qemu/hw/pci-host/pnv_phb4.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC PowerNV (POWER9) PHB4 model
   3 *
   4 * Copyright (c) 2018-2020, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9#include "qemu/osdep.h"
  10#include "qemu/log.h"
  11#include "qapi/visitor.h"
  12#include "qapi/error.h"
  13#include "qemu-common.h"
  14#include "monitor/monitor.h"
  15#include "target/ppc/cpu.h"
  16#include "hw/pci-host/pnv_phb4_regs.h"
  17#include "hw/pci-host/pnv_phb4.h"
  18#include "hw/pci/pcie_host.h"
  19#include "hw/pci/pcie_port.h"
  20#include "hw/ppc/pnv.h"
  21#include "hw/ppc/pnv_xscom.h"
  22#include "hw/irq.h"
  23#include "hw/qdev-properties.h"
  24#include "qom/object.h"
  25#include "trace.h"
  26
  27#define phb_error(phb, fmt, ...)                                        \
  28    qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n",            \
  29                  (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
  30
  31#define phb_pec_error(pec, fmt, ...)                                    \
  32    qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n",        \
  33                  (pec)->chip_id, (pec)->index, ## __VA_ARGS__)
  34
  35/*
  36 * QEMU version of the GETFIELD/SETFIELD macros
  37 *
  38 * These are common with the PnvXive model.
  39 */
  40static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
  41{
  42    return (word & mask) >> ctz64(mask);
  43}
  44
  45static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
  46                                uint64_t value)
  47{
  48    return (word & ~mask) | ((value << ctz64(mask)) & mask);
  49}
  50
  51static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
  52{
  53    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
  54    uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
  55    uint8_t bus, devfn;
  56
  57    if (!(addr >> 63)) {
  58        return NULL;
  59    }
  60    bus = (addr >> 52) & 0xff;
  61    devfn = (addr >> 44) & 0xff;
  62
  63    /* We don't access the root complex this way */
  64    if (bus == 0 && devfn == 0) {
  65        return NULL;
  66    }
  67    return pci_find_device(pci->bus, bus, devfn);
  68}
  69
  70/*
  71 * The CONFIG_DATA register expects little endian accesses, but as the
  72 * region is big endian, we have to swap the value.
  73 */
  74static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
  75                                  unsigned size, uint64_t val)
  76{
  77    uint32_t cfg_addr, limit;
  78    PCIDevice *pdev;
  79
  80    pdev = pnv_phb4_find_cfg_dev(phb);
  81    if (!pdev) {
  82        return;
  83    }
  84    cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
  85    cfg_addr |= off;
  86    limit = pci_config_size(pdev);
  87    if (limit <= cfg_addr) {
  88        /*
  89         * conventional pci device can be behind pcie-to-pci bridge.
  90         * 256 <= addr < 4K has no effects.
  91         */
  92        return;
  93    }
  94    switch (size) {
  95    case 1:
  96        break;
  97    case 2:
  98        val = bswap16(val);
  99        break;
 100    case 4:
 101        val = bswap32(val);
 102        break;
 103    default:
 104        g_assert_not_reached();
 105    }
 106    pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
 107}
 108
 109static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
 110                                     unsigned size)
 111{
 112    uint32_t cfg_addr, limit;
 113    PCIDevice *pdev;
 114    uint64_t val;
 115
 116    pdev = pnv_phb4_find_cfg_dev(phb);
 117    if (!pdev) {
 118        return ~0ull;
 119    }
 120    cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
 121    cfg_addr |= off;
 122    limit = pci_config_size(pdev);
 123    if (limit <= cfg_addr) {
 124        /*
 125         * conventional pci device can be behind pcie-to-pci bridge.
 126         * 256 <= addr < 4K has no effects.
 127         */
 128        return ~0ull;
 129    }
 130    val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
 131    switch (size) {
 132    case 1:
 133        return val;
 134    case 2:
 135        return bswap16(val);
 136    case 4:
 137        return bswap32(val);
 138    default:
 139        g_assert_not_reached();
 140    }
 141}
 142
 143/*
 144 * Root complex register accesses are memory mapped.
 145 */
 146static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
 147                                     unsigned size, uint64_t val)
 148{
 149    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
 150    PCIDevice *pdev;
 151
 152    if (size != 4) {
 153        phb_error(phb, "rc_config_write invalid size %d\n", size);
 154        return;
 155    }
 156
 157    pdev = pci_find_device(pci->bus, 0, 0);
 158    if (!pdev) {
 159        phb_error(phb, "rc_config_write device not found\n");
 160        return;
 161    }
 162
 163    pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
 164                                 bswap32(val), 4);
 165}
 166
 167static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
 168                                        unsigned size)
 169{
 170    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
 171    PCIDevice *pdev;
 172    uint64_t val;
 173
 174    if (size != 4) {
 175        phb_error(phb, "rc_config_read invalid size %d\n", size);
 176        return ~0ull;
 177    }
 178
 179    pdev = pci_find_device(pci->bus, 0, 0);
 180    if (!pdev) {
 181        phb_error(phb, "rc_config_read device not found\n");
 182        return ~0ull;
 183    }
 184
 185    val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
 186    return bswap32(val);
 187}
 188
 189static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
 190{
 191    uint64_t base, start, size, mbe0, mbe1;
 192    MemoryRegion *parent;
 193    char name[64];
 194
 195    /* Unmap first */
 196    if (memory_region_is_mapped(&phb->mr_mmio[index])) {
 197        /* Should we destroy it in RCU friendly way... ? */
 198        memory_region_del_subregion(phb->mr_mmio[index].container,
 199                                    &phb->mr_mmio[index]);
 200    }
 201
 202    /* Get table entry */
 203    mbe0 = phb->ioda_MBT[(index << 1)];
 204    mbe1 = phb->ioda_MBT[(index << 1) + 1];
 205
 206    if (!(mbe0 & IODA3_MBT0_ENABLE)) {
 207        return;
 208    }
 209
 210    /* Grab geometry from registers */
 211    base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
 212    size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
 213    size |= 0xff00000000000000ull;
 214    size = ~size + 1;
 215
 216    /* Calculate PCI side start address based on M32/M64 window type */
 217    if (mbe0 & IODA3_MBT0_TYPE_M32) {
 218        start = phb->regs[PHB_M32_START_ADDR >> 3];
 219        if ((start + size) > 0x100000000ull) {
 220            phb_error(phb, "M32 set beyond 4GB boundary !");
 221            size = 0x100000000 - start;
 222        }
 223    } else {
 224        start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
 225    }
 226
 227    /* TODO: Figure out how to implemet/decode AOMASK */
 228
 229    /* Check if it matches an enabled MMIO region in the PEC stack */
 230    if (memory_region_is_mapped(&phb->mmbar0) &&
 231        base >= phb->mmio0_base &&
 232        (base + size) <= (phb->mmio0_base + phb->mmio0_size)) {
 233        parent = &phb->mmbar0;
 234        base -= phb->mmio0_base;
 235    } else if (memory_region_is_mapped(&phb->mmbar1) &&
 236        base >= phb->mmio1_base &&
 237        (base + size) <= (phb->mmio1_base + phb->mmio1_size)) {
 238        parent = &phb->mmbar1;
 239        base -= phb->mmio1_base;
 240    } else {
 241        phb_error(phb, "PHB MBAR %d out of parent bounds", index);
 242        return;
 243    }
 244
 245    /* Create alias (better name ?) */
 246    snprintf(name, sizeof(name), "phb4-mbar%d", index);
 247    memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
 248                             &phb->pci_mmio, start, size);
 249    memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
 250}
 251
 252static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
 253{
 254    uint64_t i;
 255    uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
 256        PNV_PHB4_MIN_MMIO_WINDOWS;
 257
 258    for (i = 0; i < num_windows; i++) {
 259        pnv_phb4_check_mbt(phb, i);
 260    }
 261}
 262
 263static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
 264                                      unsigned *out_table, unsigned *out_idx)
 265{
 266    uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
 267    unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
 268    unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
 269    unsigned int mask;
 270    uint64_t *tptr = NULL;
 271
 272    switch (table) {
 273    case IODA3_TBL_LIST:
 274        tptr = phb->ioda_LIST;
 275        mask = 7;
 276        break;
 277    case IODA3_TBL_MIST:
 278        tptr = phb->ioda_MIST;
 279        mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
 280        mask -= 1;
 281        break;
 282    case IODA3_TBL_RCAM:
 283        mask = phb->big_phb ? 127 : 63;
 284        break;
 285    case IODA3_TBL_MRT:
 286        mask = phb->big_phb ? 15 : 7;
 287        break;
 288    case IODA3_TBL_PESTA:
 289    case IODA3_TBL_PESTB:
 290        mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
 291        mask -= 1;
 292        break;
 293    case IODA3_TBL_TVT:
 294        tptr = phb->ioda_TVT;
 295        mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
 296        mask -= 1;
 297        break;
 298    case IODA3_TBL_TCR:
 299    case IODA3_TBL_TDR:
 300        mask = phb->big_phb ? 1023 : 511;
 301        break;
 302    case IODA3_TBL_MBT:
 303        tptr = phb->ioda_MBT;
 304        mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
 305        mask -= 1;
 306        break;
 307    case IODA3_TBL_MDT:
 308        tptr = phb->ioda_MDT;
 309        mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
 310        mask -= 1;
 311        break;
 312    case IODA3_TBL_PEEV:
 313        tptr = phb->ioda_PEEV;
 314        mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
 315        mask -= 1;
 316        break;
 317    default:
 318        phb_error(phb, "invalid IODA table %d", table);
 319        return NULL;
 320    }
 321    index &= mask;
 322    if (out_idx) {
 323        *out_idx = index;
 324    }
 325    if (out_table) {
 326        *out_table = table;
 327    }
 328    if (tptr) {
 329        tptr += index;
 330    }
 331    if (adreg & PHB_IODA_AD_AUTOINC) {
 332        index = (index + 1) & mask;
 333        adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
 334    }
 335
 336    phb->regs[PHB_IODA_ADDR >> 3] = adreg;
 337    return tptr;
 338}
 339
 340static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
 341{
 342    unsigned table, idx;
 343    uint64_t *tptr;
 344
 345    tptr = pnv_phb4_ioda_access(phb, &table, &idx);
 346    if (!tptr) {
 347        /* Special PESTA case */
 348        if (table == IODA3_TBL_PESTA) {
 349            return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
 350        } else if (table == IODA3_TBL_PESTB) {
 351            return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
 352        }
 353        /* Return 0 on unsupported tables, not ff's */
 354        return 0;
 355    }
 356    return *tptr;
 357}
 358
 359static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
 360{
 361    unsigned table, idx;
 362    uint64_t *tptr;
 363
 364    tptr = pnv_phb4_ioda_access(phb, &table, &idx);
 365    if (!tptr) {
 366        /* Special PESTA case */
 367        if (table == IODA3_TBL_PESTA) {
 368            phb->ioda_PEST_AB[idx] &= ~1;
 369            phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
 370        } else if (table == IODA3_TBL_PESTB) {
 371            phb->ioda_PEST_AB[idx] &= ~2;
 372            phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
 373        }
 374        return;
 375    }
 376
 377    /* Handle side effects */
 378    switch (table) {
 379    case IODA3_TBL_LIST:
 380        break;
 381    case IODA3_TBL_MIST: {
 382        /* Special mask for MIST partial write */
 383        uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
 384        uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
 385        uint64_t v = *tptr;
 386        if (mmask == 0) {
 387            mmask = 0xf;
 388        }
 389        if (mmask & 8) {
 390            v &= 0x0000ffffffffffffull;
 391            v |= 0xcfff000000000000ull & val;
 392        }
 393        if (mmask & 4) {
 394            v &= 0xffff0000ffffffffull;
 395            v |= 0x0000cfff00000000ull & val;
 396        }
 397        if (mmask & 2) {
 398            v &= 0xffffffff0000ffffull;
 399            v |= 0x00000000cfff0000ull & val;
 400        }
 401        if (mmask & 1) {
 402            v &= 0xffffffffffff0000ull;
 403            v |= 0x000000000000cfffull & val;
 404        }
 405        *tptr = v;
 406        break;
 407    }
 408    case IODA3_TBL_MBT:
 409        *tptr = val;
 410
 411        /* Copy accross the valid bit to the other half */
 412        phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
 413        phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
 414
 415        /* Update mappings */
 416        pnv_phb4_check_mbt(phb, idx >> 1);
 417        break;
 418    default:
 419        *tptr = val;
 420    }
 421}
 422
 423static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
 424{
 425    PnvPhb4DMASpace *ds;
 426
 427    /* Always invalidate all for now ... */
 428    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
 429        ds->pe_num = PHB_INVALID_PE;
 430    }
 431}
 432
 433static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
 434{
 435    uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
 436
 437    if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
 438        if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
 439            memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
 440                                        0xffff0000, &ds->msi32_mr);
 441        }
 442    } else {
 443        if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
 444            memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
 445                                        &ds->msi32_mr);
 446        }
 447    }
 448
 449    if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
 450        if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
 451            memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
 452                                        (1ull << 60), &ds->msi64_mr);
 453        }
 454    } else {
 455        if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
 456            memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
 457                                        &ds->msi64_mr);
 458        }
 459    }
 460}
 461
 462static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
 463{
 464    PnvPhb4DMASpace *ds;
 465
 466    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
 467        pnv_phb4_update_msi_regions(ds);
 468    }
 469}
 470
 471static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
 472{
 473    int shift, flags, i, lsi_base;
 474    XiveSource *xsrc = &phb->xsrc;
 475
 476    /* The XIVE source characteristics can be set at run time */
 477    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
 478        shift = XIVE_ESB_64K;
 479    } else {
 480        shift = XIVE_ESB_4K;
 481    }
 482    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
 483        flags = XIVE_SRC_STORE_EOI;
 484    } else {
 485        flags = 0;
 486    }
 487
 488    /*
 489     * When the PQ disable configuration bit is set, the check on the
 490     * PQ state bits is disabled on the PHB side (for MSI only) and it
 491     * is performed on the IC side instead.
 492     */
 493    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) {
 494        flags |= XIVE_SRC_PQ_DISABLE;
 495    }
 496
 497    phb->xsrc.esb_shift = shift;
 498    phb->xsrc.esb_flags = flags;
 499
 500    lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
 501    lsi_base <<= 3;
 502
 503    /* TODO: handle reset values of PHB_LSI_SRC_ID */
 504    if (!lsi_base) {
 505        return;
 506    }
 507
 508    /* TODO: need a xive_source_irq_reset_lsi() */
 509    bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
 510
 511    for (i = 0; i < xsrc->nr_irqs; i++) {
 512        bool msi = (i < lsi_base || i >= (lsi_base + 8));
 513        if (!msi) {
 514            xive_source_irq_set_lsi(xsrc, i);
 515        }
 516    }
 517}
 518
 519static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
 520                               unsigned size)
 521{
 522    PnvPHB4 *phb = PNV_PHB4(opaque);
 523    bool changed;
 524
 525    /* Special case outbound configuration data */
 526    if ((off & 0xfffc) == PHB_CONFIG_DATA) {
 527        pnv_phb4_config_write(phb, off & 0x3, size, val);
 528        return;
 529    }
 530
 531    /* Special case RC configuration space */
 532    if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
 533        pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
 534        return;
 535    }
 536
 537    /* Other registers are 64-bit only */
 538    if (size != 8 || off & 0x7) {
 539        phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
 540                   off, size);
 541        return;
 542    }
 543
 544    /* Handle masking */
 545    switch (off) {
 546    case PHB_LSI_SOURCE_ID:
 547        val &= PHB_LSI_SRC_ID;
 548        break;
 549    case PHB_M64_UPPER_BITS:
 550        val &= 0xff00000000000000ull;
 551        break;
 552    /* TCE Kill */
 553    case PHB_TCE_KILL:
 554        /* Clear top 3 bits which HW does to indicate successful queuing */
 555        val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
 556        break;
 557    case PHB_Q_DMA_R:
 558        /*
 559         * This is enough logic to make SW happy but we aren't
 560         * actually quiescing the DMAs
 561         */
 562        if (val & PHB_Q_DMA_R_AUTORESET) {
 563            val = 0;
 564        } else {
 565            val &= PHB_Q_DMA_R_QUIESCE_DMA;
 566        }
 567        break;
 568    /* LEM stuff */
 569    case PHB_LEM_FIR_AND_MASK:
 570        phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
 571        return;
 572    case PHB_LEM_FIR_OR_MASK:
 573        phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
 574        return;
 575    case PHB_LEM_ERROR_AND_MASK:
 576        phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
 577        return;
 578    case PHB_LEM_ERROR_OR_MASK:
 579        phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
 580        return;
 581    case PHB_LEM_WOF:
 582        val = 0;
 583        break;
 584    /* TODO: More regs ..., maybe create a table with masks... */
 585
 586    /* Read only registers */
 587    case PHB_CPU_LOADSTORE_STATUS:
 588    case PHB_ETU_ERR_SUMMARY:
 589    case PHB_PHB4_GEN_CAP:
 590    case PHB_PHB4_TCE_CAP:
 591    case PHB_PHB4_IRQ_CAP:
 592    case PHB_PHB4_EEH_CAP:
 593        return;
 594    }
 595
 596    /* Record whether it changed */
 597    changed = phb->regs[off >> 3] != val;
 598
 599    /* Store in register cache first */
 600    phb->regs[off >> 3] = val;
 601
 602    /* Handle side effects */
 603    switch (off) {
 604    case PHB_PHB4_CONFIG:
 605        if (changed) {
 606            pnv_phb4_update_all_msi_regions(phb);
 607        }
 608        break;
 609    case PHB_M32_START_ADDR:
 610    case PHB_M64_UPPER_BITS:
 611        if (changed) {
 612            pnv_phb4_check_all_mbt(phb);
 613        }
 614        break;
 615
 616    /* IODA table accesses */
 617    case PHB_IODA_DATA0:
 618        pnv_phb4_ioda_write(phb, val);
 619        break;
 620
 621    /* RTC invalidation */
 622    case PHB_RTC_INVALIDATE:
 623        pnv_phb4_rtc_invalidate(phb, val);
 624        break;
 625
 626    /* PHB Control (Affects XIVE source) */
 627    case PHB_CTRLR:
 628    case PHB_LSI_SOURCE_ID:
 629        pnv_phb4_update_xsrc(phb);
 630        break;
 631
 632    /* Silent simple writes */
 633    case PHB_ASN_CMPM:
 634    case PHB_CONFIG_ADDRESS:
 635    case PHB_IODA_ADDR:
 636    case PHB_TCE_KILL:
 637    case PHB_TCE_SPEC_CTL:
 638    case PHB_PEST_BAR:
 639    case PHB_PELTV_BAR:
 640    case PHB_RTT_BAR:
 641    case PHB_LEM_FIR_ACCUM:
 642    case PHB_LEM_ERROR_MASK:
 643    case PHB_LEM_ACTION0:
 644    case PHB_LEM_ACTION1:
 645    case PHB_TCE_TAG_ENABLE:
 646    case PHB_INT_NOTIFY_ADDR:
 647    case PHB_INT_NOTIFY_INDEX:
 648    case PHB_DMARD_SYNC:
 649       break;
 650
 651    /* Noise on anything else */
 652    default:
 653        qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
 654                      off, val);
 655    }
 656}
 657
 658static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
 659{
 660    PnvPHB4 *phb = PNV_PHB4(opaque);
 661    uint64_t val;
 662
 663    if ((off & 0xfffc) == PHB_CONFIG_DATA) {
 664        return pnv_phb4_config_read(phb, off & 0x3, size);
 665    }
 666
 667    /* Special case RC configuration space */
 668    if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
 669        return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
 670    }
 671
 672    /* Other registers are 64-bit only */
 673    if (size != 8 || off & 0x7) {
 674        phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
 675                   off, size);
 676        return ~0ull;
 677    }
 678
 679    /* Default read from cache */
 680    val = phb->regs[off >> 3];
 681
 682    switch (off) {
 683    case PHB_VERSION:
 684        return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version;
 685
 686        /* Read-only */
 687    case PHB_PHB4_GEN_CAP:
 688        return 0xe4b8000000000000ull;
 689    case PHB_PHB4_TCE_CAP:
 690        return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
 691    case PHB_PHB4_IRQ_CAP:
 692        return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
 693    case PHB_PHB4_EEH_CAP:
 694        return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
 695
 696    /* IODA table accesses */
 697    case PHB_IODA_DATA0:
 698        return pnv_phb4_ioda_read(phb);
 699
 700    /* Link training always appears trained */
 701    case PHB_PCIE_DLP_TRAIN_CTL:
 702        /* TODO: Do something sensible with speed ? */
 703        return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
 704
 705    /* DMA read sync: make it look like it's complete */
 706    case PHB_DMARD_SYNC:
 707        return PHB_DMARD_SYNC_COMPLETE;
 708
 709    /* Silent simple reads */
 710    case PHB_LSI_SOURCE_ID:
 711    case PHB_CPU_LOADSTORE_STATUS:
 712    case PHB_ASN_CMPM:
 713    case PHB_PHB4_CONFIG:
 714    case PHB_M32_START_ADDR:
 715    case PHB_CONFIG_ADDRESS:
 716    case PHB_IODA_ADDR:
 717    case PHB_RTC_INVALIDATE:
 718    case PHB_TCE_KILL:
 719    case PHB_TCE_SPEC_CTL:
 720    case PHB_PEST_BAR:
 721    case PHB_PELTV_BAR:
 722    case PHB_RTT_BAR:
 723    case PHB_M64_UPPER_BITS:
 724    case PHB_CTRLR:
 725    case PHB_LEM_FIR_ACCUM:
 726    case PHB_LEM_ERROR_MASK:
 727    case PHB_LEM_ACTION0:
 728    case PHB_LEM_ACTION1:
 729    case PHB_TCE_TAG_ENABLE:
 730    case PHB_INT_NOTIFY_ADDR:
 731    case PHB_INT_NOTIFY_INDEX:
 732    case PHB_Q_DMA_R:
 733    case PHB_ETU_ERR_SUMMARY:
 734        break;
 735
 736    /* Noise on anything else */
 737    default:
 738        qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
 739                      off, val);
 740    }
 741    return val;
 742}
 743
 744static const MemoryRegionOps pnv_phb4_reg_ops = {
 745    .read = pnv_phb4_reg_read,
 746    .write = pnv_phb4_reg_write,
 747    .valid.min_access_size = 1,
 748    .valid.max_access_size = 8,
 749    .impl.min_access_size = 1,
 750    .impl.max_access_size = 8,
 751    .endianness = DEVICE_BIG_ENDIAN,
 752};
 753
 754static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
 755{
 756    PnvPHB4 *phb = PNV_PHB4(opaque);
 757    uint32_t reg = addr >> 3;
 758    uint64_t val;
 759    hwaddr offset;
 760
 761    switch (reg) {
 762    case PHB_SCOM_HV_IND_ADDR:
 763        return phb->scom_hv_ind_addr_reg;
 764
 765    case PHB_SCOM_HV_IND_DATA:
 766        if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
 767            phb_error(phb, "Invalid indirect address");
 768            return ~0ull;
 769        }
 770        size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
 771        offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
 772        val = pnv_phb4_reg_read(phb, offset, size);
 773        if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
 774            offset += size;
 775            offset &= 0x3fff;
 776            phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
 777                                                 phb->scom_hv_ind_addr_reg,
 778                                                 offset);
 779        }
 780        return val;
 781    case PHB_SCOM_ETU_LEM_FIR:
 782    case PHB_SCOM_ETU_LEM_FIR_AND:
 783    case PHB_SCOM_ETU_LEM_FIR_OR:
 784    case PHB_SCOM_ETU_LEM_FIR_MSK:
 785    case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
 786    case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
 787    case PHB_SCOM_ETU_LEM_ACT0:
 788    case PHB_SCOM_ETU_LEM_ACT1:
 789    case PHB_SCOM_ETU_LEM_WOF:
 790        offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
 791        return pnv_phb4_reg_read(phb, offset, size);
 792    case PHB_SCOM_ETU_PMON_CONFIG:
 793    case PHB_SCOM_ETU_PMON_CTR0:
 794    case PHB_SCOM_ETU_PMON_CTR1:
 795    case PHB_SCOM_ETU_PMON_CTR2:
 796    case PHB_SCOM_ETU_PMON_CTR3:
 797        offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
 798        return pnv_phb4_reg_read(phb, offset, size);
 799
 800    default:
 801        qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
 802        return ~0ull;
 803    }
 804}
 805
 806static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
 807                                 uint64_t val, unsigned size)
 808{
 809    PnvPHB4 *phb = PNV_PHB4(opaque);
 810    uint32_t reg = addr >> 3;
 811    hwaddr offset;
 812
 813    switch (reg) {
 814    case PHB_SCOM_HV_IND_ADDR:
 815        phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
 816        break;
 817    case PHB_SCOM_HV_IND_DATA:
 818        if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
 819            phb_error(phb, "Invalid indirect address");
 820            break;
 821        }
 822        size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
 823        offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
 824        pnv_phb4_reg_write(phb, offset, val, size);
 825        if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
 826            offset += size;
 827            offset &= 0x3fff;
 828            phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
 829                                                 phb->scom_hv_ind_addr_reg,
 830                                                 offset);
 831        }
 832        break;
 833    case PHB_SCOM_ETU_LEM_FIR:
 834    case PHB_SCOM_ETU_LEM_FIR_AND:
 835    case PHB_SCOM_ETU_LEM_FIR_OR:
 836    case PHB_SCOM_ETU_LEM_FIR_MSK:
 837    case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
 838    case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
 839    case PHB_SCOM_ETU_LEM_ACT0:
 840    case PHB_SCOM_ETU_LEM_ACT1:
 841    case PHB_SCOM_ETU_LEM_WOF:
 842        offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
 843        pnv_phb4_reg_write(phb, offset, val, size);
 844        break;
 845    case PHB_SCOM_ETU_PMON_CONFIG:
 846    case PHB_SCOM_ETU_PMON_CTR0:
 847    case PHB_SCOM_ETU_PMON_CTR1:
 848    case PHB_SCOM_ETU_PMON_CTR2:
 849    case PHB_SCOM_ETU_PMON_CTR3:
 850        offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
 851        pnv_phb4_reg_write(phb, offset, val, size);
 852        break;
 853    default:
 854        qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
 855                      "=%"PRIx64"\n", addr, val);
 856    }
 857}
 858
 859const MemoryRegionOps pnv_phb4_xscom_ops = {
 860    .read = pnv_phb4_xscom_read,
 861    .write = pnv_phb4_xscom_write,
 862    .valid.min_access_size = 8,
 863    .valid.max_access_size = 8,
 864    .impl.min_access_size = 8,
 865    .impl.max_access_size = 8,
 866    .endianness = DEVICE_BIG_ENDIAN,
 867};
 868
 869static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr,
 870                                            unsigned size)
 871{
 872    PnvPHB4 *phb = PNV_PHB4(opaque);
 873    uint32_t reg = addr >> 3;
 874
 875    /* TODO: add list of allowed registers and error out if not */
 876    return phb->nest_regs[reg];
 877}
 878
 879/*
 880 * Return the 'stack_no' of a PHB4. 'stack_no' is the order
 881 * the PHB4 occupies in the PEC. This is the reverse of what
 882 * pnv_phb4_pec_get_phb_id() does.
 883 *
 884 * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will
 885 * be the second phb (stack_no = 1) of the PEC.
 886 */
 887static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb)
 888{
 889    PnvPhb4PecState *pec = phb->pec;
 890    PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
 891    int index = pec->index;
 892    int stack_no = phb->phb_id;
 893
 894    while (index--) {
 895        stack_no -= pecc->num_phbs[index];
 896    }
 897
 898    return stack_no;
 899}
 900
 901static void pnv_phb4_update_regions(PnvPHB4 *phb)
 902{
 903    /* Unmap first always */
 904    if (memory_region_is_mapped(&phb->mr_regs)) {
 905        memory_region_del_subregion(&phb->phbbar, &phb->mr_regs);
 906    }
 907    if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
 908        memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio);
 909    }
 910
 911    /* Map registers if enabled */
 912    if (memory_region_is_mapped(&phb->phbbar)) {
 913        memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs);
 914    }
 915
 916    /* Map ESB if enabled */
 917    if (memory_region_is_mapped(&phb->intbar)) {
 918        memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio);
 919    }
 920
 921    /* Check/update m32 */
 922    pnv_phb4_check_all_mbt(phb);
 923}
 924
 925static void pnv_pec_phb_update_map(PnvPHB4 *phb)
 926{
 927    PnvPhb4PecState *pec = phb->pec;
 928    MemoryRegion *sysmem = get_system_memory();
 929    uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN];
 930    int stack_no = pnv_phb4_get_phb_stack_no(phb);
 931    uint64_t bar, mask, size;
 932    char name[64];
 933
 934    /*
 935     * NOTE: This will really not work well if those are remapped
 936     * after the PHB has created its sub regions. We could do better
 937     * if we had a way to resize regions but we don't really care
 938     * that much in practice as the stuff below really only happens
 939     * once early during boot
 940     */
 941
 942    /* Handle unmaps */
 943    if (memory_region_is_mapped(&phb->mmbar0) &&
 944        !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
 945        memory_region_del_subregion(sysmem, &phb->mmbar0);
 946    }
 947    if (memory_region_is_mapped(&phb->mmbar1) &&
 948        !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
 949        memory_region_del_subregion(sysmem, &phb->mmbar1);
 950    }
 951    if (memory_region_is_mapped(&phb->phbbar) &&
 952        !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
 953        memory_region_del_subregion(sysmem, &phb->phbbar);
 954    }
 955    if (memory_region_is_mapped(&phb->intbar) &&
 956        !(bar_en & PEC_NEST_STK_BAR_EN_INT)) {
 957        memory_region_del_subregion(sysmem, &phb->intbar);
 958    }
 959
 960    /* Update PHB */
 961    pnv_phb4_update_regions(phb);
 962
 963    /* Handle maps */
 964    if (!memory_region_is_mapped(&phb->mmbar0) &&
 965        (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
 966        bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8;
 967        mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK];
 968        size = ((~mask) >> 8) + 1;
 969        snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0",
 970                 pec->chip_id, pec->index, stack_no);
 971        memory_region_init(&phb->mmbar0, OBJECT(phb), name, size);
 972        memory_region_add_subregion(sysmem, bar, &phb->mmbar0);
 973        phb->mmio0_base = bar;
 974        phb->mmio0_size = size;
 975    }
 976    if (!memory_region_is_mapped(&phb->mmbar1) &&
 977        (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
 978        bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8;
 979        mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK];
 980        size = ((~mask) >> 8) + 1;
 981        snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1",
 982                 pec->chip_id, pec->index, stack_no);
 983        memory_region_init(&phb->mmbar1, OBJECT(phb), name, size);
 984        memory_region_add_subregion(sysmem, bar, &phb->mmbar1);
 985        phb->mmio1_base = bar;
 986        phb->mmio1_size = size;
 987    }
 988    if (!memory_region_is_mapped(&phb->phbbar) &&
 989        (bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
 990        bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8;
 991        size = PNV_PHB4_NUM_REGS << 3;
 992        snprintf(name, sizeof(name), "pec-%d.%d-phb-%d",
 993                 pec->chip_id, pec->index, stack_no);
 994        memory_region_init(&phb->phbbar, OBJECT(phb), name, size);
 995        memory_region_add_subregion(sysmem, bar, &phb->phbbar);
 996    }
 997    if (!memory_region_is_mapped(&phb->intbar) &&
 998        (bar_en & PEC_NEST_STK_BAR_EN_INT)) {
 999        bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8;
1000        size = PNV_PHB4_MAX_INTs << 16;
1001        snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int",
1002                 phb->pec->chip_id, phb->pec->index, stack_no);
1003        memory_region_init(&phb->intbar, OBJECT(phb), name, size);
1004        memory_region_add_subregion(sysmem, bar, &phb->intbar);
1005    }
1006
1007    /* Update PHB */
1008    pnv_phb4_update_regions(phb);
1009}
1010
1011static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr,
1012                                         uint64_t val, unsigned size)
1013{
1014    PnvPHB4 *phb = PNV_PHB4(opaque);
1015    PnvPhb4PecState *pec = phb->pec;
1016    uint32_t reg = addr >> 3;
1017
1018    switch (reg) {
1019    case PEC_NEST_STK_PCI_NEST_FIR:
1020        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val;
1021        break;
1022    case PEC_NEST_STK_PCI_NEST_FIR_CLR:
1023        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val;
1024        break;
1025    case PEC_NEST_STK_PCI_NEST_FIR_SET:
1026        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val;
1027        break;
1028    case PEC_NEST_STK_PCI_NEST_FIR_MSK:
1029        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val;
1030        break;
1031    case PEC_NEST_STK_PCI_NEST_FIR_MSKC:
1032        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val;
1033        break;
1034    case PEC_NEST_STK_PCI_NEST_FIR_MSKS:
1035        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val;
1036        break;
1037    case PEC_NEST_STK_PCI_NEST_FIR_ACT0:
1038    case PEC_NEST_STK_PCI_NEST_FIR_ACT1:
1039        phb->nest_regs[reg] = val;
1040        break;
1041    case PEC_NEST_STK_PCI_NEST_FIR_WOF:
1042        phb->nest_regs[reg] = 0;
1043        break;
1044    case PEC_NEST_STK_ERR_REPORT_0:
1045    case PEC_NEST_STK_ERR_REPORT_1:
1046    case PEC_NEST_STK_PBCQ_GNRL_STATUS:
1047        /* Flag error ? */
1048        break;
1049    case PEC_NEST_STK_PBCQ_MODE:
1050        phb->nest_regs[reg] = val & 0xff00000000000000ull;
1051        break;
1052    case PEC_NEST_STK_MMIO_BAR0:
1053    case PEC_NEST_STK_MMIO_BAR0_MASK:
1054    case PEC_NEST_STK_MMIO_BAR1:
1055    case PEC_NEST_STK_MMIO_BAR1_MASK:
1056        if (phb->nest_regs[PEC_NEST_STK_BAR_EN] &
1057            (PEC_NEST_STK_BAR_EN_MMIO0 |
1058             PEC_NEST_STK_BAR_EN_MMIO1)) {
1059            phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1060        }
1061        phb->nest_regs[reg] = val & 0xffffffffff000000ull;
1062        break;
1063    case PEC_NEST_STK_PHB_REGS_BAR:
1064        if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) {
1065            phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1066        }
1067        phb->nest_regs[reg] = val & 0xffffffffffc00000ull;
1068        break;
1069    case PEC_NEST_STK_INT_BAR:
1070        if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) {
1071            phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1072        }
1073        phb->nest_regs[reg] = val & 0xfffffff000000000ull;
1074        break;
1075    case PEC_NEST_STK_BAR_EN:
1076        phb->nest_regs[reg] = val & 0xf000000000000000ull;
1077        pnv_pec_phb_update_map(phb);
1078        break;
1079    case PEC_NEST_STK_DATA_FRZ_TYPE:
1080    case PEC_NEST_STK_PBCQ_TUN_BAR:
1081        /* Not used for now */
1082        phb->nest_regs[reg] = val;
1083        break;
1084    default:
1085        qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx
1086                      "=%"PRIx64"\n", addr, val);
1087    }
1088}
1089
1090static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = {
1091    .read = pnv_pec_stk_nest_xscom_read,
1092    .write = pnv_pec_stk_nest_xscom_write,
1093    .valid.min_access_size = 8,
1094    .valid.max_access_size = 8,
1095    .impl.min_access_size = 8,
1096    .impl.max_access_size = 8,
1097    .endianness = DEVICE_BIG_ENDIAN,
1098};
1099
1100static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr,
1101                                           unsigned size)
1102{
1103    PnvPHB4 *phb = PNV_PHB4(opaque);
1104    uint32_t reg = addr >> 3;
1105
1106    /* TODO: add list of allowed registers and error out if not */
1107    return phb->pci_regs[reg];
1108}
1109
1110static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr,
1111                                        uint64_t val, unsigned size)
1112{
1113    PnvPHB4 *phb = PNV_PHB4(opaque);
1114    uint32_t reg = addr >> 3;
1115
1116    switch (reg) {
1117    case PEC_PCI_STK_PCI_FIR:
1118        phb->pci_regs[reg] = val;
1119        break;
1120    case PEC_PCI_STK_PCI_FIR_CLR:
1121        phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val;
1122        break;
1123    case PEC_PCI_STK_PCI_FIR_SET:
1124        phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val;
1125        break;
1126    case PEC_PCI_STK_PCI_FIR_MSK:
1127        phb->pci_regs[reg] = val;
1128        break;
1129    case PEC_PCI_STK_PCI_FIR_MSKC:
1130        phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val;
1131        break;
1132    case PEC_PCI_STK_PCI_FIR_MSKS:
1133        phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val;
1134        break;
1135    case PEC_PCI_STK_PCI_FIR_ACT0:
1136    case PEC_PCI_STK_PCI_FIR_ACT1:
1137        phb->pci_regs[reg] = val;
1138        break;
1139    case PEC_PCI_STK_PCI_FIR_WOF:
1140        phb->pci_regs[reg] = 0;
1141        break;
1142    case PEC_PCI_STK_ETU_RESET:
1143        phb->pci_regs[reg] = val & 0x8000000000000000ull;
1144        /* TODO: Implement reset */
1145        break;
1146    case PEC_PCI_STK_PBAIB_ERR_REPORT:
1147        break;
1148    case PEC_PCI_STK_PBAIB_TX_CMD_CRED:
1149    case PEC_PCI_STK_PBAIB_TX_DAT_CRED:
1150        phb->pci_regs[reg] = val;
1151        break;
1152    default:
1153        qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx
1154                      "=%"PRIx64"\n", addr, val);
1155    }
1156}
1157
1158static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = {
1159    .read = pnv_pec_stk_pci_xscom_read,
1160    .write = pnv_pec_stk_pci_xscom_write,
1161    .valid.min_access_size = 8,
1162    .valid.max_access_size = 8,
1163    .impl.min_access_size = 8,
1164    .impl.max_access_size = 8,
1165    .endianness = DEVICE_BIG_ENDIAN,
1166};
1167
1168static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
1169{
1170    /* Check that out properly ... */
1171    return irq_num & 3;
1172}
1173
1174static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
1175{
1176    PnvPHB4 *phb = PNV_PHB4(opaque);
1177    uint32_t lsi_base;
1178
1179    /* LSI only ... */
1180    if (irq_num > 3) {
1181        phb_error(phb, "IRQ %x is not an LSI", irq_num);
1182    }
1183    lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
1184    lsi_base <<= 3;
1185    qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
1186}
1187
1188static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
1189{
1190    uint64_t rtt, addr;
1191    uint16_t rte;
1192    int bus_num;
1193    int num_PEs;
1194
1195    /* Already resolved ? */
1196    if (ds->pe_num != PHB_INVALID_PE) {
1197        return true;
1198    }
1199
1200    /* We need to lookup the RTT */
1201    rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
1202    if (!(rtt & PHB_RTT_BAR_ENABLE)) {
1203        phb_error(ds->phb, "DMA with RTT BAR disabled !");
1204        /* Set error bits ? fence ? ... */
1205        return false;
1206    }
1207
1208    /* Read RTE */
1209    bus_num = pci_bus_num(ds->bus);
1210    addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
1211    addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn);
1212    if (dma_memory_read(&address_space_memory, addr, &rte,
1213                        sizeof(rte), MEMTXATTRS_UNSPECIFIED)) {
1214        phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
1215        /* Set error bits ? fence ? ... */
1216        return false;
1217    }
1218    rte = be16_to_cpu(rte);
1219
1220    /* Fail upon reading of invalid PE# */
1221    num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
1222    if (rte >= num_PEs) {
1223        phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
1224        rte &= num_PEs - 1;
1225    }
1226    ds->pe_num = rte;
1227    return true;
1228}
1229
1230static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
1231                                   bool is_write, uint64_t tve,
1232                                   IOMMUTLBEntry *tlb)
1233{
1234    uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
1235    int32_t  lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
1236    uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
1237    uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
1238
1239    /* Invalid levels */
1240    if (lev > 4) {
1241        phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
1242        return;
1243    }
1244
1245    /* Invalid entry */
1246    if (tts == 0) {
1247        phb_error(ds->phb, "Access to invalid TVE");
1248        return;
1249    }
1250
1251    /* IO Page Size of 0 means untranslated, else use TCEs */
1252    if (tps == 0) {
1253        /* TODO: Handle boundaries */
1254
1255        /* Use 4k pages like q35 ... for now */
1256        tlb->iova = addr & 0xfffffffffffff000ull;
1257        tlb->translated_addr = addr & 0x0003fffffffff000ull;
1258        tlb->addr_mask = 0xfffull;
1259        tlb->perm = IOMMU_RW;
1260    } else {
1261        uint32_t tce_shift, tbl_shift, sh;
1262        uint64_t base, taddr, tce, tce_mask;
1263
1264        /* Address bits per bottom level TCE entry */
1265        tce_shift = tps + 11;
1266
1267        /* Address bits per table level */
1268        tbl_shift = tts + 8;
1269
1270        /* Top level table base address */
1271        base = tta << 12;
1272
1273        /* Total shift to first level */
1274        sh = tbl_shift * lev + tce_shift;
1275
1276        /* TODO: Limit to support IO page sizes */
1277
1278        /* TODO: Multi-level untested */
1279        do {
1280            lev--;
1281
1282            /* Grab the TCE address */
1283            taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
1284            if (dma_memory_read(&address_space_memory, taddr, &tce,
1285                                sizeof(tce), MEMTXATTRS_UNSPECIFIED)) {
1286                phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
1287                return;
1288            }
1289            tce = be64_to_cpu(tce);
1290
1291            /* Check permission for indirect TCE */
1292            if ((lev >= 0) && !(tce & 3)) {
1293                phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
1294                phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1295                           is_write ? 'W' : 'R', tve);
1296                phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1297                           tta, lev, tts, tps);
1298                return;
1299            }
1300            sh -= tbl_shift;
1301            base = tce & ~0xfffull;
1302        } while (lev >= 0);
1303
1304        /* We exit the loop with TCE being the final TCE */
1305        if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
1306            phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
1307            phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1308                       is_write ? 'W' : 'R', tve);
1309            phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1310                       tta, lev, tts, tps);
1311            return;
1312        }
1313        tce_mask = ~((1ull << tce_shift) - 1);
1314        tlb->iova = addr & tce_mask;
1315        tlb->translated_addr = tce & tce_mask;
1316        tlb->addr_mask = ~tce_mask;
1317        tlb->perm = tce & 3;
1318    }
1319}
1320
1321static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
1322                                              hwaddr addr,
1323                                              IOMMUAccessFlags flag,
1324                                              int iommu_idx)
1325{
1326    PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
1327    int tve_sel;
1328    uint64_t tve, cfg;
1329    IOMMUTLBEntry ret = {
1330        .target_as = &address_space_memory,
1331        .iova = addr,
1332        .translated_addr = 0,
1333        .addr_mask = ~(hwaddr)0,
1334        .perm = IOMMU_NONE,
1335    };
1336
1337    /* Resolve PE# */
1338    if (!pnv_phb4_resolve_pe(ds)) {
1339        phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1340                   ds->bus, pci_bus_num(ds->bus), ds->devfn);
1341        return ret;
1342    }
1343
1344    /* Check top bits */
1345    switch (addr >> 60) {
1346    case 00:
1347        /* DMA or 32-bit MSI ? */
1348        cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
1349        if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
1350            ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
1351            phb_error(ds->phb, "xlate on 32-bit MSI region");
1352            return ret;
1353        }
1354        /* Choose TVE XXX Use PHB4 Control Register */
1355        tve_sel = (addr >> 59) & 1;
1356        tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
1357        pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
1358        break;
1359    case 01:
1360        phb_error(ds->phb, "xlate on 64-bit MSI region");
1361        break;
1362    default:
1363        phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
1364    }
1365    return ret;
1366}
1367
1368#define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
1369DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
1370                         TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
1371
1372static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
1373                                                    void *data)
1374{
1375    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1376
1377    imrc->translate = pnv_phb4_translate_iommu;
1378}
1379
1380static const TypeInfo pnv_phb4_iommu_memory_region_info = {
1381    .parent = TYPE_IOMMU_MEMORY_REGION,
1382    .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1383    .class_init = pnv_phb4_iommu_memory_region_class_init,
1384};
1385
1386/*
1387 * Return the index/phb-id of a PHB4 that belongs to a
1388 * pec->stacks[stack_index] stack.
1389 */
1390int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index)
1391{
1392    PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1393    int index = pec->index;
1394    int offset = 0;
1395
1396    while (index--) {
1397        offset += pecc->num_phbs[index];
1398    }
1399
1400    return offset + stack_index;
1401}
1402
1403/*
1404 * MSI/MSIX memory region implementation.
1405 * The handler handles both MSI and MSIX.
1406 */
1407static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
1408                               uint64_t data, unsigned size)
1409{
1410    PnvPhb4DMASpace *ds = opaque;
1411    PnvPHB4 *phb = ds->phb;
1412
1413    uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
1414
1415    /* Resolve PE# */
1416    if (!pnv_phb4_resolve_pe(ds)) {
1417        phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1418                   ds->bus, pci_bus_num(ds->bus), ds->devfn);
1419        return;
1420    }
1421
1422    /* TODO: Check it doesn't collide with LSIs */
1423    if (src >= phb->xsrc.nr_irqs) {
1424        phb_error(phb, "MSI %d out of bounds", src);
1425        return;
1426    }
1427
1428    /* TODO: check PE/MSI assignement */
1429
1430    qemu_irq_pulse(phb->qirqs[src]);
1431}
1432
1433/* There is no .read as the read result is undefined by PCI spec */
1434static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
1435{
1436    PnvPhb4DMASpace *ds = opaque;
1437
1438    phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
1439    return -1;
1440}
1441
1442static const MemoryRegionOps pnv_phb4_msi_ops = {
1443    .read = pnv_phb4_msi_read,
1444    .write = pnv_phb4_msi_write,
1445    .endianness = DEVICE_LITTLE_ENDIAN
1446};
1447
1448static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
1449{
1450    PnvPhb4DMASpace *ds;
1451
1452    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
1453        if (ds->bus == bus && ds->devfn == devfn) {
1454            break;
1455        }
1456    }
1457    return ds;
1458}
1459
1460static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1461{
1462    PnvPHB4 *phb = opaque;
1463    PnvPhb4DMASpace *ds;
1464    char name[32];
1465
1466    ds = pnv_phb4_dma_find(phb, bus, devfn);
1467
1468    if (ds == NULL) {
1469        ds = g_new0(PnvPhb4DMASpace, 1);
1470        ds->bus = bus;
1471        ds->devfn = devfn;
1472        ds->pe_num = PHB_INVALID_PE;
1473        ds->phb = phb;
1474        snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
1475                 phb->phb_id);
1476        memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
1477                                 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1478                                 OBJECT(phb), name, UINT64_MAX);
1479        address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
1480                           name);
1481        memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1482                              ds, "msi32", 0x10000);
1483        memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1484                              ds, "msi64", 0x100000);
1485        pnv_phb4_update_msi_regions(ds);
1486
1487        QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
1488    }
1489    return &ds->dma_as;
1490}
1491
1492static void pnv_phb4_xscom_realize(PnvPHB4 *phb)
1493{
1494    PnvPhb4PecState *pec = phb->pec;
1495    PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1496    int stack_no = pnv_phb4_get_phb_stack_no(phb);
1497    uint32_t pec_nest_base;
1498    uint32_t pec_pci_base;
1499    char name[64];
1500
1501    assert(pec);
1502
1503    /* Initialize the XSCOM regions for the stack registers */
1504    snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d",
1505             pec->chip_id, pec->index, stack_no);
1506    pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb),
1507                          &pnv_pec_stk_nest_xscom_ops, phb, name,
1508                          PHB4_PEC_NEST_STK_REGS_COUNT);
1509
1510    snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1511             pec->chip_id, pec->index, stack_no);
1512    pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb),
1513                          &pnv_pec_stk_pci_xscom_ops, phb, name,
1514                          PHB4_PEC_PCI_STK_REGS_COUNT);
1515
1516    /* PHB pass-through */
1517    snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1518             pec->chip_id, pec->index, stack_no);
1519    pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb),
1520                          &pnv_phb4_xscom_ops, phb, name, 0x40);
1521
1522    pec_nest_base = pecc->xscom_nest_base(pec);
1523    pec_pci_base = pecc->xscom_pci_base(pec);
1524
1525    /* Populate the XSCOM address space. */
1526    pnv_xscom_add_subregion(pec->chip,
1527                            pec_nest_base + 0x40 * (stack_no + 1),
1528                            &phb->nest_regs_mr);
1529    pnv_xscom_add_subregion(pec->chip,
1530                            pec_pci_base + 0x40 * (stack_no + 1),
1531                            &phb->pci_regs_mr);
1532    pnv_xscom_add_subregion(pec->chip,
1533                            pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1534                            0x40 * stack_no,
1535                            &phb->phb_regs_mr);
1536}
1537
1538static void pnv_phb4_instance_init(Object *obj)
1539{
1540    PnvPHB4 *phb = PNV_PHB4(obj);
1541
1542    QLIST_INIT(&phb->dma_spaces);
1543
1544    /* XIVE interrupt source object */
1545    object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
1546}
1547
1548static void pnv_phb4_realize(DeviceState *dev, Error **errp)
1549{
1550    PnvPHB4 *phb = PNV_PHB4(dev);
1551    PCIHostState *pci = PCI_HOST_BRIDGE(dev);
1552    XiveSource *xsrc = &phb->xsrc;
1553    int nr_irqs;
1554    char name[32];
1555
1556    /* Set the "big_phb" flag */
1557    phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
1558
1559    /* Controller Registers */
1560    snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
1561             phb->phb_id);
1562    memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
1563                          name, 0x2000);
1564
1565    /*
1566     * PHB4 doesn't support IO space. However, qemu gets very upset if
1567     * we don't have an IO region to anchor IO BARs onto so we just
1568     * initialize one which we never hook up to anything
1569     */
1570
1571    snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
1572             phb->phb_id);
1573    memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
1574
1575    snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
1576             phb->phb_id);
1577    memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
1578                       PCI_MMIO_TOTAL_SIZE);
1579
1580    pci->bus = pci_register_root_bus(dev, dev->id,
1581                                     pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
1582                                     &phb->pci_mmio, &phb->pci_io,
1583                                     0, 4, TYPE_PNV_PHB4_ROOT_BUS);
1584    pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
1585    pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1586
1587    /* Setup XIVE Source */
1588    if (phb->big_phb) {
1589        nr_irqs = PNV_PHB4_MAX_INTs;
1590    } else {
1591        nr_irqs = PNV_PHB4_MAX_INTs >> 1;
1592    }
1593    object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
1594    object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
1595    if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1596        return;
1597    }
1598
1599    pnv_phb4_update_xsrc(phb);
1600
1601    phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
1602
1603    pnv_phb4_xscom_realize(phb);
1604}
1605
1606static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge,
1607                                          PCIBus *rootbus)
1608{
1609    PnvPHB4 *phb = PNV_PHB4(host_bridge);
1610
1611    snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
1612             phb->chip_id, phb->phb_id);
1613    return phb->bus_path;
1614}
1615
1616/*
1617 * Address base trigger mode (POWER10)
1618 *
1619 * Trigger directly the IC ESB page
1620 */
1621static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno,
1622                                     bool pq_checked)
1623{
1624    uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1625    uint64_t data = 0; /* trigger data : don't care */
1626    hwaddr addr;
1627    MemTxResult result;
1628    int esb_shift;
1629
1630    if (notif_port & PHB_INT_NOTIFY_ADDR_64K) {
1631        esb_shift = 16;
1632    } else {
1633        esb_shift = 12;
1634    }
1635
1636    /* Compute the address of the IC ESB management page */
1637    addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K);
1638    addr |= (1ull << (esb_shift + 1)) * srcno;
1639    addr |= (1ull << esb_shift);
1640
1641    /*
1642     * When the PQ state bits are checked on the PHB, the associated
1643     * PQ state bits on the IC should be ignored. Use the unconditional
1644     * trigger offset to inject a trigger on the IC. This is always
1645     * the case for LSIs
1646     */
1647    if (pq_checked) {
1648        addr |= XIVE_ESB_INJECT;
1649    }
1650
1651    trace_pnv_phb4_xive_notify_ic(addr, data);
1652
1653    address_space_stq_be(&address_space_memory, addr, data,
1654                         MEMTXATTRS_UNSPECIFIED, &result);
1655    if (result != MEMTX_OK) {
1656        phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr);
1657        return;
1658    }
1659}
1660
1661static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno,
1662                                    bool pq_checked)
1663{
1664    uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1665    uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1666    uint64_t data = offset | srcno;
1667    MemTxResult result;
1668
1669    if (pq_checked) {
1670        data |= XIVE_TRIGGER_PQ;
1671    }
1672
1673    trace_pnv_phb4_xive_notify_ic(notif_port, data);
1674
1675    address_space_stq_be(&address_space_memory, notif_port, data,
1676                         MEMTXATTRS_UNSPECIFIED, &result);
1677    if (result != MEMTX_OK) {
1678        phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
1679        return;
1680    }
1681}
1682
1683static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno,
1684                                 bool pq_checked)
1685{
1686    PnvPHB4 *phb = PNV_PHB4(xf);
1687
1688    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) {
1689        pnv_phb4_xive_notify_abt(phb, srcno, pq_checked);
1690    } else {
1691        pnv_phb4_xive_notify_ic(phb, srcno, pq_checked);
1692    }
1693}
1694
1695static Property pnv_phb4_properties[] = {
1696        DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
1697        DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
1698        DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC,
1699                         PnvPhb4PecState *),
1700        DEFINE_PROP_END_OF_LIST(),
1701};
1702
1703static void pnv_phb4_class_init(ObjectClass *klass, void *data)
1704{
1705    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1706    DeviceClass *dc = DEVICE_CLASS(klass);
1707    XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
1708
1709    hc->root_bus_path   = pnv_phb4_root_bus_path;
1710    dc->realize         = pnv_phb4_realize;
1711    device_class_set_props(dc, pnv_phb4_properties);
1712    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1713    dc->user_creatable  = false;
1714
1715    xfc->notify         = pnv_phb4_xive_notify;
1716}
1717
1718static const TypeInfo pnv_phb4_type_info = {
1719    .name          = TYPE_PNV_PHB4,
1720    .parent        = TYPE_PCIE_HOST_BRIDGE,
1721    .instance_init = pnv_phb4_instance_init,
1722    .instance_size = sizeof(PnvPHB4),
1723    .class_init    = pnv_phb4_class_init,
1724    .interfaces = (InterfaceInfo[]) {
1725            { TYPE_XIVE_NOTIFIER },
1726            { },
1727    }
1728};
1729
1730static const TypeInfo pnv_phb5_type_info = {
1731    .name          = TYPE_PNV_PHB5,
1732    .parent        = TYPE_PNV_PHB4,
1733    .instance_size = sizeof(PnvPHB4),
1734};
1735
1736static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
1737{
1738    BusClass *k = BUS_CLASS(klass);
1739
1740    /*
1741     * PHB4 has only a single root complex. Enforce the limit on the
1742     * parent bus
1743     */
1744    k->max_dev = 1;
1745}
1746
1747static const TypeInfo pnv_phb4_root_bus_info = {
1748    .name = TYPE_PNV_PHB4_ROOT_BUS,
1749    .parent = TYPE_PCIE_BUS,
1750    .class_init = pnv_phb4_root_bus_class_init,
1751    .interfaces = (InterfaceInfo[]) {
1752        { INTERFACE_PCIE_DEVICE },
1753        { }
1754    },
1755};
1756
1757static void pnv_phb4_root_port_reset(DeviceState *dev)
1758{
1759    PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1760    PCIDevice *d = PCI_DEVICE(dev);
1761    uint8_t *conf = d->config;
1762
1763    rpc->parent_reset(dev);
1764
1765    pci_byte_test_and_set_mask(conf + PCI_IO_BASE,
1766                               PCI_IO_RANGE_MASK & 0xff);
1767    pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT,
1768                                 PCI_IO_RANGE_MASK & 0xff);
1769    pci_set_word(conf + PCI_MEMORY_BASE, 0);
1770    pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0);
1771    pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1);
1772    pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1);
1773    pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */
1774    pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff);
1775}
1776
1777static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp)
1778{
1779    PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1780    PCIDevice *pci = PCI_DEVICE(dev);
1781    PCIBus *bus = pci_get_bus(pci);
1782    PnvPHB4 *phb = NULL;
1783    Error *local_err = NULL;
1784
1785    phb = (PnvPHB4 *) object_dynamic_cast(OBJECT(bus->qbus.parent),
1786                                          TYPE_PNV_PHB4);
1787
1788    if (!phb) {
1789        error_setg(errp, "%s must be connected to pnv-phb4 buses", dev->id);
1790        return;
1791    }
1792
1793    /* Set unique chassis/slot values for the root port */
1794    qdev_prop_set_uint8(&pci->qdev, "chassis", phb->chip_id);
1795    qdev_prop_set_uint16(&pci->qdev, "slot", phb->phb_id);
1796
1797    rpc->parent_realize(dev, &local_err);
1798    if (local_err) {
1799        error_propagate(errp, local_err);
1800        return;
1801    }
1802}
1803
1804static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data)
1805{
1806    DeviceClass *dc = DEVICE_CLASS(klass);
1807    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1808    PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);
1809
1810    dc->desc     = "IBM PHB4 PCIE Root Port";
1811    dc->user_creatable = false;
1812
1813    device_class_set_parent_realize(dc, pnv_phb4_root_port_realize,
1814                                    &rpc->parent_realize);
1815    device_class_set_parent_reset(dc, pnv_phb4_root_port_reset,
1816                                  &rpc->parent_reset);
1817
1818    k->vendor_id = PCI_VENDOR_ID_IBM;
1819    k->device_id = PNV_PHB4_DEVICE_ID;
1820    k->revision  = 0;
1821
1822    rpc->exp_offset = 0x48;
1823    rpc->aer_offset = 0x100;
1824
1825    dc->reset = &pnv_phb4_root_port_reset;
1826}
1827
1828static const TypeInfo pnv_phb4_root_port_info = {
1829    .name          = TYPE_PNV_PHB4_ROOT_PORT,
1830    .parent        = TYPE_PCIE_ROOT_PORT,
1831    .instance_size = sizeof(PnvPHB4RootPort),
1832    .class_init    = pnv_phb4_root_port_class_init,
1833};
1834
1835static void pnv_phb5_root_port_class_init(ObjectClass *klass, void *data)
1836{
1837    DeviceClass *dc = DEVICE_CLASS(klass);
1838    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1839
1840    dc->desc     = "IBM PHB5 PCIE Root Port";
1841    dc->user_creatable = false;
1842
1843    k->vendor_id = PCI_VENDOR_ID_IBM;
1844    k->device_id = PNV_PHB5_DEVICE_ID;
1845}
1846
1847static const TypeInfo pnv_phb5_root_port_info = {
1848    .name          = TYPE_PNV_PHB5_ROOT_PORT,
1849    .parent        = TYPE_PNV_PHB4_ROOT_PORT,
1850    .instance_size = sizeof(PnvPHB4RootPort),
1851    .class_init    = pnv_phb5_root_port_class_init,
1852};
1853
1854static void pnv_phb4_register_types(void)
1855{
1856    type_register_static(&pnv_phb4_root_bus_info);
1857    type_register_static(&pnv_phb5_root_port_info);
1858    type_register_static(&pnv_phb4_root_port_info);
1859    type_register_static(&pnv_phb4_type_info);
1860    type_register_static(&pnv_phb5_type_info);
1861    type_register_static(&pnv_phb4_iommu_memory_region_info);
1862}
1863
1864type_init(pnv_phb4_register_types);
1865
1866void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
1867{
1868    uint64_t notif_port =
1869        phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K;
1870    uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1871    bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE);
1872
1873    monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x %s @%"HWADDR_PRIx"\n",
1874                   phb->chip_id, phb->phb_id,
1875                   offset, offset + phb->xsrc.nr_irqs - 1,
1876                   abt ? "ABT" : "",
1877                   notif_port);
1878    xive_source_pic_print_info(&phb->xsrc, 0, mon);
1879}
1880