pci_nvme_misc_cb(nvme_cid(req));
1958
1959    if (ret) {
1960        nvme_aio_err(req, ret);
1961    }
1962
1963    nvme_enqueue_req_completion(nvme_cq(req), req);
1964}
1965
1966void nvme_rw_complete_cb(void *opaque, int ret)
1967{
1968    NvmeRequest *req = opaque;
1969    NvmeNamespace *ns = req->ns;
1970    BlockBackend *blk = ns->blkconf.blk;
1971    BlockAcctCookie *acct = &req->acct;
1972    BlockAcctStats *stats = blk_get_stats(blk);
1973
1974    trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
1975
1976    if (ret) {
1977        block_acct_failed(stats, acct);
1978        nvme_aio_err(req, ret);
1979    } else {
1980        block_acct_done(stats, acct);
1981    }
1982
1983    if (ns->params.zoned && nvme_is_write(req)) {
1984        nvme_finalize_zoned_write(ns, req);
1985    }
1986
1987    nvme_enqueue_req_completion(nvme_cq(req), req);
1988}
1989
1990static void nvme_rw_cb(void *opaque, int ret)
1991{
1992    NvmeRequest *req = opaque;
1993    NvmeNamespace *ns = req->ns;
1994
1995    BlockBackend *blk = ns->blkconf.blk;
1996
1997    trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
1998
1999    if (ret) {
2000        goto out;
2001    }
2002
2003    if (ns->lbaf.ms) {
2004        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2005        uint64_t slba = le64_to_cpu(rw->slba);
2006        uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2007        uint64_t offset = nvme_moff(ns, slba);
2008
2009        if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2010            size_t mlen = nvme_m2b(ns, nlb);
2011
2012            req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2013                                               BDRV_REQ_MAY_UNMAP,
2014                                               nvme_rw_complete_cb, req);
2015            return;
2016        }
2017
2018        if (nvme_ns_ext(ns) || req->cmd.mptr) {
2019            uint16_t status;
2020
2021            nvme_sg_unmap(&req->sg);
2022            status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2023            if (status) {
2024                ret = -EFAULT;
2025                goto out;
2026            }
2027
2028            if (req->cmd.opcode == NVME_CMD_READ) {
2029                return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2030            }
2031
2032            return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2033        }
2034    }
2035
2036out:
2037    nvme_rw_complete_cb(req, ret);
2038}
2039
2040static void nvme_verify_cb(void *opaque, int ret)
2041{
2042    NvmeBounceContext *ctx = opaque;
2043    NvmeRequest *req = ctx->req;
2044    NvmeNamespace *ns = req->ns;
2045    BlockBackend *blk = ns->blkconf.blk;
2046    BlockAcctCookie *acct = &req->acct;
2047    BlockAcctStats *stats = blk_get_stats(blk);
2048    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2049    uint64_t slba = le64_to_cpu(rw->slba);
2050    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2051    uint16_t apptag = le16_to_cpu(rw->apptag);
2052    uint16_t appmask = le16_to_cpu(rw->appmask);
2053    uint64_t reftag = le32_to_cpu(rw->reftag);
2054    uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2055    uint16_t status;
2056
2057    reftag |= cdw3 << 32;
2058
2059    trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2060
2061    if (ret) {
2062        block_acct_failed(stats, acct);
2063        nvme_aio_err(req, ret);
2064        goto out;
2065    }
2066
2067    block_acct_done(stats, acct);
2068
2069    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2070        status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2071                                       ctx->mdata.iov.size, slba);
2072        if (status) {
2073            req->status = status;
2074            goto out;
2075        }
2076
2077        req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2078                                     ctx->mdata.bounce, ctx->mdata.iov.size,
2079                                     prinfo, slba, apptag, appmask, &reftag);
2080    }
2081
2082out:
2083    qemu_iovec_destroy(&ctx->data.iov);
2084    g_free(ctx->data.bounce);
2085
2086    qemu_iovec_destroy(&ctx->mdata.iov);
2087    g_free(ctx->mdata.bounce);
2088
2089    g_free(ctx);
2090
2091    nvme_enqueue_req_completion(nvme_cq(req), req);
2092}
2093
2094
2095static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2096{
2097    NvmeBounceContext *ctx = opaque;
2098    NvmeRequest *req = ctx->req;
2099    NvmeNamespace *ns = req->ns;
2100    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2101    uint64_t slba = le64_to_cpu(rw->slba);
2102    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2103    size_t mlen = nvme_m2b(ns, nlb);
2104    uint64_t offset = nvme_moff(ns, slba);
2105    BlockBackend *blk = ns->blkconf.blk;
2106
2107    trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2108
2109    if (ret) {
2110        goto out;
2111    }
2112
2113    ctx->mdata.bounce = g_malloc(mlen);
2114
2115    qemu_iovec_reset(&ctx->mdata.iov);
2116    qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2117
2118    req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2119                                nvme_verify_cb, ctx);
2120    return;
2121
2122out:
2123    nvme_verify_cb(ctx, ret);
2124}
2125
2126struct nvme_compare_ctx {
2127    struct {
2128        QEMUIOVector iov;
2129        uint8_t *bounce;
2130    } data;
2131
2132    struct {
2133        QEMUIOVector iov;
2134        uint8_t *bounce;
2135    } mdata;
2136};
2137
2138static void nvme_compare_mdata_cb(void *opaque, int ret)
2139{
2140    NvmeRequest *req = opaque;
2141    NvmeNamespace *ns = req->ns;
2142    NvmeCtrl *n = nvme_ctrl(req);
2143    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2144    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2145    uint16_t apptag = le16_to_cpu(rw->apptag);
2146    uint16_t appmask = le16_to_cpu(rw->appmask);
2147    uint64_t reftag = le32_to_cpu(rw->reftag);
2148    uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2149    struct nvme_compare_ctx *ctx = req->opaque;
2150    g_autofree uint8_t *buf = NULL;
2151    BlockBackend *blk = ns->blkconf.blk;
2152    BlockAcctCookie *acct = &req->acct;
2153    BlockAcctStats *stats = blk_get_stats(blk);
2154    uint16_t status = NVME_SUCCESS;
2155
2156    reftag |= cdw3 << 32;
2157
2158    trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2159
2160    if (ret) {
2161        block_acct_failed(stats, acct);
2162        nvme_aio_err(req, ret);
2163        goto out;
2164    }
2165
2166    buf = g_malloc(ctx->mdata.iov.size);
2167
2168    status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2169                               NVME_TX_DIRECTION_TO_DEVICE, req);
2170    if (status) {
2171        req->status = status;
2172        goto out;
2173    }
2174
2175    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2176        uint64_t slba = le64_to_cpu(rw->slba);
2177        uint8_t *bufp;
2178        uint8_t *mbufp = ctx->mdata.bounce;
2179        uint8_t *end = mbufp + ctx->mdata.iov.size;
2180        int16_t pil = 0;
2181
2182        status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2183                                ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2184                                slba, apptag, appmask, &reftag);
2185        if (status) {
2186            req->status = status;
2187            goto out;
2188        }
2189
2190        /*
2191         * When formatted with protection information, do not compare the DIF
2192         * tuple.
2193         */
2194        if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2195            pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2196        }
2197
2198        for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2199            if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2200                req->status = NVME_CMP_FAILURE;
2201                goto out;
2202            }
2203        }
2204
2205        goto out;
2206    }
2207
2208    if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2209        req->status = NVME_CMP_FAILURE;
2210        goto out;
2211    }
2212
2213    block_acct_done(stats, acct);
2214
2215out:
2216    qemu_iovec_destroy(&ctx->data.iov);
2217    g_free(ctx->data.bounce);
2218
2219    qemu_iovec_destroy(&ctx->mdata.iov);
2220    g_free(ctx->mdata.bounce);
2221
2222    g_free(ctx);
2223
2224    nvme_enqueue_req_completion(nvme_cq(req), req);
2225}
2226
2227static void nvme_compare_data_cb(void *opaque, int ret)
2228{
2229    NvmeRequest *req = opaque;
2230    NvmeCtrl *n = nvme_ctrl(req);
2231    NvmeNamespace *ns = req->ns;
2232    BlockBackend *blk = ns->blkconf.blk;
2233    BlockAcctCookie *acct = &req->acct;
2234    BlockAcctStats *stats = blk_get_stats(blk);
2235
2236    struct nvme_compare_ctx *ctx = req->opaque;
2237    g_autofree uint8_t *buf = NULL;
2238    uint16_t status;
2239
2240    trace_pci_nvme_compare_data_cb(nvme_cid(req));
2241
2242    if (ret) {
2243        block_acct_failed(stats, acct);
2244        nvme_aio_err(req, ret);
2245        goto out;
2246    }
2247
2248    buf = g_malloc(ctx->data.iov.size);
2249
2250    status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2251                              NVME_TX_DIRECTION_TO_DEVICE, req);
2252    if (status) {
2253        req->status = status;
2254        goto out;
2255    }
2256
2257    if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2258        req->status = NVME_CMP_FAILURE;
2259        goto out;
2260    }
2261
2262    if (ns->lbaf.ms) {
2263        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2264        uint64_t slba = le64_to_cpu(rw->slba);
2265        uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2266        size_t mlen = nvme_m2b(ns, nlb);
2267        uint64_t offset = nvme_moff(ns, slba);
2268
2269        ctx->mdata.bounce = g_malloc(mlen);
2270
2271        qemu_iovec_init(&ctx->mdata.iov, 1);
2272        qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2273
2274        req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2275                                    nvme_compare_mdata_cb, req);
2276        return;
2277    }
2278
2279    block_acct_done(stats, acct);
2280
2281out:
2282    qemu_iovec_destroy(&ctx->data.iov);
2283    g_free(ctx->data.bounce);
2284    g_free(ctx);
2285
2286    nvme_enqueue_req_completion(nvme_cq(req), req);
2287}
2288
2289typedef struct NvmeDSMAIOCB {
2290    BlockAIOCB common;
2291    BlockAIOCB *aiocb;
2292    NvmeRequest *req;
2293    QEMUBH *bh;
2294    int ret;
2295
2296    NvmeDsmRange *range;
2297    unsigned int nr;
2298    unsigned int idx;
2299} NvmeDSMAIOCB;
2300
2301static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2302{
2303    NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2304
2305    /* break nvme_dsm_cb loop */
2306    iocb->idx = iocb->nr;
2307    iocb->ret = -ECANCELED;
2308
2309    if (iocb->aiocb) {
2310        blk_aio_cancel_async(iocb->aiocb);
2311        iocb->aiocb = NULL;
2312    } else {
2313        /*
2314         * We only reach this if nvme_dsm_cancel() has already been called or
2315         * the command ran to completion and nvme_dsm_bh is scheduled to run.
2316         */
2317        assert(iocb->idx == iocb->nr);
2318    }
2319}
2320
2321static const AIOCBInfo nvme_dsm_aiocb_info = {
2322    .aiocb_size   = sizeof(NvmeDSMAIOCB),
2323    .cancel_async = nvme_dsm_cancel,
2324};
2325
2326static void nvme_dsm_bh(void *opaque)
2327{
2328    NvmeDSMAIOCB *iocb = opaque;
2329
2330    iocb->common.cb(iocb->common.opaque, iocb->ret);
2331
2332    qemu_bh_delete(iocb->bh);
2333    iocb->bh = NULL;
2334    qemu_aio_unref(iocb);
2335}
2336
2337static void nvme_dsm_cb(void *opaque, int ret);
2338
2339static void nvme_dsm_md_cb(void *opaque, int ret)
2340{
2341    NvmeDSMAIOCB *iocb = opaque;
2342    NvmeRequest *req = iocb->req;
2343    NvmeNamespace *ns = req->ns;
2344    NvmeDsmRange *range;
2345    uint64_t slba;
2346    uint32_t nlb;
2347
2348    if (ret < 0) {
2349        iocb->ret = ret;
2350        goto done;
2351    }
2352
2353    if (!ns->lbaf.ms) {
2354        nvme_dsm_cb(iocb, 0);
2355        return;
2356    }
2357
2358    range = &iocb->range[iocb->idx - 1];
2359    slba = le64_to_cpu(range->slba);
2360    nlb = le32_to_cpu(range->nlb);
2361
2362    /*
2363     * Check that all block were discarded (zeroed); otherwise we do not zero
2364     * the metadata.
2365     */
2366
2367    ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2368    if (ret) {
2369        if (ret < 0) {
2370            iocb->ret = ret;
2371            goto done;
2372        }
2373
2374        nvme_dsm_cb(iocb, 0);
2375    }
2376
2377    iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2378                                        nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2379                                        nvme_dsm_cb, iocb);
2380    return;
2381
2382done:
2383    iocb->aiocb = NULL;
2384    qemu_bh_schedule(iocb->bh);
2385}
2386
2387static void nvme_dsm_cb(void *opaque, int ret)
2388{
2389    NvmeDSMAIOCB *iocb = opaque;
2390    NvmeRequest *req = iocb->req;
2391    NvmeCtrl *n = nvme_ctrl(req);
2392    NvmeNamespace *ns = req->ns;
2393    NvmeDsmRange *range;
2394    uint64_t slba;
2395    uint32_t nlb;
2396
2397    if (ret < 0) {
2398        iocb->ret = ret;
2399        goto done;
2400    }
2401
2402next:
2403    if (iocb->idx == iocb->nr) {
2404        goto done;
2405    }
2406
2407    range = &iocb->range[iocb->idx++];
2408    slba = le64_to_cpu(range->slba);
2409    nlb = le32_to_cpu(range->nlb);
2410
2411    trace_pci_nvme_dsm_deallocate(slba, nlb);
2412
2413    if (nlb > n->dmrsl) {
2414        trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2415        goto next;
2416    }
2417
2418    if (nvme_check_bounds(ns, slba, nlb)) {
2419        trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2420                                             ns->id_ns.nsze);
2421        goto next;
2422    }
2423
2424    iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2425                                   nvme_l2b(ns, nlb),
2426                                   nvme_dsm_md_cb, iocb);
2427    return;
2428
2429done:
2430    iocb->aiocb = NULL;
2431    qemu_bh_schedule(iocb->bh);
2432}
2433
2434static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2435{
2436    NvmeNamespace *ns = req->ns;
2437    NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2438    uint32_t attr = le32_to_cpu(dsm->attributes);
2439    uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2440    uint16_t status = NVME_SUCCESS;
2441
2442    trace_pci_nvme_dsm(nr, attr);
2443
2444    if (attr & NVME_DSMGMT_AD) {
2445        NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2446                                         nvme_misc_cb, req);
2447
2448        iocb->req = req;
2449        iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
2450        iocb->ret = 0;
2451        iocb->range = g_new(NvmeDsmRange, nr);
2452        iocb->nr = nr;
2453        iocb->idx = 0;
2454
2455        status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2456                          req);
2457        if (status) {
2458            return status;
2459        }
2460
2461        req->aiocb = &iocb->common;
2462        nvme_dsm_cb(iocb, 0);
2463
2464        return NVME_NO_COMPLETE;
2465    }
2466
2467    return status;
2468}
2469
2470static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2471{
2472    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2473    NvmeNamespace *ns = req->ns;
2474    BlockBackend *blk = ns->blkconf.blk;
2475    uint64_t slba = le64_to_cpu(rw->slba);
2476    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2477    size_t len = nvme_l2b(ns, nlb);
2478    int64_t offset = nvme_l2b(ns, slba);
2479    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2480    uint32_t reftag = le32_to_cpu(rw->reftag);
2481    NvmeBounceContext *ctx = NULL;
2482    uint16_t status;
2483
2484    trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2485
2486    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2487        status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2488        if (status) {
2489            return status;
2490        }
2491
2492        if (prinfo & NVME_PRINFO_PRACT) {
2493            return NVME_INVALID_PROT_INFO | NVME_DNR;
2494        }
2495    }
2496
2497    if (len > n->page_size << n->params.vsl) {
2498        return NVME_INVALID_FIELD | NVME_DNR;
2499    }
2500
2501    status = nvme_check_bounds(ns, slba, nlb);
2502    if (status) {
2503        return status;
2504    }
2505
2506    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2507        status = nvme_check_dulbe(ns, slba, nlb);
2508        if (status) {
2509            return status;
2510        }
2511    }
2512
2513    ctx = g_new0(NvmeBounceContext, 1);
2514    ctx->req = req;
2515
2516    ctx->data.bounce = g_malloc(len);
2517
2518    qemu_iovec_init(&ctx->data.iov, 1);
2519    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2520
2521    block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2522                     BLOCK_ACCT_READ);
2523
2524    req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2525                                nvme_verify_mdata_in_cb, ctx);
2526    return NVME_NO_COMPLETE;
2527}
2528
2529typedef struct NvmeCopyAIOCB {
2530    BlockAIOCB common;
2531    BlockAIOCB *aiocb;
2532    NvmeRequest *req;
2533    QEMUBH *bh;
2534    int ret;
2535
2536    void *ranges;
2537    unsigned int format;
2538    int nr;
2539    int idx;
2540
2541    uint8_t *bounce;
2542    QEMUIOVector iov;
2543    struct {
2544        BlockAcctCookie read;
2545        BlockAcctCookie write;
2546    } acct;
2547
2548    uint64_t reftag;
2549    uint64_t slba;
2550
2551    NvmeZone *zone;
2552} NvmeCopyAIOCB;
2553
2554static void nvme_copy_cancel(BlockAIOCB *aiocb)
2555{
2556    NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2557
2558    iocb->ret = -ECANCELED;
2559
2560    if (iocb->aiocb) {
2561        blk_aio_cancel_async(iocb->aiocb);
2562        iocb->aiocb = NULL;
2563    }
2564}
2565
2566static const AIOCBInfo nvme_copy_aiocb_info = {
2567    .aiocb_size   = sizeof(NvmeCopyAIOCB),
2568    .cancel_async = nvme_copy_cancel,
2569};
2570
2571static void nvme_copy_bh(void *opaque)
2572{
2573    NvmeCopyAIOCB *iocb = opaque;
2574    NvmeRequest *req = iocb->req;
2575    NvmeNamespace *ns = req->ns;
2576    BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2577
2578    if (iocb->idx != iocb->nr) {
2579        req->cqe.result = cpu_to_le32(iocb->idx);
2580    }
2581
2582    qemu_iovec_destroy(&iocb->iov);
2583    g_free(iocb->bounce);
2584
2585    qemu_bh_delete(iocb->bh);
2586    iocb->bh = NULL;
2587
2588    if (iocb->ret < 0) {
2589        block_acct_failed(stats, &iocb->acct.read);
2590        block_acct_failed(stats, &iocb->acct.write);
2591    } else {
2592        block_acct_done(stats, &iocb->acct.read);
2593        block_acct_done(stats, &iocb->acct.write);
2594    }
2595
2596    iocb->common.cb(iocb->common.opaque, iocb->ret);
2597    qemu_aio_unref(iocb);
2598}
2599
2600static void nvme_copy_cb(void *opaque, int ret);
2601
2602static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2603                                                 uint64_t *slba, uint32_t *nlb,
2604                                                 uint16_t *apptag,
2605                                                 uint16_t *appmask,
2606                                                 uint64_t *reftag)
2607{
2608    NvmeCopySourceRangeFormat0 *_ranges = ranges;
2609
2610    if (slba) {
2611        *slba = le64_to_cpu(_ranges[idx].slba);
2612    }
2613
2614    if (nlb) {
2615        *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2616    }
2617
2618    if (apptag) {
2619        *apptag = le16_to_cpu(_ranges[idx].apptag);
2620    }
2621
2622    if (appmask) {
2623        *appmask = le16_to_cpu(_ranges[idx].appmask);
2624    }
2625
2626    if (reftag) {
2627        *reftag = le32_to_cpu(_ranges[idx].reftag);
2628    }
2629}
2630
2631static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2632                                                 uint64_t *slba, uint32_t *nlb,
2633                                                 uint16_t *apptag,
2634                                                 uint16_t *appmask,
2635                                                 uint64_t *reftag)
2636{
2637    NvmeCopySourceRangeFormat1 *_ranges = ranges;
2638
2639    if (slba) {
2640        *slba = le64_to_cpu(_ranges[idx].slba);
2641    }
2642
2643    if (nlb) {
2644        *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2645    }
2646
2647    if (apptag) {
2648        *apptag = le16_to_cpu(_ranges[idx].apptag);
2649    }
2650
2651    if (appmask) {
2652        *appmask = le16_to_cpu(_ranges[idx].appmask);
2653    }
2654
2655    if (reftag) {
2656        *reftag = 0;
2657
2658        *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2659        *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2660        *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2661        *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2662        *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2663        *reftag |= (uint64_t)_ranges[idx].sr[9];
2664    }
2665}
2666
2667static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2668                                         uint64_t *slba, uint32_t *nlb,
2669                                         uint16_t *apptag, uint16_t *appmask,
2670                                         uint64_t *reftag)
2671{
2672    switch (format) {
2673    case NVME_COPY_FORMAT_0:
2674        nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2675                                             appmask, reftag);
2676        break;
2677
2678    case NVME_COPY_FORMAT_1:
2679        nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2680                                             appmask, reftag);
2681        break;
2682
2683    default:
2684        abort();
2685    }
2686}
2687
2688static void nvme_copy_out_completed_cb(void *opaque, int ret)
2689{
2690    NvmeCopyAIOCB *iocb = opaque;
2691    NvmeRequest *req = iocb->req;
2692    NvmeNamespace *ns = req->ns;
2693    uint32_t nlb;
2694
2695    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2696                                 &nlb, NULL, NULL, NULL);
2697
2698    if (ret < 0) {
2699        iocb->ret = ret;
2700        goto out;
2701    } else if (iocb->ret < 0) {
2702        goto out;
2703    }
2704
2705    if (ns->params.zoned) {
2706        nvme_advance_zone_wp(ns, iocb->zone, nlb);
2707    }
2708
2709    iocb->idx++;
2710    iocb->slba += nlb;
2711out:
2712    nvme_copy_cb(iocb, iocb->ret);
2713}
2714
2715static void nvme_copy_out_cb(void *opaque, int ret)
2716{
2717    NvmeCopyAIOCB *iocb = opaque;
2718    NvmeRequest *req = iocb->req;
2719    NvmeNamespace *ns = req->ns;
2720    uint32_t nlb;
2721    size_t mlen;
2722    uint8_t *mbounce;
2723
2724    if (ret < 0) {
2725        iocb->ret = ret;
2726        goto out;
2727    } else if (iocb->ret < 0) {
2728        goto out;
2729    }
2730
2731    if (!ns->lbaf.ms) {
2732        nvme_copy_out_completed_cb(iocb, 0);
2733        return;
2734    }
2735
2736    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2737                                 &nlb, NULL, NULL, NULL);
2738
2739    mlen = nvme_m2b(ns, nlb);
2740    mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2741
2742    qemu_iovec_reset(&iocb->iov);
2743    qemu_iovec_add(&iocb->iov, mbounce, mlen);
2744
2745    iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2746                                  &iocb->iov, 0, nvme_copy_out_completed_cb,
2747                                  iocb);
2748
2749    return;
2750
2751out:
2752    nvme_copy_cb(iocb, ret);
2753}
2754
2755static void nvme_copy_in_completed_cb(void *opaque, int ret)
2756{
2757    NvmeCopyAIOCB *iocb = opaque;
2758    NvmeRequest *req = iocb->req;
2759    NvmeNamespace *ns = req->ns;
2760    uint32_t nlb;
2761    uint64_t slba;
2762    uint16_t apptag, appmask;
2763    uint64_t reftag;
2764    size_t len;
2765    uint16_t status;
2766
2767    if (ret < 0) {
2768        iocb->ret = ret;
2769        goto out;
2770    } else if (iocb->ret < 0) {
2771        goto out;
2772    }
2773
2774    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2775                                 &nlb, &apptag, &appmask, &reftag);
2776    len = nvme_l2b(ns, nlb);
2777
2778    trace_pci_nvme_copy_out(iocb->slba, nlb);
2779
2780    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2781        NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2782
2783        uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2784        uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2785
2786        size_t mlen = nvme_m2b(ns, nlb);
2787        uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2788
2789        status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2790                                slba, apptag, appmask, &reftag);
2791        if (status) {
2792            goto invalid;
2793        }
2794
2795        apptag = le16_to_cpu(copy->apptag);
2796        appmask = le16_to_cpu(copy->appmask);
2797
2798        if (prinfow & NVME_PRINFO_PRACT) {
2799            status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2800            if (status) {
2801                goto invalid;
2802            }
2803
2804            nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2805                                        apptag, &iocb->reftag);
2806        } else {
2807            status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2808                                    prinfow, iocb->slba, apptag, appmask,
2809                                    &iocb->reftag);
2810            if (status) {
2811                goto invalid;
2812            }
2813        }
2814    }
2815
2816    status = nvme_check_bounds(ns, iocb->slba, nlb);
2817    if (status) {
2818        goto invalid;
2819    }
2820
2821    if (ns->params.zoned) {
2822        status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2823        if (status) {
2824            goto invalid;
2825        }
2826
2827        if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2828            iocb->zone->w_ptr += nlb;
2829        }
2830    }
2831
2832    qemu_iovec_reset(&iocb->iov);
2833    qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2834
2835    iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2836                                  &iocb->iov, 0, nvme_copy_out_cb, iocb);
2837
2838    return;
2839
2840invalid:
2841    req->status = status;
2842    iocb->aiocb = NULL;
2843    if (iocb->bh) {
2844        qemu_bh_schedule(iocb->bh);
2845    }
2846
2847    return;
2848
2849out:
2850    nvme_copy_cb(iocb, ret);
2851}
2852
2853static void nvme_copy_in_cb(void *opaque, int ret)
2854{
2855    NvmeCopyAIOCB *iocb = opaque;
2856    NvmeRequest *req = iocb->req;
2857    NvmeNamespace *ns = req->ns;
2858    uint64_t slba;
2859    uint32_t nlb;
2860
2861    if (ret < 0) {
2862        iocb->ret = ret;
2863        goto out;
2864    } else if (iocb->ret < 0) {
2865        goto out;
2866    }
2867
2868    if (!ns->lbaf.ms) {
2869        nvme_copy_in_completed_cb(iocb, 0);
2870        return;
2871    }
2872
2873    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2874                                 &nlb, NULL, NULL, NULL);
2875
2876    qemu_iovec_reset(&iocb->iov);
2877    qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2878                   nvme_m2b(ns, nlb));
2879
2880    iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2881                                 &iocb->iov, 0, nvme_copy_in_completed_cb,
2882                                 iocb);
2883    return;
2884
2885out:
2886    nvme_copy_cb(iocb, iocb->ret);
2887}
2888
2889static void nvme_copy_cb(void *opaque, int ret)
2890{
2891    NvmeCopyAIOCB *iocb = opaque;
2892    NvmeRequest *req = iocb->req;
2893    NvmeNamespace *ns = req->ns;
2894    uint64_t slba;
2895    uint32_t nlb;
2896    size_t len;
2897    uint16_t status;
2898
2899    if (ret < 0) {
2900        iocb->ret = ret;
2901        goto done;
2902    } else if (iocb->ret < 0) {
2903        goto done;
2904    }
2905
2906    if (iocb->idx == iocb->nr) {
2907        goto done;
2908    }
2909
2910    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2911                                 &nlb, NULL, NULL, NULL);
2912    len = nvme_l2b(ns, nlb);
2913
2914    trace_pci_nvme_copy_source_range(slba, nlb);
2915
2916    if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2917        status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2918        goto invalid;
2919    }
2920
2921    status = nvme_check_bounds(ns, slba, nlb);
2922    if (status) {
2923        goto invalid;
2924    }
2925
2926    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2927        status = nvme_check_dulbe(ns, slba, nlb);
2928        if (status) {
2929            goto invalid;
2930        }
2931    }
2932
2933    if (ns->params.zoned) {
2934        status = nvme_check_zone_read(ns, slba, nlb);
2935        if (status) {
2936            goto invalid;
2937        }
2938    }
2939
2940    qemu_iovec_reset(&iocb->iov);
2941    qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2942
2943    iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2944                                 &iocb->iov, 0, nvme_copy_in_cb, iocb);
2945    return;
2946
2947invalid:
2948    req->status = status;
2949done:
2950    iocb->aiocb = NULL;
2951    if (iocb->bh) {
2952        qemu_bh_schedule(iocb->bh);
2953    }
2954}
2955
2956
2957static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2958{
2959    NvmeNamespace *ns = req->ns;
2960    NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2961    NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
2962                                      nvme_misc_cb, req);
2963    uint16_t nr = copy->nr + 1;
2964    uint8_t format = copy->control[0] & 0xf;
2965    uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2966    uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2967    size_t len = sizeof(NvmeCopySourceRangeFormat0);
2968
2969    uint16_t status;
2970
2971    trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2972
2973    iocb->ranges = NULL;
2974    iocb->zone = NULL;
2975
2976    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2977        ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
2978        status = NVME_INVALID_FIELD | NVME_DNR;
2979        goto invalid;
2980    }
2981
2982    if (!(n->id_ctrl.ocfs & (1 << format))) {
2983        trace_pci_nvme_err_copy_invalid_format(format);
2984        status = NVME_INVALID_FIELD | NVME_DNR;
2985        goto invalid;
2986    }
2987
2988    if (nr > ns->id_ns.msrc + 1) {
2989        status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2990        goto invalid;
2991    }
2992
2993    if (ns->pif && format != 0x1) {
2994        status = NVME_INVALID_FORMAT | NVME_DNR;
2995        goto invalid;
2996    }
2997
2998    if (ns->pif) {
2999        len = sizeof(NvmeCopySourceRangeFormat1);
3000    }
3001
3002    iocb->format = format;
3003    iocb->ranges = g_malloc_n(nr, len);
3004    status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3005    if (status) {
3006        goto invalid;
3007    }
3008
3009    iocb->slba = le64_to_cpu(copy->sdlba);
3010
3011    if (ns->params.zoned) {
3012        iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3013        if (!iocb->zone) {
3014            status = NVME_LBA_RANGE | NVME_DNR;
3015            goto invalid;
3016        }
3017
3018        status = nvme_zrm_auto(n, ns, iocb->zone);
3019        if (status) {
3020            goto invalid;
3021        }
3022    }
3023
3024    iocb->req = req;
3025    iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
3026    iocb->ret = 0;
3027    iocb->nr = nr;
3028    iocb->idx = 0;
3029    iocb->reftag = le32_to_cpu(copy->reftag);
3030    iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3031    iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3032                              ns->lbasz + ns->lbaf.ms);
3033
3034    qemu_iovec_init(&iocb->iov, 1);
3035
3036    block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3037                     BLOCK_ACCT_READ);
3038    block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3039                     BLOCK_ACCT_WRITE);
3040
3041    req->aiocb = &iocb->common;
3042    nvme_copy_cb(iocb, 0);
3043
3044    return NVME_NO_COMPLETE;
3045
3046invalid:
3047    g_free(iocb->ranges);
3048    qemu_aio_unref(iocb);
3049    return status;
3050}
3051
3052static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3053{
3054    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3055    NvmeNamespace *ns = req->ns;
3056    BlockBackend *blk = ns->blkconf.blk;
3057    uint64_t slba = le64_to_cpu(rw->slba);
3058    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3059    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3060    size_t data_len = nvme_l2b(ns, nlb);
3061    size_t len = data_len;
3062    int64_t offset = nvme_l2b(ns, slba);
3063    struct nvme_compare_ctx *ctx = NULL;
3064    uint16_t status;
3065
3066    trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3067
3068    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3069        return NVME_INVALID_PROT_INFO | NVME_DNR;
3070    }
3071
3072    if (nvme_ns_ext(ns)) {
3073        len += nvme_m2b(ns, nlb);
3074    }
3075
3076    status = nvme_check_mdts(n, len);
3077    if (status) {
3078        return status;
3079    }
3080
3081    status = nvme_check_bounds(ns, slba, nlb);
3082    if (status) {
3083        return status;
3084    }
3085
3086    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3087        status = nvme_check_dulbe(ns, slba, nlb);
3088        if (status) {
3089            return status;
3090        }
3091    }
3092
3093    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3094    if (status) {
3095        return status;
3096    }
3097
3098    ctx = g_new(struct nvme_compare_ctx, 1);
3099    ctx->data.bounce = g_malloc(data_len);
3100
3101    req->opaque = ctx;
3102
3103    qemu_iovec_init(&ctx->data.iov, 1);
3104    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3105
3106    block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3107                     BLOCK_ACCT_READ);
3108    req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3109                                nvme_compare_data_cb, req);
3110
3111    return NVME_NO_COMPLETE;
3112}
3113
3114typedef struct NvmeFlushAIOCB {
3115    BlockAIOCB common;
3116    BlockAIOCB *aiocb;
3117    NvmeRequest *req;
3118    QEMUBH *bh;
3119    int ret;
3120
3121    NvmeNamespace *ns;
3122    uint32_t nsid;
3123    bool broadcast;
3124} NvmeFlushAIOCB;
3125
3126static void nvme_flush_cancel(BlockAIOCB *acb)
3127{
3128    NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3129
3130    iocb->ret = -ECANCELED;
3131
3132    if (iocb->aiocb) {
3133        blk_aio_cancel_async(iocb->aiocb);
3134    }
3135}
3136
3137static const AIOCBInfo nvme_flush_aiocb_info = {
3138    .aiocb_size = sizeof(NvmeFlushAIOCB),
3139    .cancel_async = nvme_flush_cancel,
3140    .get_aio_context = nvme_get_aio_context,
3141};
3142
3143static void nvme_flush_ns_cb(void *opaque, int ret)
3144{
3145    NvmeFlushAIOCB *iocb = opaque;
3146    NvmeNamespace *ns = iocb->ns;
3147
3148    if (ret < 0) {
3149        iocb->ret = ret;
3150        goto out;
3151    } else if (iocb->ret < 0) {
3152        goto out;
3153    }
3154
3155    if (ns) {
3156        trace_pci_nvme_flush_ns(iocb->nsid);
3157
3158        iocb->ns = NULL;
3159        iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3160        return;
3161    }
3162
3163out:
3164    iocb->aiocb = NULL;
3165    qemu_bh_schedule(iocb->bh);
3166}
3167
3168static void nvme_flush_bh(void *opaque)
3169{
3170    NvmeFlushAIOCB *iocb = opaque;
3171    NvmeRequest *req = iocb->req;
3172    NvmeCtrl *n = nvme_ctrl(req);
3173    int i;
3174
3175    if (iocb->ret < 0) {
3176        goto done;
3177    }
3178
3179    if (iocb->broadcast) {
3180        for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3181            iocb->ns = nvme_ns(n, i);
3182            if (iocb->ns) {
3183                iocb->nsid = i;
3184                break;
3185            }
3186        }
3187    }
3188
3189    if (!iocb->ns) {
3190        goto done;
3191    }
3192
3193    nvme_flush_ns_cb(iocb, 0);
3194    return;
3195
3196done:
3197    qemu_bh_delete(iocb->bh);
3198    iocb->bh = NULL;
3199
3200    iocb->common.cb(iocb->common.opaque, iocb->ret);
3201
3202    qemu_aio_unref(iocb);
3203
3204    return;
3205}
3206
3207static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3208{
3209    NvmeFlushAIOCB *iocb;
3210    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3211    uint16_t status;
3212
3213    iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3214
3215    iocb->req = req;
3216    iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
3217    iocb->ret = 0;
3218    iocb->ns = NULL;
3219    iocb->nsid = 0;
3220    iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3221
3222    if (!iocb->broadcast) {
3223        if (!nvme_nsid_valid(n, nsid)) {
3224            status = NVME_INVALID_NSID | NVME_DNR;
3225            goto out;
3226        }
3227
3228        iocb->ns = nvme_ns(n, nsid);
3229        if (!iocb->ns) {
3230            status = NVME_INVALID_FIELD | NVME_DNR;
3231            goto out;
3232        }
3233
3234        iocb->nsid = nsid;
3235    }
3236
3237    req->aiocb = &iocb->common;
3238    qemu_bh_schedule(iocb->bh);
3239
3240    return NVME_NO_COMPLETE;
3241
3242out:
3243    qemu_bh_delete(iocb->bh);
3244    iocb->bh = NULL;
3245    qemu_aio_unref(iocb);
3246
3247    return status;
3248}
3249
3250static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3251{
3252    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3253    NvmeNamespace *ns = req->ns;
3254    uint64_t slba = le64_to_cpu(rw->slba);
3255    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3256    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3257    uint64_t data_size = nvme_l2b(ns, nlb);
3258    uint64_t mapped_size = data_size;
3259    uint64_t data_offset;
3260    BlockBackend *blk = ns->blkconf.blk;
3261    uint16_t status;
3262
3263    if (nvme_ns_ext(ns)) {
3264        mapped_size += nvme_m2b(ns, nlb);
3265
3266        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3267            bool pract = prinfo & NVME_PRINFO_PRACT;
3268
3269            if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3270                mapped_size = data_size;
3271            }
3272        }
3273    }
3274
3275    trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3276
3277    status = nvme_check_mdts(n, mapped_size);
3278    if (status) {
3279        goto invalid;
3280    }
3281
3282    status = nvme_check_bounds(ns, slba, nlb);
3283    if (status) {
3284        goto invalid;
3285    }
3286
3287    if (ns->params.zoned) {
3288        status = nvme_check_zone_read(ns, slba, nlb);
3289        if (status) {
3290            trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3291            goto invalid;
3292        }
3293    }
3294
3295    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3296        status = nvme_check_dulbe(ns, slba, nlb);
3297        if (status) {
3298            goto invalid;
3299        }
3300    }
3301
3302    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3303        return nvme_dif_rw(n, req);
3304    }
3305
3306    status = nvme_map_data(n, nlb, req);
3307    if (status) {
3308        goto invalid;
3309    }
3310
3311    data_offset = nvme_l2b(ns, slba);
3312
3313    block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3314                     BLOCK_ACCT_READ);
3315    nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3316    return NVME_NO_COMPLETE;
3317
3318invalid:
3319    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3320    return status | NVME_DNR;
3321}
3322
3323static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3324                              bool wrz)
3325{
3326    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3327    NvmeNamespace *ns = req->ns;
3328    uint64_t slba = le64_to_cpu(rw->slba);
3329    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3330    uint16_t ctrl = le16_to_cpu(rw->control);
3331    uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3332    uint64_t data_size = nvme_l2b(ns, nlb);
3333    uint64_t mapped_size = data_size;
3334    uint64_t data_offset;
3335    NvmeZone *zone;
3336    NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3337    BlockBackend *blk = ns->blkconf.blk;
3338    uint16_t status;
3339
3340    if (nvme_ns_ext(ns)) {
3341        mapped_size += nvme_m2b(ns, nlb);
3342
3343        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3344            bool pract = prinfo & NVME_PRINFO_PRACT;
3345
3346            if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3347                mapped_size -= nvme_m2b(ns, nlb);
3348            }
3349        }
3350    }
3351
3352    trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3353                         nvme_nsid(ns), nlb, mapped_size, slba);
3354
3355    if (!wrz) {
3356        status = nvme_check_mdts(n, mapped_size);
3357        if (status) {
3358            goto invalid;
3359        }
3360    }
3361
3362    status = nvme_check_bounds(ns, slba, nlb);
3363    if (status) {
3364        goto invalid;
3365    }
3366
3367    if (ns->params.zoned) {
3368        zone = nvme_get_zone_by_slba(ns, slba);
3369        assert(zone);
3370
3371        if (append) {
3372            bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3373
3374            if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3375                return NVME_INVALID_ZONE_OP | NVME_DNR;
3376            }
3377
3378            if (unlikely(slba != zone->d.zslba)) {
3379                trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3380                status = NVME_INVALID_FIELD;
3381                goto invalid;
3382            }
3383
3384            if (n->params.zasl &&
3385                data_size > (uint64_t)n->page_size << n->params.zasl) {
3386                trace_pci_nvme_err_zasl(data_size);
3387                return NVME_INVALID_FIELD | NVME_DNR;
3388            }
3389
3390            slba = zone->w_ptr;
3391            rw->slba = cpu_to_le64(slba);
3392            res->slba = cpu_to_le64(slba);
3393
3394            switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3395            case NVME_ID_NS_DPS_TYPE_1:
3396                if (!piremap) {
3397                    return NVME_INVALID_PROT_INFO | NVME_DNR;
3398                }
3399
3400                /* fallthrough */
3401
3402            case NVME_ID_NS_DPS_TYPE_2:
3403                if (piremap) {
3404                    uint32_t reftag = le32_to_cpu(rw->reftag);
3405                    rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3406                }
3407
3408                break;
3409
3410            case NVME_ID_NS_DPS_TYPE_3:
3411                if (piremap) {
3412                    return NVME_INVALID_PROT_INFO | NVME_DNR;
3413                }
3414
3415                break;
3416            }
3417        }
3418
3419        status = nvme_check_zone_write(ns, zone, slba, nlb);
3420        if (status) {
3421            goto invalid;
3422        }
3423
3424        status = nvme_zrm_auto(n, ns, zone);
3425        if (status) {
3426            goto invalid;
3427        }
3428
3429        if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3430            zone->w_ptr += nlb;
3431        }
3432    }
3433
3434    data_offset = nvme_l2b(ns, slba);
3435
3436    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3437        return nvme_dif_rw(n, req);
3438    }
3439
3440    if (!wrz) {
3441        status = nvme_map_data(n, nlb, req);
3442        if (status) {
3443            goto invalid;
3444        }
3445
3446        block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3447                         BLOCK_ACCT_WRITE);
3448        nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3449    } else {
3450        req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3451                                           BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3452                                           req);
3453    }
3454
3455    return NVME_NO_COMPLETE;
3456
3457invalid:
3458    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3459    return status | NVME_DNR;
3460}
3461
3462static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3463{
3464    return nvme_do_write(n, req, false, false);
3465}
3466
3467static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3468{
3469    return nvme_do_write(n, req, false, true);
3470}
3471
3472static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3473{
3474    return nvme_do_write(n, req, true, false);
3475}
3476
3477static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3478                                            uint64_t *slba, uint32_t *zone_idx)
3479{
3480    uint32_t dw10 = le32_to_cpu(c->cdw10);
3481    uint32_t dw11 = le32_to_cpu(c->cdw11);
3482
3483    if (!ns->params.zoned) {
3484        trace_pci_nvme_err_invalid_opc(c->opcode);
3485        return NVME_INVALID_OPCODE | NVME_DNR;
3486    }
3487
3488    *slba = ((uint64_t)dw11) << 32 | dw10;
3489    if (unlikely(*slba >= ns->id_ns.nsze)) {
3490        trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3491        *slba = 0;
3492        return NVME_LBA_RANGE | NVME_DNR;
3493    }
3494
3495    *zone_idx = nvme_zone_idx(ns, *slba);
3496    assert(*zone_idx < ns->num_zones);
3497
3498    return NVME_SUCCESS;
3499}
3500
3501typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3502                                 NvmeRequest *);
3503
3504enum NvmeZoneProcessingMask {
3505    NVME_PROC_CURRENT_ZONE    = 0,
3506    NVME_PROC_OPENED_ZONES    = 1 << 0,
3507    NVME_PROC_CLOSED_ZONES    = 1 << 1,
3508    NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3509    NVME_PROC_FULL_ZONES      = 1 << 3,
3510};
3511
3512static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3513                               NvmeZoneState state, NvmeRequest *req)
3514{
3515    NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3516    int flags = 0;
3517
3518    if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3519        uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3520
3521        if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3522            return NVME_INVALID_ZONE_OP | NVME_DNR;
3523        }
3524
3525        if (zone->w_ptr % ns->zns.zrwafg) {
3526            return NVME_NOZRWA | NVME_DNR;
3527        }
3528
3529        flags = NVME_ZRM_ZRWA;
3530    }
3531
3532    return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3533}
3534
3535static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3536                                NvmeZoneState state, NvmeRequest *req)
3537{
3538    return nvme_zrm_close(ns, zone);
3539}
3540
3541static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3542                                 NvmeZoneState state, NvmeRequest *req)
3543{
3544    return nvme_zrm_finish(ns, zone);
3545}
3546
3547static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3548                                  NvmeZoneState state, NvmeRequest *req)
3549{
3550    switch (state) {
3551    case NVME_ZONE_STATE_READ_ONLY:
3552        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3553        /* fall through */
3554    case NVME_ZONE_STATE_OFFLINE:
3555        return NVME_SUCCESS;
3556    default:
3557        return NVME_ZONE_INVAL_TRANSITION;
3558    }
3559}
3560
3561static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3562{
3563    uint16_t status;
3564    uint8_t state = nvme_get_zone_state(zone);
3565
3566    if (state == NVME_ZONE_STATE_EMPTY) {
3567        status = nvme_aor_check(ns, 1, 0);
3568        if (status) {
3569            return status;
3570        }
3571        nvme_aor_inc_active(ns);
3572        zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3573        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3574        return NVME_SUCCESS;
3575    }
3576
3577    return NVME_ZONE_INVAL_TRANSITION;
3578}
3579
3580static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3581                                    enum NvmeZoneProcessingMask proc_mask,
3582                                    op_handler_t op_hndlr, NvmeRequest *req)
3583{
3584    uint16_t status = NVME_SUCCESS;
3585    NvmeZoneState zs = nvme_get_zone_state(zone);
3586    bool proc_zone;
3587
3588    switch (zs) {
3589    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3590    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3591        proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3592        break;
3593    case NVME_ZONE_STATE_CLOSED:
3594        proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3595        break;
3596    case NVME_ZONE_STATE_READ_ONLY:
3597        proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3598        break;
3599    case NVME_ZONE_STATE_FULL:
3600        proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3601        break;
3602    default:
3603        proc_zone = false;
3604    }
3605
3606    if (proc_zone) {
3607        status = op_hndlr(ns, zone, zs, req);
3608    }
3609
3610    return status;
3611}
3612
3613static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3614                                enum NvmeZoneProcessingMask proc_mask,
3615                                op_handler_t op_hndlr, NvmeRequest *req)
3616{
3617    NvmeZone *next;
3618    uint16_t status = NVME_SUCCESS;
3619    int i;
3620
3621    if (!proc_mask) {
3622        status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3623    } else {
3624        if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3625            QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3626                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3627                                             req);
3628                if (status && status != NVME_NO_COMPLETE) {
3629                    goto out;
3630                }
3631            }
3632        }
3633        if (proc_mask & NVME_PROC_OPENED_ZONES) {
3634            QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3635                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3636                                             req);
3637                if (status && status != NVME_NO_COMPLETE) {
3638                    goto out;
3639                }
3640            }
3641
3642            QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3643                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3644                                             req);
3645                if (status && status != NVME_NO_COMPLETE) {
3646                    goto out;
3647                }
3648            }
3649        }
3650        if (proc_mask & NVME_PROC_FULL_ZONES) {
3651            QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3652                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3653                                             req);
3654                if (status && status != NVME_NO_COMPLETE) {
3655                    goto out;
3656                }
3657            }
3658        }
3659
3660        if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3661            for (i = 0; i < ns->num_zones; i++, zone++) {
3662                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3663                                             req);
3664                if (status && status != NVME_NO_COMPLETE) {
3665                    goto out;
3666                }
3667            }
3668        }
3669    }
3670
3671out:
3672    return status;
3673}
3674
3675typedef struct NvmeZoneResetAIOCB {
3676    BlockAIOCB common;
3677    BlockAIOCB *aiocb;
3678    NvmeRequest *req;
3679    QEMUBH *bh;
3680    int ret;
3681
3682    bool all;
3683    int idx;
3684    NvmeZone *zone;
3685} NvmeZoneResetAIOCB;
3686
3687static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3688{
3689    NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3690    NvmeRequest *req = iocb->req;
3691    NvmeNamespace *ns = req->ns;
3692
3693    iocb->idx = ns->num_zones;
3694
3695    iocb->ret = -ECANCELED;
3696
3697    if (iocb->aiocb) {
3698        blk_aio_cancel_async(iocb->aiocb);
3699        iocb->aiocb = NULL;
3700    }
3701}
3702
3703static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3704    .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3705    .cancel_async = nvme_zone_reset_cancel,
3706};
3707
3708static void nvme_zone_reset_bh(void *opaque)
3709{
3710    NvmeZoneResetAIOCB *iocb = opaque;
3711
3712    iocb->common.cb(iocb->common.opaque, iocb->ret);
3713
3714    qemu_bh_delete(iocb->bh);
3715    iocb->bh = NULL;
3716    qemu_aio_unref(iocb);
3717}
3718
3719static void nvme_zone_reset_cb(void *opaque, int ret);
3720
3721static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3722{
3723    NvmeZoneResetAIOCB *iocb = opaque;
3724    NvmeRequest *req = iocb->req;
3725    NvmeNamespace *ns = req->ns;
3726    int64_t moff;
3727    int count;
3728
3729    if (ret < 0) {
3730        nvme_zone_reset_cb(iocb, ret);
3731        return;
3732    }
3733
3734    if (!ns->lbaf.ms) {
3735        nvme_zone_reset_cb(iocb, 0);
3736        return;
3737    }
3738
3739    moff = nvme_moff(ns, iocb->zone->d.zslba);
3740    count = nvme_m2b(ns, ns->zone_size);
3741
3742    iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3743                                        BDRV_REQ_MAY_UNMAP,
3744                                        nvme_zone_reset_cb, iocb);
3745    return;
3746}
3747
3748static void nvme_zone_reset_cb(void *opaque, int ret)
3749{
3750    NvmeZoneResetAIOCB *iocb = opaque;
3751    NvmeRequest *req = iocb->req;
3752    NvmeNamespace *ns = req->ns;
3753
3754    if (ret < 0) {
3755        iocb->ret = ret;
3756        goto done;
3757    }
3758
3759    if (iocb->zone) {
3760        nvme_zrm_reset(ns, iocb->zone);
3761
3762        if (!iocb->all) {
3763            goto done;
3764        }
3765    }
3766
3767    while (iocb->idx < ns->num_zones) {
3768        NvmeZone *zone = &ns->zone_array[iocb->idx++];
3769
3770        switch (nvme_get_zone_state(zone)) {
3771        case NVME_ZONE_STATE_EMPTY:
3772            if (!iocb->all) {
3773                goto done;
3774            }
3775
3776            continue;
3777
3778        case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3779        case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3780        case NVME_ZONE_STATE_CLOSED:
3781        case NVME_ZONE_STATE_FULL:
3782            iocb->zone = zone;
3783            break;
3784
3785        default:
3786            continue;
3787        }
3788
3789        trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3790
3791        iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3792                                            nvme_l2b(ns, zone->d.zslba),
3793                                            nvme_l2b(ns, ns->zone_size),
3794                                            BDRV_REQ_MAY_UNMAP,
3795                                            nvme_zone_reset_epilogue_cb,
3796                                            iocb);
3797        return;
3798    }
3799
3800done:
3801    iocb->aiocb = NULL;
3802    if (iocb->bh) {
3803        qemu_bh_schedule(iocb->bh);
3804    }
3805}
3806
3807static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3808                                               uint64_t elba, NvmeRequest *req)
3809{
3810    NvmeNamespace *ns = req->ns;
3811    uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3812    uint64_t wp = zone->d.wp;
3813    uint32_t nlb = elba - wp + 1;
3814    uint16_t status;
3815
3816
3817    if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3818        return NVME_INVALID_ZONE_OP | NVME_DNR;
3819    }
3820
3821    if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3822        return NVME_INVALID_FIELD | NVME_DNR;
3823    }
3824
3825    if (elba < wp || elba > wp + ns->zns.zrwas) {
3826        return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3827    }
3828
3829    if (nlb % ns->zns.zrwafg) {
3830        return NVME_INVALID_FIELD | NVME_DNR;
3831    }
3832
3833    status = nvme_zrm_auto(n, ns, zone);
3834    if (status) {
3835        return status;
3836    }
3837
3838    zone->w_ptr += nlb;
3839
3840    nvme_advance_zone_wp(ns, zone, nlb);
3841
3842    return NVME_SUCCESS;
3843}
3844
3845static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3846{
3847    NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3848    NvmeNamespace *ns = req->ns;
3849    NvmeZone *zone;
3850    NvmeZoneResetAIOCB *iocb;
3851    uint8_t *zd_ext;
3852    uint64_t slba = 0;
3853    uint32_t zone_idx = 0;
3854    uint16_t status;
3855    uint8_t action = cmd->zsa;
3856    bool all;
3857    enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3858
3859    all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3860
3861    req->status = NVME_SUCCESS;
3862
3863    if (!all) {
3864        status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3865        if (status) {
3866            return status;
3867        }
3868    }
3869
3870    zone = &ns->zone_array[zone_idx];
3871    if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3872        trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3873        return NVME_INVALID_FIELD | NVME_DNR;
3874    }
3875
3876    switch (action) {
3877
3878    case NVME_ZONE_ACTION_OPEN:
3879        if (all) {
3880            proc_mask = NVME_PROC_CLOSED_ZONES;
3881        }
3882        trace_pci_nvme_open_zone(slba, zone_idx, all);
3883        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3884        break;
3885
3886    case NVME_ZONE_ACTION_CLOSE:
3887        if (all) {
3888            proc_mask = NVME_PROC_OPENED_ZONES;
3889        }
3890        trace_pci_nvme_close_zone(slba, zone_idx, all);
3891        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3892        break;
3893
3894    case NVME_ZONE_ACTION_FINISH:
3895        if (all) {
3896            proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3897        }
3898        trace_pci_nvme_finish_zone(slba, zone_idx, all);
3899        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3900        break;
3901
3902    case NVME_ZONE_ACTION_RESET:
3903        trace_pci_nvme_reset_zone(slba, zone_idx, all);
3904
3905        iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3906                           nvme_misc_cb, req);
3907
3908        iocb->req = req;
3909        iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
3910        iocb->ret = 0;
3911        iocb->all = all;
3912        iocb->idx = zone_idx;
3913        iocb->zone = NULL;
3914
3915        req->aiocb = &iocb->common;
3916        nvme_zone_reset_cb(iocb, 0);
3917
3918        return NVME_NO_COMPLETE;
3919
3920    case NVME_ZONE_ACTION_OFFLINE:
3921        if (all) {
3922            proc_mask = NVME_PROC_READ_ONLY_ZONES;
3923        }
3924        trace_pci_nvme_offline_zone(slba, zone_idx, all);
3925        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3926        break;
3927
3928    case NVME_ZONE_ACTION_SET_ZD_EXT:
3929        trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3930        if (all || !ns->params.zd_extension_size) {
3931            return NVME_INVALID_FIELD | NVME_DNR;
3932        }
3933        zd_ext = nvme_get_zd_extension(ns, zone_idx);
3934        status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3935        if (status) {
3936            trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3937            return status;
3938        }
3939
3940        status = nvme_set_zd_ext(ns, zone);
3941        if (status == NVME_SUCCESS) {
3942            trace_pci_nvme_zd_extension_set(zone_idx);
3943            return status;
3944        }
3945        break;
3946
3947    case NVME_ZONE_ACTION_ZRWA_FLUSH:
3948        if (all) {
3949            return NVME_INVALID_FIELD | NVME_DNR;
3950        }
3951
3952        return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
3953
3954    default:
3955        trace_pci_nvme_err_invalid_mgmt_action(action);
3956        status = NVME_INVALID_FIELD;
3957    }
3958
3959    if (status == NVME_ZONE_INVAL_TRANSITION) {
3960        trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3961                                                         zone->d.za);
3962    }
3963    if (status) {
3964        status |= NVME_DNR;
3965    }
3966
3967    return status;
3968}
3969
3970static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3971{
3972    NvmeZoneState zs = nvme_get_zone_state(zl);
3973
3974    switch (zafs) {
3975    case NVME_ZONE_REPORT_ALL:
3976        return true;
3977    case NVME_ZONE_REPORT_EMPTY:
3978        return zs == NVME_ZONE_STATE_EMPTY;
3979    case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3980        return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3981    case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3982        return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3983    case NVME_ZONE_REPORT_CLOSED:
3984        return zs == NVME_ZONE_STATE_CLOSED;
3985    case NVME_ZONE_REPORT_FULL:
3986        return zs == NVME_ZONE_STATE_FULL;
3987    case NVME_ZONE_REPORT_READ_ONLY:
3988        return zs == NVME_ZONE_STATE_READ_ONLY;
3989    case NVME_ZONE_REPORT_OFFLINE:
3990        return zs == NVME_ZONE_STATE_OFFLINE;
3991    default:
3992        return false;
3993    }
3994}
3995
3996static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3997{
3998    NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3999    NvmeNamespace *ns = req->ns;
4000    /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4001    uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4002    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4003    uint32_t zone_idx, zra, zrasf, partial;
4004    uint64_t max_zones, nr_zones = 0;
4005    uint16_t status;
4006    uint64_t slba;
4007    NvmeZoneDescr *z;
4008    NvmeZone *zone;
4009    NvmeZoneReportHeader *header;
4010    void *buf, *buf_p;
4011    size_t zone_entry_sz;
4012    int i;
4013
4014    req->status = NVME_SUCCESS;
4015
4016    status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4017    if (status) {
4018        return status;
4019    }
4020
4021    zra = dw13 & 0xff;
4022    if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4023        return NVME_INVALID_FIELD | NVME_DNR;
4024    }
4025    if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4026        return NVME_INVALID_FIELD | NVME_DNR;
4027    }
4028
4029    zrasf = (dw13 >> 8) & 0xff;
4030    if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4031        return NVME_INVALID_FIELD | NVME_DNR;
4032    }
4033
4034    if (data_size < sizeof(NvmeZoneReportHeader)) {
4035        return NVME_INVALID_FIELD | NVME_DNR;
4036    }
4037
4038    status = nvme_check_mdts(n, data_size);
4039    if (status) {
4040        return status;
4041    }
4042
4043    partial = (dw13 >> 16) & 0x01;
4044
4045    zone_entry_sz = sizeof(NvmeZoneDescr);
4046    if (zra == NVME_ZONE_REPORT_EXTENDED) {
4047        zone_entry_sz += ns->params.zd_extension_size;
4048    }
4049
4050    max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4051    buf = g_malloc0(data_size);
4052
4053    zone = &ns->zone_array[zone_idx];
4054    for (i = zone_idx; i < ns->num_zones; i++) {
4055        if (partial && nr_zones >= max_zones) {
4056            break;
4057        }
4058        if (nvme_zone_matches_filter(zrasf, zone++)) {
4059            nr_zones++;
4060        }
4061    }
4062    header = (NvmeZoneReportHeader *)buf;
4063    header->nr_zones = cpu_to_le64(nr_zones);
4064
4065    buf_p = buf + sizeof(NvmeZoneReportHeader);
4066    for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4067        zone = &ns->zone_array[zone_idx];
4068        if (nvme_zone_matches_filter(zrasf, zone)) {
4069            z = (NvmeZoneDescr *)buf_p;
4070            buf_p += sizeof(NvmeZoneDescr);
4071
4072            z->zt = zone->d.zt;
4073            z->zs = zone->d.zs;
4074            z->zcap = cpu_to_le64(zone->d.zcap);
4075            z->zslba = cpu_to_le64(zone->d.zslba);
4076            z->za = zone->d.za;
4077
4078            if (nvme_wp_is_valid(zone)) {
4079                z->wp = cpu_to_le64(zone->d.wp);
4080            } else {
4081                z->wp = cpu_to_le64(~0ULL);
4082            }
4083
4084            if (zra == NVME_ZONE_REPORT_EXTENDED) {
4085                if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4086                    memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4087                           ns->params.zd_extension_size);
4088                }
4089                buf_p += ns->params.zd_extension_size;
4090            }
4091
4092            max_zones--;
4093        }
4094    }
4095
4096    status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4097
4098    g_free(buf);
4099
4100    return status;
4101}
4102
4103static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4104{
4105    NvmeNamespace *ns;
4106    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4107
4108    trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4109                          req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4110
4111    if (!nvme_nsid_valid(n, nsid)) {
4112        return NVME_INVALID_NSID | NVME_DNR;
4113    }
4114
4115    /*
4116     * In the base NVM command set, Flush may apply to all namespaces
4117     * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4118     * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4119     *
4120     * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4121     * opcode with a specific command since we cannot determine a unique I/O
4122     * command set. Opcode 0h could have any other meaning than something
4123     * equivalent to flushing and say it DOES have completely different
4124     * semantics in some other command set - does an NSID of FFFFFFFFh then
4125     * mean "for all namespaces, apply whatever command set specific command
4126     * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4127     * whatever command that uses the 0h opcode if, and only if, it allows NSID
4128     * to be FFFFFFFFh"?
4129     *
4130     * Anyway (and luckily), for now, we do not care about this since the
4131     * device only supports namespace types that includes the NVM Flush command
4132     * (NVM and Zoned), so always do an NVM Flush.
4133     */
4134    if (req->cmd.opcode == NVME_CMD_FLUSH) {
4135        return nvme_flush(n, req);
4136    }
4137
4138    ns = nvme_ns(n, nsid);
4139    if (unlikely(!ns)) {
4140        return NVME_INVALID_FIELD | NVME_DNR;
4141    }
4142
4143    if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4144        trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4145        return NVME_INVALID_OPCODE | NVME_DNR;
4146    }
4147
4148    if (ns->status) {
4149        return ns->status;
4150    }
4151
4152    if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4153        return NVME_INVALID_FIELD;
4154    }
4155
4156    req->ns = ns;
4157
4158    switch (req->cmd.opcode) {
4159    case NVME_CMD_WRITE_ZEROES:
4160        return nvme_write_zeroes(n, req);
4161    case NVME_CMD_ZONE_APPEND:
4162        return nvme_zone_append(n, req);
4163    case NVME_CMD_WRITE:
4164        return nvme_write(n, req);
4165    case NVME_CMD_READ:
4166        return nvme_read(n, req);
4167    case NVME_CMD_COMPARE:
4168        return nvme_compare(n, req);
4169    case NVME_CMD_DSM:
4170        return nvme_dsm(n, req);
4171    case NVME_CMD_VERIFY:
4172        return nvme_verify(n, req);
4173    case NVME_CMD_COPY:
4174        return nvme_copy(n, req);
4175    case NVME_CMD_ZONE_MGMT_SEND:
4176        return nvme_zone_mgmt_send(n, req);
4177    case NVME_CMD_ZONE_MGMT_RECV:
4178        return nvme_zone_mgmt_recv(n, req);
4179    default:
4180        assert(false);
4181    }
4182
4183    return NVME_INVALID_OPCODE | NVME_DNR;
4184}
4185
4186static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4187{
4188    n->sq[sq->sqid] = NULL;
4189    timer_free(sq->timer);
4190    g_free(sq->io_req);
4191    if (sq->sqid) {
4192        g_free(sq);
4193    }
4194}
4195
4196static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4197{
4198    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4199    NvmeRequest *r, *next;
4200    NvmeSQueue *sq;
4201    NvmeCQueue *cq;
4202    uint16_t qid = le16_to_cpu(c->qid);
4203
4204    if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4205        trace_pci_nvme_err_invalid_del_sq(qid);
4206        return NVME_INVALID_QID | NVME_DNR;
4207    }
4208
4209    trace_pci_nvme_del_sq(qid);
4210
4211    sq = n->sq[qid];
4212    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4213        r = QTAILQ_FIRST(&sq->out_req_list);
4214        assert(r->aiocb);
4215        blk_aio_cancel(r->aiocb);
4216    }
4217
4218    assert(QTAILQ_EMPTY(&sq->out_req_list));
4219
4220    if (!nvme_check_cqid(n, sq->cqid)) {
4221        cq = n->cq[sq->cqid];
4222        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4223
4224        nvme_post_cqes(cq);
4225        QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4226            if (r->sq == sq) {
4227                QTAILQ_REMOVE(&cq->req_list, r, entry);
4228                QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4229            }
4230        }
4231    }
4232
4233    nvme_free_sq(sq, n);
4234    return NVME_SUCCESS;
4235}
4236
4237static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4238                         uint16_t sqid, uint16_t cqid, uint16_t size)
4239{
4240    int i;
4241    NvmeCQueue *cq;
4242
4243    sq->ctrl = n;
4244    sq->dma_addr = dma_addr;
4245    sq->sqid = sqid;
4246    sq->size = size;
4247    sq->cqid = cqid;
4248    sq->head = sq->tail = 0;
4249    sq->io_req = g_new0(NvmeRequest, sq->size);
4250
4251    QTAILQ_INIT(&sq->req_list);
4252    QTAILQ_INIT(&sq->out_req_list);
4253    for (i = 0; i < sq->size; i++) {
4254        sq->io_req[i].sq = sq;
4255        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4256    }
4257    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
4258
4259    assert(n->cq[cqid]);
4260    cq = n->cq[cqid];
4261    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4262    n->sq[sqid] = sq;
4263}
4264
4265static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4266{
4267    NvmeSQueue *sq;
4268    NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4269
4270    uint16_t cqid = le16_to_cpu(c->cqid);
4271    uint16_t sqid = le16_to_cpu(c->sqid);
4272    uint16_t qsize = le16_to_cpu(c->qsize);
4273    uint16_t qflags = le16_to_cpu(c->sq_flags);
4274    uint64_t prp1 = le64_to_cpu(c->prp1);
4275
4276    trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4277
4278    if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4279        trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4280        return NVME_INVALID_CQID | NVME_DNR;
4281    }
4282    if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
4283        n->sq[sqid] != NULL)) {
4284        trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4285        return NVME_INVALID_QID | NVME_DNR;
4286    }
4287    if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4288        trace_pci_nvme_err_invalid_create_sq_size(qsize);
4289        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4290    }
4291    if (unlikely(prp1 & (n->page_size - 1))) {
4292        trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4293        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4294    }
4295    if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4296        trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4297        return NVME_INVALID_FIELD | NVME_DNR;
4298    }
4299    sq = g_malloc0(sizeof(*sq));
4300    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4301    return NVME_SUCCESS;
4302}
4303
4304struct nvme_stats {
4305    uint64_t units_read;
4306    uint64_t units_written;
4307    uint64_t read_commands;
4308    uint64_t write_commands;
4309};
4310
4311static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4312{
4313    BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4314
4315    stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4316    stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4317    stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4318    stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4319}
4320
4321static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4322                                uint64_t off, NvmeRequest *req)
4323{
4324    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4325    struct nvme_stats stats = { 0 };
4326    NvmeSmartLog smart = { 0 };
4327    uint32_t trans_len;
4328    NvmeNamespace *ns;
4329    time_t current_ms;
4330
4331    if (off >= sizeof(smart)) {
4332        return NVME_INVALID_FIELD | NVME_DNR;
4333    }
4334
4335    if (nsid != 0xffffffff) {
4336        ns = nvme_ns(n, nsid);
4337        if (!ns) {
4338            return NVME_INVALID_NSID | NVME_DNR;
4339        }
4340        nvme_set_blk_stats(ns, &stats);
4341    } else {
4342        int i;
4343
4344        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4345            ns = nvme_ns(n, i);
4346            if (!ns) {
4347                continue;
4348            }
4349            nvme_set_blk_stats(ns, &stats);
4350        }
4351    }
4352
4353    trans_len = MIN(sizeof(smart) - off, buf_len);
4354    smart.critical_warning = n->smart_critical_warning;
4355
4356    smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4357                                                        1000));
4358    smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4359                                                           1000));
4360    smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4361    smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4362
4363    smart.temperature = cpu_to_le16(n->temperature);
4364
4365    if ((n->temperature >= n->features.temp_thresh_hi) ||
4366        (n->temperature <= n->features.temp_thresh_low)) {
4367        smart.critical_warning |= NVME_SMART_TEMPERATURE;
4368    }
4369
4370    current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4371    smart.power_on_hours[0] =
4372        cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4373
4374    if (!rae) {
4375        nvme_clear_events(n, NVME_AER_TYPE_SMART);
4376    }
4377
4378    return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4379}
4380
4381static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4382                                 NvmeRequest *req)
4383{
4384    uint32_t trans_len;
4385    NvmeFwSlotInfoLog fw_log = {
4386        .afi = 0x1,
4387    };
4388
4389    if (off >= sizeof(fw_log)) {
4390        return NVME_INVALID_FIELD | NVME_DNR;
4391    }
4392
4393    strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4394    trans_len = MIN(sizeof(fw_log) - off, buf_len);
4395
4396    return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4397}
4398
4399static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4400                                uint64_t off, NvmeRequest *req)
4401{
4402    uint32_t trans_len;
4403    NvmeErrorLog errlog;
4404
4405    if (off >= sizeof(errlog)) {
4406        return NVME_INVALID_FIELD | NVME_DNR;
4407    }
4408
4409    if (!rae) {
4410        nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4411    }
4412
4413    memset(&errlog, 0x0, sizeof(errlog));
4414    trans_len = MIN(sizeof(errlog) - off, buf_len);
4415
4416    return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4417}
4418
4419static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4420                                    uint64_t off, NvmeRequest *req)
4421{
4422    uint32_t nslist[1024];
4423    uint32_t trans_len;
4424    int i = 0;
4425    uint32_t nsid;
4426
4427    if (off >= sizeof(nslist)) {
4428        trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4429        return NVME_INVALID_FIELD | NVME_DNR;
4430    }
4431
4432    memset(nslist, 0x0, sizeof(nslist));
4433    trans_len = MIN(sizeof(nslist) - off, buf_len);
4434
4435    while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4436            NVME_CHANGED_NSID_SIZE) {
4437        /*
4438         * If more than 1024 namespaces, the first entry in the log page should
4439         * be set to FFFFFFFFh and the others to 0 as spec.
4440         */
4441        if (i == ARRAY_SIZE(nslist)) {
4442            memset(nslist, 0x0, sizeof(nslist));
4443            nslist[0] = 0xffffffff;
4444            break;
4445        }
4446
4447        nslist[i++] = nsid;
4448        clear_bit(nsid, n->changed_nsids);
4449    }
4450
4451    /*
4452     * Remove all the remaining list entries in case returns directly due to
4453     * more than 1024 namespaces.
4454     */
4455    if (nslist[0] == 0xffffffff) {
4456        bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4457    }
4458
4459    if (!rae) {
4460        nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4461    }
4462
4463    return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4464}
4465
4466static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4467                                 uint64_t off, NvmeRequest *req)
4468{
4469    NvmeEffectsLog log = {};
4470    const uint32_t *src_iocs = NULL;
4471    uint32_t trans_len;
4472
4473    if (off >= sizeof(log)) {
4474        trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4475        return NVME_INVALID_FIELD | NVME_DNR;
4476    }
4477
4478    switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4479    case NVME_CC_CSS_NVM:
4480        src_iocs = nvme_cse_iocs_nvm;
4481        /* fall through */
4482    case NVME_CC_CSS_ADMIN_ONLY:
4483        break;
4484    case NVME_CC_CSS_CSI:
4485        switch (csi) {
4486        case NVME_CSI_NVM:
4487            src_iocs = nvme_cse_iocs_nvm;
4488            break;
4489        case NVME_CSI_ZONED:
4490            src_iocs = nvme_cse_iocs_zoned;
4491            break;
4492        }
4493    }
4494
4495    memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4496
4497    if (src_iocs) {
4498        memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4499    }
4500
4501    trans_len = MIN(sizeof(log) - off, buf_len);
4502
4503    return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4504}
4505
4506static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4507{
4508    NvmeCmd *cmd = &req->cmd;
4509
4510    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4511    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4512    uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4513    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4514    uint8_t  lid = dw10 & 0xff;
4515    uint8_t  lsp = (dw10 >> 8) & 0xf;
4516    uint8_t  rae = (dw10 >> 15) & 0x1;
4517    uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
4518    uint32_t numdl, numdu;
4519    uint64_t off, lpol, lpou;
4520    size_t   len;
4521    uint16_t status;
4522
4523    numdl = (dw10 >> 16);
4524    numdu = (dw11 & 0xffff);
4525    lpol = dw12;
4526    lpou = dw13;
4527
4528    len = (((numdu << 16) | numdl) + 1) << 2;
4529    off = (lpou << 32ULL) | lpol;
4530
4531    if (off & 0x3) {
4532        return NVME_INVALID_FIELD | NVME_DNR;
4533    }
4534
4535    trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4536
4537    status = nvme_check_mdts(n, len);
4538    if (status) {
4539        return status;
4540    }
4541
4542    switch (lid) {
4543    case NVME_LOG_ERROR_INFO:
4544        return nvme_error_info(n, rae, len, off, req);
4545    case NVME_LOG_SMART_INFO:
4546        return nvme_smart_info(n, rae, len, off, req);
4547    case NVME_LOG_FW_SLOT_INFO:
4548        return nvme_fw_log_info(n, len, off, req);
4549    case NVME_LOG_CHANGED_NSLIST:
4550        return nvme_changed_nslist(n, rae, len, off, req);
4551    case NVME_LOG_CMD_EFFECTS:
4552        return nvme_cmd_effects(n, csi, len, off, req);
4553    default:
4554        trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4555        return NVME_INVALID_FIELD | NVME_DNR;
4556    }
4557}
4558
4559static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4560{
4561    n->cq[cq->cqid] = NULL;
4562    timer_free(cq->timer);
4563    if (msix_enabled(&n->parent_obj)) {
4564        msix_vector_unuse(&n->parent_obj, cq->vector);
4565    }
4566    if (cq->cqid) {
4567        g_free(cq);
4568    }
4569}
4570
4571static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4572{
4573    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4574    NvmeCQueue *cq;
4575    uint16_t qid = le16_to_cpu(c->qid);
4576
4577    if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4578        trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4579        return NVME_INVALID_CQID | NVME_DNR;
4580    }
4581
4582    cq = n->cq[qid];
4583    if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4584        trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4585        return NVME_INVALID_QUEUE_DEL;
4586    }
4587
4588    if (cq->irq_enabled && cq->tail != cq->head) {
4589        n->cq_pending--;
4590    }
4591
4592    nvme_irq_deassert(n, cq);
4593    trace_pci_nvme_del_cq(qid);
4594    nvme_free_cq(cq, n);
4595    return NVME_SUCCESS;
4596}
4597
4598static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4599                         uint16_t cqid, uint16_t vector, uint16_t size,
4600                         uint16_t irq_enabled)
4601{
4602    int ret;
4603
4604    if (msix_enabled(&n->parent_obj)) {
4605        ret = msix_vector_use(&n->parent_obj, vector);
4606        assert(ret == 0);
4607    }
4608    cq->ctrl = n;
4609    cq->cqid = cqid;
4610    cq->size = size;
4611    cq->dma_addr = dma_addr;
4612    cq->phase = 1;
4613    cq->irq_enabled = irq_enabled;
4614    cq->vector = vector;
4615    cq->head = cq->tail = 0;
4616    QTAILQ_INIT(&cq->req_list);
4617    QTAILQ_INIT(&cq->sq_list);
4618    n->cq[cqid] = cq;
4619    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4620}
4621
4622static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4623{
4624    NvmeCQueue *cq;
4625    NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4626    uint16_t cqid = le16_to_cpu(c->cqid);
4627    uint16_t vector = le16_to_cpu(c->irq_vector);
4628    uint16_t qsize = le16_to_cpu(c->qsize);
4629    uint16_t qflags = le16_to_cpu(c->cq_flags);
4630    uint64_t prp1 = le64_to_cpu(c->prp1);
4631
4632    trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4633                             NVME_CQ_FLAGS_IEN(qflags) != 0);
4634
4635    if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
4636        n->cq[cqid] != NULL)) {
4637        trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4638        return NVME_INVALID_QID | NVME_DNR;
4639    }
4640    if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4641        trace_pci_nvme_err_invalid_create_cq_size(qsize);
4642        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4643    }
4644    if (unlikely(prp1 & (n->page_size - 1))) {
4645        trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4646        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4647    }
4648    if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4649        trace_pci_nvme_err_invalid_create_cq_vector(vector);
4650        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4651    }
4652    if (unlikely(vector >= n->params.msix_qsize)) {
4653        trace_pci_nvme_err_invalid_create_cq_vector(vector);
4654        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4655    }
4656    if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4657        trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4658        return NVME_INVALID_FIELD | NVME_DNR;
4659    }
4660
4661    cq = g_malloc0(sizeof(*cq));
4662    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4663                 NVME_CQ_FLAGS_IEN(qflags));
4664
4665    /*
4666     * It is only required to set qs_created when creating a completion queue;
4667     * creating a submission queue without a matching completion queue will
4668     * fail.
4669     */
4670    n->qs_created = true;
4671    return NVME_SUCCESS;
4672}
4673
4674static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4675{
4676    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4677
4678    return nvme_c2h(n, id, sizeof(id), req);
4679}
4680
4681static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4682{
4683    trace_pci_nvme_identify_ctrl();
4684
4685    return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4686}
4687
4688static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4689{
4690    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4691    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4692    NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4693
4694    trace_pci_nvme_identify_ctrl_csi(c->csi);
4695
4696    switch (c->csi) {
4697    case NVME_CSI_NVM:
4698        id_nvm->vsl = n->params.vsl;
4699        id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4700        break;
4701
4702    case NVME_CSI_ZONED:
4703        ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4704        break;
4705
4706    default:
4707        return NVME_INVALID_FIELD | NVME_DNR;
4708    }
4709
4710    return nvme_c2h(n, id, sizeof(id), req);
4711}
4712
4713static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4714{
4715    NvmeNamespace *ns;
4716    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4717    uint32_t nsid = le32_to_cpu(c->nsid);
4718
4719    trace_pci_nvme_identify_ns(nsid);
4720
4721    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4722        return NVME_INVALID_NSID | NVME_DNR;
4723    }
4724
4725    ns = nvme_ns(n, nsid);
4726    if (unlikely(!ns)) {
4727        if (!active) {
4728            ns = nvme_subsys_ns(n->subsys, nsid);
4729            if (!ns) {
4730                return nvme_rpt_empty_id_struct(n, req);
4731            }
4732        } else {
4733            return nvme_rpt_empty_id_struct(n, req);
4734        }
4735    }
4736
4737    if (active || ns->csi == NVME_CSI_NVM) {
4738        return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4739    }
4740
4741    return NVME_INVALID_CMD_SET | NVME_DNR;
4742}
4743
4744static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4745                                        bool attached)
4746{
4747    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4748    uint32_t nsid = le32_to_cpu(c->nsid);
4749    uint16_t min_id = le16_to_cpu(c->ctrlid);
4750    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4751    uint16_t *ids = &list[1];
4752    NvmeNamespace *ns;
4753    NvmeCtrl *ctrl;
4754    int cntlid, nr_ids = 0;
4755
4756    trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4757
4758    if (!n->subsys) {
4759        return NVME_INVALID_FIELD | NVME_DNR;
4760    }
4761
4762    if (attached) {
4763        if (nsid == NVME_NSID_BROADCAST) {
4764            return NVME_INVALID_FIELD | NVME_DNR;
4765        }
4766
4767        ns = nvme_subsys_ns(n->subsys, nsid);
4768        if (!ns) {
4769            return NVME_INVALID_FIELD | NVME_DNR;
4770        }
4771    }
4772
4773    for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4774        ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4775        if (!ctrl) {
4776            continue;
4777        }
4778
4779        if (attached && !nvme_ns(ctrl, nsid)) {
4780            continue;
4781        }
4782
4783        ids[nr_ids++] = cntlid;
4784    }
4785
4786    list[0] = nr_ids;
4787
4788    return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4789}
4790
4791static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4792                                     bool active)
4793{
4794    NvmeNamespace *ns;
4795    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4796    uint32_t nsid = le32_to_cpu(c->nsid);
4797
4798    trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4799
4800    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4801        return NVME_INVALID_NSID | NVME_DNR;
4802    }
4803
4804    ns = nvme_ns(n, nsid);
4805    if (unlikely(!ns)) {
4806        if (!active) {
4807            ns = nvme_subsys_ns(n->subsys, nsid);
4808            if (!ns) {
4809                return nvme_rpt_empty_id_struct(n, req);
4810            }
4811        } else {
4812            return nvme_rpt_empty_id_struct(n, req);
4813        }
4814    }
4815
4816    if (c->csi == NVME_CSI_NVM) {
4817        return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
4818                        req);
4819    } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4820        return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4821                        req);
4822    }
4823
4824    return NVME_INVALID_FIELD | NVME_DNR;
4825}
4826
4827static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4828                                     bool active)
4829{
4830    NvmeNamespace *ns;
4831    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4832    uint32_t min_nsid = le32_to_cpu(c->nsid);
4833    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4834    static const int data_len = sizeof(list);
4835    uint32_t *list_ptr = (uint32_t *)list;
4836    int i, j = 0;
4837
4838    trace_pci_nvme_identify_nslist(min_nsid);
4839
4840    /*
4841     * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4842     * since the Active Namespace ID List should return namespaces with ids
4843     * *higher* than the NSID specified in the command. This is also specified
4844     * in the spec (NVM Express v1.3d, Section 5.15.4).
4845     */
4846    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4847        return NVME_INVALID_NSID | NVME_DNR;
4848    }
4849
4850    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4851        ns = nvme_ns(n, i);
4852        if (!ns) {
4853            if (!active) {
4854                ns = nvme_subsys_ns(n->subsys, i);
4855                if (!ns) {
4856                    continue;
4857                }
4858            } else {
4859                continue;
4860            }
4861        }
4862        if (ns->params.nsid <= min_nsid) {
4863            continue;
4864        }
4865        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4866        if (j == data_len / sizeof(uint32_t)) {
4867            break;
4868        }
4869    }
4870
4871    return nvme_c2h(n, list, data_len, req);
4872}
4873
4874static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4875                                         bool active)
4876{
4877    NvmeNamespace *ns;
4878    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4879    uint32_t min_nsid = le32_to_cpu(c->nsid);
4880    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4881    static const int data_len = sizeof(list);
4882    uint32_t *list_ptr = (uint32_t *)list;
4883    int i, j = 0;
4884
4885    trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
4886
4887    /*
4888     * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4889     */
4890    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4891        return NVME_INVALID_NSID | NVME_DNR;
4892    }
4893
4894    if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
4895        return NVME_INVALID_FIELD | NVME_DNR;
4896    }
4897
4898    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4899        ns = nvme_ns(n, i);
4900        if (!ns) {
4901            if (!active) {
4902                ns = nvme_subsys_ns(n->subsys, i);
4903                if (!ns) {
4904                    continue;
4905                }
4906            } else {
4907                continue;
4908            }
4909        }
4910        if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
4911            continue;
4912        }
4913        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4914        if (j == data_len / sizeof(uint32_t)) {
4915            break;
4916        }
4917    }
4918
4919    return nvme_c2h(n, list, data_len, req);
4920}
4921
4922static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
4923{
4924    NvmeNamespace *ns;
4925    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4926    uint32_t nsid = le32_to_cpu(c->nsid);
4927    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4928    uint8_t *pos = list;
4929    struct {
4930        NvmeIdNsDescr hdr;
4931        uint8_t v[NVME_NIDL_UUID];
4932    } QEMU_PACKED uuid = {};
4933    struct {
4934        NvmeIdNsDescr hdr;
4935        uint64_t v;
4936    } QEMU_PACKED eui64 = {};
4937    struct {
4938        NvmeIdNsDescr hdr;
4939        uint8_t v;
4940    } QEMU_PACKED csi = {};
4941
4942    trace_pci_nvme_identify_ns_descr_list(nsid);
4943
4944    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4945        return NVME_INVALID_NSID | NVME_DNR;
4946    }
4947
4948    ns = nvme_ns(n, nsid);
4949    if (unlikely(!ns)) {
4950        return NVME_INVALID_FIELD | NVME_DNR;
4951    }
4952
4953    /*
4954     * If the EUI-64 field is 0 and the NGUID field is 0, the namespace must
4955     * provide a valid Namespace UUID in the Namespace Identification Descriptor
4956     * data structure. QEMU does not yet support setting NGUID.
4957     */
4958    uuid.hdr.nidt = NVME_NIDT_UUID;
4959    uuid.hdr.nidl = NVME_NIDL_UUID;
4960    memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
4961    memcpy(pos, &uuid, sizeof(uuid));
4962    pos += sizeof(uuid);
4963
4964    if (ns->params.eui64) {
4965        eui64.hdr.nidt = NVME_NIDT_EUI64;
4966        eui64.hdr.nidl = NVME_NIDL_EUI64;
4967        eui64.v = cpu_to_be64(ns->params.eui64);
4968        memcpy(pos, &eui64, sizeof(eui64));
4969        pos += sizeof(eui64);
4970    }
4971
4972    csi.hdr.nidt = NVME_NIDT_CSI;
4973    csi.hdr.nidl = NVME_NIDL_CSI;
4974    csi.v = ns->csi;
4975    memcpy(pos, &csi, sizeof(csi));
4976    pos += sizeof(csi);
4977
4978    return nvme_c2h(n, list, sizeof(list), req);
4979}
4980
4981static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
4982{
4983    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4984    static const int data_len = sizeof(list);
4985
4986    trace_pci_nvme_identify_cmd_set();
4987
4988    NVME_SET_CSI(*list, NVME_CSI_NVM);
4989    NVME_SET_CSI(*list, NVME_CSI_ZONED);
4990
4991    return nvme_c2h(n, list, data_len, req);
4992}
4993
4994static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
4995{
4996    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4997
4998    trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
4999                            c->csi);
5000
5001    switch (c->cns) {
5002    case NVME_ID_CNS_NS:
5003        return nvme_identify_ns(n, req, true);
5004    case NVME_ID_CNS_NS_PRESENT:
5005        return nvme_identify_ns(n, req, false);
5006    case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5007        return nvme_identify_ctrl_list(n, req, true);
5008    case NVME_ID_CNS_CTRL_LIST:
5009        return nvme_identify_ctrl_list(n, req, false);
5010    case NVME_ID_CNS_CS_NS:
5011        return nvme_identify_ns_csi(n, req, true);
5012    case NVME_ID_CNS_CS_NS_PRESENT:
5013        return nvme_identify_ns_csi(n, req, false);
5014    case NVME_ID_CNS_CTRL:
5015        return nvme_identify_ctrl(n, req);
5016    case NVME_ID_CNS_CS_CTRL:
5017        return nvme_identify_ctrl_csi(n, req);
5018    case NVME_ID_CNS_NS_ACTIVE_LIST:
5019        return nvme_identify_nslist(n, req, true);
5020    case NVME_ID_CNS_NS_PRESENT_LIST:
5021        return nvme_identify_nslist(n, req, false);
5022    case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5023        return nvme_identify_nslist_csi(n, req, true);
5024    case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5025        return nvme_identify_nslist_csi(n, req, false);
5026    case NVME_ID_CNS_NS_DESCR_LIST:
5027        return nvme_identify_ns_descr_list(n, req);
5028    case NVME_ID_CNS_IO_COMMAND_SET:
5029        return nvme_identify_cmd_set(n, req);
5030    default:
5031        trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5032        return NVME_INVALID_FIELD | NVME_DNR;
5033    }
5034}
5035
5036static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5037{
5038    uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5039
5040    req->cqe.result = 1;
5041    if (nvme_check_sqid(n, sqid)) {
5042        return NVME_INVALID_FIELD | NVME_DNR;
5043    }
5044
5045    return NVME_SUCCESS;
5046}
5047
5048static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5049{
5050    trace_pci_nvme_setfeat_timestamp(ts);
5051
5052    n->host_timestamp = le64_to_cpu(ts);
5053    n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5054}
5055
5056static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5057{
5058    uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5059    uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5060
5061    union nvme_timestamp {
5062        struct {
5063            uint64_t timestamp:48;
5064            uint64_t sync:1;
5065            uint64_t origin:3;
5066            uint64_t rsvd1:12;
5067        };
5068        uint64_t all;
5069    };
5070
5071    union nvme_timestamp ts;
5072    ts.all = 0;
5073    ts.timestamp = n->host_timestamp + elapsed_time;
5074
5075    /* If the host timestamp is non-zero, set the timestamp origin */
5076    ts.origin = n->host_timestamp ? 0x01 : 0x00;
5077
5078    trace_pci_nvme_getfeat_timestamp(ts.all);
5079
5080    return cpu_to_le64(ts.all);
5081}
5082
5083static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5084{
5085    uint64_t timestamp = nvme_get_timestamp(n);
5086
5087    return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5088}
5089
5090static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5091{
5092    NvmeCmd *cmd = &req->cmd;
5093    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5094    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5095    uint32_t nsid = le32_to_cpu(cmd->nsid);
5096    uint32_t result;
5097    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5098    NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5099    uint16_t iv;
5100    NvmeNamespace *ns;
5101    int i;
5102
5103    static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5104        [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5105    };
5106
5107    trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5108
5109    if (!nvme_feature_support[fid]) {
5110        return NVME_INVALID_FIELD | NVME_DNR;
5111    }
5112
5113    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5114        if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5115            /*
5116             * The Reservation Notification Mask and Reservation Persistence
5117             * features require a status code of Invalid Field in Command when
5118             * NSID is FFFFFFFFh. Since the device does not support those
5119             * features we can always return Invalid Namespace or Format as we
5120             * should do for all other features.
5121             */
5122            return NVME_INVALID_NSID | NVME_DNR;
5123        }
5124
5125        if (!nvme_ns(n, nsid)) {
5126            return NVME_INVALID_FIELD | NVME_DNR;
5127        }
5128    }
5129
5130    switch (sel) {
5131    case NVME_GETFEAT_SELECT_CURRENT:
5132        break;
5133    case NVME_GETFEAT_SELECT_SAVED:
5134        /* no features are saveable by the controller; fallthrough */
5135    case NVME_GETFEAT_SELECT_DEFAULT:
5136        goto defaults;
5137    case NVME_GETFEAT_SELECT_CAP:
5138        result = nvme_feature_cap[fid];
5139        goto out;
5140    }
5141
5142    switch (fid) {
5143    case NVME_TEMPERATURE_THRESHOLD:
5144        result = 0;
5145
5146        /*
5147         * The controller only implements the Composite Temperature sensor, so
5148         * return 0 for all other sensors.
5149         */
5150        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5151            goto out;
5152        }
5153
5154        switch (NVME_TEMP_THSEL(dw11)) {
5155        case NVME_TEMP_THSEL_OVER:
5156            result = n->features.temp_thresh_hi;
5157            goto out;
5158        case NVME_TEMP_THSEL_UNDER:
5159            result = n->features.temp_thresh_low;
5160            goto out;
5161        }
5162
5163        return NVME_INVALID_FIELD | NVME_DNR;
5164    case NVME_ERROR_RECOVERY:
5165        if (!nvme_nsid_valid(n, nsid)) {
5166            return NVME_INVALID_NSID | NVME_DNR;
5167        }
5168
5169        ns = nvme_ns(n, nsid);
5170        if (unlikely(!ns)) {
5171            return NVME_INVALID_FIELD | NVME_DNR;
5172        }
5173
5174        result = ns->features.err_rec;
5175        goto out;
5176    case NVME_VOLATILE_WRITE_CACHE:
5177        result = 0;
5178        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5179            ns = nvme_ns(n, i);
5180            if (!ns) {
5181                continue;
5182            }
5183
5184            result = blk_enable_write_cache(ns->blkconf.blk);
5185            if (result) {
5186                break;
5187            }
5188        }
5189        trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5190        goto out;
5191    case NVME_ASYNCHRONOUS_EVENT_CONF:
5192        result = n->features.async_config;
5193        goto out;
5194    case NVME_TIMESTAMP:
5195        return nvme_get_feature_timestamp(n, req);
5196    case NVME_HOST_BEHAVIOR_SUPPORT:
5197        return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5198                        sizeof(n->features.hbs), req);
5199    default:
5200        break;
5201    }
5202
5203defaults:
5204    switch (fid) {
5205    case NVME_TEMPERATURE_THRESHOLD:
5206        result = 0;
5207
5208        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5209            break;
5210        }
5211
5212        if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5213            result = NVME_TEMPERATURE_WARNING;
5214        }
5215
5216        break;
5217    case NVME_NUMBER_OF_QUEUES:
5218        result = (n->params.max_ioqpairs - 1) |
5219            ((n->params.max_ioqpairs - 1) << 16);
5220        trace_pci_nvme_getfeat_numq(result);
5221        break;
5222    case NVME_INTERRUPT_VECTOR_CONF:
5223        iv = dw11 & 0xffff;
5224        if (iv >= n->params.max_ioqpairs + 1) {
5225            return NVME_INVALID_FIELD | NVME_DNR;
5226        }
5227
5228        result = iv;
5229        if (iv == n->admin_cq.vector) {
5230            result |= NVME_INTVC_NOCOALESCING;
5231        }
5232        break;
5233    default:
5234        result = nvme_feature_default[fid];
5235        break;
5236    }
5237
5238out:
5239    req->cqe.result = cpu_to_le32(result);
5240    return NVME_SUCCESS;
5241}
5242
5243static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5244{
5245    uint16_t ret;
5246    uint64_t timestamp;
5247
5248    ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5249    if (ret) {
5250        return ret;
5251    }
5252
5253    nvme_set_timestamp(n, timestamp);
5254
5255    return NVME_SUCCESS;
5256}
5257
5258static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5259{
5260    NvmeNamespace *ns = NULL;
5261
5262    NvmeCmd *cmd = &req->cmd;
5263    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5264    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5265    uint32_t nsid = le32_to_cpu(cmd->nsid);
5266    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5267    uint8_t save = NVME_SETFEAT_SAVE(dw10);
5268    uint16_t status;
5269    int i;
5270
5271    trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5272
5273    if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5274        return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5275    }
5276
5277    if (!nvme_feature_support[fid]) {
5278        return NVME_INVALID_FIELD | NVME_DNR;
5279    }
5280
5281    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5282        if (nsid != NVME_NSID_BROADCAST) {
5283            if (!nvme_nsid_valid(n, nsid)) {
5284                return NVME_INVALID_NSID | NVME_DNR;
5285            }
5286
5287            ns = nvme_ns(n, nsid);
5288            if (unlikely(!ns)) {
5289                return NVME_INVALID_FIELD | NVME_DNR;
5290            }
5291        }
5292    } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5293        if (!nvme_nsid_valid(n, nsid)) {
5294            return NVME_INVALID_NSID | NVME_DNR;
5295        }
5296
5297        return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5298    }
5299
5300    if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5301        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5302    }
5303
5304    switch (fid) {
5305    case NVME_TEMPERATURE_THRESHOLD:
5306        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5307            break;
5308        }
5309
5310        switch (NVME_TEMP_THSEL(dw11)) {
5311        case NVME_TEMP_THSEL_OVER:
5312            n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5313            break;
5314        case NVME_TEMP_THSEL_UNDER:
5315            n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5316            break;
5317        default:
5318            return NVME_INVALID_FIELD | NVME_DNR;
5319        }
5320
5321        if ((n->temperature >= n->features.temp_thresh_hi) ||
5322            (n->temperature <= n->features.temp_thresh_low)) {
5323            nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
5324        }
5325
5326        break;
5327    case NVME_ERROR_RECOVERY:
5328        if (nsid == NVME_NSID_BROADCAST) {
5329            for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5330                ns = nvme_ns(n, i);
5331
5332                if (!ns) {
5333                    continue;
5334                }
5335
5336                if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5337                    ns->features.err_rec = dw11;
5338                }
5339            }
5340
5341            break;
5342        }
5343
5344        assert(ns);
5345        if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
5346            ns->features.err_rec = dw11;
5347        }
5348        break;
5349    case NVME_VOLATILE_WRITE_CACHE:
5350        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5351            ns = nvme_ns(n, i);
5352            if (!ns) {
5353                continue;
5354            }
5355
5356            if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5357                blk_flush(ns->blkconf.blk);
5358            }
5359
5360            blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5361        }
5362
5363        break;
5364
5365    case NVME_NUMBER_OF_QUEUES:
5366        if (n->qs_created) {
5367            return NVME_CMD_SEQ_ERROR | NVME_DNR;
5368        }
5369
5370        /*
5371         * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5372         * and NSQR.
5373         */
5374        if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5375            return NVME_INVALID_FIELD | NVME_DNR;
5376        }
5377
5378        trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5379                                    ((dw11 >> 16) & 0xffff) + 1,
5380                                    n->params.max_ioqpairs,
5381                                    n->params.max_ioqpairs);
5382        req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
5383                                      ((n->params.max_ioqpairs - 1) << 16));
5384        break;
5385    case NVME_ASYNCHRONOUS_EVENT_CONF:
5386        n->features.async_config = dw11;
5387        break;
5388    case NVME_TIMESTAMP:
5389        return nvme_set_feature_timestamp(n, req);
5390    case NVME_HOST_BEHAVIOR_SUPPORT:
5391        status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5392                          sizeof(n->features.hbs), req);
5393        if (status) {
5394            return status;
5395        }
5396
5397        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5398            ns = nvme_ns(n, i);
5399
5400            if (!ns) {
5401                continue;
5402            }
5403
5404            ns->id_ns.nlbaf = ns->nlbaf - 1;
5405            if (!n->features.hbs.lbafee) {
5406                ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5407            }
5408        }
5409
5410        return status;
5411    case NVME_COMMAND_SET_PROFILE:
5412        if (dw11 & 0x1ff) {
5413            trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5414            return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5415        }
5416        break;
5417    default:
5418        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5419    }
5420    return NVME_SUCCESS;
5421}
5422
5423static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5424{
5425    trace_pci_nvme_aer(nvme_cid(req));
5426
5427    if (n->outstanding_aers > n->params.aerl) {
5428        trace_pci_nvme_aer_aerl_exceeded();
5429        return NVME_AER_LIMIT_EXCEEDED;
5430    }
5431
5432    n->aer_reqs[n->outstanding_aers] = req;
5433    n->outstanding_aers++;
5434
5435    if (!QTAILQ_EMPTY(&n->aer_queue)) {
5436        nvme_process_aers(n);
5437    }
5438
5439    return NVME_NO_COMPLETE;
5440}
5441
5442static void nvme_update_dmrsl(NvmeCtrl *n)
5443{
5444    int nsid;
5445
5446    for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5447        NvmeNamespace *ns = nvme_ns(n, nsid);
5448        if (!ns) {
5449            continue;
5450        }
5451
5452        n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5453                                BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5454    }
5455}
5456
5457static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5458{
5459    uint32_t cc = ldl_le_p(&n->bar.cc);
5460
5461    ns->iocs = nvme_cse_iocs_none;
5462    switch (ns->csi) {
5463    case NVME_CSI_NVM:
5464        if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5465            ns->iocs = nvme_cse_iocs_nvm;
5466        }
5467        break;
5468    case NVME_CSI_ZONED:
5469        if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5470            ns->iocs = nvme_cse_iocs_zoned;
5471        } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5472            ns->iocs = nvme_cse_iocs_nvm;
5473        }
5474        break;
5475    }
5476}
5477
5478static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5479{
5480    NvmeNamespace *ns;
5481    NvmeCtrl *ctrl;
5482    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5483    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5484    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5485    uint8_t sel = dw10 & 0xf;
5486    uint16_t *nr_ids = &list[0];
5487    uint16_t *ids = &list[1];
5488    uint16_t ret;
5489    int i;
5490
5491    trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5492
5493    if (!nvme_nsid_valid(n, nsid)) {
5494        return NVME_INVALID_NSID | NVME_DNR;
5495    }
5496
5497    ns = nvme_subsys_ns(n->subsys, nsid);
5498    if (!ns) {
5499        return NVME_INVALID_FIELD | NVME_DNR;
5500    }
5501
5502    ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5503    if (ret) {
5504        return ret;
5505    }
5506
5507    if (!*nr_ids) {
5508        return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5509    }
5510
5511    *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5512    for (i = 0; i < *nr_ids; i++) {
5513        ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5514        if (!ctrl) {
5515            return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5516        }
5517
5518        switch (sel) {
5519        case NVME_NS_ATTACHMENT_ATTACH:
5520            if (nvme_ns(ctrl, nsid)) {
5521                return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5522            }
5523
5524            if (ns->attached && !ns->params.shared) {
5525                return NVME_NS_PRIVATE | NVME_DNR;
5526            }
5527
5528            nvme_attach_ns(ctrl, ns);
5529            nvme_select_iocs_ns(ctrl, ns);
5530
5531            break;
5532
5533        case NVME_NS_ATTACHMENT_DETACH:
5534            if (!nvme_ns(ctrl, nsid)) {
5535                return NVME_NS_NOT_ATTACHED | NVME_DNR;
5536            }
5537
5538            ctrl->namespaces[nsid] = NULL;
5539            ns->attached--;
5540
5541            nvme_update_dmrsl(ctrl);
5542
5543            break;
5544
5545        default:
5546            return NVME_INVALID_FIELD | NVME_DNR;
5547        }
5548
5549        /*
5550         * Add namespace id to the changed namespace id list for event clearing
5551         * via Get Log Page command.
5552         */
5553        if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5554            nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5555                               NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5556                               NVME_LOG_CHANGED_NSLIST);
5557        }
5558    }
5559
5560    return NVME_SUCCESS;
5561}
5562
5563typedef struct NvmeFormatAIOCB {
5564    BlockAIOCB common;
5565    BlockAIOCB *aiocb;
5566    QEMUBH *bh;
5567    NvmeRequest *req;
5568    int ret;
5569
5570    NvmeNamespace *ns;
5571    uint32_t nsid;
5572    bool broadcast;
5573    int64_t offset;
5574
5575    uint8_t lbaf;
5576    uint8_t mset;
5577    uint8_t pi;
5578    uint8_t pil;
5579} NvmeFormatAIOCB;
5580
5581static void nvme_format_bh(void *opaque);
5582
5583static void nvme_format_cancel(BlockAIOCB *aiocb)
5584{
5585    NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5586
5587    if (iocb->aiocb) {
5588        blk_aio_cancel_async(iocb->aiocb);
5589    }
5590}
5591
5592static const AIOCBInfo nvme_format_aiocb_info = {
5593    .aiocb_size = sizeof(NvmeFormatAIOCB),
5594    .cancel_async = nvme_format_cancel,
5595    .get_aio_context = nvme_get_aio_context,
5596};
5597
5598static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5599                            uint8_t pi, uint8_t pil)
5600{
5601    uint8_t lbafl = lbaf & 0xf;
5602    uint8_t lbafu = lbaf >> 4;
5603
5604    trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5605
5606    ns->id_ns.dps = (pil << 3) | pi;
5607    ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5608
5609    nvme_ns_init_format(ns);
5610}
5611
5612static void nvme_format_ns_cb(void *opaque, int ret)
5613{
5614    NvmeFormatAIOCB *iocb = opaque;
5615    NvmeNamespace *ns = iocb->ns;
5616    int bytes;
5617
5618    if (ret < 0) {
5619        iocb->ret = ret;
5620        goto done;
5621    }
5622
5623    assert(ns);
5624
5625    if (iocb->offset < ns->size) {
5626        bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5627
5628        iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5629                                            bytes, BDRV_REQ_MAY_UNMAP,
5630                                            nvme_format_ns_cb, iocb);
5631
5632        iocb->offset += bytes;
5633        return;
5634    }
5635
5636    nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5637    ns->status = 0x0;
5638    iocb->ns = NULL;
5639    iocb->offset = 0;
5640
5641done:
5642    iocb->aiocb = NULL;
5643    qemu_bh_schedule(iocb->bh);
5644}
5645
5646static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5647{
5648    if (ns->params.zoned) {
5649        return NVME_INVALID_FORMAT | NVME_DNR;
5650    }
5651
5652    if (lbaf > ns->id_ns.nlbaf) {
5653        return NVME_INVALID_FORMAT | NVME_DNR;
5654    }
5655
5656    if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5657        return NVME_INVALID_FORMAT | NVME_DNR;
5658    }
5659
5660    if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5661        return NVME_INVALID_FIELD | NVME_DNR;
5662    }
5663
5664    return NVME_SUCCESS;
5665}
5666
5667static void nvme_format_bh(void *opaque)
5668{
5669    NvmeFormatAIOCB *iocb = opaque;
5670    NvmeRequest *req = iocb->req;
5671    NvmeCtrl *n = nvme_ctrl(req);
5672    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5673    uint8_t lbaf = dw10 & 0xf;
5674    uint8_t pi = (dw10 >> 5) & 0x7;
5675    uint16_t status;
5676    int i;
5677
5678    if (iocb->ret < 0) {
5679        goto done;
5680    }
5681
5682    if (iocb->broadcast) {
5683        for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5684            iocb->ns = nvme_ns(n, i);
5685            if (iocb->ns) {
5686                iocb->nsid = i;
5687                break;
5688            }
5689        }
5690    }
5691
5692    if (!iocb->ns) {
5693        goto done;
5694    }
5695
5696    status = nvme_format_check(iocb->ns, lbaf, pi);
5697    if (status) {
5698        req->status = status;
5699        goto done;
5700    }
5701
5702    iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5703    nvme_format_ns_cb(iocb, 0);
5704    return;
5705
5706done:
5707    qemu_bh_delete(iocb->bh);
5708    iocb->bh = NULL;
5709
5710    iocb->common.cb(iocb->common.opaque, iocb->ret);
5711
5712    qemu_aio_unref(iocb);
5713}
5714
5715static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5716{
5717    NvmeFormatAIOCB *iocb;
5718    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5719    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5720    uint8_t lbaf = dw10 & 0xf;
5721    uint8_t mset = (dw10 >> 4) & 0x1;
5722    uint8_t pi = (dw10 >> 5) & 0x7;
5723    uint8_t pil = (dw10 >> 8) & 0x1;
5724    uint8_t lbafu = (dw10 >> 12) & 0x3;
5725    uint16_t status;
5726
5727    iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5728
5729    iocb->req = req;
5730    iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
5731    iocb->ret = 0;
5732    iocb->ns = NULL;
5733    iocb->nsid = 0;
5734    iocb->lbaf = lbaf;
5735    iocb->mset = mset;
5736    iocb->pi = pi;
5737    iocb->pil = pil;
5738    iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5739    iocb->offset = 0;
5740
5741    if (n->features.hbs.lbafee) {
5742        iocb->lbaf |= lbafu << 4;
5743    }
5744
5745    if (!iocb->broadcast) {
5746        if (!nvme_nsid_valid(n, nsid)) {
5747            status = NVME_INVALID_NSID | NVME_DNR;
5748            goto out;
5749        }
5750
5751        iocb->ns = nvme_ns(n, nsid);
5752        if (!iocb->ns) {
5753            status = NVME_INVALID_FIELD | NVME_DNR;
5754            goto out;
5755        }
5756    }
5757
5758    req->aiocb = &iocb->common;
5759    qemu_bh_schedule(iocb->bh);
5760
5761    return NVME_NO_COMPLETE;
5762
5763out:
5764    qemu_bh_delete(iocb->bh);
5765    iocb->bh = NULL;
5766    qemu_aio_unref(iocb);
5767    return status;
5768}
5769
5770static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
5771{
5772    trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
5773                             nvme_adm_opc_str(req->cmd.opcode));
5774
5775    if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
5776        trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
5777        return NVME_INVALID_OPCODE | NVME_DNR;
5778    }
5779
5780    /* SGLs shall not be used for Admin commands in NVMe over PCIe */
5781    if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
5782        return NVME_INVALID_FIELD | NVME_DNR;
5783    }
5784
5785    if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
5786        return NVME_INVALID_FIELD;
5787    }
5788
5789    switch (req->cmd.opcode) {
5790    case NVME_ADM_CMD_DELETE_SQ:
5791        return nvme_del_sq(n, req);
5792    case NVME_ADM_CMD_CREATE_SQ:
5793        return nvme_create_sq(n, req);
5794    case NVME_ADM_CMD_GET_LOG_PAGE:
5795        return nvme_get_log(n, req);
5796    case NVME_ADM_CMD_DELETE_CQ:
5797        return nvme_del_cq(n, req);
5798    case NVME_ADM_CMD_CREATE_CQ:
5799        return nvme_create_cq(n, req);
5800    case NVME_ADM_CMD_IDENTIFY:
5801        return nvme_identify(n, req);
5802    case NVME_ADM_CMD_ABORT:
5803        return nvme_abort(n, req);
5804    case NVME_ADM_CMD_SET_FEATURES:
5805        return nvme_set_feature(n, req);
5806    case NVME_ADM_CMD_GET_FEATURES:
5807        return nvme_get_feature(n, req);
5808    case NVME_ADM_CMD_ASYNC_EV_REQ:
5809        return nvme_aer(n, req);
5810    case NVME_ADM_CMD_NS_ATTACHMENT:
5811        return nvme_ns_attachment(n, req);
5812    case NVME_ADM_CMD_FORMAT_NVM:
5813        return nvme_format(n, req);
5814    default:
5815        assert(false);
5816    }
5817
5818    return NVME_INVALID_OPCODE | NVME_DNR;
5819}
5820
5821static void nvme_process_sq(void *opaque)
5822{
5823    NvmeSQueue *sq = opaque;
5824    NvmeCtrl *n = sq->ctrl;
5825    NvmeCQueue *cq = n->cq[sq->cqid];
5826
5827    uint16_t status;
5828    hwaddr addr;
5829    NvmeCmd cmd;
5830    NvmeRequest *req;
5831
5832    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
5833        addr = sq->dma_addr + sq->head * n->sqe_size;
5834        if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
5835            trace_pci_nvme_err_addr_read(addr);
5836            trace_pci_nvme_err_cfs();
5837            stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
5838            break;
5839        }
5840        nvme_inc_sq_head(sq);
5841
5842        req = QTAILQ_FIRST(&sq->req_list);
5843        QTAILQ_REMOVE(&sq->req_list, req, entry);
5844        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
5845        nvme_req_clear(req);
5846        req->cqe.cid = cmd.cid;
5847        memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
5848
5849        status = sq->sqid ? nvme_io_cmd(n, req) :
5850            nvme_admin_cmd(n, req);
5851        if (status != NVME_NO_COMPLETE) {
5852            req->status = status;
5853            nvme_enqueue_req_completion(cq, req);
5854        }
5855    }
5856}
5857
5858static void nvme_ctrl_reset(NvmeCtrl *n)
5859{
5860    NvmeNamespace *ns;
5861    int i;
5862
5863    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5864        ns = nvme_ns(n, i);
5865        if (!ns) {
5866            continue;
5867        }
5868
5869        nvme_ns_drain(ns);
5870    }
5871
5872    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5873        if (n->sq[i] != NULL) {
5874            nvme_free_sq(n->sq[i], n);
5875        }
5876    }
5877    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5878        if (n->cq[i] != NULL) {
5879            nvme_free_cq(n->cq[i], n);
5880        }
5881    }
5882
5883    while (!QTAILQ_EMPTY(&n->aer_queue)) {
5884        NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
5885        QTAILQ_REMOVE(&n->aer_queue, event, entry);
5886        g_free(event);
5887    }
5888
5889    n->aer_queued = 0;
5890    n->outstanding_aers = 0;
5891    n->qs_created = false;
5892}
5893
5894static void nvme_ctrl_shutdown(NvmeCtrl *n)
5895{
5896    NvmeNamespace *ns;
5897    int i;
5898
5899    if (n->pmr.dev) {
5900        memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
5901    }
5902
5903    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5904        ns = nvme_ns(n, i);
5905        if (!ns) {
5906            continue;
5907        }
5908
5909        nvme_ns_shutdown(ns);
5910    }
5911}
5912
5913static void nvme_select_iocs(NvmeCtrl *n)
5914{
5915    NvmeNamespace *ns;
5916    int i;
5917
5918    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5919        ns = nvme_ns(n, i);
5920        if (!ns) {
5921            continue;
5922        }
5923
5924        nvme_select_iocs_ns(n, ns);
5925    }
5926}
5927
5928static int nvme_start_ctrl(NvmeCtrl *n)
5929{
5930    uint64_t cap = ldq_le_p(&n->bar.cap);
5931    uint32_t cc = ldl_le_p(&n->bar.cc);
5932    uint32_t aqa = ldl_le_p(&n->bar.aqa);
5933    uint64_t asq = ldq_le_p(&n->bar.asq);
5934    uint64_t acq = ldq_le_p(&n->bar.acq);
5935    uint32_t page_bits = NVME_CC_MPS(cc) + 12;
5936    uint32_t page_size = 1 << page_bits;
5937
5938    if (unlikely(n->cq[0])) {
5939        trace_pci_nvme_err_startfail_cq();
5940        return -1;
5941    }
5942    if (unlikely(n->sq[0])) {
5943        trace_pci_nvme_err_startfail_sq();
5944        return -1;
5945    }
5946    if (unlikely(asq & (page_size - 1))) {
5947        trace_pci_nvme_err_startfail_asq_misaligned(asq);
5948        return -1;
5949    }
5950    if (unlikely(acq & (page_size - 1))) {
5951        trace_pci_nvme_err_startfail_acq_misaligned(acq);
5952        return -1;
5953    }
5954    if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
5955        trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
5956        return -1;
5957    }
5958    if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
5959        trace_pci_nvme_err_startfail_page_too_small(
5960                    NVME_CC_MPS(cc),
5961                    NVME_CAP_MPSMIN(cap));
5962        return -1;
5963    }
5964    if (unlikely(NVME_CC_MPS(cc) >
5965                 NVME_CAP_MPSMAX(cap))) {
5966        trace_pci_nvme_err_startfail_page_too_large(
5967                    NVME_CC_MPS(cc),
5968                    NVME_CAP_MPSMAX(cap));
5969        return -1;
5970    }
5971    if (unlikely(NVME_CC_IOCQES(cc) <
5972                 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
5973        trace_pci_nvme_err_startfail_cqent_too_small(
5974                    NVME_CC_IOCQES(cc),
5975                    NVME_CTRL_CQES_MIN(cap));
5976        return -1;
5977    }
5978    if (unlikely(NVME_CC_IOCQES(cc) >
5979                 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
5980        trace_pci_nvme_err_startfail_cqent_too_large(
5981                    NVME_CC_IOCQES(cc),
5982                    NVME_CTRL_CQES_MAX(cap));
5983        return -1;
5984    }
5985    if (unlikely(NVME_CC_IOSQES(cc) <
5986                 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
5987        trace_pci_nvme_err_startfail_sqent_too_small(
5988                    NVME_CC_IOSQES(cc),
5989                    NVME_CTRL_SQES_MIN(cap));
5990        return -1;
5991    }
5992    if (unlikely(NVME_CC_IOSQES(cc) >
5993                 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
5994        trace_pci_nvme_err_startfail_sqent_too_large(
5995                    NVME_CC_IOSQES(cc),
5996                    NVME_CTRL_SQES_MAX(cap));
5997        return -1;
5998    }
5999    if (unlikely(!NVME_AQA_ASQS(aqa))) {
6000        trace_pci_nvme_err_startfail_asqent_sz_zero();
6001        return -1;
6002    }
6003    if (unlikely(!NVME_AQA_ACQS(aqa))) {
6004        trace_pci_nvme_err_startfail_acqent_sz_zero();
6005        return -1;
6006    }
6007
6008    n->page_bits = page_bits;
6009    n->page_size = page_size;
6010    n->max_prp_ents = n->page_size / sizeof(uint64_t);
6011    n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6012    n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6013    nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6014    nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6015
6016    nvme_set_timestamp(n, 0ULL);
6017
6018    QTAILQ_INIT(&n->aer_queue);
6019
6020    nvme_select_iocs(n);
6021
6022    return 0;
6023}
6024
6025static void nvme_cmb_enable_regs(NvmeCtrl *n)
6026{
6027    uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6028    uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6029
6030    NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6031    NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6032    NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6033    stl_le_p(&n->bar.cmbloc, cmbloc);
6034
6035    NVME_CMBSZ_SET_SQS(cmbsz, 1);
6036    NVME_CMBSZ_SET_CQS(cmbsz, 0);
6037    NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6038    NVME_CMBSZ_SET_RDS(cmbsz, 1);
6039    NVME_CMBSZ_SET_WDS(cmbsz, 1);
6040    NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6041    NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6042    stl_le_p(&n->bar.cmbsz, cmbsz);
6043}
6044
6045static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6046                           unsigned size)
6047{
6048    uint64_t cap = ldq_le_p(&n->bar.cap);
6049    uint32_t cc = ldl_le_p(&n->bar.cc);
6050    uint32_t intms = ldl_le_p(&n->bar.intms);
6051    uint32_t csts = ldl_le_p(&n->bar.csts);
6052    uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6053
6054    if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6055        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6056                       "MMIO write not 32-bit aligned,"
6057                       " offset=0x%"PRIx64"", offset);
6058        /* should be ignored, fall through for now */
6059    }
6060
6061    if (unlikely(size < sizeof(uint32_t))) {
6062        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6063                       "MMIO write smaller than 32-bits,"
6064                       " offset=0x%"PRIx64", size=%u",
6065                       offset, size);
6066        /* should be ignored, fall through for now */
6067    }
6068
6069    switch (offset) {
6070    case NVME_REG_INTMS:
6071        if (unlikely(msix_enabled(&(n->parent_obj)))) {
6072            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6073                           "undefined access to interrupt mask set"
6074                           " when MSI-X is enabled");
6075            /* should be ignored, fall through for now */
6076        }
6077        intms |= data;
6078        stl_le_p(&n->bar.intms, intms);
6079        n->bar.intmc = n->bar.intms;
6080        trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6081        nvme_irq_check(n);
6082        break;
6083    case NVME_REG_INTMC:
6084        if (unlikely(msix_enabled(&(n->parent_obj)))) {
6085            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6086                           "undefined access to interrupt mask clr"
6087                           " when MSI-X is enabled");
6088            /* should be ignored, fall through for now */
6089        }
6090        intms &= ~data;
6091        stl_le_p(&n->bar.intms, intms);
6092        n->bar.intmc = n->bar.intms;
6093        trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6094        nvme_irq_check(n);
6095        break;
6096    case NVME_REG_CC:
6097        trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6098
6099        /* Windows first sends data, then sends enable bit */
6100        if (!NVME_CC_EN(data) && !NVME_CC_EN(cc) &&
6101            !NVME_CC_SHN(data) && !NVME_CC_SHN(cc))
6102        {
6103            cc = data;
6104        }
6105
6106        if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6107            cc = data;
6108
6109            /* flush CC since nvme_start_ctrl() needs the value */
6110            stl_le_p(&n->bar.cc, cc);
6111            if (unlikely(nvme_start_ctrl(n))) {
6112                trace_pci_nvme_err_startfail();
6113                csts = NVME_CSTS_FAILED;
6114            } else {
6115                trace_pci_nvme_mmio_start_success();
6116                csts = NVME_CSTS_READY;
6117            }
6118        } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6119            trace_pci_nvme_mmio_stopped();
6120            nvme_ctrl_reset(n);
6121            cc = 0;
6122            csts &= ~NVME_CSTS_READY;
6123        }
6124
6125        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6126            trace_pci_nvme_mmio_shutdown_set();
6127            nvme_ctrl_shutdown(n);
6128            cc = data;
6129            csts |= NVME_CSTS_SHST_COMPLETE;
6130        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6131            trace_pci_nvme_mmio_shutdown_cleared();
6132            csts &= ~NVME_CSTS_SHST_COMPLETE;
6133            cc = data;
6134        }
6135
6136        stl_le_p(&n->bar.cc, cc);
6137        stl_le_p(&n->bar.csts, csts);
6138
6139        break;
6140    case NVME_REG_CSTS:
6141        if (data & (1 << 4)) {
6142            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6143                           "attempted to W1C CSTS.NSSRO"
6144                           " but CAP.NSSRS is zero (not supported)");
6145        } else if (data != 0) {
6146            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6147                           "attempted to set a read only bit"
6148                           " of controller status");
6149        }
6150        break;
6151    case NVME_REG_NSSR:
6152        if (data == 0x4e564d65) {
6153            trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6154        } else {
6155            /* The spec says that writes of other values have no effect */
6156            return;
6157        }
6158        break;
6159    case NVME_REG_AQA:
6160        stl_le_p(&n->bar.aqa, data);
6161        trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6162        break;
6163    case NVME_REG_ASQ:
6164        stn_le_p(&n->bar.asq, size, data);
6165        trace_pci_nvme_mmio_asqaddr(data);
6166        break;
6167    case NVME_REG_ASQ + 4:
6168        stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6169        trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6170        break;
6171    case NVME_REG_ACQ:
6172        trace_pci_nvme_mmio_acqaddr(data);
6173        stn_le_p(&n->bar.acq, size, data);
6174        break;
6175    case NVME_REG_ACQ + 4:
6176        stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6177        trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6178        break;
6179    case NVME_REG_CMBLOC:
6180        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6181                       "invalid write to reserved CMBLOC"
6182                       " when CMBSZ is zero, ignored");
6183        return;
6184    case NVME_REG_CMBSZ:
6185        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6186                       "invalid write to read only CMBSZ, ignored");
6187        return;
6188    case NVME_REG_CMBMSC:
6189        if (!NVME_CAP_CMBS(cap)) {
6190            return;
6191        }
6192
6193        stn_le_p(&n->bar.cmbmsc, size, data);
6194        n->cmb.cmse = false;
6195
6196        if (NVME_CMBMSC_CRE(data)) {
6197            nvme_cmb_enable_regs(n);
6198
6199            if (NVME_CMBMSC_CMSE(data)) {
6200                uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6201                hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6202                if (cba + int128_get64(n->cmb.mem.size) < cba) {
6203                    uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6204                    NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6205                    stl_le_p(&n->bar.cmbsts, cmbsts);
6206                    return;
6207                }
6208
6209                n->cmb.cba = cba;
6210                n->cmb.cmse = true;
6211            }
6212        } else {
6213            n->bar.cmbsz = 0;
6214            n->bar.cmbloc = 0;
6215        }
6216
6217        return;
6218    case NVME_REG_CMBMSC + 4:
6219        stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6220        return;
6221
6222    case NVME_REG_PMRCAP:
6223        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6224                       "invalid write to PMRCAP register, ignored");
6225        return;
6226    case NVME_REG_PMRCTL:
6227        if (!NVME_CAP_PMRS(cap)) {
6228            return;
6229        }
6230
6231        stl_le_p(&n->bar.pmrctl, data);
6232        if (NVME_PMRCTL_EN(data)) {
6233            memory_region_set_enabled(&n->pmr.dev->mr, true);
6234            pmrsts = 0;
6235        } else {
6236            memory_region_set_enabled(&n->pmr.dev->mr, false);
6237            NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6238            n->pmr.cmse = false;
6239        }
6240        stl_le_p(&n->bar.pmrsts, pmrsts);
6241        return;
6242    case NVME_REG_PMRSTS:
6243        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6244                       "invalid write to PMRSTS register, ignored");
6245        return;
6246    case NVME_REG_PMREBS:
6247        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6248                       "invalid write to PMREBS register, ignored");
6249        return;
6250    case NVME_REG_PMRSWTP:
6251        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6252                       "invalid write to PMRSWTP register, ignored");
6253        return;
6254    case NVME_REG_PMRMSCL:
6255        if (!NVME_CAP_PMRS(cap)) {
6256            return;
6257        }
6258
6259        stl_le_p(&n->bar.pmrmscl, data);
6260        n->pmr.cmse = false;
6261
6262        if (NVME_PMRMSCL_CMSE(data)) {
6263            uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6264            hwaddr cba = pmrmscu << 32 |
6265                (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6266            if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6267                NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6268                stl_le_p(&n->bar.pmrsts, pmrsts);
6269                return;
6270            }
6271
6272            n->pmr.cmse = true;
6273            n->pmr.cba = cba;
6274        }
6275
6276        return;
6277    case NVME_REG_PMRMSCU:
6278        if (!NVME_CAP_PMRS(cap)) {
6279            return;
6280        }
6281
6282        stl_le_p(&n->bar.pmrmscu, data);
6283        return;
6284    default:
6285        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6286                       "invalid MMIO write,"
6287                       " offset=0x%"PRIx64", data=%"PRIx64"",
6288                       offset, data);
6289        break;
6290    }
6291}
6292
6293static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6294{
6295    NvmeCtrl *n = (NvmeCtrl *)opaque;
6296    uint8_t *ptr = (uint8_t *)&n->bar;
6297
6298    trace_pci_nvme_mmio_read(addr, size);
6299
6300    if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6301        NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6302                       "MMIO read not 32-bit aligned,"
6303                       " offset=0x%"PRIx64"", addr);
6304        /* should RAZ, fall through for now */
6305    } else if (unlikely(size < sizeof(uint32_t))) {
6306        NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6307                       "MMIO read smaller than 32-bits,"
6308                       " offset=0x%"PRIx64"", addr);
6309        /* should RAZ, fall through for now */
6310    }
6311
6312    if (addr > sizeof(n->bar) - size) {
6313        NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6314                       "MMIO read beyond last register,"
6315                       " offset=0x%"PRIx64", returning 0", addr);
6316
6317        return 0;
6318    }
6319
6320    /*
6321     * When PMRWBM bit 1 is set then read from
6322     * from PMRSTS should ensure prior writes
6323     * made it to persistent media
6324     */
6325    if (addr == NVME_REG_PMRSTS &&
6326        (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6327        memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6328    }
6329
6330    return ldn_le_p(ptr + addr, size);
6331}
6332
6333static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6334{
6335    uint32_t qid;
6336
6337    if (unlikely(addr & ((1 << 2) - 1))) {
6338        NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6339                       "doorbell write not 32-bit aligned,"
6340                       " offset=0x%"PRIx64", ignoring", addr);
6341        return;
6342    }
6343
6344    if (((addr - 0x1000) >> 2) & 1) {
6345        /* Completion queue doorbell write */
6346
6347        uint16_t new_head = val & 0xffff;
6348        int start_sqs;
6349        NvmeCQueue *cq;
6350
6351        qid = (addr - (0x1000 + (1 << 2))) >> 3;
6352        if (unlikely(nvme_check_cqid(n, qid))) {
6353            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6354                           "completion queue doorbell write"
6355                           " for nonexistent queue,"
6356                           " sqid=%"PRIu32", ignoring", qid);
6357
6358            /*
6359             * NVM Express v1.3d, Section 4.1 state: "If host software writes
6360             * an invalid value to the Submission Queue Tail Doorbell or
6361             * Completion Queue Head Doorbell regiter and an Asynchronous Event
6362             * Request command is outstanding, then an asynchronous event is
6363             * posted to the Admin Completion Queue with a status code of
6364             * Invalid Doorbell Write Value."
6365             *
6366             * Also note that the spec includes the "Invalid Doorbell Register"
6367             * status code, but nowhere does it specify when to use it.
6368             * However, it seems reasonable to use it here in a similar
6369             * fashion.
6370             */
6371            if (n->outstanding_aers) {
6372                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6373                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6374                                   NVME_LOG_ERROR_INFO);
6375            }
6376
6377            return;
6378        }
6379
6380        cq = n->cq[qid];
6381        if (unlikely(new_head >= cq->size)) {
6382            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6383                           "completion queue doorbell write value"
6384                           " beyond queue size, sqid=%"PRIu32","
6385                           " new_head=%"PRIu16", ignoring",
6386                           qid, new_head);
6387
6388            if (n->outstanding_aers) {
6389                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6390                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6391                                   NVME_LOG_ERROR_INFO);
6392            }
6393
6394            return;
6395        }
6396
6397        trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6398
6399        start_sqs = nvme_cq_full(cq) ? 1 : 0;
6400        cq->head = new_head;
6401        if (start_sqs) {
6402            NvmeSQueue *sq;
6403            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6404                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6405            }
6406            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6407        }
6408
6409        if (cq->tail == cq->head) {
6410            if (cq->irq_enabled) {
6411                n->cq_pending--;
6412            }
6413
6414            nvme_irq_deassert(n, cq);
6415        }
6416    } else {
6417        /* Submission queue doorbell write */
6418
6419        uint16_t new_tail = val & 0xffff;
6420        NvmeSQueue *sq;
6421
6422        qid = (addr - 0x1000) >> 3;
6423        if (unlikely(nvme_check_sqid(n, qid))) {
6424            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6425                           "submission queue doorbell write"
6426                           " for nonexistent queue,"
6427                           " sqid=%"PRIu32", ignoring", qid);
6428
6429            if (n->outstanding_aers) {
6430                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6431                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6432                                   NVME_LOG_ERROR_INFO);
6433            }
6434
6435            return;
6436        }
6437
6438        sq = n->sq[qid];
6439        if (unlikely(new_tail >= sq->size)) {
6440            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6441                           "submission queue doorbell write value"
6442                           " beyond queue size, sqid=%"PRIu32","
6443                           " new_tail=%"PRIu16", ignoring",
6444                           qid, new_tail);
6445
6446            if (n->outstanding_aers) {
6447                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6448                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6449                                   NVME_LOG_ERROR_INFO);
6450            }
6451
6452            return;
6453        }
6454
6455        trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6456
6457        sq->tail = new_tail;
6458        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6459    }
6460}
6461
6462static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6463                            unsigned size)
6464{
6465    NvmeCtrl *n = (NvmeCtrl *)opaque;
6466
6467    trace_pci_nvme_mmio_write(addr, data, size);
6468
6469    if (addr < sizeof(n->bar)) {
6470        nvme_write_bar(n, addr, data, size);
6471    } else {
6472        nvme_process_db(n, addr, data);
6473    }
6474}
6475
6476static const MemoryRegionOps nvme_mmio_ops = {
6477    .read = nvme_mmio_read,
6478    .write = nvme_mmio_write,
6479    .endianness = DEVICE_LITTLE_ENDIAN,
6480    .impl = {
6481        .min_access_size = 2,
6482        .max_access_size = 8,
6483    },
6484};
6485
6486static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
6487                           unsigned size)
6488{
6489    NvmeCtrl *n = (NvmeCtrl *)opaque;
6490    stn_le_p(&n->cmb.buf[addr], size, data);
6491}
6492
6493static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
6494{
6495    NvmeCtrl *n = (NvmeCtrl *)opaque;
6496    return ldn_le_p(&n->cmb.buf[addr], size);
6497}
6498
6499static const MemoryRegionOps nvme_cmb_ops = {
6500    .read = nvme_cmb_read,
6501    .write = nvme_cmb_write,
6502    .endianness = DEVICE_LITTLE_ENDIAN,
6503    .impl = {
6504        .min_access_size = 1,
6505        .max_access_size = 8,
6506    },
6507};
6508
6509static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
6510{
6511    NvmeParams *params = &n->params;
6512
6513    if (params->num_queues) {
6514        warn_report("num_queues is deprecated; please use max_ioqpairs "
6515                    "instead");
6516
6517        params->max_ioqpairs = params->num_queues - 1;
6518    }
6519
6520    if (n->namespace.blkconf.blk && n->subsys) {
6521        error_setg(errp, "subsystem support is unavailable with legacy "
6522                   "namespace ('drive' property)");
6523        return;
6524    }
6525
6526    if (params->max_ioqpairs < 1 ||
6527        params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
6528        error_setg(errp, "max_ioqpairs must be between 1 and %d",
6529                   NVME_MAX_IOQPAIRS);
6530        return;
6531    }
6532
6533    if (params->msix_qsize < 1 ||
6534        params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
6535        error_setg(errp, "msix_qsize must be between 1 and %d",
6536                   PCI_MSIX_FLAGS_QSIZE + 1);
6537        return;
6538    }
6539
6540    if (!params->serial) {
6541        error_setg(errp, "serial property not set");
6542        return;
6543    }
6544
6545    if (n->pmr.dev) {
6546        if (host_memory_backend_is_mapped(n->pmr.dev)) {
6547            error_setg(errp, "can't use already busy memdev: %s",
6548                       object_get_canonical_path_component(OBJECT(n->pmr.dev)));
6549            return;
6550        }
6551
6552        if (!is_power_of_2(n->pmr.dev->size)) {
6553            error_setg(errp, "pmr backend size needs to be power of 2 in size");
6554            return;
6555        }
6556
6557        host_memory_backend_set_mapped(n->pmr.dev, true);
6558    }
6559
6560    if (n->params.zasl > n->params.mdts) {
6561        error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
6562                   "than or equal to mdts (Maximum Data Transfer Size)");
6563        return;
6564    }
6565
6566    if (!n->params.vsl) {
6567        error_setg(errp, "vsl must be non-zero");
6568        return;
6569    }
6570}
6571
6572static void nvme_init_state(NvmeCtrl *n)
6573{
6574    /* add one to max_ioqpairs to account for the admin queue pair */
6575    n->reg_size = pow2ceil(sizeof(NvmeBar) +
6576                           2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
6577    n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
6578    n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
6579    n->temperature = NVME_TEMPERATURE;
6580    n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
6581    n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
6582    n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
6583}
6584
6585static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
6586{
6587    uint64_t cmb_size = n->params.cmb_size_mb * MiB;
6588    uint64_t cap = ldq_le_p(&n->bar.cap);
6589
6590    n->cmb.buf = g_malloc0(cmb_size);
6591    memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
6592                          "nvme-cmb", cmb_size);
6593    pci_register_bar(pci_dev, NVME_CMB_BIR,
6594                     PCI_BASE_ADDRESS_SPACE_MEMORY |
6595                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
6596                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
6597
6598    NVME_CAP_SET_CMBS(cap, 1);
6599    stq_le_p(&n->bar.cap, cap);
6600
6601    if (n->params.legacy_cmb) {
6602        nvme_cmb_enable_regs(n);
6603        n->cmb.cmse = true;
6604    }
6605}
6606
6607static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
6608{
6609    uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
6610
6611    NVME_PMRCAP_SET_RDS(pmrcap, 1);
6612    NVME_PMRCAP_SET_WDS(pmrcap, 1);
6613    NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
6614    /* Turn on bit 1 support */
6615    NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
6616    NVME_PMRCAP_SET_CMSS(pmrcap, 1);
6617    stl_le_p(&n->bar.pmrcap, pmrcap);
6618
6619    pci_register_bar(pci_dev, NVME_PMR_BIR,
6620                     PCI_BASE_ADDRESS_SPACE_MEMORY |
6621                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
6622                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
6623
6624    memory_region_set_enabled(&n->pmr.dev->mr, false);
6625}
6626
6627static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
6628{
6629    uint8_t *pci_conf = pci_dev->config;
6630    uint64_t bar_size, msix_table_size, msix_pba_size;
6631    unsigned msix_table_offset, msix_pba_offset;
6632    int ret;
6633
6634    Error *err = NULL;
6635
6636    pci_conf[PCI_INTERRUPT_PIN] = 1;
6637    pci_config_set_prog_interface(pci_conf, 0x2);
6638
6639    if (n->params.use_intel_id) {
6640        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
6641        pci_config_set_device_id(pci_conf, 0x5845);
6642    } else {
6643        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
6644        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
6645    }
6646
6647    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
6648    pcie_endpoint_cap_init(pci_dev, 0x80);
6649
6650    bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
6651    msix_table_offset = bar_size;
6652    msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
6653
6654    bar_size += msix_table_size;
6655    bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
6656    msix_pba_offset = bar_size;
6657    msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
6658
6659    bar_size += msix_pba_size;
6660    bar_size = pow2ceil(bar_size);
6661
6662    memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
6663    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
6664                          n->reg_size);
6665    memory_region_add_subregion(&n->bar0, 0, &n->iomem);
6666
6667    pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
6668                     PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
6669    ret = msix_init(pci_dev, n->params.msix_qsize,
6670                    &n->bar0, 0, msix_table_offset,
6671                    &n->bar0, 0, msix_pba_offset, 0, &err);
6672    if (ret < 0) {
6673        if (ret == -ENOTSUP) {
6674            warn_report_err(err);
6675        } else {
6676            error_propagate(errp, err);
6677            return ret;
6678        }
6679    }
6680
6681    if (n->params.cmb_size_mb) {
6682        nvme_init_cmb(n, pci_dev);
6683    }
6684
6685    if (n->pmr.dev) {
6686        nvme_init_pmr(n, pci_dev);
6687    }
6688
6689    return 0;
6690}
6691
6692static void nvme_init_subnqn(NvmeCtrl *n)
6693{
6694    NvmeSubsystem *subsys = n->subsys;
6695    NvmeIdCtrl *id = &n->id_ctrl;
6696
6697    if (!subsys) {
6698        snprintf((char *)id->subnqn, sizeof(id->subnqn),
6699                 "nqn.2019-08.org.qemu:%s", n->params.serial);
6700    } else {
6701        pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
6702    }
6703}
6704
6705static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
6706{
6707    NvmeIdCtrl *id = &n->id_ctrl;
6708    uint8_t *pci_conf = pci_dev->config;
6709    uint64_t cap = ldq_le_p(&n->bar.cap);
6710
6711    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
6712    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
6713    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
6714    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
6715    strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
6716
6717    id->cntlid = cpu_to_le16(n->cntlid);
6718
6719    id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
6720    id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
6721
6722    id->rab = 6;
6723
6724    if (n->params.use_intel_id) {
6725        id->ieee[0] = 0xb3;
6726        id->ieee[1] = 0x02;
6727        id->ieee[2] = 0x00;
6728    } else {
6729        id->ieee[0] = 0x00;
6730        id->ieee[1] = 0x54;
6731        id->ieee[2] = 0x52;
6732    }
6733
6734    id->mdts = n->params.mdts;
6735    id->ver = cpu_to_le32(NVME_SPEC_VER);
6736    id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT);
6737    id->cntrltype = 0x1;
6738
6739    /*
6740     * Because the controller always completes the Abort command immediately,
6741     * there can never be more than one concurrently executing Abort command,
6742     * so this value is never used for anything. Note that there can easily be
6743     * many Abort commands in the queues, but they are not considered
6744     * "executing" until processed by nvme_abort.
6745     *
6746     * The specification recommends a value of 3 for Abort Command Limit (four
6747     * concurrently outstanding Abort commands), so lets use that though it is
6748     * inconsequential.
6749     */
6750    id->acl = 3;
6751    id->aerl = n->params.aerl;
6752    id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
6753    id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
6754
6755    /* recommended default value (~70 C) */
6756    id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
6757    id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
6758
6759    id->sqes = (0x6 << 4) | 0x6;
6760    id->cqes = (0x4 << 4) | 0x4;
6761    id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
6762    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
6763                           NVME_ONCS_FEATURES | NVME_ONCS_DSM |
6764                           NVME_ONCS_COMPARE | NVME_ONCS_COPY);
6765
6766    /*
6767     * NOTE: If this device ever supports a command set that does NOT use 0x0
6768     * as a Flush-equivalent operation, support for the broadcast NSID in Flush
6769     * should probably be removed.
6770     *
6771     * See comment in nvme_io_cmd.
6772     */
6773    id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
6774
6775    id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
6776    id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
6777                           NVME_CTRL_SGLS_BITBUCKET);
6778
6779    nvme_init_subnqn(n);
6780
6781    id->psd[0].mp = cpu_to_le16(0x9c4);
6782    id->psd[0].enlat = cpu_to_le32(0x10);
6783    id->psd[0].exlat = cpu_to_le32(0x4);
6784
6785    if (n->subsys) {
6786        id->cmic |= NVME_CMIC_MULTI_CTRL;
6787    }
6788
6789    NVME_CAP_SET_MQES(cap, 0x7ff);
6790    NVME_CAP_SET_CQR(cap, 1);
6791    NVME_CAP_SET_TO(cap, 0xf);
6792    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
6793    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
6794    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
6795    NVME_CAP_SET_MPSMAX(cap, 4);
6796    NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
6797    NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
6798    stq_le_p(&n->bar.cap, cap);
6799
6800    stl_le_p(&n->bar.vs, NVME_SPEC_VER);
6801    n->bar.intmc = n->bar.intms = 0;
6802}
6803
6804static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
6805{
6806    int cntlid;
6807
6808    if (!n->subsys) {
6809        return 0;
6810    }
6811
6812    cntlid = nvme_subsys_register_ctrl(n, errp);
6813    if (cntlid < 0) {
6814        return -1;
6815    }
6816
6817    n->cntlid = cntlid;
6818
6819    return 0;
6820}
6821
6822void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
6823{
6824    uint32_t nsid = ns->params.nsid;
6825    assert(nsid && nsid <= NVME_MAX_NAMESPACES);
6826
6827    n->namespaces[nsid] = ns;
6828    ns->attached++;
6829
6830    n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6831                            BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6832}
6833
6834static void nvme_realize(PCIDevice *pci_dev, Error **errp)
6835{
6836    NvmeCtrl *n = NVME(pci_dev);
6837    NvmeNamespace *ns;
6838    Error *local_err = NULL;
6839
6840    nvme_check_constraints(n, &local_err);
6841    if (local_err) {
6842        error_propagate(errp, local_err);
6843        return;
6844    }
6845
6846    qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
6847              &pci_dev->qdev, n->parent_obj.qdev.id);
6848
6849    nvme_init_state(n);
6850    if (nvme_init_pci(n, pci_dev, errp)) {
6851        return;
6852    }
6853
6854    if (nvme_init_subsys(n, errp)) {
6855        error_propagate(errp, local_err);
6856        return;
6857    }
6858    nvme_init_ctrl(n, pci_dev);
6859
6860    /* setup a namespace if the controller drive property was given */
6861    if (n->namespace.blkconf.blk) {
6862        ns = &n->namespace;
6863        ns->params.nsid = 1;
6864
6865        if (nvme_ns_setup(ns, errp)) {
6866            return;
6867        }
6868
6869        nvme_attach_ns(n, ns);
6870    }
6871}
6872
6873static void nvme_exit(PCIDevice *pci_dev)
6874{
6875    NvmeCtrl *n = NVME(pci_dev);
6876    NvmeNamespace *ns;
6877    int i;
6878
6879    nvme_ctrl_reset(n);
6880
6881    if (n->subsys) {
6882        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6883            ns = nvme_ns(n, i);
6884            if (ns) {
6885                ns->attached--;
6886            }
6887        }
6888
6889        nvme_subsys_unregister_ctrl(n->subsys, n);
6890    }
6891
6892    g_free(n->cq);
6893    g_free(n->sq);
6894    g_free(n->aer_reqs);
6895
6896    if (n->params.cmb_size_mb) {
6897        g_free(n->cmb.buf);
6898    }
6899
6900    if (n->pmr.dev) {
6901        host_memory_backend_set_mapped(n->pmr.dev, false);
6902    }
6903    msix_uninit(pci_dev, &n->bar0, &n->bar0);
6904    memory_region_del_subregion(&n->bar0, &n->iomem);
6905}
6906
6907static Property nvme_props[] = {
6908    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
6909    DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
6910                     HostMemoryBackend *),
6911    DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
6912                     NvmeSubsystem *),
6913    DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
6914    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
6915    DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
6916    DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
6917    DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
6918    DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
6919    DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
6920    DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
6921    DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
6922    DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
6923    DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
6924    DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
6925    DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
6926                     params.auto_transition_zones, true),
6927    DEFINE_PROP_END_OF_LIST(),
6928};
6929
6930static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
6931                                   void *opaque, Error **errp)
6932{
6933    NvmeCtrl *n = NVME(obj);
6934    uint8_t value = n->smart_critical_warning;
6935
6936    visit_type_uint8(v, name, &value, errp);
6937}
6938
6939static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
6940                                   void *opaque, Error **errp)
6941{
6942    NvmeCtrl *n = NVME(obj);
6943    uint8_t value, old_value, cap = 0, index, event;
6944
6945    if (!visit_type_uint8(v, name, &value, errp)) {
6946        return;
6947    }
6948
6949    cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
6950          | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
6951    if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
6952        cap |= NVME_SMART_PMR_UNRELIABLE;
6953    }
6954
6955    if ((value & cap) != value) {
6956        error_setg(errp, "unsupported smart critical warning bits: 0x%x",
6957                   value & ~cap);
6958        return;
6959    }
6960
6961    old_value = n->smart_critical_warning;
6962    n->smart_critical_warning = value;
6963
6964    /* only inject new bits of smart critical warning */
6965    for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
6966        event = 1 << index;
6967        if (value & ~old_value & event)
6968            nvme_smart_event(n, event);
6969    }
6970}
6971
6972static const VMStateDescription nvme_vmstate = {
6973    .name = "nvme",
6974    .unmigratable = 1,
6975};
6976
6977static void nvme_class_init(ObjectClass *oc, void *data)
6978{
6979    DeviceClass *dc = DEVICE_CLASS(oc);
6980    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
6981
6982    pc->realize = nvme_realize;
6983    pc->exit = nvme_exit;
6984    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
6985    pc->revision = 2;
6986
6987    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
6988    dc->desc = "Non-Volatile Memory Express";
6989    device_class_set_props(dc, nvme_props);
6990    dc->vmsd = &nvme_vmstate;
6991}
6992
6993static void nvme_instance_init(Object *obj)
6994{
6995    NvmeCtrl *n = NVME(obj);
6996
6997    device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
6998                                  "bootindex", "/namespace@1,0",
6999                                  DEVICE(obj));
7000
7001    object_property_add(obj, "smart_critical_warning", "uint8",
7002                        nvme_get_smart_warning,
7003                        nvme_set_smart_warning, NULL, NULL);
7004}
7005
7006static const TypeInfo nvme_info = {
7007    .name          = TYPE_NVME,
7008    .parent        = TYPE_PCI_DEVICE,
7009    .instance_size = sizeof(NvmeCtrl),
7010    .instance_init = nvme_instance_init,
7011    .class_init    = nvme_class_init,
7012    .interfaces = (InterfaceInfo[]) {
7013        { INTERFACE_PCIE_DEVICE },
7014        { }
7015    },
7016};
7017
7018static const TypeInfo nvme_bus_info = {
7019    .name = TYPE_NVME_BUS,
7020    .parent = TYPE_BUS,
7021    .instance_size = sizeof(NvmeBus),
7022};
7023
7024static void nvme_register_types(void)
7025{
7026    type_register_static(&nvme_info);
7027    type_register_static(&nvme_bus_info);
7028}
7029
7030type_init(nvme_register_types)
7031