qemu/hw/nvram/fw_cfg.c
<<
>>
Prefs
   1/*
   2 * QEMU Firmware configuration device emulation
   3 *
   4 * Copyright (c) 2008 Gleb Natapov
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu-common.h"
  27#include "qemu/datadir.h"
  28#include "sysemu/sysemu.h"
  29#include "sysemu/dma.h"
  30#include "sysemu/reset.h"
  31#include "hw/boards.h"
  32#include "hw/nvram/fw_cfg.h"
  33#include "hw/qdev-properties.h"
  34#include "hw/sysbus.h"
  35#include "migration/qemu-file-types.h"
  36#include "migration/vmstate.h"
  37#include "trace.h"
  38#include "qemu/error-report.h"
  39#include "qemu/option.h"
  40#include "qemu/config-file.h"
  41#include "qemu/cutils.h"
  42#include "qapi/error.h"
  43#include "hw/acpi/aml-build.h"
  44#include "hw/pci/pci_bus.h"
  45
  46#define FW_CFG_FILE_SLOTS_DFLT 0x20
  47
  48/* FW_CFG_VERSION bits */
  49#define FW_CFG_VERSION      0x01
  50#define FW_CFG_VERSION_DMA  0x02
  51
  52/* FW_CFG_DMA_CONTROL bits */
  53#define FW_CFG_DMA_CTL_ERROR   0x01
  54#define FW_CFG_DMA_CTL_READ    0x02
  55#define FW_CFG_DMA_CTL_SKIP    0x04
  56#define FW_CFG_DMA_CTL_SELECT  0x08
  57#define FW_CFG_DMA_CTL_WRITE   0x10
  58
  59#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
  60
  61struct FWCfgEntry {
  62    uint32_t len;
  63    bool allow_write;
  64    uint8_t *data;
  65    void *callback_opaque;
  66    FWCfgCallback select_cb;
  67    FWCfgWriteCallback write_cb;
  68};
  69
  70/**
  71 * key_name:
  72 *
  73 * @key: The uint16 selector key.
  74 *
  75 * Returns: The stringified name if the selector refers to a well-known
  76 *          numerically defined item, or NULL on key lookup failure.
  77 */
  78static const char *key_name(uint16_t key)
  79{
  80    static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
  81        [FW_CFG_SIGNATURE] = "signature",
  82        [FW_CFG_ID] = "id",
  83        [FW_CFG_UUID] = "uuid",
  84        [FW_CFG_RAM_SIZE] = "ram_size",
  85        [FW_CFG_NOGRAPHIC] = "nographic",
  86        [FW_CFG_NB_CPUS] = "nb_cpus",
  87        [FW_CFG_MACHINE_ID] = "machine_id",
  88        [FW_CFG_KERNEL_ADDR] = "kernel_addr",
  89        [FW_CFG_KERNEL_SIZE] = "kernel_size",
  90        [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
  91        [FW_CFG_INITRD_ADDR] = "initrd_addr",
  92        [FW_CFG_INITRD_SIZE] = "initdr_size",
  93        [FW_CFG_BOOT_DEVICE] = "boot_device",
  94        [FW_CFG_NUMA] = "numa",
  95        [FW_CFG_BOOT_MENU] = "boot_menu",
  96        [FW_CFG_MAX_CPUS] = "max_cpus",
  97        [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
  98        [FW_CFG_KERNEL_DATA] = "kernel_data",
  99        [FW_CFG_INITRD_DATA] = "initrd_data",
 100        [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
 101        [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
 102        [FW_CFG_CMDLINE_DATA] = "cmdline_data",
 103        [FW_CFG_SETUP_ADDR] = "setup_addr",
 104        [FW_CFG_SETUP_SIZE] = "setup_size",
 105        [FW_CFG_SETUP_DATA] = "setup_data",
 106        [FW_CFG_FILE_DIR] = "file_dir",
 107    };
 108
 109    if (key & FW_CFG_ARCH_LOCAL) {
 110        return fw_cfg_arch_key_name(key);
 111    }
 112    if (key < FW_CFG_FILE_FIRST) {
 113        return fw_cfg_wellknown_keys[key];
 114    }
 115
 116    return NULL;
 117}
 118
 119static inline const char *trace_key_name(uint16_t key)
 120{
 121    const char *name = key_name(key);
 122
 123    return name ? name : "unknown";
 124}
 125
 126#define JPG_FILE 0
 127#define BMP_FILE 1
 128
 129static char *read_splashfile(char *filename, gsize *file_sizep,
 130                             int *file_typep)
 131{
 132    GError *err = NULL;
 133    gchar *content;
 134    int file_type;
 135    unsigned int filehead;
 136    int bmp_bpp;
 137
 138    if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
 139        error_report("failed to read splash file '%s': %s",
 140                     filename, err->message);
 141        g_error_free(err);
 142        return NULL;
 143    }
 144
 145    /* check file size */
 146    if (*file_sizep < 30) {
 147        goto error;
 148    }
 149
 150    /* check magic ID */
 151    filehead = lduw_le_p(content);
 152    if (filehead == 0xd8ff) {
 153        file_type = JPG_FILE;
 154    } else if (filehead == 0x4d42) {
 155        file_type = BMP_FILE;
 156    } else {
 157        goto error;
 158    }
 159
 160    /* check BMP bpp */
 161    if (file_type == BMP_FILE) {
 162        bmp_bpp = lduw_le_p(&content[28]);
 163        if (bmp_bpp != 24) {
 164            goto error;
 165        }
 166    }
 167
 168    /* return values */
 169    *file_typep = file_type;
 170
 171    return content;
 172
 173error:
 174    error_report("splash file '%s' format not recognized; must be JPEG "
 175                 "or 24 bit BMP", filename);
 176    g_free(content);
 177    return NULL;
 178}
 179
 180static void fw_cfg_bootsplash(FWCfgState *s)
 181{
 182    const char *boot_splash_filename = NULL;
 183    const char *boot_splash_time = NULL;
 184    char *filename, *file_data;
 185    gsize file_size;
 186    int file_type;
 187
 188    /* get user configuration */
 189    QemuOptsList *plist = qemu_find_opts("boot-opts");
 190    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 191    boot_splash_filename = qemu_opt_get(opts, "splash");
 192    boot_splash_time = qemu_opt_get(opts, "splash-time");
 193
 194    /* insert splash time if user configurated */
 195    if (boot_splash_time) {
 196        int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
 197        uint16_t bst_le16;
 198
 199        /* validate the input */
 200        if (bst_val < 0 || bst_val > 0xffff) {
 201            error_report("splash-time is invalid,"
 202                         "it should be a value between 0 and 65535");
 203            exit(1);
 204        }
 205        /* use little endian format */
 206        bst_le16 = cpu_to_le16(bst_val);
 207        fw_cfg_add_file(s, "etc/boot-menu-wait",
 208                        g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
 209    }
 210
 211    /* insert splash file if user configurated */
 212    if (boot_splash_filename) {
 213        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
 214        if (filename == NULL) {
 215            error_report("failed to find file '%s'", boot_splash_filename);
 216            return;
 217        }
 218
 219        /* loading file data */
 220        file_data = read_splashfile(filename, &file_size, &file_type);
 221        if (file_data == NULL) {
 222            g_free(filename);
 223            return;
 224        }
 225        g_free(boot_splash_filedata);
 226        boot_splash_filedata = (uint8_t *)file_data;
 227
 228        /* insert data */
 229        if (file_type == JPG_FILE) {
 230            fw_cfg_add_file(s, "bootsplash.jpg",
 231                            boot_splash_filedata, file_size);
 232        } else {
 233            fw_cfg_add_file(s, "bootsplash.bmp",
 234                            boot_splash_filedata, file_size);
 235        }
 236        g_free(filename);
 237    }
 238}
 239
 240static void fw_cfg_reboot(FWCfgState *s)
 241{
 242    const char *reboot_timeout = NULL;
 243    uint64_t rt_val = -1;
 244    uint32_t rt_le32;
 245
 246    /* get user configuration */
 247    QemuOptsList *plist = qemu_find_opts("boot-opts");
 248    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 249    reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
 250
 251    if (reboot_timeout) {
 252        rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
 253
 254        /* validate the input */
 255        if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
 256            error_report("reboot timeout is invalid,"
 257                         "it should be a value between -1 and 65535");
 258            exit(1);
 259        }
 260    }
 261
 262    rt_le32 = cpu_to_le32(rt_val);
 263    fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
 264}
 265
 266static void fw_cfg_write(FWCfgState *s, uint8_t value)
 267{
 268    /* nothing, write support removed in QEMU v2.4+ */
 269}
 270
 271static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
 272{
 273    return s->file_slots;
 274}
 275
 276/* Note: this function returns an exclusive limit. */
 277static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
 278{
 279    return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
 280}
 281
 282static int fw_cfg_select(FWCfgState *s, uint16_t key)
 283{
 284    int arch, ret;
 285    FWCfgEntry *e;
 286
 287    s->cur_offset = 0;
 288    if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
 289        s->cur_entry = FW_CFG_INVALID;
 290        ret = 0;
 291    } else {
 292        s->cur_entry = key;
 293        ret = 1;
 294        /* entry successfully selected, now run callback if present */
 295        arch = !!(key & FW_CFG_ARCH_LOCAL);
 296        e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
 297        if (e->select_cb) {
 298            e->select_cb(e->callback_opaque);
 299        }
 300    }
 301
 302    trace_fw_cfg_select(s, key, trace_key_name(key), ret);
 303    return ret;
 304}
 305
 306static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
 307{
 308    FWCfgState *s = opaque;
 309    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 310    FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 311                    &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 312    uint64_t value = 0;
 313
 314    assert(size > 0 && size <= sizeof(value));
 315    if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
 316        /* The least significant 'size' bytes of the return value are
 317         * expected to contain a string preserving portion of the item
 318         * data, padded with zeros on the right in case we run out early.
 319         * In technical terms, we're composing the host-endian representation
 320         * of the big endian interpretation of the fw_cfg string.
 321         */
 322        do {
 323            value = (value << 8) | e->data[s->cur_offset++];
 324        } while (--size && s->cur_offset < e->len);
 325        /* If size is still not zero, we *did* run out early, so continue
 326         * left-shifting, to add the appropriate number of padding zeros
 327         * on the right.
 328         */
 329        value <<= 8 * size;
 330    }
 331
 332    trace_fw_cfg_read(s, value);
 333    return value;
 334}
 335
 336static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
 337                                  uint64_t value, unsigned size)
 338{
 339    FWCfgState *s = opaque;
 340    unsigned i = size;
 341
 342    do {
 343        fw_cfg_write(s, value >> (8 * --i));
 344    } while (i);
 345}
 346
 347static void fw_cfg_dma_transfer(FWCfgState *s)
 348{
 349    dma_addr_t len;
 350    FWCfgDmaAccess dma;
 351    int arch;
 352    FWCfgEntry *e;
 353    int read = 0, write = 0;
 354    dma_addr_t dma_addr;
 355
 356    /* Reset the address before the next access */
 357    dma_addr = s->dma_addr;
 358    s->dma_addr = 0;
 359
 360    if (dma_memory_read(s->dma_as, dma_addr,
 361                        &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
 362        stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 363                   FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
 364        return;
 365    }
 366
 367    dma.address = be64_to_cpu(dma.address);
 368    dma.length = be32_to_cpu(dma.length);
 369    dma.control = be32_to_cpu(dma.control);
 370
 371    if (dma.control & FW_CFG_DMA_CTL_SELECT) {
 372        fw_cfg_select(s, dma.control >> 16);
 373    }
 374
 375    arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 376    e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 377        &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 378
 379    if (dma.control & FW_CFG_DMA_CTL_READ) {
 380        read = 1;
 381        write = 0;
 382    } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
 383        read = 0;
 384        write = 1;
 385    } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
 386        read = 0;
 387        write = 0;
 388    } else {
 389        dma.length = 0;
 390    }
 391
 392    dma.control = 0;
 393
 394    while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
 395        if (s->cur_entry == FW_CFG_INVALID || !e->data ||
 396                                s->cur_offset >= e->len) {
 397            len = dma.length;
 398
 399            /* If the access is not a read access, it will be a skip access,
 400             * tested before.
 401             */
 402            if (read) {
 403                if (dma_memory_set(s->dma_as, dma.address, 0, len,
 404                                   MEMTXATTRS_UNSPECIFIED)) {
 405                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 406                }
 407            }
 408            if (write) {
 409                dma.control |= FW_CFG_DMA_CTL_ERROR;
 410            }
 411        } else {
 412            if (dma.length <= (e->len - s->cur_offset)) {
 413                len = dma.length;
 414            } else {
 415                len = (e->len - s->cur_offset);
 416            }
 417
 418            /* If the access is not a read access, it will be a skip access,
 419             * tested before.
 420             */
 421            if (read) {
 422                if (dma_memory_write(s->dma_as, dma.address,
 423                                     &e->data[s->cur_offset], len,
 424                                     MEMTXATTRS_UNSPECIFIED)) {
 425                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 426                }
 427            }
 428            if (write) {
 429                if (!e->allow_write ||
 430                    len != dma.length ||
 431                    dma_memory_read(s->dma_as, dma.address,
 432                                    &e->data[s->cur_offset], len,
 433                                    MEMTXATTRS_UNSPECIFIED)) {
 434                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 435                } else if (e->write_cb) {
 436                    e->write_cb(e->callback_opaque, s->cur_offset, len);
 437                }
 438            }
 439
 440            s->cur_offset += len;
 441        }
 442
 443        dma.address += len;
 444        dma.length  -= len;
 445
 446    }
 447
 448    stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 449                dma.control, MEMTXATTRS_UNSPECIFIED);
 450
 451    trace_fw_cfg_read(s, 0);
 452}
 453
 454static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
 455                                    unsigned size)
 456{
 457    /* Return a signature value (and handle various read sizes) */
 458    return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
 459}
 460
 461static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
 462                                 uint64_t value, unsigned size)
 463{
 464    FWCfgState *s = opaque;
 465
 466    if (size == 4) {
 467        if (addr == 0) {
 468            /* FWCfgDmaAccess high address */
 469            s->dma_addr = value << 32;
 470        } else if (addr == 4) {
 471            /* FWCfgDmaAccess low address */
 472            s->dma_addr |= value;
 473            fw_cfg_dma_transfer(s);
 474        }
 475    } else if (size == 8 && addr == 0) {
 476        s->dma_addr = value;
 477        fw_cfg_dma_transfer(s);
 478    }
 479}
 480
 481static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
 482                                 unsigned size, bool is_write,
 483                                 MemTxAttrs attrs)
 484{
 485    return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
 486                         (size == 8 && addr == 0));
 487}
 488
 489static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
 490                                  unsigned size, bool is_write,
 491                                  MemTxAttrs attrs)
 492{
 493    return addr == 0;
 494}
 495
 496static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
 497{
 498    return 0;
 499}
 500
 501static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
 502                                 uint64_t value, unsigned size)
 503{
 504    fw_cfg_select(opaque, (uint16_t)value);
 505}
 506
 507static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
 508                                 unsigned size, bool is_write,
 509                                 MemTxAttrs attrs)
 510{
 511    return is_write && size == 2;
 512}
 513
 514static void fw_cfg_comb_write(void *opaque, hwaddr addr,
 515                              uint64_t value, unsigned size)
 516{
 517    switch (size) {
 518    case 1:
 519        fw_cfg_write(opaque, (uint8_t)value);
 520        break;
 521    case 2:
 522        fw_cfg_select(opaque, (uint16_t)value);
 523        break;
 524    }
 525}
 526
 527static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
 528                              unsigned size, bool is_write,
 529                              MemTxAttrs attrs)
 530{
 531    return (size == 1) || (is_write && size == 2);
 532}
 533
 534static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
 535    .read = fw_cfg_ctl_mem_read,
 536    .write = fw_cfg_ctl_mem_write,
 537    .endianness = DEVICE_BIG_ENDIAN,
 538    .valid.accepts = fw_cfg_ctl_mem_valid,
 539};
 540
 541static const MemoryRegionOps fw_cfg_data_mem_ops = {
 542    .read = fw_cfg_data_read,
 543    .write = fw_cfg_data_mem_write,
 544    .endianness = DEVICE_BIG_ENDIAN,
 545    .valid = {
 546        .min_access_size = 1,
 547        .max_access_size = 1,
 548        .accepts = fw_cfg_data_mem_valid,
 549    },
 550};
 551
 552static const MemoryRegionOps fw_cfg_comb_mem_ops = {
 553    .read = fw_cfg_data_read,
 554    .write = fw_cfg_comb_write,
 555    .endianness = DEVICE_LITTLE_ENDIAN,
 556    .valid.accepts = fw_cfg_comb_valid,
 557};
 558
 559static const MemoryRegionOps fw_cfg_dma_mem_ops = {
 560    .read = fw_cfg_dma_mem_read,
 561    .write = fw_cfg_dma_mem_write,
 562    .endianness = DEVICE_BIG_ENDIAN,
 563    .valid.accepts = fw_cfg_dma_mem_valid,
 564    .valid.max_access_size = 8,
 565    .impl.max_access_size = 8,
 566};
 567
 568static void fw_cfg_reset(DeviceState *d)
 569{
 570    FWCfgState *s = FW_CFG(d);
 571
 572    /* we never register a read callback for FW_CFG_SIGNATURE */
 573    fw_cfg_select(s, FW_CFG_SIGNATURE);
 574}
 575
 576/* Save restore 32 bit int as uint16_t
 577   This is a Big hack, but it is how the old state did it.
 578   Or we broke compatibility in the state, or we can't use struct tm
 579 */
 580
 581static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
 582                                const VMStateField *field)
 583{
 584    uint32_t *v = pv;
 585    *v = qemu_get_be16(f);
 586    return 0;
 587}
 588
 589static int put_unused(QEMUFile *f, void *pv, size_t size,
 590                      const VMStateField *field, JSONWriter *vmdesc)
 591{
 592    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
 593    fprintf(stderr, "This functions shouldn't be called.\n");
 594
 595    return 0;
 596}
 597
 598static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
 599    .name = "int32_as_uint16",
 600    .get  = get_uint32_as_uint16,
 601    .put  = put_unused,
 602};
 603
 604#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
 605    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
 606
 607
 608static bool is_version_1(void *opaque, int version_id)
 609{
 610    return version_id == 1;
 611}
 612
 613bool fw_cfg_dma_enabled(void *opaque)
 614{
 615    FWCfgState *s = opaque;
 616
 617    return s->dma_enabled;
 618}
 619
 620static bool fw_cfg_acpi_mr_restore(void *opaque)
 621{
 622    FWCfgState *s = opaque;
 623    bool mr_aligned;
 624
 625    mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) &&
 626                 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) &&
 627                 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size);
 628    return s->acpi_mr_restore && !mr_aligned;
 629}
 630
 631static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
 632{
 633    MemoryRegion *mr;
 634    ram_addr_t offset;
 635    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 636    void *ptr;
 637
 638    key &= FW_CFG_ENTRY_MASK;
 639    assert(key < fw_cfg_max_entry(s));
 640
 641    ptr = s->entries[arch][key].data;
 642    mr = memory_region_from_host(ptr, &offset);
 643
 644    memory_region_ram_resize(mr, size, &error_abort);
 645}
 646
 647static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
 648{
 649    FWCfgState *s = opaque;
 650    int i, index;
 651
 652    assert(s->files);
 653
 654    index = be32_to_cpu(s->files->count);
 655
 656    for (i = 0; i < index; i++) {
 657        if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
 658            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
 659        } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
 660            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
 661        } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
 662            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
 663        }
 664    }
 665
 666    return 0;
 667}
 668
 669static const VMStateDescription vmstate_fw_cfg_dma = {
 670    .name = "fw_cfg/dma",
 671    .needed = fw_cfg_dma_enabled,
 672    .fields = (VMStateField[]) {
 673        VMSTATE_UINT64(dma_addr, FWCfgState),
 674        VMSTATE_END_OF_LIST()
 675    },
 676};
 677
 678static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
 679    .name = "fw_cfg/acpi_mr",
 680    .version_id = 1,
 681    .minimum_version_id = 1,
 682    .needed = fw_cfg_acpi_mr_restore,
 683    .post_load = fw_cfg_acpi_mr_restore_post_load,
 684    .fields = (VMStateField[]) {
 685        VMSTATE_UINT64(table_mr_size, FWCfgState),
 686        VMSTATE_UINT64(linker_mr_size, FWCfgState),
 687        VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
 688        VMSTATE_END_OF_LIST()
 689    },
 690};
 691
 692static const VMStateDescription vmstate_fw_cfg = {
 693    .name = "fw_cfg",
 694    .version_id = 2,
 695    .minimum_version_id = 1,
 696    .fields = (VMStateField[]) {
 697        VMSTATE_UINT16(cur_entry, FWCfgState),
 698        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
 699        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
 700        VMSTATE_END_OF_LIST()
 701    },
 702    .subsections = (const VMStateDescription*[]) {
 703        &vmstate_fw_cfg_dma,
 704        &vmstate_fw_cfg_acpi_mr,
 705        NULL,
 706    }
 707};
 708
 709static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
 710                                      FWCfgCallback select_cb,
 711                                      FWCfgWriteCallback write_cb,
 712                                      void *callback_opaque,
 713                                      void *data, size_t len,
 714                                      bool read_only)
 715{
 716    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 717
 718    key &= FW_CFG_ENTRY_MASK;
 719
 720    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 721    assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
 722
 723    s->entries[arch][key].data = data;
 724    s->entries[arch][key].len = (uint32_t)len;
 725    s->entries[arch][key].select_cb = select_cb;
 726    s->entries[arch][key].write_cb = write_cb;
 727    s->entries[arch][key].callback_opaque = callback_opaque;
 728    s->entries[arch][key].allow_write = !read_only;
 729}
 730
 731static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
 732                                              void *data, size_t len)
 733{
 734    void *ptr;
 735    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 736
 737    key &= FW_CFG_ENTRY_MASK;
 738
 739    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 740
 741    /* return the old data to the function caller, avoid memory leak */
 742    ptr = s->entries[arch][key].data;
 743    s->entries[arch][key].data = data;
 744    s->entries[arch][key].len = len;
 745    s->entries[arch][key].callback_opaque = NULL;
 746    s->entries[arch][key].allow_write = false;
 747
 748    return ptr;
 749}
 750
 751void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
 752{
 753    trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
 754    fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
 755}
 756
 757void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
 758{
 759    size_t sz = strlen(value) + 1;
 760
 761    trace_fw_cfg_add_string(key, trace_key_name(key), value);
 762    fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
 763}
 764
 765void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
 766{
 767    size_t sz = strlen(value) + 1;
 768    char *old;
 769
 770    old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
 771    g_free(old);
 772}
 773
 774void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
 775{
 776    uint16_t *copy;
 777
 778    copy = g_malloc(sizeof(value));
 779    *copy = cpu_to_le16(value);
 780    trace_fw_cfg_add_i16(key, trace_key_name(key), value);
 781    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 782}
 783
 784void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
 785{
 786    uint16_t *copy, *old;
 787
 788    copy = g_malloc(sizeof(value));
 789    *copy = cpu_to_le16(value);
 790    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 791    g_free(old);
 792}
 793
 794void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
 795{
 796    uint32_t *copy;
 797
 798    copy = g_malloc(sizeof(value));
 799    *copy = cpu_to_le32(value);
 800    trace_fw_cfg_add_i32(key, trace_key_name(key), value);
 801    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 802}
 803
 804void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
 805{
 806    uint32_t *copy, *old;
 807
 808    copy = g_malloc(sizeof(value));
 809    *copy = cpu_to_le32(value);
 810    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 811    g_free(old);
 812}
 813
 814void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
 815{
 816    uint64_t *copy;
 817
 818    copy = g_malloc(sizeof(value));
 819    *copy = cpu_to_le64(value);
 820    trace_fw_cfg_add_i64(key, trace_key_name(key), value);
 821    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 822}
 823
 824void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
 825{
 826    uint64_t *copy, *old;
 827
 828    copy = g_malloc(sizeof(value));
 829    *copy = cpu_to_le64(value);
 830    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 831    g_free(old);
 832}
 833
 834void fw_cfg_set_order_override(FWCfgState *s, int order)
 835{
 836    assert(s->fw_cfg_order_override == 0);
 837    s->fw_cfg_order_override = order;
 838}
 839
 840void fw_cfg_reset_order_override(FWCfgState *s)
 841{
 842    assert(s->fw_cfg_order_override != 0);
 843    s->fw_cfg_order_override = 0;
 844}
 845
 846/*
 847 * This is the legacy order list.  For legacy systems, files are in
 848 * the fw_cfg in the order defined below, by the "order" value.  Note
 849 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
 850 * specific area, but there may be more than one and they occur in the
 851 * order that the user specifies them on the command line.  Those are
 852 * handled in a special manner, using the order override above.
 853 *
 854 * For non-legacy, the files are sorted by filename to avoid this kind
 855 * of complexity in the future.
 856 *
 857 * This is only for x86, other arches don't implement versioning so
 858 * they won't set legacy mode.
 859 */
 860static struct {
 861    const char *name;
 862    int order;
 863} fw_cfg_order[] = {
 864    { "etc/boot-menu-wait", 10 },
 865    { "bootsplash.jpg", 11 },
 866    { "bootsplash.bmp", 12 },
 867    { "etc/boot-fail-wait", 15 },
 868    { "etc/smbios/smbios-tables", 20 },
 869    { "etc/smbios/smbios-anchor", 30 },
 870    { "etc/e820", 40 },
 871    { "etc/reserved-memory-end", 50 },
 872    { "genroms/kvmvapic.bin", 55 },
 873    { "genroms/linuxboot.bin", 60 },
 874    { }, /* VGA ROMs from pc_vga_init come here, 70. */
 875    { }, /* NIC option ROMs from pc_nic_init come here, 80. */
 876    { "etc/system-states", 90 },
 877    { }, /* User ROMs come here, 100. */
 878    { }, /* Device FW comes here, 110. */
 879    { "etc/extra-pci-roots", 120 },
 880    { "etc/acpi/tables", 130 },
 881    { "etc/table-loader", 140 },
 882    { "etc/tpm/log", 150 },
 883    { "etc/acpi/rsdp", 160 },
 884    { "bootorder", 170 },
 885    { "etc/msr_feature_control", 180 },
 886
 887#define FW_CFG_ORDER_OVERRIDE_LAST 200
 888};
 889
 890/*
 891 * Any sub-page size update to these table MRs will be lost during migration,
 892 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
 893 * In order to avoid the inconsistency in sizes save them seperately and
 894 * migrate over in vmstate post_load().
 895 */
 896static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
 897{
 898    if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
 899        s->table_mr_size = len;
 900    } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
 901        s->linker_mr_size = len;
 902    } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
 903        s->rsdp_mr_size = len;
 904    }
 905}
 906
 907static int get_fw_cfg_order(FWCfgState *s, const char *name)
 908{
 909    int i;
 910
 911    if (s->fw_cfg_order_override > 0) {
 912        return s->fw_cfg_order_override;
 913    }
 914
 915    for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
 916        if (fw_cfg_order[i].name == NULL) {
 917            continue;
 918        }
 919
 920        if (strcmp(name, fw_cfg_order[i].name) == 0) {
 921            return fw_cfg_order[i].order;
 922        }
 923    }
 924
 925    /* Stick unknown stuff at the end. */
 926    warn_report("Unknown firmware file in legacy mode: %s", name);
 927    return FW_CFG_ORDER_OVERRIDE_LAST;
 928}
 929
 930void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
 931                              FWCfgCallback select_cb,
 932                              FWCfgWriteCallback write_cb,
 933                              void *callback_opaque,
 934                              void *data, size_t len, bool read_only)
 935{
 936    int i, index, count;
 937    size_t dsize;
 938    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 939    int order = 0;
 940
 941    if (!s->files) {
 942        dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
 943        s->files = g_malloc0(dsize);
 944        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
 945    }
 946
 947    count = be32_to_cpu(s->files->count);
 948    assert(count < fw_cfg_file_slots(s));
 949
 950    /* Find the insertion point. */
 951    if (mc->legacy_fw_cfg_order) {
 952        /*
 953         * Sort by order. For files with the same order, we keep them
 954         * in the sequence in which they were added.
 955         */
 956        order = get_fw_cfg_order(s, filename);
 957        for (index = count;
 958             index > 0 && order < s->entry_order[index - 1];
 959             index--);
 960    } else {
 961        /* Sort by file name. */
 962        for (index = count;
 963             index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
 964             index--);
 965    }
 966
 967    /*
 968     * Move all the entries from the index point and after down one
 969     * to create a slot for the new entry.  Because calculations are
 970     * being done with the index, make it so that "i" is the current
 971     * index and "i - 1" is the one being copied from, thus the
 972     * unusual start and end in the for statement.
 973     */
 974    for (i = count; i > index; i--) {
 975        s->files->f[i] = s->files->f[i - 1];
 976        s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
 977        s->entries[0][FW_CFG_FILE_FIRST + i] =
 978            s->entries[0][FW_CFG_FILE_FIRST + i - 1];
 979        s->entry_order[i] = s->entry_order[i - 1];
 980    }
 981
 982    memset(&s->files->f[index], 0, sizeof(FWCfgFile));
 983    memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
 984
 985    pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
 986    for (i = 0; i <= count; i++) {
 987        if (i != index &&
 988            strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
 989            error_report("duplicate fw_cfg file name: %s",
 990                         s->files->f[index].name);
 991            exit(1);
 992        }
 993    }
 994
 995    fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
 996                              select_cb, write_cb,
 997                              callback_opaque, data, len,
 998                              read_only);
 999
1000    s->files->f[index].size   = cpu_to_be32(len);
1001    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
1002    s->entry_order[index] = order;
1003    trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
1004
1005    s->files->count = cpu_to_be32(count+1);
1006    fw_cfg_acpi_mr_save(s, filename, len);
1007}
1008
1009void fw_cfg_add_file(FWCfgState *s,  const char *filename,
1010                     void *data, size_t len)
1011{
1012    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1013}
1014
1015void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1016                        void *data, size_t len)
1017{
1018    int i, index;
1019    void *ptr = NULL;
1020
1021    assert(s->files);
1022
1023    index = be32_to_cpu(s->files->count);
1024
1025    for (i = 0; i < index; i++) {
1026        if (strcmp(filename, s->files->f[i].name) == 0) {
1027            ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1028                                           data, len);
1029            s->files->f[i].size   = cpu_to_be32(len);
1030            fw_cfg_acpi_mr_save(s, filename, len);
1031            return ptr;
1032        }
1033    }
1034
1035    assert(index < fw_cfg_file_slots(s));
1036
1037    /* add new one */
1038    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1039    return NULL;
1040}
1041
1042bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1043                               const char *gen_id, Error **errp)
1044{
1045    FWCfgDataGeneratorClass *klass;
1046    GByteArray *array;
1047    Object *obj;
1048    gsize size;
1049
1050    obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1051    if (!obj) {
1052        error_setg(errp, "Cannot find object ID '%s'", gen_id);
1053        return false;
1054    }
1055    if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1056        error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1057                   gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1058        return false;
1059    }
1060    klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1061    array = klass->get_data(obj, errp);
1062    if (!array) {
1063        return false;
1064    }
1065    size = array->len;
1066    fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1067
1068    return true;
1069}
1070
1071void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1072{
1073    int extra_hosts = 0;
1074
1075    if (!bus) {
1076        return;
1077    }
1078
1079    QLIST_FOREACH(bus, &bus->child, sibling) {
1080        /* look for expander root buses */
1081        if (pci_bus_is_root(bus)) {
1082            extra_hosts++;
1083        }
1084    }
1085
1086    if (extra_hosts && s) {
1087        uint64_t *val = g_malloc(sizeof(*val));
1088        *val = cpu_to_le64(extra_hosts);
1089        fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1090    }
1091}
1092
1093static void fw_cfg_machine_reset(void *opaque)
1094{
1095    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1096    FWCfgState *s = opaque;
1097    void *ptr;
1098    size_t len;
1099    char *buf;
1100
1101    buf = get_boot_devices_list(&len);
1102    ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1103    g_free(ptr);
1104
1105    if (!mc->legacy_fw_cfg_order) {
1106        buf = get_boot_devices_lchs_list(&len);
1107        ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1108        g_free(ptr);
1109    }
1110}
1111
1112static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1113{
1114    FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1115    qemu_register_reset(fw_cfg_machine_reset, s);
1116}
1117
1118static Property fw_cfg_properties[] = {
1119    DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1120    DEFINE_PROP_END_OF_LIST(),
1121};
1122
1123static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1124{
1125    FWCfgState *s = FW_CFG(dev);
1126    MachineState *machine = MACHINE(qdev_get_machine());
1127    uint32_t version = FW_CFG_VERSION;
1128
1129    if (!fw_cfg_find()) {
1130        error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1131        return;
1132    }
1133
1134    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1135    fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1136    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1137    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
1138    fw_cfg_bootsplash(s);
1139    fw_cfg_reboot(s);
1140
1141    if (s->dma_enabled) {
1142        version |= FW_CFG_VERSION_DMA;
1143    }
1144
1145    fw_cfg_add_i32(s, FW_CFG_ID, version);
1146
1147    s->machine_ready.notify = fw_cfg_machine_ready;
1148    qemu_add_machine_init_done_notifier(&s->machine_ready);
1149}
1150
1151FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1152                                AddressSpace *dma_as)
1153{
1154    DeviceState *dev;
1155    SysBusDevice *sbd;
1156    FWCfgIoState *ios;
1157    FWCfgState *s;
1158    bool dma_requested = dma_iobase && dma_as;
1159
1160    dev = qdev_new(TYPE_FW_CFG_IO);
1161    if (!dma_requested) {
1162        qdev_prop_set_bit(dev, "dma_enabled", false);
1163    }
1164
1165    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1166                              OBJECT(dev));
1167
1168    sbd = SYS_BUS_DEVICE(dev);
1169    sysbus_realize_and_unref(sbd, &error_fatal);
1170    ios = FW_CFG_IO(dev);
1171    sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1172
1173    s = FW_CFG(dev);
1174
1175    if (s->dma_enabled) {
1176        /* 64 bits for the address field */
1177        s->dma_as = dma_as;
1178        s->dma_addr = 0;
1179        sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1180    }
1181
1182    return s;
1183}
1184
1185FWCfgState *fw_cfg_init_io(uint32_t iobase)
1186{
1187    return fw_cfg_init_io_dma(iobase, 0, NULL);
1188}
1189
1190FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1191                                 hwaddr data_addr, uint32_t data_width,
1192                                 hwaddr dma_addr, AddressSpace *dma_as)
1193{
1194    DeviceState *dev;
1195    SysBusDevice *sbd;
1196    FWCfgState *s;
1197    bool dma_requested = dma_addr && dma_as;
1198
1199    dev = qdev_new(TYPE_FW_CFG_MEM);
1200    qdev_prop_set_uint32(dev, "data_width", data_width);
1201    if (!dma_requested) {
1202        qdev_prop_set_bit(dev, "dma_enabled", false);
1203    }
1204
1205    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1206                              OBJECT(dev));
1207
1208    sbd = SYS_BUS_DEVICE(dev);
1209    sysbus_realize_and_unref(sbd, &error_fatal);
1210    sysbus_mmio_map(sbd, 0, ctl_addr);
1211    sysbus_mmio_map(sbd, 1, data_addr);
1212
1213    s = FW_CFG(dev);
1214
1215    if (s->dma_enabled) {
1216        s->dma_as = dma_as;
1217        s->dma_addr = 0;
1218        sysbus_mmio_map(sbd, 2, dma_addr);
1219    }
1220
1221    return s;
1222}
1223
1224FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1225{
1226    return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1227                                fw_cfg_data_mem_ops.valid.max_access_size,
1228                                0, NULL);
1229}
1230
1231
1232FWCfgState *fw_cfg_find(void)
1233{
1234    /* Returns NULL unless there is exactly one fw_cfg device */
1235    return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1236}
1237
1238
1239static void fw_cfg_class_init(ObjectClass *klass, void *data)
1240{
1241    DeviceClass *dc = DEVICE_CLASS(klass);
1242
1243    dc->reset = fw_cfg_reset;
1244    dc->vmsd = &vmstate_fw_cfg;
1245
1246    device_class_set_props(dc, fw_cfg_properties);
1247}
1248
1249static const TypeInfo fw_cfg_info = {
1250    .name          = TYPE_FW_CFG,
1251    .parent        = TYPE_SYS_BUS_DEVICE,
1252    .abstract      = true,
1253    .instance_size = sizeof(FWCfgState),
1254    .class_init    = fw_cfg_class_init,
1255};
1256
1257static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1258{
1259    uint16_t file_slots_max;
1260
1261    if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1262        error_setg(errp, "\"file_slots\" must be at least 0x%x",
1263                   FW_CFG_FILE_SLOTS_MIN);
1264        return;
1265    }
1266
1267    /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1268     * that we permit. The actual (exclusive) value coming from the
1269     * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1270    file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1271    if (fw_cfg_file_slots(s) > file_slots_max) {
1272        error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1273                   file_slots_max);
1274        return;
1275    }
1276
1277    s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1278    s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1279    s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1280}
1281
1282static Property fw_cfg_io_properties[] = {
1283    DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1284                     true),
1285    DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1286                       FW_CFG_FILE_SLOTS_DFLT),
1287    DEFINE_PROP_END_OF_LIST(),
1288};
1289
1290static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1291{
1292    ERRP_GUARD();
1293    FWCfgIoState *s = FW_CFG_IO(dev);
1294
1295    fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1296    if (*errp) {
1297        return;
1298    }
1299
1300    /* when using port i/o, the 8-bit data register ALWAYS overlaps
1301     * with half of the 16-bit control register. Hence, the total size
1302     * of the i/o region used is FW_CFG_CTL_SIZE */
1303    memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1304                          FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1305
1306    if (FW_CFG(s)->dma_enabled) {
1307        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1308                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1309                              sizeof(dma_addr_t));
1310    }
1311
1312    fw_cfg_common_realize(dev, errp);
1313}
1314
1315static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1316{
1317    DeviceClass *dc = DEVICE_CLASS(klass);
1318
1319    dc->realize = fw_cfg_io_realize;
1320    device_class_set_props(dc, fw_cfg_io_properties);
1321}
1322
1323static const TypeInfo fw_cfg_io_info = {
1324    .name          = TYPE_FW_CFG_IO,
1325    .parent        = TYPE_FW_CFG,
1326    .instance_size = sizeof(FWCfgIoState),
1327    .class_init    = fw_cfg_io_class_init,
1328};
1329
1330
1331static Property fw_cfg_mem_properties[] = {
1332    DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1333    DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1334                     true),
1335    DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1336                       FW_CFG_FILE_SLOTS_DFLT),
1337    DEFINE_PROP_END_OF_LIST(),
1338};
1339
1340static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1341{
1342    ERRP_GUARD();
1343    FWCfgMemState *s = FW_CFG_MEM(dev);
1344    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1345    const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1346
1347    fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1348    if (*errp) {
1349        return;
1350    }
1351
1352    memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1353                          FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1354    sysbus_init_mmio(sbd, &s->ctl_iomem);
1355
1356    if (s->data_width > data_ops->valid.max_access_size) {
1357        s->wide_data_ops = *data_ops;
1358
1359        s->wide_data_ops.valid.max_access_size = s->data_width;
1360        s->wide_data_ops.impl.max_access_size  = s->data_width;
1361        data_ops = &s->wide_data_ops;
1362    }
1363    memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1364                          "fwcfg.data", data_ops->valid.max_access_size);
1365    sysbus_init_mmio(sbd, &s->data_iomem);
1366
1367    if (FW_CFG(s)->dma_enabled) {
1368        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1369                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1370                              sizeof(dma_addr_t));
1371        sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1372    }
1373
1374    fw_cfg_common_realize(dev, errp);
1375}
1376
1377static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1378{
1379    DeviceClass *dc = DEVICE_CLASS(klass);
1380
1381    dc->realize = fw_cfg_mem_realize;
1382    device_class_set_props(dc, fw_cfg_mem_properties);
1383}
1384
1385static const TypeInfo fw_cfg_mem_info = {
1386    .name          = TYPE_FW_CFG_MEM,
1387    .parent        = TYPE_FW_CFG,
1388    .instance_size = sizeof(FWCfgMemState),
1389    .class_init    = fw_cfg_mem_class_init,
1390};
1391
1392static void fw_cfg_register_types(void)
1393{
1394    type_register_static(&fw_cfg_info);
1395    type_register_static(&fw_cfg_io_info);
1396    type_register_static(&fw_cfg_mem_info);
1397}
1398
1399type_init(fw_cfg_register_types)
1400