qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/memop.h"
  23#include "exec/ramlist.h"
  24#include "qemu/bswap.h"
  25#include "qemu/queue.h"
  26#include "qemu/int128.h"
  27#include "qemu/notify.h"
  28#include "qom/object.h"
  29#include "qemu/rcu.h"
  30
  31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  32
  33#define MAX_PHYS_ADDR_SPACE_BITS 62
  34#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  35
  36#define TYPE_MEMORY_REGION "memory-region"
  37DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
  38                         TYPE_MEMORY_REGION)
  39
  40#define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
  41typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
  42DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
  43                     IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
  44
  45#define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
  46typedef struct RamDiscardManagerClass RamDiscardManagerClass;
  47typedef struct RamDiscardManager RamDiscardManager;
  48DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
  49                     RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
  50
  51#ifdef CONFIG_FUZZ
  52void fuzz_dma_read_cb(size_t addr,
  53                      size_t len,
  54                      MemoryRegion *mr);
  55#else
  56static inline void fuzz_dma_read_cb(size_t addr,
  57                                    size_t len,
  58                                    MemoryRegion *mr)
  59{
  60    /* Do Nothing */
  61}
  62#endif
  63
  64/* Possible bits for global_dirty_log_{start|stop} */
  65
  66/* Dirty tracking enabled because migration is running */
  67#define GLOBAL_DIRTY_MIGRATION  (1U << 0)
  68
  69/* Dirty tracking enabled because measuring dirty rate */
  70#define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
  71
  72#define GLOBAL_DIRTY_MASK  (0x3)
  73
  74extern unsigned int global_dirty_tracking;
  75
  76typedef struct MemoryRegionOps MemoryRegionOps;
  77
  78struct ReservedRegion {
  79    hwaddr low;
  80    hwaddr high;
  81    unsigned type;
  82};
  83
  84/**
  85 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
  86 *
  87 * @mr: the region, or %NULL if empty
  88 * @fv: the flat view of the address space the region is mapped in
  89 * @offset_within_region: the beginning of the section, relative to @mr's start
  90 * @size: the size of the section; will not exceed @mr's boundaries
  91 * @offset_within_address_space: the address of the first byte of the section
  92 *     relative to the region's address space
  93 * @readonly: writes to this section are ignored
  94 * @nonvolatile: this section is non-volatile
  95 */
  96struct MemoryRegionSection {
  97    Int128 size;
  98    MemoryRegion *mr;
  99    FlatView *fv;
 100    hwaddr offset_within_region;
 101    hwaddr offset_within_address_space;
 102    bool readonly;
 103    bool nonvolatile;
 104};
 105
 106typedef struct IOMMUTLBEntry IOMMUTLBEntry;
 107
 108/* See address_space_translate: bit 0 is read, bit 1 is write.  */
 109typedef enum {
 110    IOMMU_NONE = 0,
 111    IOMMU_RO   = 1,
 112    IOMMU_WO   = 2,
 113    IOMMU_RW   = 3,
 114} IOMMUAccessFlags;
 115
 116#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
 117
 118struct IOMMUTLBEntry {
 119    AddressSpace    *target_as;
 120    hwaddr           iova;
 121    hwaddr           translated_addr;
 122    hwaddr           addr_mask;  /* 0xfff = 4k translation */
 123    IOMMUAccessFlags perm;
 124};
 125
 126/*
 127 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
 128 * register with one or multiple IOMMU Notifier capability bit(s).
 129 */
 130typedef enum {
 131    IOMMU_NOTIFIER_NONE = 0,
 132    /* Notify cache invalidations */
 133    IOMMU_NOTIFIER_UNMAP = 0x1,
 134    /* Notify entry changes (newly created entries) */
 135    IOMMU_NOTIFIER_MAP = 0x2,
 136    /* Notify changes on device IOTLB entries */
 137    IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
 138} IOMMUNotifierFlag;
 139
 140#define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
 141#define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
 142#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
 143                            IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
 144
 145struct IOMMUNotifier;
 146typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
 147                            IOMMUTLBEntry *data);
 148
 149struct IOMMUNotifier {
 150    IOMMUNotify notify;
 151    IOMMUNotifierFlag notifier_flags;
 152    /* Notify for address space range start <= addr <= end */
 153    hwaddr start;
 154    hwaddr end;
 155    int iommu_idx;
 156    QLIST_ENTRY(IOMMUNotifier) node;
 157};
 158typedef struct IOMMUNotifier IOMMUNotifier;
 159
 160typedef struct IOMMUTLBEvent {
 161    IOMMUNotifierFlag type;
 162    IOMMUTLBEntry entry;
 163} IOMMUTLBEvent;
 164
 165/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 166#define RAM_PREALLOC   (1 << 0)
 167
 168/* RAM is mmap-ed with MAP_SHARED */
 169#define RAM_SHARED     (1 << 1)
 170
 171/* Only a portion of RAM (used_length) is actually used, and migrated.
 172 * Resizing RAM while migrating can result in the migration being canceled.
 173 */
 174#define RAM_RESIZEABLE (1 << 2)
 175
 176/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 177 * zero the page and wake waiting processes.
 178 * (Set during postcopy)
 179 */
 180#define RAM_UF_ZEROPAGE (1 << 3)
 181
 182/* RAM can be migrated */
 183#define RAM_MIGRATABLE (1 << 4)
 184
 185/* RAM is a persistent kind memory */
 186#define RAM_PMEM (1 << 5)
 187
 188
 189/*
 190 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
 191 * support 'write-tracking' migration type.
 192 * Implies ram_state->ram_wt_enabled.
 193 */
 194#define RAM_UF_WRITEPROTECT (1 << 6)
 195
 196/*
 197 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
 198 * pages if applicable) is skipped: will bail out if not supported. When not
 199 * set, the OS will do the reservation, if supported for the memory type.
 200 */
 201#define RAM_NORESERVE (1 << 7)
 202
 203/* RAM that isn't accessible through normal means. */
 204#define RAM_PROTECTED (1 << 8)
 205
 206static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 207                                       IOMMUNotifierFlag flags,
 208                                       hwaddr start, hwaddr end,
 209                                       int iommu_idx)
 210{
 211    n->notify = fn;
 212    n->notifier_flags = flags;
 213    n->start = start;
 214    n->end = end;
 215    n->iommu_idx = iommu_idx;
 216}
 217
 218/*
 219 * Memory region callbacks
 220 */
 221struct MemoryRegionOps {
 222    /* Read from the memory region. @addr is relative to @mr; @size is
 223     * in bytes. */
 224    uint64_t (*read)(void *opaque,
 225                     hwaddr addr,
 226                     unsigned size);
 227    /* Write to the memory region. @addr is relative to @mr; @size is
 228     * in bytes. */
 229    void (*write)(void *opaque,
 230                  hwaddr addr,
 231                  uint64_t data,
 232                  unsigned size);
 233
 234    MemTxResult (*read_with_attrs)(void *opaque,
 235                                   hwaddr addr,
 236                                   uint64_t *data,
 237                                   unsigned size,
 238                                   MemTxAttrs attrs);
 239    MemTxResult (*write_with_attrs)(void *opaque,
 240                                    hwaddr addr,
 241                                    uint64_t data,
 242                                    unsigned size,
 243                                    MemTxAttrs attrs);
 244
 245    enum device_endian endianness;
 246    /* Guest-visible constraints: */
 247    struct {
 248        /* If nonzero, specify bounds on access sizes beyond which a machine
 249         * check is thrown.
 250         */
 251        unsigned min_access_size;
 252        unsigned max_access_size;
 253        /* If true, unaligned accesses are supported.  Otherwise unaligned
 254         * accesses throw machine checks.
 255         */
 256         bool unaligned;
 257        /*
 258         * If present, and returns #false, the transaction is not accepted
 259         * by the device (and results in machine dependent behaviour such
 260         * as a machine check exception).
 261         */
 262        bool (*accepts)(void *opaque, hwaddr addr,
 263                        unsigned size, bool is_write,
 264                        MemTxAttrs attrs);
 265    } valid;
 266    /* Internal implementation constraints: */
 267    struct {
 268        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 269         * will be rounded upwards and a partial result will be returned.
 270         */
 271        unsigned min_access_size;
 272        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 273         * will be done as a series of accesses with smaller sizes.
 274         */
 275        unsigned max_access_size;
 276        /* If true, unaligned accesses are supported.  Otherwise all accesses
 277         * are converted to (possibly multiple) naturally aligned accesses.
 278         */
 279        bool unaligned;
 280    } impl;
 281};
 282
 283typedef struct MemoryRegionClass {
 284    /* private */
 285    ObjectClass parent_class;
 286} MemoryRegionClass;
 287
 288
 289enum IOMMUMemoryRegionAttr {
 290    IOMMU_ATTR_SPAPR_TCE_FD
 291};
 292
 293/*
 294 * IOMMUMemoryRegionClass:
 295 *
 296 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 297 * and provide an implementation of at least the @translate method here
 298 * to handle requests to the memory region. Other methods are optional.
 299 *
 300 * The IOMMU implementation must use the IOMMU notifier infrastructure
 301 * to report whenever mappings are changed, by calling
 302 * memory_region_notify_iommu() (or, if necessary, by calling
 303 * memory_region_notify_iommu_one() for each registered notifier).
 304 *
 305 * Conceptually an IOMMU provides a mapping from input address
 306 * to an output TLB entry. If the IOMMU is aware of memory transaction
 307 * attributes and the output TLB entry depends on the transaction
 308 * attributes, we represent this using IOMMU indexes. Each index
 309 * selects a particular translation table that the IOMMU has:
 310 *
 311 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 312 *
 313 *   @translate takes an input address and an IOMMU index
 314 *
 315 * and the mapping returned can only depend on the input address and the
 316 * IOMMU index.
 317 *
 318 * Most IOMMUs don't care about the transaction attributes and support
 319 * only a single IOMMU index. A more complex IOMMU might have one index
 320 * for secure transactions and one for non-secure transactions.
 321 */
 322struct IOMMUMemoryRegionClass {
 323    /* private: */
 324    MemoryRegionClass parent_class;
 325
 326    /* public: */
 327    /**
 328     * @translate:
 329     *
 330     * Return a TLB entry that contains a given address.
 331     *
 332     * The IOMMUAccessFlags indicated via @flag are optional and may
 333     * be specified as IOMMU_NONE to indicate that the caller needs
 334     * the full translation information for both reads and writes. If
 335     * the access flags are specified then the IOMMU implementation
 336     * may use this as an optimization, to stop doing a page table
 337     * walk as soon as it knows that the requested permissions are not
 338     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 339     * full page table walk and report the permissions in the returned
 340     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 341     * return different mappings for reads and writes.)
 342     *
 343     * The returned information remains valid while the caller is
 344     * holding the big QEMU lock or is inside an RCU critical section;
 345     * if the caller wishes to cache the mapping beyond that it must
 346     * register an IOMMU notifier so it can invalidate its cached
 347     * information when the IOMMU mapping changes.
 348     *
 349     * @iommu: the IOMMUMemoryRegion
 350     *
 351     * @hwaddr: address to be translated within the memory region
 352     *
 353     * @flag: requested access permission
 354     *
 355     * @iommu_idx: IOMMU index for the translation
 356     */
 357    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 358                               IOMMUAccessFlags flag, int iommu_idx);
 359    /**
 360     * @get_min_page_size:
 361     *
 362     * Returns minimum supported page size in bytes.
 363     *
 364     * If this method is not provided then the minimum is assumed to
 365     * be TARGET_PAGE_SIZE.
 366     *
 367     * @iommu: the IOMMUMemoryRegion
 368     */
 369    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 370    /**
 371     * @notify_flag_changed:
 372     *
 373     * Called when IOMMU Notifier flag changes (ie when the set of
 374     * events which IOMMU users are requesting notification for changes).
 375     * Optional method -- need not be provided if the IOMMU does not
 376     * need to know exactly which events must be notified.
 377     *
 378     * @iommu: the IOMMUMemoryRegion
 379     *
 380     * @old_flags: events which previously needed to be notified
 381     *
 382     * @new_flags: events which now need to be notified
 383     *
 384     * Returns 0 on success, or a negative errno; in particular
 385     * returns -EINVAL if the new flag bitmap is not supported by the
 386     * IOMMU memory region. In case of failure, the error object
 387     * must be created
 388     */
 389    int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 390                               IOMMUNotifierFlag old_flags,
 391                               IOMMUNotifierFlag new_flags,
 392                               Error **errp);
 393    /**
 394     * @replay:
 395     *
 396     * Called to handle memory_region_iommu_replay().
 397     *
 398     * The default implementation of memory_region_iommu_replay() is to
 399     * call the IOMMU translate method for every page in the address space
 400     * with flag == IOMMU_NONE and then call the notifier if translate
 401     * returns a valid mapping. If this method is implemented then it
 402     * overrides the default behaviour, and must provide the full semantics
 403     * of memory_region_iommu_replay(), by calling @notifier for every
 404     * translation present in the IOMMU.
 405     *
 406     * Optional method -- an IOMMU only needs to provide this method
 407     * if the default is inefficient or produces undesirable side effects.
 408     *
 409     * Note: this is not related to record-and-replay functionality.
 410     */
 411    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 412
 413    /**
 414     * @get_attr:
 415     *
 416     * Get IOMMU misc attributes. This is an optional method that
 417     * can be used to allow users of the IOMMU to get implementation-specific
 418     * information. The IOMMU implements this method to handle calls
 419     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 420     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 421     * the IOMMU supports. If the method is unimplemented then
 422     * memory_region_iommu_get_attr() will always return -EINVAL.
 423     *
 424     * @iommu: the IOMMUMemoryRegion
 425     *
 426     * @attr: attribute being queried
 427     *
 428     * @data: memory to fill in with the attribute data
 429     *
 430     * Returns 0 on success, or a negative errno; in particular
 431     * returns -EINVAL for unrecognized or unimplemented attribute types.
 432     */
 433    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 434                    void *data);
 435
 436    /**
 437     * @attrs_to_index:
 438     *
 439     * Return the IOMMU index to use for a given set of transaction attributes.
 440     *
 441     * Optional method: if an IOMMU only supports a single IOMMU index then
 442     * the default implementation of memory_region_iommu_attrs_to_index()
 443     * will return 0.
 444     *
 445     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 446     *
 447     * @iommu: the IOMMUMemoryRegion
 448     * @attrs: memory transaction attributes
 449     */
 450    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 451
 452    /**
 453     * @num_indexes:
 454     *
 455     * Return the number of IOMMU indexes this IOMMU supports.
 456     *
 457     * Optional method: if this method is not provided, then
 458     * memory_region_iommu_num_indexes() will return 1, indicating that
 459     * only a single IOMMU index is supported.
 460     *
 461     * @iommu: the IOMMUMemoryRegion
 462     */
 463    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 464
 465    /**
 466     * @iommu_set_page_size_mask:
 467     *
 468     * Restrict the page size mask that can be supported with a given IOMMU
 469     * memory region. Used for example to propagate host physical IOMMU page
 470     * size mask limitations to the virtual IOMMU.
 471     *
 472     * Optional method: if this method is not provided, then the default global
 473     * page mask is used.
 474     *
 475     * @iommu: the IOMMUMemoryRegion
 476     *
 477     * @page_size_mask: a bitmask of supported page sizes. At least one bit,
 478     * representing the smallest page size, must be set. Additional set bits
 479     * represent supported block sizes. For example a host physical IOMMU that
 480     * uses page tables with a page size of 4kB, and supports 2MB and 4GB
 481     * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
 482     * block sizes is specified with mask 0xfffffffffffff000.
 483     *
 484     * Returns 0 on success, or a negative error. In case of failure, the error
 485     * object must be created.
 486     */
 487     int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
 488                                     uint64_t page_size_mask,
 489                                     Error **errp);
 490};
 491
 492typedef struct RamDiscardListener RamDiscardListener;
 493typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
 494                                 MemoryRegionSection *section);
 495typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
 496                                 MemoryRegionSection *section);
 497
 498struct RamDiscardListener {
 499    /*
 500     * @notify_populate:
 501     *
 502     * Notification that previously discarded memory is about to get populated.
 503     * Listeners are able to object. If any listener objects, already
 504     * successfully notified listeners are notified about a discard again.
 505     *
 506     * @rdl: the #RamDiscardListener getting notified
 507     * @section: the #MemoryRegionSection to get populated. The section
 508     *           is aligned within the memory region to the minimum granularity
 509     *           unless it would exceed the registered section.
 510     *
 511     * Returns 0 on success. If the notification is rejected by the listener,
 512     * an error is returned.
 513     */
 514    NotifyRamPopulate notify_populate;
 515
 516    /*
 517     * @notify_discard:
 518     *
 519     * Notification that previously populated memory was discarded successfully
 520     * and listeners should drop all references to such memory and prevent
 521     * new population (e.g., unmap).
 522     *
 523     * @rdl: the #RamDiscardListener getting notified
 524     * @section: the #MemoryRegionSection to get populated. The section
 525     *           is aligned within the memory region to the minimum granularity
 526     *           unless it would exceed the registered section.
 527     */
 528    NotifyRamDiscard notify_discard;
 529
 530    /*
 531     * @double_discard_supported:
 532     *
 533     * The listener suppors getting @notify_discard notifications that span
 534     * already discarded parts.
 535     */
 536    bool double_discard_supported;
 537
 538    MemoryRegionSection *section;
 539    QLIST_ENTRY(RamDiscardListener) next;
 540};
 541
 542static inline void ram_discard_listener_init(RamDiscardListener *rdl,
 543                                             NotifyRamPopulate populate_fn,
 544                                             NotifyRamDiscard discard_fn,
 545                                             bool double_discard_supported)
 546{
 547    rdl->notify_populate = populate_fn;
 548    rdl->notify_discard = discard_fn;
 549    rdl->double_discard_supported = double_discard_supported;
 550}
 551
 552typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
 553typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
 554
 555/*
 556 * RamDiscardManagerClass:
 557 *
 558 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
 559 * regions are currently populated to be used/accessed by the VM, notifying
 560 * after parts were discarded (freeing up memory) and before parts will be
 561 * populated (consuming memory), to be used/acessed by the VM.
 562 *
 563 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
 564 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
 565 * mapped.
 566 *
 567 * The #RamDiscardManager is intended to be used by technologies that are
 568 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
 569 * memory inside a #MemoryRegion), and require proper coordination to only
 570 * map the currently populated parts, to hinder parts that are expected to
 571 * remain discarded from silently getting populated and consuming memory.
 572 * Technologies that support discarding of RAM don't have to bother and can
 573 * simply map the whole #MemoryRegion.
 574 *
 575 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
 576 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
 577 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
 578 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
 579 * properly coordinate with listeners before memory is plugged (populated),
 580 * and after memory is unplugged (discarded).
 581 *
 582 * Listeners are called in multiples of the minimum granularity (unless it
 583 * would exceed the registered range) and changes are aligned to the minimum
 584 * granularity within the #MemoryRegion. Listeners have to prepare for memory
 585 * becomming discarded in a different granularity than it was populated and the
 586 * other way around.
 587 */
 588struct RamDiscardManagerClass {
 589    /* private */
 590    InterfaceClass parent_class;
 591
 592    /* public */
 593
 594    /**
 595     * @get_min_granularity:
 596     *
 597     * Get the minimum granularity in which listeners will get notified
 598     * about changes within the #MemoryRegion via the #RamDiscardManager.
 599     *
 600     * @rdm: the #RamDiscardManager
 601     * @mr: the #MemoryRegion
 602     *
 603     * Returns the minimum granularity.
 604     */
 605    uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
 606                                    const MemoryRegion *mr);
 607
 608    /**
 609     * @is_populated:
 610     *
 611     * Check whether the given #MemoryRegionSection is completely populated
 612     * (i.e., no parts are currently discarded) via the #RamDiscardManager.
 613     * There are no alignment requirements.
 614     *
 615     * @rdm: the #RamDiscardManager
 616     * @section: the #MemoryRegionSection
 617     *
 618     * Returns whether the given range is completely populated.
 619     */
 620    bool (*is_populated)(const RamDiscardManager *rdm,
 621                         const MemoryRegionSection *section);
 622
 623    /**
 624     * @replay_populated:
 625     *
 626     * Call the #ReplayRamPopulate callback for all populated parts within the
 627     * #MemoryRegionSection via the #RamDiscardManager.
 628     *
 629     * In case any call fails, no further calls are made.
 630     *
 631     * @rdm: the #RamDiscardManager
 632     * @section: the #MemoryRegionSection
 633     * @replay_fn: the #ReplayRamPopulate callback
 634     * @opaque: pointer to forward to the callback
 635     *
 636     * Returns 0 on success, or a negative error if any notification failed.
 637     */
 638    int (*replay_populated)(const RamDiscardManager *rdm,
 639                            MemoryRegionSection *section,
 640                            ReplayRamPopulate replay_fn, void *opaque);
 641
 642    /**
 643     * @replay_discarded:
 644     *
 645     * Call the #ReplayRamDiscard callback for all discarded parts within the
 646     * #MemoryRegionSection via the #RamDiscardManager.
 647     *
 648     * @rdm: the #RamDiscardManager
 649     * @section: the #MemoryRegionSection
 650     * @replay_fn: the #ReplayRamDiscard callback
 651     * @opaque: pointer to forward to the callback
 652     */
 653    void (*replay_discarded)(const RamDiscardManager *rdm,
 654                             MemoryRegionSection *section,
 655                             ReplayRamDiscard replay_fn, void *opaque);
 656
 657    /**
 658     * @register_listener:
 659     *
 660     * Register a #RamDiscardListener for the given #MemoryRegionSection and
 661     * immediately notify the #RamDiscardListener about all populated parts
 662     * within the #MemoryRegionSection via the #RamDiscardManager.
 663     *
 664     * In case any notification fails, no further notifications are triggered
 665     * and an error is logged.
 666     *
 667     * @rdm: the #RamDiscardManager
 668     * @rdl: the #RamDiscardListener
 669     * @section: the #MemoryRegionSection
 670     */
 671    void (*register_listener)(RamDiscardManager *rdm,
 672                              RamDiscardListener *rdl,
 673                              MemoryRegionSection *section);
 674
 675    /**
 676     * @unregister_listener:
 677     *
 678     * Unregister a previously registered #RamDiscardListener via the
 679     * #RamDiscardManager after notifying the #RamDiscardListener about all
 680     * populated parts becoming unpopulated within the registered
 681     * #MemoryRegionSection.
 682     *
 683     * @rdm: the #RamDiscardManager
 684     * @rdl: the #RamDiscardListener
 685     */
 686    void (*unregister_listener)(RamDiscardManager *rdm,
 687                                RamDiscardListener *rdl);
 688};
 689
 690uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
 691                                                 const MemoryRegion *mr);
 692
 693bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
 694                                      const MemoryRegionSection *section);
 695
 696int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
 697                                         MemoryRegionSection *section,
 698                                         ReplayRamPopulate replay_fn,
 699                                         void *opaque);
 700
 701void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
 702                                          MemoryRegionSection *section,
 703                                          ReplayRamDiscard replay_fn,
 704                                          void *opaque);
 705
 706void ram_discard_manager_register_listener(RamDiscardManager *rdm,
 707                                           RamDiscardListener *rdl,
 708                                           MemoryRegionSection *section);
 709
 710void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
 711                                             RamDiscardListener *rdl);
 712
 713typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 714typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 715
 716/** MemoryRegion:
 717 *
 718 * A struct representing a memory region.
 719 */
 720struct MemoryRegion {
 721    Object parent_obj;
 722
 723    /* private: */
 724
 725    /* The following fields should fit in a cache line */
 726    bool romd_mode;
 727    bool ram;
 728    bool subpage;
 729    bool readonly; /* For RAM regions */
 730    bool nonvolatile;
 731    bool rom_device;
 732    bool flush_coalesced_mmio;
 733    uint8_t dirty_log_mask;
 734    bool is_iommu;
 735    RAMBlock *ram_block;
 736    Object *owner;
 737
 738    const MemoryRegionOps *ops;
 739    void *opaque;
 740    MemoryRegion *container;
 741    int mapped_via_alias; /* Mapped via an alias, container might be NULL */
 742    Int128 size;
 743    hwaddr addr;
 744    void (*destructor)(MemoryRegion *mr);
 745    uint64_t align;
 746    bool terminates;
 747    bool ram_device;
 748    bool enabled;
 749    bool warning_printed; /* For reservations */
 750    uint8_t vga_logging_count;
 751    MemoryRegion *alias;
 752    hwaddr alias_offset;
 753    int32_t priority;
 754    QTAILQ_HEAD(, MemoryRegion) subregions;
 755    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 756    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
 757    const char *name;
 758    unsigned ioeventfd_nb;
 759    MemoryRegionIoeventfd *ioeventfds;
 760    RamDiscardManager *rdm; /* Only for RAM */
 761};
 762
 763struct IOMMUMemoryRegion {
 764    MemoryRegion parent_obj;
 765
 766    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 767    IOMMUNotifierFlag iommu_notify_flags;
 768};
 769
 770#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 771    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 772
 773/**
 774 * struct MemoryListener: callbacks structure for updates to the physical memory map
 775 *
 776 * Allows a component to adjust to changes in the guest-visible memory map.
 777 * Use with memory_listener_register() and memory_listener_unregister().
 778 */
 779struct MemoryListener {
 780    /**
 781     * @begin:
 782     *
 783     * Called at the beginning of an address space update transaction.
 784     * Followed by calls to #MemoryListener.region_add(),
 785     * #MemoryListener.region_del(), #MemoryListener.region_nop(),
 786     * #MemoryListener.log_start() and #MemoryListener.log_stop() in
 787     * increasing address order.
 788     *
 789     * @listener: The #MemoryListener.
 790     */
 791    void (*begin)(MemoryListener *listener);
 792
 793    /**
 794     * @commit:
 795     *
 796     * Called at the end of an address space update transaction,
 797     * after the last call to #MemoryListener.region_add(),
 798     * #MemoryListener.region_del() or #MemoryListener.region_nop(),
 799     * #MemoryListener.log_start() and #MemoryListener.log_stop().
 800     *
 801     * @listener: The #MemoryListener.
 802     */
 803    void (*commit)(MemoryListener *listener);
 804
 805    /**
 806     * @region_add:
 807     *
 808     * Called during an address space update transaction,
 809     * for a section of the address space that is new in this address space
 810     * space since the last transaction.
 811     *
 812     * @listener: The #MemoryListener.
 813     * @section: The new #MemoryRegionSection.
 814     */
 815    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 816
 817    /**
 818     * @region_del:
 819     *
 820     * Called during an address space update transaction,
 821     * for a section of the address space that has disappeared in the address
 822     * space since the last transaction.
 823     *
 824     * @listener: The #MemoryListener.
 825     * @section: The old #MemoryRegionSection.
 826     */
 827    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 828
 829    /**
 830     * @region_nop:
 831     *
 832     * Called during an address space update transaction,
 833     * for a section of the address space that is in the same place in the address
 834     * space as in the last transaction.
 835     *
 836     * @listener: The #MemoryListener.
 837     * @section: The #MemoryRegionSection.
 838     */
 839    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 840
 841    /**
 842     * @log_start:
 843     *
 844     * Called during an address space update transaction, after
 845     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 846     * #MemoryListener.region_nop(), if dirty memory logging clients have
 847     * become active since the last transaction.
 848     *
 849     * @listener: The #MemoryListener.
 850     * @section: The #MemoryRegionSection.
 851     * @old: A bitmap of dirty memory logging clients that were active in
 852     * the previous transaction.
 853     * @new: A bitmap of dirty memory logging clients that are active in
 854     * the current transaction.
 855     */
 856    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 857                      int old, int new);
 858
 859    /**
 860     * @log_stop:
 861     *
 862     * Called during an address space update transaction, after
 863     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 864     * #MemoryListener.region_nop() and possibly after
 865     * #MemoryListener.log_start(), if dirty memory logging clients have
 866     * become inactive since the last transaction.
 867     *
 868     * @listener: The #MemoryListener.
 869     * @section: The #MemoryRegionSection.
 870     * @old: A bitmap of dirty memory logging clients that were active in
 871     * the previous transaction.
 872     * @new: A bitmap of dirty memory logging clients that are active in
 873     * the current transaction.
 874     */
 875    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 876                     int old, int new);
 877
 878    /**
 879     * @log_sync:
 880     *
 881     * Called by memory_region_snapshot_and_clear_dirty() and
 882     * memory_global_dirty_log_sync(), before accessing QEMU's "official"
 883     * copy of the dirty memory bitmap for a #MemoryRegionSection.
 884     *
 885     * @listener: The #MemoryListener.
 886     * @section: The #MemoryRegionSection.
 887     */
 888    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 889
 890    /**
 891     * @log_sync_global:
 892     *
 893     * This is the global version of @log_sync when the listener does
 894     * not have a way to synchronize the log with finer granularity.
 895     * When the listener registers with @log_sync_global defined, then
 896     * its @log_sync must be NULL.  Vice versa.
 897     *
 898     * @listener: The #MemoryListener.
 899     */
 900    void (*log_sync_global)(MemoryListener *listener);
 901
 902    /**
 903     * @log_clear:
 904     *
 905     * Called before reading the dirty memory bitmap for a
 906     * #MemoryRegionSection.
 907     *
 908     * @listener: The #MemoryListener.
 909     * @section: The #MemoryRegionSection.
 910     */
 911    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 912
 913    /**
 914     * @log_global_start:
 915     *
 916     * Called by memory_global_dirty_log_start(), which
 917     * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
 918     * the address space.  #MemoryListener.log_global_start() is also
 919     * called when a #MemoryListener is added, if global dirty logging is
 920     * active at that time.
 921     *
 922     * @listener: The #MemoryListener.
 923     */
 924    void (*log_global_start)(MemoryListener *listener);
 925
 926    /**
 927     * @log_global_stop:
 928     *
 929     * Called by memory_global_dirty_log_stop(), which
 930     * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
 931     * the address space.
 932     *
 933     * @listener: The #MemoryListener.
 934     */
 935    void (*log_global_stop)(MemoryListener *listener);
 936
 937    /**
 938     * @log_global_after_sync:
 939     *
 940     * Called after reading the dirty memory bitmap
 941     * for any #MemoryRegionSection.
 942     *
 943     * @listener: The #MemoryListener.
 944     */
 945    void (*log_global_after_sync)(MemoryListener *listener);
 946
 947    /**
 948     * @eventfd_add:
 949     *
 950     * Called during an address space update transaction,
 951     * for a section of the address space that has had a new ioeventfd
 952     * registration since the last transaction.
 953     *
 954     * @listener: The #MemoryListener.
 955     * @section: The new #MemoryRegionSection.
 956     * @match_data: The @match_data parameter for the new ioeventfd.
 957     * @data: The @data parameter for the new ioeventfd.
 958     * @e: The #EventNotifier parameter for the new ioeventfd.
 959     */
 960    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 961                        bool match_data, uint64_t data, EventNotifier *e);
 962
 963    /**
 964     * @eventfd_del:
 965     *
 966     * Called during an address space update transaction,
 967     * for a section of the address space that has dropped an ioeventfd
 968     * registration since the last transaction.
 969     *
 970     * @listener: The #MemoryListener.
 971     * @section: The new #MemoryRegionSection.
 972     * @match_data: The @match_data parameter for the dropped ioeventfd.
 973     * @data: The @data parameter for the dropped ioeventfd.
 974     * @e: The #EventNotifier parameter for the dropped ioeventfd.
 975     */
 976    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 977                        bool match_data, uint64_t data, EventNotifier *e);
 978
 979    /**
 980     * @coalesced_io_add:
 981     *
 982     * Called during an address space update transaction,
 983     * for a section of the address space that has had a new coalesced
 984     * MMIO range registration since the last transaction.
 985     *
 986     * @listener: The #MemoryListener.
 987     * @section: The new #MemoryRegionSection.
 988     * @addr: The starting address for the coalesced MMIO range.
 989     * @len: The length of the coalesced MMIO range.
 990     */
 991    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
 992                               hwaddr addr, hwaddr len);
 993
 994    /**
 995     * @coalesced_io_del:
 996     *
 997     * Called during an address space update transaction,
 998     * for a section of the address space that has dropped a coalesced
 999     * MMIO range since the last transaction.
1000     *
1001     * @listener: The #MemoryListener.
1002     * @section: The new #MemoryRegionSection.
1003     * @addr: The starting address for the coalesced MMIO range.
1004     * @len: The length of the coalesced MMIO range.
1005     */
1006    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1007                               hwaddr addr, hwaddr len);
1008    /**
1009     * @priority:
1010     *
1011     * Govern the order in which memory listeners are invoked. Lower priorities
1012     * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1013     * or "stop" callbacks.
1014     */
1015    unsigned priority;
1016
1017    /**
1018     * @name:
1019     *
1020     * Name of the listener.  It can be used in contexts where we'd like to
1021     * identify one memory listener with the rest.
1022     */
1023    const char *name;
1024
1025    /* private: */
1026    AddressSpace *address_space;
1027    QTAILQ_ENTRY(MemoryListener) link;
1028    QTAILQ_ENTRY(MemoryListener) link_as;
1029};
1030
1031/**
1032 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1033 */
1034struct AddressSpace {
1035    /* private: */
1036    struct rcu_head rcu;
1037    char *name;
1038    MemoryRegion *root;
1039
1040    /* Accessed via RCU.  */
1041    struct FlatView *current_map;
1042
1043    int ioeventfd_nb;
1044    struct MemoryRegionIoeventfd *ioeventfds;
1045    QTAILQ_HEAD(, MemoryListener) listeners;
1046    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1047};
1048
1049typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1050typedef struct FlatRange FlatRange;
1051
1052/* Flattened global view of current active memory hierarchy.  Kept in sorted
1053 * order.
1054 */
1055struct FlatView {
1056    struct rcu_head rcu;
1057    unsigned ref;
1058    FlatRange *ranges;
1059    unsigned nr;
1060    unsigned nr_allocated;
1061    struct AddressSpaceDispatch *dispatch;
1062    MemoryRegion *root;
1063};
1064
1065static inline FlatView *address_space_to_flatview(AddressSpace *as)
1066{
1067    return qatomic_rcu_read(&as->current_map);
1068}
1069
1070/**
1071 * typedef flatview_cb: callback for flatview_for_each_range()
1072 *
1073 * @start: start address of the range within the FlatView
1074 * @len: length of the range in bytes
1075 * @mr: MemoryRegion covering this range
1076 * @offset_in_region: offset of the first byte of the range within @mr
1077 * @opaque: data pointer passed to flatview_for_each_range()
1078 *
1079 * Returns: true to stop the iteration, false to keep going.
1080 */
1081typedef bool (*flatview_cb)(Int128 start,
1082                            Int128 len,
1083                            const MemoryRegion *mr,
1084                            hwaddr offset_in_region,
1085                            void *opaque);
1086
1087/**
1088 * flatview_for_each_range: Iterate through a FlatView
1089 * @fv: the FlatView to iterate through
1090 * @cb: function to call for each range
1091 * @opaque: opaque data pointer to pass to @cb
1092 *
1093 * A FlatView is made up of a list of non-overlapping ranges, each of
1094 * which is a slice of a MemoryRegion. This function iterates through
1095 * each range in @fv, calling @cb. The callback function can terminate
1096 * iteration early by returning 'true'.
1097 */
1098void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1099
1100static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1101                                          MemoryRegionSection *b)
1102{
1103    return a->mr == b->mr &&
1104           a->fv == b->fv &&
1105           a->offset_within_region == b->offset_within_region &&
1106           a->offset_within_address_space == b->offset_within_address_space &&
1107           int128_eq(a->size, b->size) &&
1108           a->readonly == b->readonly &&
1109           a->nonvolatile == b->nonvolatile;
1110}
1111
1112/**
1113 * memory_region_section_new_copy: Copy a memory region section
1114 *
1115 * Allocate memory for a new copy, copy the memory region section, and
1116 * properly take a reference on all relevant members.
1117 *
1118 * @s: the #MemoryRegionSection to copy
1119 */
1120MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1121
1122/**
1123 * memory_region_section_new_copy: Free a copied memory region section
1124 *
1125 * Free a copy of a memory section created via memory_region_section_new_copy().
1126 * properly dropping references on all relevant members.
1127 *
1128 * @s: the #MemoryRegionSection to copy
1129 */
1130void memory_region_section_free_copy(MemoryRegionSection *s);
1131
1132/**
1133 * memory_region_init: Initialize a memory region
1134 *
1135 * The region typically acts as a container for other memory regions.  Use
1136 * memory_region_add_subregion() to add subregions.
1137 *
1138 * @mr: the #MemoryRegion to be initialized
1139 * @owner: the object that tracks the region's reference count
1140 * @name: used for debugging; not visible to the user or ABI
1141 * @size: size of the region; any subregions beyond this size will be clipped
1142 */
1143void memory_region_init(MemoryRegion *mr,
1144                        Object *owner,
1145                        const char *name,
1146                        uint64_t size);
1147
1148/**
1149 * memory_region_ref: Add 1 to a memory region's reference count
1150 *
1151 * Whenever memory regions are accessed outside the BQL, they need to be
1152 * preserved against hot-unplug.  MemoryRegions actually do not have their
1153 * own reference count; they piggyback on a QOM object, their "owner".
1154 * This function adds a reference to the owner.
1155 *
1156 * All MemoryRegions must have an owner if they can disappear, even if the
1157 * device they belong to operates exclusively under the BQL.  This is because
1158 * the region could be returned at any time by memory_region_find, and this
1159 * is usually under guest control.
1160 *
1161 * @mr: the #MemoryRegion
1162 */
1163void memory_region_ref(MemoryRegion *mr);
1164
1165/**
1166 * memory_region_unref: Remove 1 to a memory region's reference count
1167 *
1168 * Whenever memory regions are accessed outside the BQL, they need to be
1169 * preserved against hot-unplug.  MemoryRegions actually do not have their
1170 * own reference count; they piggyback on a QOM object, their "owner".
1171 * This function removes a reference to the owner and possibly destroys it.
1172 *
1173 * @mr: the #MemoryRegion
1174 */
1175void memory_region_unref(MemoryRegion *mr);
1176
1177/**
1178 * memory_region_init_io: Initialize an I/O memory region.
1179 *
1180 * Accesses into the region will cause the callbacks in @ops to be called.
1181 * if @size is nonzero, subregions will be clipped to @size.
1182 *
1183 * @mr: the #MemoryRegion to be initialized.
1184 * @owner: the object that tracks the region's reference count
1185 * @ops: a structure containing read and write callbacks to be used when
1186 *       I/O is performed on the region.
1187 * @opaque: passed to the read and write callbacks of the @ops structure.
1188 * @name: used for debugging; not visible to the user or ABI
1189 * @size: size of the region.
1190 */
1191void memory_region_init_io(MemoryRegion *mr,
1192                           Object *owner,
1193                           const MemoryRegionOps *ops,
1194                           void *opaque,
1195                           const char *name,
1196                           uint64_t size);
1197
1198/**
1199 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1200 *                                    into the region will modify memory
1201 *                                    directly.
1202 *
1203 * @mr: the #MemoryRegion to be initialized.
1204 * @owner: the object that tracks the region's reference count
1205 * @name: Region name, becomes part of RAMBlock name used in migration stream
1206 *        must be unique within any device
1207 * @size: size of the region.
1208 * @errp: pointer to Error*, to store an error if it happens.
1209 *
1210 * Note that this function does not do anything to cause the data in the
1211 * RAM memory region to be migrated; that is the responsibility of the caller.
1212 */
1213void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1214                                      Object *owner,
1215                                      const char *name,
1216                                      uint64_t size,
1217                                      Error **errp);
1218
1219/**
1220 * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1221 *                                          Accesses into the region will
1222 *                                          modify memory directly.
1223 *
1224 * @mr: the #MemoryRegion to be initialized.
1225 * @owner: the object that tracks the region's reference count
1226 * @name: Region name, becomes part of RAMBlock name used in migration stream
1227 *        must be unique within any device
1228 * @size: size of the region.
1229 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1230 * @errp: pointer to Error*, to store an error if it happens.
1231 *
1232 * Note that this function does not do anything to cause the data in the
1233 * RAM memory region to be migrated; that is the responsibility of the caller.
1234 */
1235void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1236                                            Object *owner,
1237                                            const char *name,
1238                                            uint64_t size,
1239                                            uint32_t ram_flags,
1240                                            Error **errp);
1241
1242/**
1243 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
1244 *                                     RAM.  Accesses into the region will
1245 *                                     modify memory directly.  Only an initial
1246 *                                     portion of this RAM is actually used.
1247 *                                     Changing the size while migrating
1248 *                                     can result in the migration being
1249 *                                     canceled.
1250 *
1251 * @mr: the #MemoryRegion to be initialized.
1252 * @owner: the object that tracks the region's reference count
1253 * @name: Region name, becomes part of RAMBlock name used in migration stream
1254 *        must be unique within any device
1255 * @size: used size of the region.
1256 * @max_size: max size of the region.
1257 * @resized: callback to notify owner about used size change.
1258 * @errp: pointer to Error*, to store an error if it happens.
1259 *
1260 * Note that this function does not do anything to cause the data in the
1261 * RAM memory region to be migrated; that is the responsibility of the caller.
1262 */
1263void memory_region_init_resizeable_ram(MemoryRegion *mr,
1264                                       Object *owner,
1265                                       const char *name,
1266                                       uint64_t size,
1267                                       uint64_t max_size,
1268                                       void (*resized)(const char*,
1269                                                       uint64_t length,
1270                                                       void *host),
1271                                       Error **errp);
1272#ifdef CONFIG_POSIX
1273
1274/**
1275 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1276 *                                    mmap-ed backend.
1277 *
1278 * @mr: the #MemoryRegion to be initialized.
1279 * @owner: the object that tracks the region's reference count
1280 * @name: Region name, becomes part of RAMBlock name used in migration stream
1281 *        must be unique within any device
1282 * @size: size of the region.
1283 * @align: alignment of the region base address; if 0, the default alignment
1284 *         (getpagesize()) will be used.
1285 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1286 *             RAM_NORESERVE,
1287 * @path: the path in which to allocate the RAM.
1288 * @readonly: true to open @path for reading, false for read/write.
1289 * @errp: pointer to Error*, to store an error if it happens.
1290 *
1291 * Note that this function does not do anything to cause the data in the
1292 * RAM memory region to be migrated; that is the responsibility of the caller.
1293 */
1294void memory_region_init_ram_from_file(MemoryRegion *mr,
1295                                      Object *owner,
1296                                      const char *name,
1297                                      uint64_t size,
1298                                      uint64_t align,
1299                                      uint32_t ram_flags,
1300                                      const char *path,
1301                                      bool readonly,
1302                                      Error **errp);
1303
1304/**
1305 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1306 *                                  mmap-ed backend.
1307 *
1308 * @mr: the #MemoryRegion to be initialized.
1309 * @owner: the object that tracks the region's reference count
1310 * @name: the name of the region.
1311 * @size: size of the region.
1312 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1313 *             RAM_NORESERVE, RAM_PROTECTED.
1314 * @fd: the fd to mmap.
1315 * @offset: offset within the file referenced by fd
1316 * @errp: pointer to Error*, to store an error if it happens.
1317 *
1318 * Note that this function does not do anything to cause the data in the
1319 * RAM memory region to be migrated; that is the responsibility of the caller.
1320 */
1321void memory_region_init_ram_from_fd(MemoryRegion *mr,
1322                                    Object *owner,
1323                                    const char *name,
1324                                    uint64_t size,
1325                                    uint32_t ram_flags,
1326                                    int fd,
1327                                    ram_addr_t offset,
1328                                    Error **errp);
1329#endif
1330
1331/**
1332 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1333 *                              user-provided pointer.  Accesses into the
1334 *                              region will modify memory directly.
1335 *
1336 * @mr: the #MemoryRegion to be initialized.
1337 * @owner: the object that tracks the region's reference count
1338 * @name: Region name, becomes part of RAMBlock name used in migration stream
1339 *        must be unique within any device
1340 * @size: size of the region.
1341 * @ptr: memory to be mapped; must contain at least @size bytes.
1342 *
1343 * Note that this function does not do anything to cause the data in the
1344 * RAM memory region to be migrated; that is the responsibility of the caller.
1345 */
1346void memory_region_init_ram_ptr(MemoryRegion *mr,
1347                                Object *owner,
1348                                const char *name,
1349                                uint64_t size,
1350                                void *ptr);
1351
1352/**
1353 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1354 *                                     a user-provided pointer.
1355 *
1356 * A RAM device represents a mapping to a physical device, such as to a PCI
1357 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1358 * into the VM address space and access to the region will modify memory
1359 * directly.  However, the memory region should not be included in a memory
1360 * dump (device may not be enabled/mapped at the time of the dump), and
1361 * operations incompatible with manipulating MMIO should be avoided.  Replaces
1362 * skip_dump flag.
1363 *
1364 * @mr: the #MemoryRegion to be initialized.
1365 * @owner: the object that tracks the region's reference count
1366 * @name: the name of the region.
1367 * @size: size of the region.
1368 * @ptr: memory to be mapped; must contain at least @size bytes.
1369 *
1370 * Note that this function does not do anything to cause the data in the
1371 * RAM memory region to be migrated; that is the responsibility of the caller.
1372 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1373 */
1374void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1375                                       Object *owner,
1376                                       const char *name,
1377                                       uint64_t size,
1378                                       void *ptr);
1379
1380/**
1381 * memory_region_init_alias: Initialize a memory region that aliases all or a
1382 *                           part of another memory region.
1383 *
1384 * @mr: the #MemoryRegion to be initialized.
1385 * @owner: the object that tracks the region's reference count
1386 * @name: used for debugging; not visible to the user or ABI
1387 * @orig: the region to be referenced; @mr will be equivalent to
1388 *        @orig between @offset and @offset + @size - 1.
1389 * @offset: start of the section in @orig to be referenced.
1390 * @size: size of the region.
1391 */
1392void memory_region_init_alias(MemoryRegion *mr,
1393                              Object *owner,
1394                              const char *name,
1395                              MemoryRegion *orig,
1396                              hwaddr offset,
1397                              uint64_t size);
1398
1399/**
1400 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1401 *
1402 * This has the same effect as calling memory_region_init_ram_nomigrate()
1403 * and then marking the resulting region read-only with
1404 * memory_region_set_readonly().
1405 *
1406 * Note that this function does not do anything to cause the data in the
1407 * RAM side of the memory region to be migrated; that is the responsibility
1408 * of the caller.
1409 *
1410 * @mr: the #MemoryRegion to be initialized.
1411 * @owner: the object that tracks the region's reference count
1412 * @name: Region name, becomes part of RAMBlock name used in migration stream
1413 *        must be unique within any device
1414 * @size: size of the region.
1415 * @errp: pointer to Error*, to store an error if it happens.
1416 */
1417void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1418                                      Object *owner,
1419                                      const char *name,
1420                                      uint64_t size,
1421                                      Error **errp);
1422
1423/**
1424 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1425 *                                 Writes are handled via callbacks.
1426 *
1427 * Note that this function does not do anything to cause the data in the
1428 * RAM side of the memory region to be migrated; that is the responsibility
1429 * of the caller.
1430 *
1431 * @mr: the #MemoryRegion to be initialized.
1432 * @owner: the object that tracks the region's reference count
1433 * @ops: callbacks for write access handling (must not be NULL).
1434 * @opaque: passed to the read and write callbacks of the @ops structure.
1435 * @name: Region name, becomes part of RAMBlock name used in migration stream
1436 *        must be unique within any device
1437 * @size: size of the region.
1438 * @errp: pointer to Error*, to store an error if it happens.
1439 */
1440void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1441                                             Object *owner,
1442                                             const MemoryRegionOps *ops,
1443                                             void *opaque,
1444                                             const char *name,
1445                                             uint64_t size,
1446                                             Error **errp);
1447
1448/**
1449 * memory_region_init_iommu: Initialize a memory region of a custom type
1450 * that translates addresses
1451 *
1452 * An IOMMU region translates addresses and forwards accesses to a target
1453 * memory region.
1454 *
1455 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1456 * @_iommu_mr should be a pointer to enough memory for an instance of
1457 * that subclass, @instance_size is the size of that subclass, and
1458 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1459 * instance of the subclass, and its methods will then be called to handle
1460 * accesses to the memory region. See the documentation of
1461 * #IOMMUMemoryRegionClass for further details.
1462 *
1463 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1464 * @instance_size: the IOMMUMemoryRegion subclass instance size
1465 * @mrtypename: the type name of the #IOMMUMemoryRegion
1466 * @owner: the object that tracks the region's reference count
1467 * @name: used for debugging; not visible to the user or ABI
1468 * @size: size of the region.
1469 */
1470void memory_region_init_iommu(void *_iommu_mr,
1471                              size_t instance_size,
1472                              const char *mrtypename,
1473                              Object *owner,
1474                              const char *name,
1475                              uint64_t size);
1476
1477/**
1478 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1479 *                          region will modify memory directly.
1480 *
1481 * @mr: the #MemoryRegion to be initialized
1482 * @owner: the object that tracks the region's reference count (must be
1483 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1484 * @name: name of the memory region
1485 * @size: size of the region in bytes
1486 * @errp: pointer to Error*, to store an error if it happens.
1487 *
1488 * This function allocates RAM for a board model or device, and
1489 * arranges for it to be migrated (by calling vmstate_register_ram()
1490 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1491 * @owner is NULL).
1492 *
1493 * TODO: Currently we restrict @owner to being either NULL (for
1494 * global RAM regions with no owner) or devices, so that we can
1495 * give the RAM block a unique name for migration purposes.
1496 * We should lift this restriction and allow arbitrary Objects.
1497 * If you pass a non-NULL non-device @owner then we will assert.
1498 */
1499void memory_region_init_ram(MemoryRegion *mr,
1500                            Object *owner,
1501                            const char *name,
1502                            uint64_t size,
1503                            Error **errp);
1504
1505/**
1506 * memory_region_init_rom: Initialize a ROM memory region.
1507 *
1508 * This has the same effect as calling memory_region_init_ram()
1509 * and then marking the resulting region read-only with
1510 * memory_region_set_readonly(). This includes arranging for the
1511 * contents to be migrated.
1512 *
1513 * TODO: Currently we restrict @owner to being either NULL (for
1514 * global RAM regions with no owner) or devices, so that we can
1515 * give the RAM block a unique name for migration purposes.
1516 * We should lift this restriction and allow arbitrary Objects.
1517 * If you pass a non-NULL non-device @owner then we will assert.
1518 *
1519 * @mr: the #MemoryRegion to be initialized.
1520 * @owner: the object that tracks the region's reference count
1521 * @name: Region name, becomes part of RAMBlock name used in migration stream
1522 *        must be unique within any device
1523 * @size: size of the region.
1524 * @errp: pointer to Error*, to store an error if it happens.
1525 */
1526void memory_region_init_rom(MemoryRegion *mr,
1527                            Object *owner,
1528                            const char *name,
1529                            uint64_t size,
1530                            Error **errp);
1531
1532/**
1533 * memory_region_init_rom_device:  Initialize a ROM memory region.
1534 *                                 Writes are handled via callbacks.
1535 *
1536 * This function initializes a memory region backed by RAM for reads
1537 * and callbacks for writes, and arranges for the RAM backing to
1538 * be migrated (by calling vmstate_register_ram()
1539 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1540 * @owner is NULL).
1541 *
1542 * TODO: Currently we restrict @owner to being either NULL (for
1543 * global RAM regions with no owner) or devices, so that we can
1544 * give the RAM block a unique name for migration purposes.
1545 * We should lift this restriction and allow arbitrary Objects.
1546 * If you pass a non-NULL non-device @owner then we will assert.
1547 *
1548 * @mr: the #MemoryRegion to be initialized.
1549 * @owner: the object that tracks the region's reference count
1550 * @ops: callbacks for write access handling (must not be NULL).
1551 * @opaque: passed to the read and write callbacks of the @ops structure.
1552 * @name: Region name, becomes part of RAMBlock name used in migration stream
1553 *        must be unique within any device
1554 * @size: size of the region.
1555 * @errp: pointer to Error*, to store an error if it happens.
1556 */
1557void memory_region_init_rom_device(MemoryRegion *mr,
1558                                   Object *owner,
1559                                   const MemoryRegionOps *ops,
1560                                   void *opaque,
1561                                   const char *name,
1562                                   uint64_t size,
1563                                   Error **errp);
1564
1565
1566/**
1567 * memory_region_owner: get a memory region's owner.
1568 *
1569 * @mr: the memory region being queried.
1570 */
1571Object *memory_region_owner(MemoryRegion *mr);
1572
1573/**
1574 * memory_region_size: get a memory region's size.
1575 *
1576 * @mr: the memory region being queried.
1577 */
1578uint64_t memory_region_size(MemoryRegion *mr);
1579
1580/**
1581 * memory_region_is_ram: check whether a memory region is random access
1582 *
1583 * Returns %true if a memory region is random access.
1584 *
1585 * @mr: the memory region being queried
1586 */
1587static inline bool memory_region_is_ram(MemoryRegion *mr)
1588{
1589    return mr->ram;
1590}
1591
1592/**
1593 * memory_region_is_ram_device: check whether a memory region is a ram device
1594 *
1595 * Returns %true if a memory region is a device backed ram region
1596 *
1597 * @mr: the memory region being queried
1598 */
1599bool memory_region_is_ram_device(MemoryRegion *mr);
1600
1601/**
1602 * memory_region_is_romd: check whether a memory region is in ROMD mode
1603 *
1604 * Returns %true if a memory region is a ROM device and currently set to allow
1605 * direct reads.
1606 *
1607 * @mr: the memory region being queried
1608 */
1609static inline bool memory_region_is_romd(MemoryRegion *mr)
1610{
1611    return mr->rom_device && mr->romd_mode;
1612}
1613
1614/**
1615 * memory_region_is_protected: check whether a memory region is protected
1616 *
1617 * Returns %true if a memory region is protected RAM and cannot be accessed
1618 * via standard mechanisms, e.g. DMA.
1619 *
1620 * @mr: the memory region being queried
1621 */
1622bool memory_region_is_protected(MemoryRegion *mr);
1623
1624/**
1625 * memory_region_get_iommu: check whether a memory region is an iommu
1626 *
1627 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1628 * otherwise NULL.
1629 *
1630 * @mr: the memory region being queried
1631 */
1632static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1633{
1634    if (mr->alias) {
1635        return memory_region_get_iommu(mr->alias);
1636    }
1637    if (mr->is_iommu) {
1638        return (IOMMUMemoryRegion *) mr;
1639    }
1640    return NULL;
1641}
1642
1643/**
1644 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1645 *   if an iommu or NULL if not
1646 *
1647 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1648 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1649 *
1650 * @iommu_mr: the memory region being queried
1651 */
1652static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1653        IOMMUMemoryRegion *iommu_mr)
1654{
1655    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1656}
1657
1658#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1659
1660/**
1661 * memory_region_iommu_get_min_page_size: get minimum supported page size
1662 * for an iommu
1663 *
1664 * Returns minimum supported page size for an iommu.
1665 *
1666 * @iommu_mr: the memory region being queried
1667 */
1668uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1669
1670/**
1671 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1672 *
1673 * Note: for any IOMMU implementation, an in-place mapping change
1674 * should be notified with an UNMAP followed by a MAP.
1675 *
1676 * @iommu_mr: the memory region that was changed
1677 * @iommu_idx: the IOMMU index for the translation table which has changed
1678 * @event: TLB event with the new entry in the IOMMU translation table.
1679 *         The entry replaces all old entries for the same virtual I/O address
1680 *         range.
1681 */
1682void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1683                                int iommu_idx,
1684                                IOMMUTLBEvent event);
1685
1686/**
1687 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1688 *                           entry to a single notifier
1689 *
1690 * This works just like memory_region_notify_iommu(), but it only
1691 * notifies a specific notifier, not all of them.
1692 *
1693 * @notifier: the notifier to be notified
1694 * @event: TLB event with the new entry in the IOMMU translation table.
1695 *         The entry replaces all old entries for the same virtual I/O address
1696 *         range.
1697 */
1698void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1699                                    IOMMUTLBEvent *event);
1700
1701/**
1702 * memory_region_register_iommu_notifier: register a notifier for changes to
1703 * IOMMU translation entries.
1704 *
1705 * Returns 0 on success, or a negative errno otherwise. In particular,
1706 * -EINVAL indicates that at least one of the attributes of the notifier
1707 * is not supported (flag/range) by the IOMMU memory region. In case of error
1708 * the error object must be created.
1709 *
1710 * @mr: the memory region to observe
1711 * @n: the IOMMUNotifier to be added; the notify callback receives a
1712 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1713 *     ceases to be valid on exit from the notifier.
1714 * @errp: pointer to Error*, to store an error if it happens.
1715 */
1716int memory_region_register_iommu_notifier(MemoryRegion *mr,
1717                                          IOMMUNotifier *n, Error **errp);
1718
1719/**
1720 * memory_region_iommu_replay: replay existing IOMMU translations to
1721 * a notifier with the minimum page granularity returned by
1722 * mr->iommu_ops->get_page_size().
1723 *
1724 * Note: this is not related to record-and-replay functionality.
1725 *
1726 * @iommu_mr: the memory region to observe
1727 * @n: the notifier to which to replay iommu mappings
1728 */
1729void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1730
1731/**
1732 * memory_region_unregister_iommu_notifier: unregister a notifier for
1733 * changes to IOMMU translation entries.
1734 *
1735 * @mr: the memory region which was observed and for which notity_stopped()
1736 *      needs to be called
1737 * @n: the notifier to be removed.
1738 */
1739void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1740                                             IOMMUNotifier *n);
1741
1742/**
1743 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1744 * defined on the IOMMU.
1745 *
1746 * Returns 0 on success, or a negative errno otherwise. In particular,
1747 * -EINVAL indicates that the IOMMU does not support the requested
1748 * attribute.
1749 *
1750 * @iommu_mr: the memory region
1751 * @attr: the requested attribute
1752 * @data: a pointer to the requested attribute data
1753 */
1754int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1755                                 enum IOMMUMemoryRegionAttr attr,
1756                                 void *data);
1757
1758/**
1759 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1760 * use for translations with the given memory transaction attributes.
1761 *
1762 * @iommu_mr: the memory region
1763 * @attrs: the memory transaction attributes
1764 */
1765int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1766                                       MemTxAttrs attrs);
1767
1768/**
1769 * memory_region_iommu_num_indexes: return the total number of IOMMU
1770 * indexes that this IOMMU supports.
1771 *
1772 * @iommu_mr: the memory region
1773 */
1774int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1775
1776/**
1777 * memory_region_iommu_set_page_size_mask: set the supported page
1778 * sizes for a given IOMMU memory region
1779 *
1780 * @iommu_mr: IOMMU memory region
1781 * @page_size_mask: supported page size mask
1782 * @errp: pointer to Error*, to store an error if it happens.
1783 */
1784int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1785                                           uint64_t page_size_mask,
1786                                           Error **errp);
1787
1788/**
1789 * memory_region_name: get a memory region's name
1790 *
1791 * Returns the string that was used to initialize the memory region.
1792 *
1793 * @mr: the memory region being queried
1794 */
1795const char *memory_region_name(const MemoryRegion *mr);
1796
1797/**
1798 * memory_region_is_logging: return whether a memory region is logging writes
1799 *
1800 * Returns %true if the memory region is logging writes for the given client
1801 *
1802 * @mr: the memory region being queried
1803 * @client: the client being queried
1804 */
1805bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1806
1807/**
1808 * memory_region_get_dirty_log_mask: return the clients for which a
1809 * memory region is logging writes.
1810 *
1811 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1812 * are the bit indices.
1813 *
1814 * @mr: the memory region being queried
1815 */
1816uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1817
1818/**
1819 * memory_region_is_rom: check whether a memory region is ROM
1820 *
1821 * Returns %true if a memory region is read-only memory.
1822 *
1823 * @mr: the memory region being queried
1824 */
1825static inline bool memory_region_is_rom(MemoryRegion *mr)
1826{
1827    return mr->ram && mr->readonly;
1828}
1829
1830/**
1831 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1832 *
1833 * Returns %true is a memory region is non-volatile memory.
1834 *
1835 * @mr: the memory region being queried
1836 */
1837static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1838{
1839    return mr->nonvolatile;
1840}
1841
1842/**
1843 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1844 *
1845 * Returns a file descriptor backing a file-based RAM memory region,
1846 * or -1 if the region is not a file-based RAM memory region.
1847 *
1848 * @mr: the RAM or alias memory region being queried.
1849 */
1850int memory_region_get_fd(MemoryRegion *mr);
1851
1852/**
1853 * memory_region_from_host: Convert a pointer into a RAM memory region
1854 * and an offset within it.
1855 *
1856 * Given a host pointer inside a RAM memory region (created with
1857 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1858 * the MemoryRegion and the offset within it.
1859 *
1860 * Use with care; by the time this function returns, the returned pointer is
1861 * not protected by RCU anymore.  If the caller is not within an RCU critical
1862 * section and does not hold the iothread lock, it must have other means of
1863 * protecting the pointer, such as a reference to the region that includes
1864 * the incoming ram_addr_t.
1865 *
1866 * @ptr: the host pointer to be converted
1867 * @offset: the offset within memory region
1868 */
1869MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1870
1871/**
1872 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1873 *
1874 * Returns a host pointer to a RAM memory region (created with
1875 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1876 *
1877 * Use with care; by the time this function returns, the returned pointer is
1878 * not protected by RCU anymore.  If the caller is not within an RCU critical
1879 * section and does not hold the iothread lock, it must have other means of
1880 * protecting the pointer, such as a reference to the region that includes
1881 * the incoming ram_addr_t.
1882 *
1883 * @mr: the memory region being queried.
1884 */
1885void *memory_region_get_ram_ptr(MemoryRegion *mr);
1886
1887/* memory_region_ram_resize: Resize a RAM region.
1888 *
1889 * Resizing RAM while migrating can result in the migration being canceled.
1890 * Care has to be taken if the guest might have already detected the memory.
1891 *
1892 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1893 * @newsize: the new size the region
1894 * @errp: pointer to Error*, to store an error if it happens.
1895 */
1896void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1897                              Error **errp);
1898
1899/**
1900 * memory_region_msync: Synchronize selected address range of
1901 * a memory mapped region
1902 *
1903 * @mr: the memory region to be msync
1904 * @addr: the initial address of the range to be sync
1905 * @size: the size of the range to be sync
1906 */
1907void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1908
1909/**
1910 * memory_region_writeback: Trigger cache writeback for
1911 * selected address range
1912 *
1913 * @mr: the memory region to be updated
1914 * @addr: the initial address of the range to be written back
1915 * @size: the size of the range to be written back
1916 */
1917void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1918
1919/**
1920 * memory_region_set_log: Turn dirty logging on or off for a region.
1921 *
1922 * Turns dirty logging on or off for a specified client (display, migration).
1923 * Only meaningful for RAM regions.
1924 *
1925 * @mr: the memory region being updated.
1926 * @log: whether dirty logging is to be enabled or disabled.
1927 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1928 */
1929void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1930
1931/**
1932 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1933 *
1934 * Marks a range of bytes as dirty, after it has been dirtied outside
1935 * guest code.
1936 *
1937 * @mr: the memory region being dirtied.
1938 * @addr: the address (relative to the start of the region) being dirtied.
1939 * @size: size of the range being dirtied.
1940 */
1941void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1942                             hwaddr size);
1943
1944/**
1945 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1946 *
1947 * This function is called when the caller wants to clear the remote
1948 * dirty bitmap of a memory range within the memory region.  This can
1949 * be used by e.g. KVM to manually clear dirty log when
1950 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1951 * kernel.
1952 *
1953 * @mr:     the memory region to clear the dirty log upon
1954 * @start:  start address offset within the memory region
1955 * @len:    length of the memory region to clear dirty bitmap
1956 */
1957void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1958                                      hwaddr len);
1959
1960/**
1961 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1962 *                                         bitmap and clear it.
1963 *
1964 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1965 * returns the snapshot.  The snapshot can then be used to query dirty
1966 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1967 * querying the same page multiple times, which is especially useful for
1968 * display updates where the scanlines often are not page aligned.
1969 *
1970 * The dirty bitmap region which gets copyed into the snapshot (and
1971 * cleared afterwards) can be larger than requested.  The boundaries
1972 * are rounded up/down so complete bitmap longs (covering 64 pages on
1973 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1974 * isn't a problem for display updates as the extra pages are outside
1975 * the visible area, and in case the visible area changes a full
1976 * display redraw is due anyway.  Should other use cases for this
1977 * function emerge we might have to revisit this implementation
1978 * detail.
1979 *
1980 * Use g_free to release DirtyBitmapSnapshot.
1981 *
1982 * @mr: the memory region being queried.
1983 * @addr: the address (relative to the start of the region) being queried.
1984 * @size: the size of the range being queried.
1985 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1986 */
1987DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1988                                                            hwaddr addr,
1989                                                            hwaddr size,
1990                                                            unsigned client);
1991
1992/**
1993 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1994 *                                   in the specified dirty bitmap snapshot.
1995 *
1996 * @mr: the memory region being queried.
1997 * @snap: the dirty bitmap snapshot
1998 * @addr: the address (relative to the start of the region) being queried.
1999 * @size: the size of the range being queried.
2000 */
2001bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2002                                      DirtyBitmapSnapshot *snap,
2003                                      hwaddr addr, hwaddr size);
2004
2005/**
2006 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2007 *                            client.
2008 *
2009 * Marks a range of pages as no longer dirty.
2010 *
2011 * @mr: the region being updated.
2012 * @addr: the start of the subrange being cleaned.
2013 * @size: the size of the subrange being cleaned.
2014 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2015 *          %DIRTY_MEMORY_VGA.
2016 */
2017void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2018                               hwaddr size, unsigned client);
2019
2020/**
2021 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2022 *                                 TBs (for self-modifying code).
2023 *
2024 * The MemoryRegionOps->write() callback of a ROM device must use this function
2025 * to mark byte ranges that have been modified internally, such as by directly
2026 * accessing the memory returned by memory_region_get_ram_ptr().
2027 *
2028 * This function marks the range dirty and invalidates TBs so that TCG can
2029 * detect self-modifying code.
2030 *
2031 * @mr: the region being flushed.
2032 * @addr: the start, relative to the start of the region, of the range being
2033 *        flushed.
2034 * @size: the size, in bytes, of the range being flushed.
2035 */
2036void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2037
2038/**
2039 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2040 *
2041 * Allows a memory region to be marked as read-only (turning it into a ROM).
2042 * only useful on RAM regions.
2043 *
2044 * @mr: the region being updated.
2045 * @readonly: whether rhe region is to be ROM or RAM.
2046 */
2047void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2048
2049/**
2050 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2051 *
2052 * Allows a memory region to be marked as non-volatile.
2053 * only useful on RAM regions.
2054 *
2055 * @mr: the region being updated.
2056 * @nonvolatile: whether rhe region is to be non-volatile.
2057 */
2058void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2059
2060/**
2061 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2062 *
2063 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2064 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2065 * device is mapped to guest memory and satisfies read access directly.
2066 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2067 * Writes are always handled by the #MemoryRegion.write function.
2068 *
2069 * @mr: the memory region to be updated
2070 * @romd_mode: %true to put the region into ROMD mode
2071 */
2072void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2073
2074/**
2075 * memory_region_set_coalescing: Enable memory coalescing for the region.
2076 *
2077 * Enabled writes to a region to be queued for later processing. MMIO ->write
2078 * callbacks may be delayed until a non-coalesced MMIO is issued.
2079 * Only useful for IO regions.  Roughly similar to write-combining hardware.
2080 *
2081 * @mr: the memory region to be write coalesced
2082 */
2083void memory_region_set_coalescing(MemoryRegion *mr);
2084
2085/**
2086 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2087 *                               a region.
2088 *
2089 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2090 * Multiple calls can be issued coalesced disjoint ranges.
2091 *
2092 * @mr: the memory region to be updated.
2093 * @offset: the start of the range within the region to be coalesced.
2094 * @size: the size of the subrange to be coalesced.
2095 */
2096void memory_region_add_coalescing(MemoryRegion *mr,
2097                                  hwaddr offset,
2098                                  uint64_t size);
2099
2100/**
2101 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2102 *
2103 * Disables any coalescing caused by memory_region_set_coalescing() or
2104 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2105 * hardware.
2106 *
2107 * @mr: the memory region to be updated.
2108 */
2109void memory_region_clear_coalescing(MemoryRegion *mr);
2110
2111/**
2112 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2113 *                                    accesses.
2114 *
2115 * Ensure that pending coalesced MMIO request are flushed before the memory
2116 * region is accessed. This property is automatically enabled for all regions
2117 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2118 *
2119 * @mr: the memory region to be updated.
2120 */
2121void memory_region_set_flush_coalesced(MemoryRegion *mr);
2122
2123/**
2124 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2125 *                                      accesses.
2126 *
2127 * Clear the automatic coalesced MMIO flushing enabled via
2128 * memory_region_set_flush_coalesced. Note that this service has no effect on
2129 * memory regions that have MMIO coalescing enabled for themselves. For them,
2130 * automatic flushing will stop once coalescing is disabled.
2131 *
2132 * @mr: the memory region to be updated.
2133 */
2134void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2135
2136/**
2137 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2138 *                            is written to a location.
2139 *
2140 * Marks a word in an IO region (initialized with memory_region_init_io())
2141 * as a trigger for an eventfd event.  The I/O callback will not be called.
2142 * The caller must be prepared to handle failure (that is, take the required
2143 * action if the callback _is_ called).
2144 *
2145 * @mr: the memory region being updated.
2146 * @addr: the address within @mr that is to be monitored
2147 * @size: the size of the access to trigger the eventfd
2148 * @match_data: whether to match against @data, instead of just @addr
2149 * @data: the data to match against the guest write
2150 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2151 **/
2152void memory_region_add_eventfd(MemoryRegion *mr,
2153                               hwaddr addr,
2154                               unsigned size,
2155                               bool match_data,
2156                               uint64_t data,
2157                               EventNotifier *e);
2158
2159/**
2160 * memory_region_del_eventfd: Cancel an eventfd.
2161 *
2162 * Cancels an eventfd trigger requested by a previous
2163 * memory_region_add_eventfd() call.
2164 *
2165 * @mr: the memory region being updated.
2166 * @addr: the address within @mr that is to be monitored
2167 * @size: the size of the access to trigger the eventfd
2168 * @match_data: whether to match against @data, instead of just @addr
2169 * @data: the data to match against the guest write
2170 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2171 */
2172void memory_region_del_eventfd(MemoryRegion *mr,
2173                               hwaddr addr,
2174                               unsigned size,
2175                               bool match_data,
2176                               uint64_t data,
2177                               EventNotifier *e);
2178
2179/**
2180 * memory_region_add_subregion: Add a subregion to a container.
2181 *
2182 * Adds a subregion at @offset.  The subregion may not overlap with other
2183 * subregions (except for those explicitly marked as overlapping).  A region
2184 * may only be added once as a subregion (unless removed with
2185 * memory_region_del_subregion()); use memory_region_init_alias() if you
2186 * want a region to be a subregion in multiple locations.
2187 *
2188 * @mr: the region to contain the new subregion; must be a container
2189 *      initialized with memory_region_init().
2190 * @offset: the offset relative to @mr where @subregion is added.
2191 * @subregion: the subregion to be added.
2192 */
2193void memory_region_add_subregion(MemoryRegion *mr,
2194                                 hwaddr offset,
2195                                 MemoryRegion *subregion);
2196/**
2197 * memory_region_add_subregion_overlap: Add a subregion to a container
2198 *                                      with overlap.
2199 *
2200 * Adds a subregion at @offset.  The subregion may overlap with other
2201 * subregions.  Conflicts are resolved by having a higher @priority hide a
2202 * lower @priority. Subregions without priority are taken as @priority 0.
2203 * A region may only be added once as a subregion (unless removed with
2204 * memory_region_del_subregion()); use memory_region_init_alias() if you
2205 * want a region to be a subregion in multiple locations.
2206 *
2207 * @mr: the region to contain the new subregion; must be a container
2208 *      initialized with memory_region_init().
2209 * @offset: the offset relative to @mr where @subregion is added.
2210 * @subregion: the subregion to be added.
2211 * @priority: used for resolving overlaps; highest priority wins.
2212 */
2213void memory_region_add_subregion_overlap(MemoryRegion *mr,
2214                                         hwaddr offset,
2215                                         MemoryRegion *subregion,
2216                                         int priority);
2217
2218/**
2219 * memory_region_get_ram_addr: Get the ram address associated with a memory
2220 *                             region
2221 *
2222 * @mr: the region to be queried
2223 */
2224ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2225
2226uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2227/**
2228 * memory_region_del_subregion: Remove a subregion.
2229 *
2230 * Removes a subregion from its container.
2231 *
2232 * @mr: the container to be updated.
2233 * @subregion: the region being removed; must be a current subregion of @mr.
2234 */
2235void memory_region_del_subregion(MemoryRegion *mr,
2236                                 MemoryRegion *subregion);
2237
2238/*
2239 * memory_region_set_enabled: dynamically enable or disable a region
2240 *
2241 * Enables or disables a memory region.  A disabled memory region
2242 * ignores all accesses to itself and its subregions.  It does not
2243 * obscure sibling subregions with lower priority - it simply behaves as
2244 * if it was removed from the hierarchy.
2245 *
2246 * Regions default to being enabled.
2247 *
2248 * @mr: the region to be updated
2249 * @enabled: whether to enable or disable the region
2250 */
2251void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2252
2253/*
2254 * memory_region_set_address: dynamically update the address of a region
2255 *
2256 * Dynamically updates the address of a region, relative to its container.
2257 * May be used on regions are currently part of a memory hierarchy.
2258 *
2259 * @mr: the region to be updated
2260 * @addr: new address, relative to container region
2261 */
2262void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2263
2264/*
2265 * memory_region_set_size: dynamically update the size of a region.
2266 *
2267 * Dynamically updates the size of a region.
2268 *
2269 * @mr: the region to be updated
2270 * @size: used size of the region.
2271 */
2272void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2273
2274/*
2275 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2276 *
2277 * Dynamically updates the offset into the target region that an alias points
2278 * to, as if the fourth argument to memory_region_init_alias() has changed.
2279 *
2280 * @mr: the #MemoryRegion to be updated; should be an alias.
2281 * @offset: the new offset into the target memory region
2282 */
2283void memory_region_set_alias_offset(MemoryRegion *mr,
2284                                    hwaddr offset);
2285
2286/**
2287 * memory_region_present: checks if an address relative to a @container
2288 * translates into #MemoryRegion within @container
2289 *
2290 * Answer whether a #MemoryRegion within @container covers the address
2291 * @addr.
2292 *
2293 * @container: a #MemoryRegion within which @addr is a relative address
2294 * @addr: the area within @container to be searched
2295 */
2296bool memory_region_present(MemoryRegion *container, hwaddr addr);
2297
2298/**
2299 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2300 * into another memory region, which does not necessarily imply that it is
2301 * mapped into an address space.
2302 *
2303 * @mr: a #MemoryRegion which should be checked if it's mapped
2304 */
2305bool memory_region_is_mapped(MemoryRegion *mr);
2306
2307/**
2308 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2309 * #MemoryRegion
2310 *
2311 * The #RamDiscardManager cannot change while a memory region is mapped.
2312 *
2313 * @mr: the #MemoryRegion
2314 */
2315RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2316
2317/**
2318 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2319 * #RamDiscardManager assigned
2320 *
2321 * @mr: the #MemoryRegion
2322 */
2323static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2324{
2325    return !!memory_region_get_ram_discard_manager(mr);
2326}
2327
2328/**
2329 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2330 * #MemoryRegion
2331 *
2332 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2333 * that does not cover RAM, or a #MemoryRegion that already has a
2334 * #RamDiscardManager assigned.
2335 *
2336 * @mr: the #MemoryRegion
2337 * @rdm: #RamDiscardManager to set
2338 */
2339void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2340                                           RamDiscardManager *rdm);
2341
2342/**
2343 * memory_region_find: translate an address/size relative to a
2344 * MemoryRegion into a #MemoryRegionSection.
2345 *
2346 * Locates the first #MemoryRegion within @mr that overlaps the range
2347 * given by @addr and @size.
2348 *
2349 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2350 * It will have the following characteristics:
2351 * - @size = 0 iff no overlap was found
2352 * - @mr is non-%NULL iff an overlap was found
2353 *
2354 * Remember that in the return value the @offset_within_region is
2355 * relative to the returned region (in the .@mr field), not to the
2356 * @mr argument.
2357 *
2358 * Similarly, the .@offset_within_address_space is relative to the
2359 * address space that contains both regions, the passed and the
2360 * returned one.  However, in the special case where the @mr argument
2361 * has no container (and thus is the root of the address space), the
2362 * following will hold:
2363 * - @offset_within_address_space >= @addr
2364 * - @offset_within_address_space + .@size <= @addr + @size
2365 *
2366 * @mr: a MemoryRegion within which @addr is a relative address
2367 * @addr: start of the area within @as to be searched
2368 * @size: size of the area to be searched
2369 */
2370MemoryRegionSection memory_region_find(MemoryRegion *mr,
2371                                       hwaddr addr, uint64_t size);
2372
2373/**
2374 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2375 *
2376 * Synchronizes the dirty page log for all address spaces.
2377 */
2378void memory_global_dirty_log_sync(void);
2379
2380/**
2381 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2382 *
2383 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2384 * This function must be called after the dirty log bitmap is cleared, and
2385 * before dirty guest memory pages are read.  If you are using
2386 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2387 * care of doing this.
2388 */
2389void memory_global_after_dirty_log_sync(void);
2390
2391/**
2392 * memory_region_transaction_begin: Start a transaction.
2393 *
2394 * During a transaction, changes will be accumulated and made visible
2395 * only when the transaction ends (is committed).
2396 */
2397void memory_region_transaction_begin(void);
2398
2399/**
2400 * memory_region_transaction_commit: Commit a transaction and make changes
2401 *                                   visible to the guest.
2402 */
2403void memory_region_transaction_commit(void);
2404
2405/**
2406 * memory_listener_register: register callbacks to be called when memory
2407 *                           sections are mapped or unmapped into an address
2408 *                           space
2409 *
2410 * @listener: an object containing the callbacks to be called
2411 * @filter: if non-%NULL, only regions in this address space will be observed
2412 */
2413void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2414
2415/**
2416 * memory_listener_unregister: undo the effect of memory_listener_register()
2417 *
2418 * @listener: an object containing the callbacks to be removed
2419 */
2420void memory_listener_unregister(MemoryListener *listener);
2421
2422/**
2423 * memory_global_dirty_log_start: begin dirty logging for all regions
2424 *
2425 * @flags: purpose of starting dirty log, migration or dirty rate
2426 */
2427void memory_global_dirty_log_start(unsigned int flags);
2428
2429/**
2430 * memory_global_dirty_log_stop: end dirty logging for all regions
2431 *
2432 * @flags: purpose of stopping dirty log, migration or dirty rate
2433 */
2434void memory_global_dirty_log_stop(unsigned int flags);
2435
2436void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2437
2438/**
2439 * memory_region_dispatch_read: perform a read directly to the specified
2440 * MemoryRegion.
2441 *
2442 * @mr: #MemoryRegion to access
2443 * @addr: address within that region
2444 * @pval: pointer to uint64_t which the data is written to
2445 * @op: size, sign, and endianness of the memory operation
2446 * @attrs: memory transaction attributes to use for the access
2447 */
2448MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2449                                        hwaddr addr,
2450                                        uint64_t *pval,
2451                                        MemOp op,
2452                                        MemTxAttrs attrs);
2453/**
2454 * memory_region_dispatch_write: perform a write directly to the specified
2455 * MemoryRegion.
2456 *
2457 * @mr: #MemoryRegion to access
2458 * @addr: address within that region
2459 * @data: data to write
2460 * @op: size, sign, and endianness of the memory operation
2461 * @attrs: memory transaction attributes to use for the access
2462 */
2463MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2464                                         hwaddr addr,
2465                                         uint64_t data,
2466                                         MemOp op,
2467                                         MemTxAttrs attrs);
2468
2469/**
2470 * address_space_init: initializes an address space
2471 *
2472 * @as: an uninitialized #AddressSpace
2473 * @root: a #MemoryRegion that routes addresses for the address space
2474 * @name: an address space name.  The name is only used for debugging
2475 *        output.
2476 */
2477void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2478
2479/**
2480 * address_space_destroy: destroy an address space
2481 *
2482 * Releases all resources associated with an address space.  After an address space
2483 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2484 * as well.
2485 *
2486 * @as: address space to be destroyed
2487 */
2488void address_space_destroy(AddressSpace *as);
2489
2490/**
2491 * address_space_remove_listeners: unregister all listeners of an address space
2492 *
2493 * Removes all callbacks previously registered with memory_listener_register()
2494 * for @as.
2495 *
2496 * @as: an initialized #AddressSpace
2497 */
2498void address_space_remove_listeners(AddressSpace *as);
2499
2500/**
2501 * address_space_rw: read from or write to an address space.
2502 *
2503 * Return a MemTxResult indicating whether the operation succeeded
2504 * or failed (eg unassigned memory, device rejected the transaction,
2505 * IOMMU fault).
2506 *
2507 * @as: #AddressSpace to be accessed
2508 * @addr: address within that address space
2509 * @attrs: memory transaction attributes
2510 * @buf: buffer with the data transferred
2511 * @len: the number of bytes to read or write
2512 * @is_write: indicates the transfer direction
2513 */
2514MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2515                             MemTxAttrs attrs, void *buf,
2516                             hwaddr len, bool is_write);
2517
2518/**
2519 * address_space_write: write to address space.
2520 *
2521 * Return a MemTxResult indicating whether the operation succeeded
2522 * or failed (eg unassigned memory, device rejected the transaction,
2523 * IOMMU fault).
2524 *
2525 * @as: #AddressSpace to be accessed
2526 * @addr: address within that address space
2527 * @attrs: memory transaction attributes
2528 * @buf: buffer with the data transferred
2529 * @len: the number of bytes to write
2530 */
2531MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2532                                MemTxAttrs attrs,
2533                                const void *buf, hwaddr len);
2534
2535/**
2536 * address_space_write_rom: write to address space, including ROM.
2537 *
2538 * This function writes to the specified address space, but will
2539 * write data to both ROM and RAM. This is used for non-guest
2540 * writes like writes from the gdb debug stub or initial loading
2541 * of ROM contents.
2542 *
2543 * Note that portions of the write which attempt to write data to
2544 * a device will be silently ignored -- only real RAM and ROM will
2545 * be written to.
2546 *
2547 * Return a MemTxResult indicating whether the operation succeeded
2548 * or failed (eg unassigned memory, device rejected the transaction,
2549 * IOMMU fault).
2550 *
2551 * @as: #AddressSpace to be accessed
2552 * @addr: address within that address space
2553 * @attrs: memory transaction attributes
2554 * @buf: buffer with the data transferred
2555 * @len: the number of bytes to write
2556 */
2557MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2558                                    MemTxAttrs attrs,
2559                                    const void *buf, hwaddr len);
2560
2561/* address_space_ld*: load from an address space
2562 * address_space_st*: store to an address space
2563 *
2564 * These functions perform a load or store of the byte, word,
2565 * longword or quad to the specified address within the AddressSpace.
2566 * The _le suffixed functions treat the data as little endian;
2567 * _be indicates big endian; no suffix indicates "same endianness
2568 * as guest CPU".
2569 *
2570 * The "guest CPU endianness" accessors are deprecated for use outside
2571 * target-* code; devices should be CPU-agnostic and use either the LE
2572 * or the BE accessors.
2573 *
2574 * @as #AddressSpace to be accessed
2575 * @addr: address within that address space
2576 * @val: data value, for stores
2577 * @attrs: memory transaction attributes
2578 * @result: location to write the success/failure of the transaction;
2579 *   if NULL, this information is discarded
2580 */
2581
2582#define SUFFIX
2583#define ARG1         as
2584#define ARG1_DECL    AddressSpace *as
2585#include "exec/memory_ldst.h.inc"
2586
2587#define SUFFIX
2588#define ARG1         as
2589#define ARG1_DECL    AddressSpace *as
2590#include "exec/memory_ldst_phys.h.inc"
2591
2592struct MemoryRegionCache {
2593    void *ptr;
2594    hwaddr xlat;
2595    hwaddr len;
2596    FlatView *fv;
2597    MemoryRegionSection mrs;
2598    bool is_write;
2599};
2600
2601#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2602
2603
2604/* address_space_ld*_cached: load from a cached #MemoryRegion
2605 * address_space_st*_cached: store into a cached #MemoryRegion
2606 *
2607 * These functions perform a load or store of the byte, word,
2608 * longword or quad to the specified address.  The address is
2609 * a physical address in the AddressSpace, but it must lie within
2610 * a #MemoryRegion that was mapped with address_space_cache_init.
2611 *
2612 * The _le suffixed functions treat the data as little endian;
2613 * _be indicates big endian; no suffix indicates "same endianness
2614 * as guest CPU".
2615 *
2616 * The "guest CPU endianness" accessors are deprecated for use outside
2617 * target-* code; devices should be CPU-agnostic and use either the LE
2618 * or the BE accessors.
2619 *
2620 * @cache: previously initialized #MemoryRegionCache to be accessed
2621 * @addr: address within the address space
2622 * @val: data value, for stores
2623 * @attrs: memory transaction attributes
2624 * @result: location to write the success/failure of the transaction;
2625 *   if NULL, this information is discarded
2626 */
2627
2628#define SUFFIX       _cached_slow
2629#define ARG1         cache
2630#define ARG1_DECL    MemoryRegionCache *cache
2631#include "exec/memory_ldst.h.inc"
2632
2633/* Inline fast path for direct RAM access.  */
2634static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2635    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2636{
2637    assert(addr < cache->len);
2638    if (likely(cache->ptr)) {
2639        return ldub_p(cache->ptr + addr);
2640    } else {
2641        return address_space_ldub_cached_slow(cache, addr, attrs, result);
2642    }
2643}
2644
2645static inline void address_space_stb_cached(MemoryRegionCache *cache,
2646    hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2647{
2648    assert(addr < cache->len);
2649    if (likely(cache->ptr)) {
2650        stb_p(cache->ptr + addr, val);
2651    } else {
2652        address_space_stb_cached_slow(cache, addr, val, attrs, result);
2653    }
2654}
2655
2656#define ENDIANNESS   _le
2657#include "exec/memory_ldst_cached.h.inc"
2658
2659#define ENDIANNESS   _be
2660#include "exec/memory_ldst_cached.h.inc"
2661
2662#define SUFFIX       _cached
2663#define ARG1         cache
2664#define ARG1_DECL    MemoryRegionCache *cache
2665#include "exec/memory_ldst_phys.h.inc"
2666
2667/* address_space_cache_init: prepare for repeated access to a physical
2668 * memory region
2669 *
2670 * @cache: #MemoryRegionCache to be filled
2671 * @as: #AddressSpace to be accessed
2672 * @addr: address within that address space
2673 * @len: length of buffer
2674 * @is_write: indicates the transfer direction
2675 *
2676 * Will only work with RAM, and may map a subset of the requested range by
2677 * returning a value that is less than @len.  On failure, return a negative
2678 * errno value.
2679 *
2680 * Because it only works with RAM, this function can be used for
2681 * read-modify-write operations.  In this case, is_write should be %true.
2682 *
2683 * Note that addresses passed to the address_space_*_cached functions
2684 * are relative to @addr.
2685 */
2686int64_t address_space_cache_init(MemoryRegionCache *cache,
2687                                 AddressSpace *as,
2688                                 hwaddr addr,
2689                                 hwaddr len,
2690                                 bool is_write);
2691
2692/**
2693 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2694 *
2695 * @cache: The #MemoryRegionCache to operate on.
2696 * @addr: The first physical address that was written, relative to the
2697 * address that was passed to @address_space_cache_init.
2698 * @access_len: The number of bytes that were written starting at @addr.
2699 */
2700void address_space_cache_invalidate(MemoryRegionCache *cache,
2701                                    hwaddr addr,
2702                                    hwaddr access_len);
2703
2704/**
2705 * address_space_cache_destroy: free a #MemoryRegionCache
2706 *
2707 * @cache: The #MemoryRegionCache whose memory should be released.
2708 */
2709void address_space_cache_destroy(MemoryRegionCache *cache);
2710
2711/* address_space_get_iotlb_entry: translate an address into an IOTLB
2712 * entry. Should be called from an RCU critical section.
2713 */
2714IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2715                                            bool is_write, MemTxAttrs attrs);
2716
2717/* address_space_translate: translate an address range into an address space
2718 * into a MemoryRegion and an address range into that section.  Should be
2719 * called from an RCU critical section, to avoid that the last reference
2720 * to the returned region disappears after address_space_translate returns.
2721 *
2722 * @fv: #FlatView to be accessed
2723 * @addr: address within that address space
2724 * @xlat: pointer to address within the returned memory region section's
2725 * #MemoryRegion.
2726 * @len: pointer to length
2727 * @is_write: indicates the transfer direction
2728 * @attrs: memory attributes
2729 */
2730MemoryRegion *flatview_translate(FlatView *fv,
2731                                 hwaddr addr, hwaddr *xlat,
2732                                 hwaddr *len, bool is_write,
2733                                 MemTxAttrs attrs);
2734
2735static inline MemoryRegion *address_space_translate(AddressSpace *as,
2736                                                    hwaddr addr, hwaddr *xlat,
2737                                                    hwaddr *len, bool is_write,
2738                                                    MemTxAttrs attrs)
2739{
2740    return flatview_translate(address_space_to_flatview(as),
2741                              addr, xlat, len, is_write, attrs);
2742}
2743
2744/* address_space_access_valid: check for validity of accessing an address
2745 * space range
2746 *
2747 * Check whether memory is assigned to the given address space range, and
2748 * access is permitted by any IOMMU regions that are active for the address
2749 * space.
2750 *
2751 * For now, addr and len should be aligned to a page size.  This limitation
2752 * will be lifted in the future.
2753 *
2754 * @as: #AddressSpace to be accessed
2755 * @addr: address within that address space
2756 * @len: length of the area to be checked
2757 * @is_write: indicates the transfer direction
2758 * @attrs: memory attributes
2759 */
2760bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2761                                bool is_write, MemTxAttrs attrs);
2762
2763/* address_space_map: map a physical memory region into a host virtual address
2764 *
2765 * May map a subset of the requested range, given by and returned in @plen.
2766 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2767 * the mapping are exhausted.
2768 * Use only for reads OR writes - not for read-modify-write operations.
2769 * Use cpu_register_map_client() to know when retrying the map operation is
2770 * likely to succeed.
2771 *
2772 * @as: #AddressSpace to be accessed
2773 * @addr: address within that address space
2774 * @plen: pointer to length of buffer; updated on return
2775 * @is_write: indicates the transfer direction
2776 * @attrs: memory attributes
2777 */
2778void *address_space_map(AddressSpace *as, hwaddr addr,
2779                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2780
2781/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2782 *
2783 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2784 * the amount of memory that was actually read or written by the caller.
2785 *
2786 * @as: #AddressSpace used
2787 * @buffer: host pointer as returned by address_space_map()
2788 * @len: buffer length as returned by address_space_map()
2789 * @access_len: amount of data actually transferred
2790 * @is_write: indicates the transfer direction
2791 */
2792void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2793                         bool is_write, hwaddr access_len);
2794
2795
2796/* Internal functions, part of the implementation of address_space_read.  */
2797MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2798                                    MemTxAttrs attrs, void *buf, hwaddr len);
2799MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2800                                   MemTxAttrs attrs, void *buf,
2801                                   hwaddr len, hwaddr addr1, hwaddr l,
2802                                   MemoryRegion *mr);
2803void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2804
2805/* Internal functions, part of the implementation of address_space_read_cached
2806 * and address_space_write_cached.  */
2807MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2808                                           hwaddr addr, void *buf, hwaddr len);
2809MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2810                                            hwaddr addr, const void *buf,
2811                                            hwaddr len);
2812
2813static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2814{
2815    if (is_write) {
2816        return memory_region_is_ram(mr) && !mr->readonly &&
2817               !mr->rom_device && !memory_region_is_ram_device(mr);
2818    } else {
2819        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2820               memory_region_is_romd(mr);
2821    }
2822}
2823
2824/**
2825 * address_space_read: read from an address space.
2826 *
2827 * Return a MemTxResult indicating whether the operation succeeded
2828 * or failed (eg unassigned memory, device rejected the transaction,
2829 * IOMMU fault).  Called within RCU critical section.
2830 *
2831 * @as: #AddressSpace to be accessed
2832 * @addr: address within that address space
2833 * @attrs: memory transaction attributes
2834 * @buf: buffer with the data transferred
2835 * @len: length of the data transferred
2836 */
2837static inline __attribute__((__always_inline__))
2838MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2839                               MemTxAttrs attrs, void *buf,
2840                               hwaddr len)
2841{
2842    MemTxResult result = MEMTX_OK;
2843    hwaddr l, addr1;
2844    void *ptr;
2845    MemoryRegion *mr;
2846    FlatView *fv;
2847
2848    if (__builtin_constant_p(len)) {
2849        if (len) {
2850            RCU_READ_LOCK_GUARD();
2851            fv = address_space_to_flatview(as);
2852            l = len;
2853            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2854            if (len == l && memory_access_is_direct(mr, false)) {
2855                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2856                memcpy(buf, ptr, len);
2857            } else {
2858                result = flatview_read_continue(fv, addr, attrs, buf, len,
2859                                                addr1, l, mr);
2860            }
2861        }
2862    } else {
2863        result = address_space_read_full(as, addr, attrs, buf, len);
2864    }
2865    return result;
2866}
2867
2868/**
2869 * address_space_read_cached: read from a cached RAM region
2870 *
2871 * @cache: Cached region to be addressed
2872 * @addr: address relative to the base of the RAM region
2873 * @buf: buffer with the data transferred
2874 * @len: length of the data transferred
2875 */
2876static inline MemTxResult
2877address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2878                          void *buf, hwaddr len)
2879{
2880    assert(addr < cache->len && len <= cache->len - addr);
2881    fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2882    if (likely(cache->ptr)) {
2883        memcpy(buf, cache->ptr + addr, len);
2884        return MEMTX_OK;
2885    } else {
2886        return address_space_read_cached_slow(cache, addr, buf, len);
2887    }
2888}
2889
2890/**
2891 * address_space_write_cached: write to a cached RAM region
2892 *
2893 * @cache: Cached region to be addressed
2894 * @addr: address relative to the base of the RAM region
2895 * @buf: buffer with the data transferred
2896 * @len: length of the data transferred
2897 */
2898static inline MemTxResult
2899address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2900                           const void *buf, hwaddr len)
2901{
2902    assert(addr < cache->len && len <= cache->len - addr);
2903    if (likely(cache->ptr)) {
2904        memcpy(cache->ptr + addr, buf, len);
2905        return MEMTX_OK;
2906    } else {
2907        return address_space_write_cached_slow(cache, addr, buf, len);
2908    }
2909}
2910
2911/**
2912 * address_space_set: Fill address space with a constant byte.
2913 *
2914 * Return a MemTxResult indicating whether the operation succeeded
2915 * or failed (eg unassigned memory, device rejected the transaction,
2916 * IOMMU fault).
2917 *
2918 * @as: #AddressSpace to be accessed
2919 * @addr: address within that address space
2920 * @c: constant byte to fill the memory
2921 * @len: the number of bytes to fill with the constant byte
2922 * @attrs: memory transaction attributes
2923 */
2924MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2925                              uint8_t c, hwaddr len, MemTxAttrs attrs);
2926
2927#ifdef NEED_CPU_H
2928/* enum device_endian to MemOp.  */
2929static inline MemOp devend_memop(enum device_endian end)
2930{
2931    QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2932                      DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2933
2934#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2935    /* Swap if non-host endianness or native (target) endianness */
2936    return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2937#else
2938    const int non_host_endianness =
2939        DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2940
2941    /* In this case, native (target) endianness needs no swap.  */
2942    return (end == non_host_endianness) ? MO_BSWAP : 0;
2943#endif
2944}
2945#endif
2946
2947/*
2948 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2949 * to manage the actual amount of memory consumed by the VM (then, the memory
2950 * provided by RAM blocks might be bigger than the desired memory consumption).
2951 * This *must* be set if:
2952 * - Discarding parts of a RAM blocks does not result in the change being
2953 *   reflected in the VM and the pages getting freed.
2954 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2955 *   discards blindly.
2956 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2957 *   encrypted VMs).
2958 * Technologies that only temporarily pin the current working set of a
2959 * driver are fine, because we don't expect such pages to be discarded
2960 * (esp. based on guest action like balloon inflation).
2961 *
2962 * This is *not* to be used to protect from concurrent discards (esp.,
2963 * postcopy).
2964 *
2965 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2966 * discards to work reliably is active.
2967 */
2968int ram_block_discard_disable(bool state);
2969
2970/*
2971 * See ram_block_discard_disable(): only disable uncoordinated discards,
2972 * keeping coordinated discards (via the RamDiscardManager) enabled.
2973 */
2974int ram_block_uncoordinated_discard_disable(bool state);
2975
2976/*
2977 * Inhibit technologies that disable discarding of pages in RAM blocks.
2978 *
2979 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2980 * broken.
2981 */
2982int ram_block_discard_require(bool state);
2983
2984/*
2985 * See ram_block_discard_require(): only inhibit technologies that disable
2986 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
2987 * technologies that only inhibit uncoordinated discards (via the
2988 * RamDiscardManager).
2989 */
2990int ram_block_coordinated_discard_require(bool state);
2991
2992/*
2993 * Test if any discarding of memory in ram blocks is disabled.
2994 */
2995bool ram_block_discard_is_disabled(void);
2996
2997/*
2998 * Test if any discarding of memory in ram blocks is required to work reliably.
2999 */
3000bool ram_block_discard_is_required(void);
3001
3002#endif
3003
3004#endif
3005