qemu/hw/xtensa/xtfpga.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qemu/units.h"
  30#include "qapi/error.h"
  31#include "cpu.h"
  32#include "sysemu/sysemu.h"
  33#include "hw/boards.h"
  34#include "hw/loader.h"
  35#include "hw/qdev-properties.h"
  36#include "elf.h"
  37#include "exec/memory.h"
  38#include "hw/char/serial.h"
  39#include "net/net.h"
  40#include "hw/sysbus.h"
  41#include "hw/block/flash.h"
  42#include "chardev/char.h"
  43#include "sysemu/device_tree.h"
  44#include "sysemu/reset.h"
  45#include "sysemu/runstate.h"
  46#include "qemu/error-report.h"
  47#include "qemu/option.h"
  48#include "bootparam.h"
  49#include "xtensa_memory.h"
  50#include "hw/xtensa/mx_pic.h"
  51#include "migration/vmstate.h"
  52
  53typedef struct XtfpgaFlashDesc {
  54    hwaddr base;
  55    size_t size;
  56    size_t boot_base;
  57    size_t sector_size;
  58} XtfpgaFlashDesc;
  59
  60typedef struct XtfpgaBoardDesc {
  61    const XtfpgaFlashDesc *flash;
  62    size_t sram_size;
  63    const hwaddr *io;
  64} XtfpgaBoardDesc;
  65
  66typedef struct XtfpgaFpgaState {
  67    MemoryRegion iomem;
  68    uint32_t freq;
  69    uint32_t leds;
  70    uint32_t switches;
  71} XtfpgaFpgaState;
  72
  73static void xtfpga_fpga_reset(void *opaque)
  74{
  75    XtfpgaFpgaState *s = opaque;
  76
  77    s->leds = 0;
  78    s->switches = 0;
  79}
  80
  81static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
  82        unsigned size)
  83{
  84    XtfpgaFpgaState *s = opaque;
  85
  86    switch (addr) {
  87    case 0x0: /*build date code*/
  88        return 0x09272011;
  89
  90    case 0x4: /*processor clock frequency, Hz*/
  91        return s->freq;
  92
  93    case 0x8: /*LEDs (off = 0, on = 1)*/
  94        return s->leds;
  95
  96    case 0xc: /*DIP switches (off = 0, on = 1)*/
  97        return s->switches;
  98    }
  99    return 0;
 100}
 101
 102static void xtfpga_fpga_write(void *opaque, hwaddr addr,
 103        uint64_t val, unsigned size)
 104{
 105    XtfpgaFpgaState *s = opaque;
 106
 107    switch (addr) {
 108    case 0x8: /*LEDs (off = 0, on = 1)*/
 109        s->leds = val;
 110        break;
 111
 112    case 0x10: /*board reset*/
 113        if (val == 0xdead) {
 114            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 115        }
 116        break;
 117    }
 118}
 119
 120static const MemoryRegionOps xtfpga_fpga_ops = {
 121    .read = xtfpga_fpga_read,
 122    .write = xtfpga_fpga_write,
 123    .endianness = DEVICE_NATIVE_ENDIAN,
 124};
 125
 126static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
 127                                         hwaddr base, uint32_t freq)
 128{
 129    XtfpgaFpgaState *s = g_new(XtfpgaFpgaState, 1);
 130
 131    memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
 132                          "xtfpga.fpga", 0x10000);
 133    memory_region_add_subregion(address_space, base, &s->iomem);
 134    s->freq = freq;
 135    xtfpga_fpga_reset(s);
 136    qemu_register_reset(xtfpga_fpga_reset, s);
 137    return s;
 138}
 139
 140static void xtfpga_net_init(MemoryRegion *address_space,
 141        hwaddr base,
 142        hwaddr descriptors,
 143        hwaddr buffers,
 144        qemu_irq irq, NICInfo *nd)
 145{
 146    DeviceState *dev;
 147    SysBusDevice *s;
 148    MemoryRegion *ram;
 149
 150    dev = qdev_new("open_eth");
 151    qdev_set_nic_properties(dev, nd);
 152
 153    s = SYS_BUS_DEVICE(dev);
 154    sysbus_realize_and_unref(s, &error_fatal);
 155    sysbus_connect_irq(s, 0, irq);
 156    memory_region_add_subregion(address_space, base,
 157            sysbus_mmio_get_region(s, 0));
 158    memory_region_add_subregion(address_space, descriptors,
 159            sysbus_mmio_get_region(s, 1));
 160
 161    ram = g_malloc(sizeof(*ram));
 162    memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
 163                           &error_fatal);
 164    vmstate_register_ram_global(ram);
 165    memory_region_add_subregion(address_space, buffers, ram);
 166}
 167
 168static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
 169                                      const XtfpgaBoardDesc *board,
 170                                      DriveInfo *dinfo, int be)
 171{
 172    SysBusDevice *s;
 173    DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
 174
 175    qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
 176    qdev_prop_set_uint32(dev, "num-blocks",
 177                         board->flash->size / board->flash->sector_size);
 178    qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
 179    qdev_prop_set_uint8(dev, "width", 2);
 180    qdev_prop_set_bit(dev, "big-endian", be);
 181    qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
 182    s = SYS_BUS_DEVICE(dev);
 183    sysbus_realize_and_unref(s, &error_fatal);
 184    memory_region_add_subregion(address_space, board->flash->base,
 185                                sysbus_mmio_get_region(s, 0));
 186    return PFLASH_CFI01(dev);
 187}
 188
 189static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
 190{
 191    XtensaCPU *cpu = opaque;
 192
 193    return cpu_get_phys_page_debug(CPU(cpu), addr);
 194}
 195
 196static void xtfpga_reset(void *opaque)
 197{
 198    XtensaCPU *cpu = opaque;
 199
 200    cpu_reset(CPU(cpu));
 201}
 202
 203static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
 204        unsigned size)
 205{
 206    return 0;
 207}
 208
 209static void xtfpga_io_write(void *opaque, hwaddr addr,
 210        uint64_t val, unsigned size)
 211{
 212}
 213
 214static const MemoryRegionOps xtfpga_io_ops = {
 215    .read = xtfpga_io_read,
 216    .write = xtfpga_io_write,
 217    .endianness = DEVICE_NATIVE_ENDIAN,
 218};
 219
 220static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
 221{
 222#ifdef TARGET_WORDS_BIGENDIAN
 223    int be = 1;
 224#else
 225    int be = 0;
 226#endif
 227    MemoryRegion *system_memory = get_system_memory();
 228    XtensaCPU *cpu = NULL;
 229    CPUXtensaState *env = NULL;
 230    MemoryRegion *system_io;
 231    XtensaMxPic *mx_pic = NULL;
 232    qemu_irq *extints;
 233    DriveInfo *dinfo;
 234    PFlashCFI01 *flash = NULL;
 235    const char *kernel_filename = machine->kernel_filename;
 236    const char *kernel_cmdline = machine->kernel_cmdline;
 237    const char *dtb_filename = machine->dtb;
 238    const char *initrd_filename = machine->initrd_filename;
 239    const unsigned system_io_size = 224 * MiB;
 240    uint32_t freq = 10000000;
 241    int n;
 242    unsigned int smp_cpus = machine->smp.cpus;
 243
 244    if (smp_cpus > 1) {
 245        mx_pic = xtensa_mx_pic_init(31);
 246        qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
 247    }
 248    for (n = 0; n < smp_cpus; n++) {
 249        CPUXtensaState *cenv = NULL;
 250
 251        cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
 252        cenv = &cpu->env;
 253        if (!env) {
 254            env = cenv;
 255            freq = env->config->clock_freq_khz * 1000;
 256        }
 257
 258        if (mx_pic) {
 259            MemoryRegion *mx_eri;
 260
 261            mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
 262                                                xtensa_get_extints(cenv),
 263                                                xtensa_get_runstall(cenv));
 264            memory_region_add_subregion(xtensa_get_er_region(cenv),
 265                                        0, mx_eri);
 266        }
 267        cenv->sregs[PRID] = n;
 268        xtensa_select_static_vectors(cenv, n != 0);
 269        qemu_register_reset(xtfpga_reset, cpu);
 270        /* Need MMU initialized prior to ELF loading,
 271         * so that ELF gets loaded into virtual addresses
 272         */
 273        cpu_reset(CPU(cpu));
 274    }
 275    if (smp_cpus > 1) {
 276        extints = xtensa_mx_pic_get_extints(mx_pic);
 277    } else {
 278        extints = xtensa_get_extints(env);
 279    }
 280
 281    if (env) {
 282        XtensaMemory sysram = env->config->sysram;
 283
 284        sysram.location[0].size = machine->ram_size;
 285        xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
 286                                     system_memory);
 287        xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
 288                                     system_memory);
 289        xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
 290                                     system_memory);
 291        xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
 292                                     system_memory);
 293        xtensa_create_memory_regions(&sysram, "xtensa.sysram",
 294                                     system_memory);
 295    }
 296
 297    system_io = g_malloc(sizeof(*system_io));
 298    memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
 299                          system_io_size);
 300    memory_region_add_subregion(system_memory, board->io[0], system_io);
 301    if (board->io[1]) {
 302        MemoryRegion *io = g_malloc(sizeof(*io));
 303
 304        memory_region_init_alias(io, NULL, "xtfpga.io.cached",
 305                                 system_io, 0, system_io_size);
 306        memory_region_add_subregion(system_memory, board->io[1], io);
 307    }
 308    xtfpga_fpga_init(system_io, 0x0d020000, freq);
 309    if (nd_table[0].used) {
 310        xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
 311                        extints[1], nd_table);
 312    }
 313
 314    serial_mm_init(system_io, 0x0d050020, 2, extints[0],
 315                   115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
 316
 317    dinfo = drive_get(IF_PFLASH, 0, 0);
 318    if (dinfo) {
 319        flash = xtfpga_flash_init(system_io, board, dinfo, be);
 320    }
 321
 322    /* Use presence of kernel file name as 'boot from SRAM' switch. */
 323    if (kernel_filename) {
 324        uint32_t entry_point = env->pc;
 325        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
 326        uint32_t tagptr = env->config->sysrom.location[0].addr +
 327            board->sram_size;
 328        uint32_t cur_tagptr;
 329        BpMemInfo memory_location = {
 330            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
 331            .start = tswap32(env->config->sysram.location[0].addr),
 332            .end = tswap32(env->config->sysram.location[0].addr +
 333                           machine->ram_size),
 334        };
 335        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
 336            machine->ram_size : 0x08000000;
 337        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
 338
 339        lowmem_end += env->config->sysram.location[0].addr;
 340        cur_lowmem += env->config->sysram.location[0].addr;
 341
 342        xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
 343                                     system_memory);
 344
 345        if (kernel_cmdline) {
 346            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
 347        }
 348        if (dtb_filename) {
 349            bp_size += get_tag_size(sizeof(uint32_t));
 350        }
 351        if (initrd_filename) {
 352            bp_size += get_tag_size(sizeof(BpMemInfo));
 353        }
 354
 355        /* Put kernel bootparameters to the end of that SRAM */
 356        tagptr = (tagptr - bp_size) & ~0xff;
 357        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
 358        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
 359                             sizeof(memory_location), &memory_location);
 360
 361        if (kernel_cmdline) {
 362            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
 363                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
 364        }
 365#ifdef CONFIG_FDT
 366        if (dtb_filename) {
 367            int fdt_size;
 368            void *fdt = load_device_tree(dtb_filename, &fdt_size);
 369            uint32_t dtb_addr = tswap32(cur_lowmem);
 370
 371            if (!fdt) {
 372                error_report("could not load DTB '%s'", dtb_filename);
 373                exit(EXIT_FAILURE);
 374            }
 375
 376            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
 377            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
 378                                 sizeof(dtb_addr), &dtb_addr);
 379            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
 380            g_free(fdt);
 381        }
 382#else
 383        if (dtb_filename) {
 384            error_report("could not load DTB '%s': "
 385                         "FDT support is not configured in QEMU",
 386                         dtb_filename);
 387            exit(EXIT_FAILURE);
 388        }
 389#endif
 390        if (initrd_filename) {
 391            BpMemInfo initrd_location = { 0 };
 392            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
 393                                           lowmem_end - cur_lowmem);
 394
 395            if (initrd_size < 0) {
 396                initrd_size = load_image_targphys(initrd_filename,
 397                                                  cur_lowmem,
 398                                                  lowmem_end - cur_lowmem);
 399            }
 400            if (initrd_size < 0) {
 401                error_report("could not load initrd '%s'", initrd_filename);
 402                exit(EXIT_FAILURE);
 403            }
 404            initrd_location.start = tswap32(cur_lowmem);
 405            initrd_location.end = tswap32(cur_lowmem + initrd_size);
 406            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
 407                                 sizeof(initrd_location), &initrd_location);
 408            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
 409        }
 410        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
 411        env->regs[2] = tagptr;
 412
 413        uint64_t elf_entry;
 414        int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
 415                &elf_entry, NULL, NULL, NULL, be, EM_XTENSA, 0, 0);
 416        if (success > 0) {
 417            entry_point = elf_entry;
 418        } else {
 419            hwaddr ep;
 420            int is_linux;
 421            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
 422                                  translate_phys_addr, cpu);
 423            if (success > 0 && is_linux) {
 424                entry_point = ep;
 425            } else {
 426                error_report("could not load kernel '%s'",
 427                             kernel_filename);
 428                exit(EXIT_FAILURE);
 429            }
 430        }
 431        if (entry_point != env->pc) {
 432            uint8_t boot[] = {
 433#ifdef TARGET_WORDS_BIGENDIAN
 434                0x60, 0x00, 0x08,       /* j    1f */
 435                0x00,                   /* .literal_position */
 436                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
 437                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
 438                                        /* 1: */
 439                0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
 440                0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
 441                0x0a, 0x00, 0x00,       /* jx   a0 */
 442#else
 443                0x06, 0x02, 0x00,       /* j    1f */
 444                0x00,                   /* .literal_position */
 445                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
 446                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
 447                                        /* 1: */
 448                0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
 449                0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
 450                0xa0, 0x00, 0x00,       /* jx   a0 */
 451#endif
 452            };
 453            uint32_t entry_pc = tswap32(entry_point);
 454            uint32_t entry_a2 = tswap32(tagptr);
 455
 456            memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
 457            memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
 458            cpu_physical_memory_write(env->pc, boot, sizeof(boot));
 459        }
 460    } else {
 461        if (flash) {
 462            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
 463            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
 464            uint32_t size = env->config->sysrom.location[0].size;
 465
 466            if (board->flash->size - board->flash->boot_base < size) {
 467                size = board->flash->size - board->flash->boot_base;
 468            }
 469
 470            memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
 471                                     flash_mr, board->flash->boot_base, size);
 472            memory_region_add_subregion(system_memory,
 473                                        env->config->sysrom.location[0].addr,
 474                                        flash_io);
 475        } else {
 476            xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
 477                                         system_memory);
 478        }
 479    }
 480}
 481
 482#define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
 483
 484static const hwaddr xtfpga_mmu_io[2] = {
 485    0xf0000000,
 486};
 487
 488static const hwaddr xtfpga_nommu_io[2] = {
 489    0x90000000,
 490    0x70000000,
 491};
 492
 493static const XtfpgaFlashDesc lx60_flash = {
 494    .base = 0x08000000,
 495    .size = 0x00400000,
 496    .sector_size = 0x10000,
 497};
 498
 499static void xtfpga_lx60_init(MachineState *machine)
 500{
 501    static const XtfpgaBoardDesc lx60_board = {
 502        .flash = &lx60_flash,
 503        .sram_size = 0x20000,
 504        .io = xtfpga_mmu_io,
 505    };
 506    xtfpga_init(&lx60_board, machine);
 507}
 508
 509static void xtfpga_lx60_nommu_init(MachineState *machine)
 510{
 511    static const XtfpgaBoardDesc lx60_board = {
 512        .flash = &lx60_flash,
 513        .sram_size = 0x20000,
 514        .io = xtfpga_nommu_io,
 515    };
 516    xtfpga_init(&lx60_board, machine);
 517}
 518
 519static const XtfpgaFlashDesc lx200_flash = {
 520    .base = 0x08000000,
 521    .size = 0x01000000,
 522    .sector_size = 0x20000,
 523};
 524
 525static void xtfpga_lx200_init(MachineState *machine)
 526{
 527    static const XtfpgaBoardDesc lx200_board = {
 528        .flash = &lx200_flash,
 529        .sram_size = 0x2000000,
 530        .io = xtfpga_mmu_io,
 531    };
 532    xtfpga_init(&lx200_board, machine);
 533}
 534
 535static void xtfpga_lx200_nommu_init(MachineState *machine)
 536{
 537    static const XtfpgaBoardDesc lx200_board = {
 538        .flash = &lx200_flash,
 539        .sram_size = 0x2000000,
 540        .io = xtfpga_nommu_io,
 541    };
 542    xtfpga_init(&lx200_board, machine);
 543}
 544
 545static const XtfpgaFlashDesc ml605_flash = {
 546    .base = 0x08000000,
 547    .size = 0x01000000,
 548    .sector_size = 0x20000,
 549};
 550
 551static void xtfpga_ml605_init(MachineState *machine)
 552{
 553    static const XtfpgaBoardDesc ml605_board = {
 554        .flash = &ml605_flash,
 555        .sram_size = 0x2000000,
 556        .io = xtfpga_mmu_io,
 557    };
 558    xtfpga_init(&ml605_board, machine);
 559}
 560
 561static void xtfpga_ml605_nommu_init(MachineState *machine)
 562{
 563    static const XtfpgaBoardDesc ml605_board = {
 564        .flash = &ml605_flash,
 565        .sram_size = 0x2000000,
 566        .io = xtfpga_nommu_io,
 567    };
 568    xtfpga_init(&ml605_board, machine);
 569}
 570
 571static const XtfpgaFlashDesc kc705_flash = {
 572    .base = 0x00000000,
 573    .size = 0x08000000,
 574    .boot_base = 0x06000000,
 575    .sector_size = 0x20000,
 576};
 577
 578static void xtfpga_kc705_init(MachineState *machine)
 579{
 580    static const XtfpgaBoardDesc kc705_board = {
 581        .flash = &kc705_flash,
 582        .sram_size = 0x2000000,
 583        .io = xtfpga_mmu_io,
 584    };
 585    xtfpga_init(&kc705_board, machine);
 586}
 587
 588static void xtfpga_kc705_nommu_init(MachineState *machine)
 589{
 590    static const XtfpgaBoardDesc kc705_board = {
 591        .flash = &kc705_flash,
 592        .sram_size = 0x2000000,
 593        .io = xtfpga_nommu_io,
 594    };
 595    xtfpga_init(&kc705_board, machine);
 596}
 597
 598static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
 599{
 600    MachineClass *mc = MACHINE_CLASS(oc);
 601
 602    mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 603    mc->init = xtfpga_lx60_init;
 604    mc->max_cpus = 32;
 605    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 606    mc->default_ram_size = 64 * MiB;
 607}
 608
 609static const TypeInfo xtfpga_lx60_type = {
 610    .name = MACHINE_TYPE_NAME("lx60"),
 611    .parent = TYPE_MACHINE,
 612    .class_init = xtfpga_lx60_class_init,
 613};
 614
 615static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
 616{
 617    MachineClass *mc = MACHINE_CLASS(oc);
 618
 619    mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 620    mc->init = xtfpga_lx60_nommu_init;
 621    mc->max_cpus = 32;
 622    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 623    mc->default_ram_size = 64 * MiB;
 624}
 625
 626static const TypeInfo xtfpga_lx60_nommu_type = {
 627    .name = MACHINE_TYPE_NAME("lx60-nommu"),
 628    .parent = TYPE_MACHINE,
 629    .class_init = xtfpga_lx60_nommu_class_init,
 630};
 631
 632static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
 633{
 634    MachineClass *mc = MACHINE_CLASS(oc);
 635
 636    mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 637    mc->init = xtfpga_lx200_init;
 638    mc->max_cpus = 32;
 639    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 640    mc->default_ram_size = 96 * MiB;
 641}
 642
 643static const TypeInfo xtfpga_lx200_type = {
 644    .name = MACHINE_TYPE_NAME("lx200"),
 645    .parent = TYPE_MACHINE,
 646    .class_init = xtfpga_lx200_class_init,
 647};
 648
 649static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
 650{
 651    MachineClass *mc = MACHINE_CLASS(oc);
 652
 653    mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 654    mc->init = xtfpga_lx200_nommu_init;
 655    mc->max_cpus = 32;
 656    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 657    mc->default_ram_size = 96 * MiB;
 658}
 659
 660static const TypeInfo xtfpga_lx200_nommu_type = {
 661    .name = MACHINE_TYPE_NAME("lx200-nommu"),
 662    .parent = TYPE_MACHINE,
 663    .class_init = xtfpga_lx200_nommu_class_init,
 664};
 665
 666static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
 667{
 668    MachineClass *mc = MACHINE_CLASS(oc);
 669
 670    mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 671    mc->init = xtfpga_ml605_init;
 672    mc->max_cpus = 32;
 673    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 674    mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
 675}
 676
 677static const TypeInfo xtfpga_ml605_type = {
 678    .name = MACHINE_TYPE_NAME("ml605"),
 679    .parent = TYPE_MACHINE,
 680    .class_init = xtfpga_ml605_class_init,
 681};
 682
 683static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
 684{
 685    MachineClass *mc = MACHINE_CLASS(oc);
 686
 687    mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 688    mc->init = xtfpga_ml605_nommu_init;
 689    mc->max_cpus = 32;
 690    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 691    mc->default_ram_size = 256 * MiB;
 692}
 693
 694static const TypeInfo xtfpga_ml605_nommu_type = {
 695    .name = MACHINE_TYPE_NAME("ml605-nommu"),
 696    .parent = TYPE_MACHINE,
 697    .class_init = xtfpga_ml605_nommu_class_init,
 698};
 699
 700static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
 701{
 702    MachineClass *mc = MACHINE_CLASS(oc);
 703
 704    mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 705    mc->init = xtfpga_kc705_init;
 706    mc->max_cpus = 32;
 707    mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
 708    mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
 709}
 710
 711static const TypeInfo xtfpga_kc705_type = {
 712    .name = MACHINE_TYPE_NAME("kc705"),
 713    .parent = TYPE_MACHINE,
 714    .class_init = xtfpga_kc705_class_init,
 715};
 716
 717static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
 718{
 719    MachineClass *mc = MACHINE_CLASS(oc);
 720
 721    mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
 722    mc->init = xtfpga_kc705_nommu_init;
 723    mc->max_cpus = 32;
 724    mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
 725    mc->default_ram_size = 256 * MiB;
 726}
 727
 728static const TypeInfo xtfpga_kc705_nommu_type = {
 729    .name = MACHINE_TYPE_NAME("kc705-nommu"),
 730    .parent = TYPE_MACHINE,
 731    .class_init = xtfpga_kc705_nommu_class_init,
 732};
 733
 734static void xtfpga_machines_init(void)
 735{
 736    type_register_static(&xtfpga_lx60_type);
 737    type_register_static(&xtfpga_lx200_type);
 738    type_register_static(&xtfpga_ml605_type);
 739    type_register_static(&xtfpga_kc705_type);
 740    type_register_static(&xtfpga_lx60_nommu_type);
 741    type_register_static(&xtfpga_lx200_nommu_type);
 742    type_register_static(&xtfpga_ml605_nommu_type);
 743    type_register_static(&xtfpga_kc705_nommu_type);
 744}
 745
 746type_init(xtfpga_machines_init)
 747