qemu/include/fpu/softfloat.h
<<
>>
Prefs
   1/*
   2 * QEMU float support
   3 *
   4 * The code in this source file is derived from release 2a of the SoftFloat
   5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
   6 * some later contributions) are provided under that license, as detailed below.
   7 * It has subsequently been modified by contributors to the QEMU Project,
   8 * so some portions are provided under:
   9 *  the SoftFloat-2a license
  10 *  the BSD license
  11 *  GPL-v2-or-later
  12 *
  13 * Any future contributions to this file after December 1st 2014 will be
  14 * taken to be licensed under the Softfloat-2a license unless specifically
  15 * indicated otherwise.
  16 */
  17
  18/*
  19===============================================================================
  20This C header file is part of the SoftFloat IEC/IEEE Floating-point
  21Arithmetic Package, Release 2a.
  22
  23Written by John R. Hauser.  This work was made possible in part by the
  24International Computer Science Institute, located at Suite 600, 1947 Center
  25Street, Berkeley, California 94704.  Funding was partially provided by the
  26National Science Foundation under grant MIP-9311980.  The original version
  27of this code was written as part of a project to build a fixed-point vector
  28processor in collaboration with the University of California at Berkeley,
  29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  31arithmetic/SoftFloat.html'.
  32
  33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  38
  39Derivative works are acceptable, even for commercial purposes, so long as
  40(1) they include prominent notice that the work is derivative, and (2) they
  41include prominent notice akin to these four paragraphs for those parts of
  42this code that are retained.
  43
  44===============================================================================
  45*/
  46
  47/* BSD licensing:
  48 * Copyright (c) 2006, Fabrice Bellard
  49 * All rights reserved.
  50 *
  51 * Redistribution and use in source and binary forms, with or without
  52 * modification, are permitted provided that the following conditions are met:
  53 *
  54 * 1. Redistributions of source code must retain the above copyright notice,
  55 * this list of conditions and the following disclaimer.
  56 *
  57 * 2. Redistributions in binary form must reproduce the above copyright notice,
  58 * this list of conditions and the following disclaimer in the documentation
  59 * and/or other materials provided with the distribution.
  60 *
  61 * 3. Neither the name of the copyright holder nor the names of its contributors
  62 * may be used to endorse or promote products derived from this software without
  63 * specific prior written permission.
  64 *
  65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
  69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  75 * THE POSSIBILITY OF SUCH DAMAGE.
  76 */
  77
  78/* Portions of this work are licensed under the terms of the GNU GPL,
  79 * version 2 or later. See the COPYING file in the top-level directory.
  80 */
  81
  82#ifndef SOFTFLOAT_H
  83#define SOFTFLOAT_H
  84
  85/*----------------------------------------------------------------------------
  86| Software IEC/IEEE floating-point ordering relations
  87*----------------------------------------------------------------------------*/
  88
  89typedef enum {
  90    float_relation_less      = -1,
  91    float_relation_equal     =  0,
  92    float_relation_greater   =  1,
  93    float_relation_unordered =  2
  94} FloatRelation;
  95
  96#include "fpu/softfloat-types.h"
  97#include "fpu/softfloat-helpers.h"
  98
  99/*----------------------------------------------------------------------------
 100| Routine to raise any or all of the software IEC/IEEE floating-point
 101| exception flags.
 102*----------------------------------------------------------------------------*/
 103static inline void float_raise(uint16_t flags, float_status *status)
 104{
 105    status->float_exception_flags |= flags;
 106}
 107
 108/*----------------------------------------------------------------------------
 109| If `a' is denormal and we are in flush-to-zero mode then set the
 110| input-denormal exception and return zero. Otherwise just return the value.
 111*----------------------------------------------------------------------------*/
 112float16 float16_squash_input_denormal(float16 a, float_status *status);
 113float32 float32_squash_input_denormal(float32 a, float_status *status);
 114float64 float64_squash_input_denormal(float64 a, float_status *status);
 115bfloat16 bfloat16_squash_input_denormal(bfloat16 a, float_status *status);
 116
 117/*----------------------------------------------------------------------------
 118| Options to indicate which negations to perform in float*_muladd()
 119| Using these differs from negating an input or output before calling
 120| the muladd function in that this means that a NaN doesn't have its
 121| sign bit inverted before it is propagated.
 122| We also support halving the result before rounding, as a special
 123| case to support the ARM fused-sqrt-step instruction FRSQRTS.
 124*----------------------------------------------------------------------------*/
 125enum {
 126    float_muladd_negate_c = 1,
 127    float_muladd_negate_product = 2,
 128    float_muladd_negate_result = 4,
 129    float_muladd_halve_result = 8,
 130};
 131
 132/*----------------------------------------------------------------------------
 133| Software IEC/IEEE integer-to-floating-point conversion routines.
 134*----------------------------------------------------------------------------*/
 135
 136float16 int16_to_float16_scalbn(int16_t a, int, float_status *status);
 137float16 int32_to_float16_scalbn(int32_t a, int, float_status *status);
 138float16 int64_to_float16_scalbn(int64_t a, int, float_status *status);
 139float16 uint16_to_float16_scalbn(uint16_t a, int, float_status *status);
 140float16 uint32_to_float16_scalbn(uint32_t a, int, float_status *status);
 141float16 uint64_to_float16_scalbn(uint64_t a, int, float_status *status);
 142
 143float16 int8_to_float16(int8_t a, float_status *status);
 144float16 int16_to_float16(int16_t a, float_status *status);
 145float16 int32_to_float16(int32_t a, float_status *status);
 146float16 int64_to_float16(int64_t a, float_status *status);
 147float16 uint8_to_float16(uint8_t a, float_status *status);
 148float16 uint16_to_float16(uint16_t a, float_status *status);
 149float16 uint32_to_float16(uint32_t a, float_status *status);
 150float16 uint64_to_float16(uint64_t a, float_status *status);
 151
 152float32 int16_to_float32_scalbn(int16_t, int, float_status *status);
 153float32 int32_to_float32_scalbn(int32_t, int, float_status *status);
 154float32 int64_to_float32_scalbn(int64_t, int, float_status *status);
 155float32 uint16_to_float32_scalbn(uint16_t, int, float_status *status);
 156float32 uint32_to_float32_scalbn(uint32_t, int, float_status *status);
 157float32 uint64_to_float32_scalbn(uint64_t, int, float_status *status);
 158
 159float32 int16_to_float32(int16_t, float_status *status);
 160float32 int32_to_float32(int32_t, float_status *status);
 161float32 int64_to_float32(int64_t, float_status *status);
 162float32 uint16_to_float32(uint16_t, float_status *status);
 163float32 uint32_to_float32(uint32_t, float_status *status);
 164float32 uint64_to_float32(uint64_t, float_status *status);
 165
 166float64 int16_to_float64_scalbn(int16_t, int, float_status *status);
 167float64 int32_to_float64_scalbn(int32_t, int, float_status *status);
 168float64 int64_to_float64_scalbn(int64_t, int, float_status *status);
 169float64 uint16_to_float64_scalbn(uint16_t, int, float_status *status);
 170float64 uint32_to_float64_scalbn(uint32_t, int, float_status *status);
 171float64 uint64_to_float64_scalbn(uint64_t, int, float_status *status);
 172
 173float64 int16_to_float64(int16_t, float_status *status);
 174float64 int32_to_float64(int32_t, float_status *status);
 175float64 int64_to_float64(int64_t, float_status *status);
 176float64 uint16_to_float64(uint16_t, float_status *status);
 177float64 uint32_to_float64(uint32_t, float_status *status);
 178float64 uint64_to_float64(uint64_t, float_status *status);
 179
 180floatx80 int32_to_floatx80(int32_t, float_status *status);
 181floatx80 int64_to_floatx80(int64_t, float_status *status);
 182
 183float128 int32_to_float128(int32_t, float_status *status);
 184float128 int64_to_float128(int64_t, float_status *status);
 185float128 uint64_to_float128(uint64_t, float_status *status);
 186
 187/*----------------------------------------------------------------------------
 188| Software half-precision conversion routines.
 189*----------------------------------------------------------------------------*/
 190
 191float16 float32_to_float16(float32, bool ieee, float_status *status);
 192float32 float16_to_float32(float16, bool ieee, float_status *status);
 193float16 float64_to_float16(float64 a, bool ieee, float_status *status);
 194float64 float16_to_float64(float16 a, bool ieee, float_status *status);
 195
 196int8_t  float16_to_int8_scalbn(float16, FloatRoundMode, int,
 197                               float_status *status);
 198int16_t float16_to_int16_scalbn(float16, FloatRoundMode, int, float_status *);
 199int32_t float16_to_int32_scalbn(float16, FloatRoundMode, int, float_status *);
 200int64_t float16_to_int64_scalbn(float16, FloatRoundMode, int, float_status *);
 201
 202int8_t  float16_to_int8(float16, float_status *status);
 203int16_t float16_to_int16(float16, float_status *status);
 204int32_t float16_to_int32(float16, float_status *status);
 205int64_t float16_to_int64(float16, float_status *status);
 206
 207int16_t float16_to_int16_round_to_zero(float16, float_status *status);
 208int32_t float16_to_int32_round_to_zero(float16, float_status *status);
 209int64_t float16_to_int64_round_to_zero(float16, float_status *status);
 210
 211uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode,
 212                                int, float_status *status);
 213uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode,
 214                                  int, float_status *status);
 215uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode,
 216                                  int, float_status *status);
 217uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode,
 218                                  int, float_status *status);
 219
 220uint8_t  float16_to_uint8(float16 a, float_status *status);
 221uint16_t float16_to_uint16(float16 a, float_status *status);
 222uint32_t float16_to_uint32(float16 a, float_status *status);
 223uint64_t float16_to_uint64(float16 a, float_status *status);
 224
 225uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status);
 226uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status);
 227uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status);
 228
 229/*----------------------------------------------------------------------------
 230| Software half-precision operations.
 231*----------------------------------------------------------------------------*/
 232
 233float16 float16_round_to_int(float16, float_status *status);
 234float16 float16_add(float16, float16, float_status *status);
 235float16 float16_sub(float16, float16, float_status *status);
 236float16 float16_mul(float16, float16, float_status *status);
 237float16 float16_muladd(float16, float16, float16, int, float_status *status);
 238float16 float16_div(float16, float16, float_status *status);
 239float16 float16_scalbn(float16, int, float_status *status);
 240float16 float16_min(float16, float16, float_status *status);
 241float16 float16_max(float16, float16, float_status *status);
 242float16 float16_minnum(float16, float16, float_status *status);
 243float16 float16_maxnum(float16, float16, float_status *status);
 244float16 float16_minnummag(float16, float16, float_status *status);
 245float16 float16_maxnummag(float16, float16, float_status *status);
 246float16 float16_minimum_number(float16, float16, float_status *status);
 247float16 float16_maximum_number(float16, float16, float_status *status);
 248float16 float16_sqrt(float16, float_status *status);
 249FloatRelation float16_compare(float16, float16, float_status *status);
 250FloatRelation float16_compare_quiet(float16, float16, float_status *status);
 251
 252bool float16_is_quiet_nan(float16, float_status *status);
 253bool float16_is_signaling_nan(float16, float_status *status);
 254float16 float16_silence_nan(float16, float_status *status);
 255
 256static inline bool float16_is_any_nan(float16 a)
 257{
 258    return ((float16_val(a) & ~0x8000) > 0x7c00);
 259}
 260
 261static inline bool float16_is_neg(float16 a)
 262{
 263    return float16_val(a) >> 15;
 264}
 265
 266static inline bool float16_is_infinity(float16 a)
 267{
 268    return (float16_val(a) & 0x7fff) == 0x7c00;
 269}
 270
 271static inline bool float16_is_zero(float16 a)
 272{
 273    return (float16_val(a) & 0x7fff) == 0;
 274}
 275
 276static inline bool float16_is_zero_or_denormal(float16 a)
 277{
 278    return (float16_val(a) & 0x7c00) == 0;
 279}
 280
 281static inline bool float16_is_normal(float16 a)
 282{
 283    return (((float16_val(a) >> 10) + 1) & 0x1f) >= 2;
 284}
 285
 286static inline float16 float16_abs(float16 a)
 287{
 288    /* Note that abs does *not* handle NaN specially, nor does
 289     * it flush denormal inputs to zero.
 290     */
 291    return make_float16(float16_val(a) & 0x7fff);
 292}
 293
 294static inline float16 float16_chs(float16 a)
 295{
 296    /* Note that chs does *not* handle NaN specially, nor does
 297     * it flush denormal inputs to zero.
 298     */
 299    return make_float16(float16_val(a) ^ 0x8000);
 300}
 301
 302static inline float16 float16_set_sign(float16 a, int sign)
 303{
 304    return make_float16((float16_val(a) & 0x7fff) | (sign << 15));
 305}
 306
 307static inline bool float16_eq(float16 a, float16 b, float_status *s)
 308{
 309    return float16_compare(a, b, s) == float_relation_equal;
 310}
 311
 312static inline bool float16_le(float16 a, float16 b, float_status *s)
 313{
 314    return float16_compare(a, b, s) <= float_relation_equal;
 315}
 316
 317static inline bool float16_lt(float16 a, float16 b, float_status *s)
 318{
 319    return float16_compare(a, b, s) < float_relation_equal;
 320}
 321
 322static inline bool float16_unordered(float16 a, float16 b, float_status *s)
 323{
 324    return float16_compare(a, b, s) == float_relation_unordered;
 325}
 326
 327static inline bool float16_eq_quiet(float16 a, float16 b, float_status *s)
 328{
 329    return float16_compare_quiet(a, b, s) == float_relation_equal;
 330}
 331
 332static inline bool float16_le_quiet(float16 a, float16 b, float_status *s)
 333{
 334    return float16_compare_quiet(a, b, s) <= float_relation_equal;
 335}
 336
 337static inline bool float16_lt_quiet(float16 a, float16 b, float_status *s)
 338{
 339    return float16_compare_quiet(a, b, s) < float_relation_equal;
 340}
 341
 342static inline bool float16_unordered_quiet(float16 a, float16 b,
 343                                           float_status *s)
 344{
 345    return float16_compare_quiet(a, b, s) == float_relation_unordered;
 346}
 347
 348#define float16_zero make_float16(0)
 349#define float16_half make_float16(0x3800)
 350#define float16_one make_float16(0x3c00)
 351#define float16_one_point_five make_float16(0x3e00)
 352#define float16_two make_float16(0x4000)
 353#define float16_three make_float16(0x4200)
 354#define float16_infinity make_float16(0x7c00)
 355
 356/*----------------------------------------------------------------------------
 357| Software bfloat16 conversion routines.
 358*----------------------------------------------------------------------------*/
 359
 360bfloat16 bfloat16_round_to_int(bfloat16, float_status *status);
 361bfloat16 float32_to_bfloat16(float32, float_status *status);
 362float32 bfloat16_to_float32(bfloat16, float_status *status);
 363bfloat16 float64_to_bfloat16(float64 a, float_status *status);
 364float64 bfloat16_to_float64(bfloat16 a, float_status *status);
 365
 366int16_t bfloat16_to_int16_scalbn(bfloat16, FloatRoundMode,
 367                                 int, float_status *status);
 368int32_t bfloat16_to_int32_scalbn(bfloat16, FloatRoundMode,
 369                                 int, float_status *status);
 370int64_t bfloat16_to_int64_scalbn(bfloat16, FloatRoundMode,
 371                                 int, float_status *status);
 372
 373int16_t bfloat16_to_int16(bfloat16, float_status *status);
 374int32_t bfloat16_to_int32(bfloat16, float_status *status);
 375int64_t bfloat16_to_int64(bfloat16, float_status *status);
 376
 377int16_t bfloat16_to_int16_round_to_zero(bfloat16, float_status *status);
 378int32_t bfloat16_to_int32_round_to_zero(bfloat16, float_status *status);
 379int64_t bfloat16_to_int64_round_to_zero(bfloat16, float_status *status);
 380
 381uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode,
 382                                   int, float_status *status);
 383uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode,
 384                                   int, float_status *status);
 385uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode,
 386                                   int, float_status *status);
 387
 388uint16_t bfloat16_to_uint16(bfloat16 a, float_status *status);
 389uint32_t bfloat16_to_uint32(bfloat16 a, float_status *status);
 390uint64_t bfloat16_to_uint64(bfloat16 a, float_status *status);
 391
 392uint16_t bfloat16_to_uint16_round_to_zero(bfloat16 a, float_status *status);
 393uint32_t bfloat16_to_uint32_round_to_zero(bfloat16 a, float_status *status);
 394uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *status);
 395
 396bfloat16 int16_to_bfloat16_scalbn(int16_t a, int, float_status *status);
 397bfloat16 int32_to_bfloat16_scalbn(int32_t a, int, float_status *status);
 398bfloat16 int64_to_bfloat16_scalbn(int64_t a, int, float_status *status);
 399bfloat16 uint16_to_bfloat16_scalbn(uint16_t a, int, float_status *status);
 400bfloat16 uint32_to_bfloat16_scalbn(uint32_t a, int, float_status *status);
 401bfloat16 uint64_to_bfloat16_scalbn(uint64_t a, int, float_status *status);
 402
 403bfloat16 int16_to_bfloat16(int16_t a, float_status *status);
 404bfloat16 int32_to_bfloat16(int32_t a, float_status *status);
 405bfloat16 int64_to_bfloat16(int64_t a, float_status *status);
 406bfloat16 uint16_to_bfloat16(uint16_t a, float_status *status);
 407bfloat16 uint32_to_bfloat16(uint32_t a, float_status *status);
 408bfloat16 uint64_to_bfloat16(uint64_t a, float_status *status);
 409
 410/*----------------------------------------------------------------------------
 411| Software bfloat16 operations.
 412*----------------------------------------------------------------------------*/
 413
 414bfloat16 bfloat16_add(bfloat16, bfloat16, float_status *status);
 415bfloat16 bfloat16_sub(bfloat16, bfloat16, float_status *status);
 416bfloat16 bfloat16_mul(bfloat16, bfloat16, float_status *status);
 417bfloat16 bfloat16_div(bfloat16, bfloat16, float_status *status);
 418bfloat16 bfloat16_muladd(bfloat16, bfloat16, bfloat16, int,
 419                         float_status *status);
 420float16 bfloat16_scalbn(bfloat16, int, float_status *status);
 421bfloat16 bfloat16_min(bfloat16, bfloat16, float_status *status);
 422bfloat16 bfloat16_max(bfloat16, bfloat16, float_status *status);
 423bfloat16 bfloat16_minnum(bfloat16, bfloat16, float_status *status);
 424bfloat16 bfloat16_maxnum(bfloat16, bfloat16, float_status *status);
 425bfloat16 bfloat16_minnummag(bfloat16, bfloat16, float_status *status);
 426bfloat16 bfloat16_maxnummag(bfloat16, bfloat16, float_status *status);
 427bfloat16 bfloat16_minimum_number(bfloat16, bfloat16, float_status *status);
 428bfloat16 bfloat16_maximum_number(bfloat16, bfloat16, float_status *status);
 429bfloat16 bfloat16_sqrt(bfloat16, float_status *status);
 430FloatRelation bfloat16_compare(bfloat16, bfloat16, float_status *status);
 431FloatRelation bfloat16_compare_quiet(bfloat16, bfloat16, float_status *status);
 432
 433bool bfloat16_is_quiet_nan(bfloat16, float_status *status);
 434bool bfloat16_is_signaling_nan(bfloat16, float_status *status);
 435bfloat16 bfloat16_silence_nan(bfloat16, float_status *status);
 436bfloat16 bfloat16_default_nan(float_status *status);
 437
 438static inline bool bfloat16_is_any_nan(bfloat16 a)
 439{
 440    return ((a & ~0x8000) > 0x7F80);
 441}
 442
 443static inline bool bfloat16_is_neg(bfloat16 a)
 444{
 445    return a >> 15;
 446}
 447
 448static inline bool bfloat16_is_infinity(bfloat16 a)
 449{
 450    return (a & 0x7fff) == 0x7F80;
 451}
 452
 453static inline bool bfloat16_is_zero(bfloat16 a)
 454{
 455    return (a & 0x7fff) == 0;
 456}
 457
 458static inline bool bfloat16_is_zero_or_denormal(bfloat16 a)
 459{
 460    return (a & 0x7F80) == 0;
 461}
 462
 463static inline bool bfloat16_is_normal(bfloat16 a)
 464{
 465    return (((a >> 7) + 1) & 0xff) >= 2;
 466}
 467
 468static inline bfloat16 bfloat16_abs(bfloat16 a)
 469{
 470    /* Note that abs does *not* handle NaN specially, nor does
 471     * it flush denormal inputs to zero.
 472     */
 473    return a & 0x7fff;
 474}
 475
 476static inline bfloat16 bfloat16_chs(bfloat16 a)
 477{
 478    /* Note that chs does *not* handle NaN specially, nor does
 479     * it flush denormal inputs to zero.
 480     */
 481    return a ^ 0x8000;
 482}
 483
 484static inline bfloat16 bfloat16_set_sign(bfloat16 a, int sign)
 485{
 486    return (a & 0x7fff) | (sign << 15);
 487}
 488
 489static inline bool bfloat16_eq(bfloat16 a, bfloat16 b, float_status *s)
 490{
 491    return bfloat16_compare(a, b, s) == float_relation_equal;
 492}
 493
 494static inline bool bfloat16_le(bfloat16 a, bfloat16 b, float_status *s)
 495{
 496    return bfloat16_compare(a, b, s) <= float_relation_equal;
 497}
 498
 499static inline bool bfloat16_lt(bfloat16 a, bfloat16 b, float_status *s)
 500{
 501    return bfloat16_compare(a, b, s) < float_relation_equal;
 502}
 503
 504static inline bool bfloat16_unordered(bfloat16 a, bfloat16 b, float_status *s)
 505{
 506    return bfloat16_compare(a, b, s) == float_relation_unordered;
 507}
 508
 509static inline bool bfloat16_eq_quiet(bfloat16 a, bfloat16 b, float_status *s)
 510{
 511    return bfloat16_compare_quiet(a, b, s) == float_relation_equal;
 512}
 513
 514static inline bool bfloat16_le_quiet(bfloat16 a, bfloat16 b, float_status *s)
 515{
 516    return bfloat16_compare_quiet(a, b, s) <= float_relation_equal;
 517}
 518
 519static inline bool bfloat16_lt_quiet(bfloat16 a, bfloat16 b, float_status *s)
 520{
 521    return bfloat16_compare_quiet(a, b, s) < float_relation_equal;
 522}
 523
 524static inline bool bfloat16_unordered_quiet(bfloat16 a, bfloat16 b,
 525                                           float_status *s)
 526{
 527    return bfloat16_compare_quiet(a, b, s) == float_relation_unordered;
 528}
 529
 530#define bfloat16_zero 0
 531#define bfloat16_half 0x3f00
 532#define bfloat16_one 0x3f80
 533#define bfloat16_one_point_five 0x3fc0
 534#define bfloat16_two 0x4000
 535#define bfloat16_three 0x4040
 536#define bfloat16_infinity 0x7f80
 537
 538/*----------------------------------------------------------------------------
 539| The pattern for a default generated half-precision NaN.
 540*----------------------------------------------------------------------------*/
 541float16 float16_default_nan(float_status *status);
 542
 543/*----------------------------------------------------------------------------
 544| Software IEC/IEEE single-precision conversion routines.
 545*----------------------------------------------------------------------------*/
 546
 547int16_t float32_to_int16_scalbn(float32, FloatRoundMode, int, float_status *);
 548int32_t float32_to_int32_scalbn(float32, FloatRoundMode, int, float_status *);
 549int64_t float32_to_int64_scalbn(float32, FloatRoundMode, int, float_status *);
 550
 551int16_t float32_to_int16(float32, float_status *status);
 552int32_t float32_to_int32(float32, float_status *status);
 553int64_t float32_to_int64(float32, float_status *status);
 554
 555int16_t float32_to_int16_round_to_zero(float32, float_status *status);
 556int32_t float32_to_int32_round_to_zero(float32, float_status *status);
 557int64_t float32_to_int64_round_to_zero(float32, float_status *status);
 558
 559uint16_t float32_to_uint16_scalbn(float32, FloatRoundMode, int, float_status *);
 560uint32_t float32_to_uint32_scalbn(float32, FloatRoundMode, int, float_status *);
 561uint64_t float32_to_uint64_scalbn(float32, FloatRoundMode, int, float_status *);
 562
 563uint16_t float32_to_uint16(float32, float_status *status);
 564uint32_t float32_to_uint32(float32, float_status *status);
 565uint64_t float32_to_uint64(float32, float_status *status);
 566
 567uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
 568uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
 569uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
 570
 571float64 float32_to_float64(float32, float_status *status);
 572floatx80 float32_to_floatx80(float32, float_status *status);
 573float128 float32_to_float128(float32, float_status *status);
 574
 575/*----------------------------------------------------------------------------
 576| Software IEC/IEEE single-precision operations.
 577*----------------------------------------------------------------------------*/
 578float32 float32_round_to_int(float32, float_status *status);
 579float32 float32_add(float32, float32, float_status *status);
 580float32 float32_sub(float32, float32, float_status *status);
 581float32 float32_mul(float32, float32, float_status *status);
 582float32 float32_div(float32, float32, float_status *status);
 583float32 float32_rem(float32, float32, float_status *status);
 584float32 float32_muladd(float32, float32, float32, int, float_status *status);
 585float32 float32_sqrt(float32, float_status *status);
 586float32 float32_exp2(float32, float_status *status);
 587float32 float32_log2(float32, float_status *status);
 588FloatRelation float32_compare(float32, float32, float_status *status);
 589FloatRelation float32_compare_quiet(float32, float32, float_status *status);
 590float32 float32_min(float32, float32, float_status *status);
 591float32 float32_max(float32, float32, float_status *status);
 592float32 float32_minnum(float32, float32, float_status *status);
 593float32 float32_maxnum(float32, float32, float_status *status);
 594float32 float32_minnummag(float32, float32, float_status *status);
 595float32 float32_maxnummag(float32, float32, float_status *status);
 596float32 float32_minimum_number(float32, float32, float_status *status);
 597float32 float32_maximum_number(float32, float32, float_status *status);
 598bool float32_is_quiet_nan(float32, float_status *status);
 599bool float32_is_signaling_nan(float32, float_status *status);
 600float32 float32_silence_nan(float32, float_status *status);
 601float32 float32_scalbn(float32, int, float_status *status);
 602
 603static inline float32 float32_abs(float32 a)
 604{
 605    /* Note that abs does *not* handle NaN specially, nor does
 606     * it flush denormal inputs to zero.
 607     */
 608    return make_float32(float32_val(a) & 0x7fffffff);
 609}
 610
 611static inline float32 float32_chs(float32 a)
 612{
 613    /* Note that chs does *not* handle NaN specially, nor does
 614     * it flush denormal inputs to zero.
 615     */
 616    return make_float32(float32_val(a) ^ 0x80000000);
 617}
 618
 619static inline bool float32_is_infinity(float32 a)
 620{
 621    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
 622}
 623
 624static inline bool float32_is_neg(float32 a)
 625{
 626    return float32_val(a) >> 31;
 627}
 628
 629static inline bool float32_is_zero(float32 a)
 630{
 631    return (float32_val(a) & 0x7fffffff) == 0;
 632}
 633
 634static inline bool float32_is_any_nan(float32 a)
 635{
 636    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
 637}
 638
 639static inline bool float32_is_zero_or_denormal(float32 a)
 640{
 641    return (float32_val(a) & 0x7f800000) == 0;
 642}
 643
 644static inline bool float32_is_normal(float32 a)
 645{
 646    return (((float32_val(a) >> 23) + 1) & 0xff) >= 2;
 647}
 648
 649static inline bool float32_is_denormal(float32 a)
 650{
 651    return float32_is_zero_or_denormal(a) && !float32_is_zero(a);
 652}
 653
 654static inline bool float32_is_zero_or_normal(float32 a)
 655{
 656    return float32_is_normal(a) || float32_is_zero(a);
 657}
 658
 659static inline float32 float32_set_sign(float32 a, int sign)
 660{
 661    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
 662}
 663
 664static inline bool float32_eq(float32 a, float32 b, float_status *s)
 665{
 666    return float32_compare(a, b, s) == float_relation_equal;
 667}
 668
 669static inline bool float32_le(float32 a, float32 b, float_status *s)
 670{
 671    return float32_compare(a, b, s) <= float_relation_equal;
 672}
 673
 674static inline bool float32_lt(float32 a, float32 b, float_status *s)
 675{
 676    return float32_compare(a, b, s) < float_relation_equal;
 677}
 678
 679static inline bool float32_unordered(float32 a, float32 b, float_status *s)
 680{
 681    return float32_compare(a, b, s) == float_relation_unordered;
 682}
 683
 684static inline bool float32_eq_quiet(float32 a, float32 b, float_status *s)
 685{
 686    return float32_compare_quiet(a, b, s) == float_relation_equal;
 687}
 688
 689static inline bool float32_le_quiet(float32 a, float32 b, float_status *s)
 690{
 691    return float32_compare_quiet(a, b, s) <= float_relation_equal;
 692}
 693
 694static inline bool float32_lt_quiet(float32 a, float32 b, float_status *s)
 695{
 696    return float32_compare_quiet(a, b, s) < float_relation_equal;
 697}
 698
 699static inline bool float32_unordered_quiet(float32 a, float32 b,
 700                                           float_status *s)
 701{
 702    return float32_compare_quiet(a, b, s) == float_relation_unordered;
 703}
 704
 705#define float32_zero make_float32(0)
 706#define float32_half make_float32(0x3f000000)
 707#define float32_one make_float32(0x3f800000)
 708#define float32_one_point_five make_float32(0x3fc00000)
 709#define float32_two make_float32(0x40000000)
 710#define float32_three make_float32(0x40400000)
 711#define float32_infinity make_float32(0x7f800000)
 712
 713/*----------------------------------------------------------------------------
 714| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 715| single-precision floating-point value, returning the result.  After being
 716| shifted into the proper positions, the three fields are simply added
 717| together to form the result.  This means that any integer portion of `zSig'
 718| will be added into the exponent.  Since a properly normalized significand
 719| will have an integer portion equal to 1, the `zExp' input should be 1 less
 720| than the desired result exponent whenever `zSig' is a complete, normalized
 721| significand.
 722*----------------------------------------------------------------------------*/
 723
 724static inline float32 packFloat32(bool zSign, int zExp, uint32_t zSig)
 725{
 726    return make_float32(
 727          (((uint32_t)zSign) << 31) + (((uint32_t)zExp) << 23) + zSig);
 728}
 729
 730/*----------------------------------------------------------------------------
 731| The pattern for a default generated single-precision NaN.
 732*----------------------------------------------------------------------------*/
 733float32 float32_default_nan(float_status *status);
 734
 735/*----------------------------------------------------------------------------
 736| Software IEC/IEEE double-precision conversion routines.
 737*----------------------------------------------------------------------------*/
 738
 739int16_t float64_to_int16_scalbn(float64, FloatRoundMode, int, float_status *);
 740int32_t float64_to_int32_scalbn(float64, FloatRoundMode, int, float_status *);
 741int64_t float64_to_int64_scalbn(float64, FloatRoundMode, int, float_status *);
 742
 743int16_t float64_to_int16(float64, float_status *status);
 744int32_t float64_to_int32(float64, float_status *status);
 745int64_t float64_to_int64(float64, float_status *status);
 746
 747int16_t float64_to_int16_round_to_zero(float64, float_status *status);
 748int32_t float64_to_int32_round_to_zero(float64, float_status *status);
 749int64_t float64_to_int64_round_to_zero(float64, float_status *status);
 750
 751uint16_t float64_to_uint16_scalbn(float64, FloatRoundMode, int, float_status *);
 752uint32_t float64_to_uint32_scalbn(float64, FloatRoundMode, int, float_status *);
 753uint64_t float64_to_uint64_scalbn(float64, FloatRoundMode, int, float_status *);
 754
 755uint16_t float64_to_uint16(float64, float_status *status);
 756uint32_t float64_to_uint32(float64, float_status *status);
 757uint64_t float64_to_uint64(float64, float_status *status);
 758
 759uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
 760uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
 761uint64_t float64_to_uint64_round_to_zero(float64, float_status *status);
 762
 763float32 float64_to_float32(float64, float_status *status);
 764floatx80 float64_to_floatx80(float64, float_status *status);
 765float128 float64_to_float128(float64, float_status *status);
 766
 767/*----------------------------------------------------------------------------
 768| Software IEC/IEEE double-precision operations.
 769*----------------------------------------------------------------------------*/
 770float64 float64_round_to_int(float64, float_status *status);
 771float64 float64_add(float64, float64, float_status *status);
 772float64 float64_sub(float64, float64, float_status *status);
 773float64 float64_mul(float64, float64, float_status *status);
 774float64 float64_div(float64, float64, float_status *status);
 775float64 float64_rem(float64, float64, float_status *status);
 776float64 float64_muladd(float64, float64, float64, int, float_status *status);
 777float64 float64_sqrt(float64, float_status *status);
 778float64 float64_log2(float64, float_status *status);
 779FloatRelation float64_compare(float64, float64, float_status *status);
 780FloatRelation float64_compare_quiet(float64, float64, float_status *status);
 781float64 float64_min(float64, float64, float_status *status);
 782float64 float64_max(float64, float64, float_status *status);
 783float64 float64_minnum(float64, float64, float_status *status);
 784float64 float64_maxnum(float64, float64, float_status *status);
 785float64 float64_minnummag(float64, float64, float_status *status);
 786float64 float64_maxnummag(float64, float64, float_status *status);
 787float64 float64_minimum_number(float64, float64, float_status *status);
 788float64 float64_maximum_number(float64, float64, float_status *status);
 789bool float64_is_quiet_nan(float64 a, float_status *status);
 790bool float64_is_signaling_nan(float64, float_status *status);
 791float64 float64_silence_nan(float64, float_status *status);
 792float64 float64_scalbn(float64, int, float_status *status);
 793
 794static inline float64 float64_abs(float64 a)
 795{
 796    /* Note that abs does *not* handle NaN specially, nor does
 797     * it flush denormal inputs to zero.
 798     */
 799    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
 800}
 801
 802static inline float64 float64_chs(float64 a)
 803{
 804    /* Note that chs does *not* handle NaN specially, nor does
 805     * it flush denormal inputs to zero.
 806     */
 807    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
 808}
 809
 810static inline bool float64_is_infinity(float64 a)
 811{
 812    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
 813}
 814
 815static inline bool float64_is_neg(float64 a)
 816{
 817    return float64_val(a) >> 63;
 818}
 819
 820static inline bool float64_is_zero(float64 a)
 821{
 822    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
 823}
 824
 825static inline bool float64_is_any_nan(float64 a)
 826{
 827    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
 828}
 829
 830static inline bool float64_is_zero_or_denormal(float64 a)
 831{
 832    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
 833}
 834
 835static inline bool float64_is_normal(float64 a)
 836{
 837    return (((float64_val(a) >> 52) + 1) & 0x7ff) >= 2;
 838}
 839
 840static inline bool float64_is_denormal(float64 a)
 841{
 842    return float64_is_zero_or_denormal(a) && !float64_is_zero(a);
 843}
 844
 845static inline bool float64_is_zero_or_normal(float64 a)
 846{
 847    return float64_is_normal(a) || float64_is_zero(a);
 848}
 849
 850static inline float64 float64_set_sign(float64 a, int sign)
 851{
 852    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
 853                        | ((int64_t)sign << 63));
 854}
 855
 856static inline bool float64_eq(float64 a, float64 b, float_status *s)
 857{
 858    return float64_compare(a, b, s) == float_relation_equal;
 859}
 860
 861static inline bool float64_le(float64 a, float64 b, float_status *s)
 862{
 863    return float64_compare(a, b, s) <= float_relation_equal;
 864}
 865
 866static inline bool float64_lt(float64 a, float64 b, float_status *s)
 867{
 868    return float64_compare(a, b, s) < float_relation_equal;
 869}
 870
 871static inline bool float64_unordered(float64 a, float64 b, float_status *s)
 872{
 873    return float64_compare(a, b, s) == float_relation_unordered;
 874}
 875
 876static inline bool float64_eq_quiet(float64 a, float64 b, float_status *s)
 877{
 878    return float64_compare_quiet(a, b, s) == float_relation_equal;
 879}
 880
 881static inline bool float64_le_quiet(float64 a, float64 b, float_status *s)
 882{
 883    return float64_compare_quiet(a, b, s) <= float_relation_equal;
 884}
 885
 886static inline bool float64_lt_quiet(float64 a, float64 b, float_status *s)
 887{
 888    return float64_compare_quiet(a, b, s) < float_relation_equal;
 889}
 890
 891static inline bool float64_unordered_quiet(float64 a, float64 b,
 892                                           float_status *s)
 893{
 894    return float64_compare_quiet(a, b, s) == float_relation_unordered;
 895}
 896
 897#define float64_zero make_float64(0)
 898#define float64_half make_float64(0x3fe0000000000000LL)
 899#define float64_one make_float64(0x3ff0000000000000LL)
 900#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
 901#define float64_two make_float64(0x4000000000000000ULL)
 902#define float64_three make_float64(0x4008000000000000ULL)
 903#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
 904#define float64_infinity make_float64(0x7ff0000000000000LL)
 905
 906/*----------------------------------------------------------------------------
 907| The pattern for a default generated double-precision NaN.
 908*----------------------------------------------------------------------------*/
 909float64 float64_default_nan(float_status *status);
 910
 911/*----------------------------------------------------------------------------
 912| Software IEC/IEEE double-precision operations, rounding to single precision,
 913| returning a result in double precision, with only one rounding step.
 914*----------------------------------------------------------------------------*/
 915
 916float64 float64r32_add(float64, float64, float_status *status);
 917float64 float64r32_sub(float64, float64, float_status *status);
 918float64 float64r32_mul(float64, float64, float_status *status);
 919float64 float64r32_div(float64, float64, float_status *status);
 920float64 float64r32_muladd(float64, float64, float64, int, float_status *status);
 921float64 float64r32_sqrt(float64, float_status *status);
 922
 923/*----------------------------------------------------------------------------
 924| Software IEC/IEEE extended double-precision conversion routines.
 925*----------------------------------------------------------------------------*/
 926int32_t floatx80_to_int32(floatx80, float_status *status);
 927int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
 928int64_t floatx80_to_int64(floatx80, float_status *status);
 929int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
 930float32 floatx80_to_float32(floatx80, float_status *status);
 931float64 floatx80_to_float64(floatx80, float_status *status);
 932float128 floatx80_to_float128(floatx80, float_status *status);
 933
 934/*----------------------------------------------------------------------------
 935| The pattern for an extended double-precision inf.
 936*----------------------------------------------------------------------------*/
 937extern const floatx80 floatx80_infinity;
 938
 939/*----------------------------------------------------------------------------
 940| Software IEC/IEEE extended double-precision operations.
 941*----------------------------------------------------------------------------*/
 942floatx80 floatx80_round(floatx80 a, float_status *status);
 943floatx80 floatx80_round_to_int(floatx80, float_status *status);
 944floatx80 floatx80_add(floatx80, floatx80, float_status *status);
 945floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
 946floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
 947floatx80 floatx80_div(floatx80, floatx80, float_status *status);
 948floatx80 floatx80_modrem(floatx80, floatx80, bool, uint64_t *,
 949                         float_status *status);
 950floatx80 floatx80_mod(floatx80, floatx80, float_status *status);
 951floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
 952floatx80 floatx80_sqrt(floatx80, float_status *status);
 953FloatRelation floatx80_compare(floatx80, floatx80, float_status *status);
 954FloatRelation floatx80_compare_quiet(floatx80, floatx80, float_status *status);
 955int floatx80_is_quiet_nan(floatx80, float_status *status);
 956int floatx80_is_signaling_nan(floatx80, float_status *status);
 957floatx80 floatx80_silence_nan(floatx80, float_status *status);
 958floatx80 floatx80_scalbn(floatx80, int, float_status *status);
 959
 960static inline floatx80 floatx80_abs(floatx80 a)
 961{
 962    a.high &= 0x7fff;
 963    return a;
 964}
 965
 966static inline floatx80 floatx80_chs(floatx80 a)
 967{
 968    a.high ^= 0x8000;
 969    return a;
 970}
 971
 972static inline bool floatx80_is_infinity(floatx80 a)
 973{
 974#if defined(TARGET_M68K)
 975    return (a.high & 0x7fff) == floatx80_infinity.high && !(a.low << 1);
 976#else
 977    return (a.high & 0x7fff) == floatx80_infinity.high &&
 978                       a.low == floatx80_infinity.low;
 979#endif
 980}
 981
 982static inline bool floatx80_is_neg(floatx80 a)
 983{
 984    return a.high >> 15;
 985}
 986
 987static inline bool floatx80_is_zero(floatx80 a)
 988{
 989    return (a.high & 0x7fff) == 0 && a.low == 0;
 990}
 991
 992static inline bool floatx80_is_zero_or_denormal(floatx80 a)
 993{
 994    return (a.high & 0x7fff) == 0;
 995}
 996
 997static inline bool floatx80_is_any_nan(floatx80 a)
 998{
 999    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
1000}
1001
1002static inline bool floatx80_eq(floatx80 a, floatx80 b, float_status *s)
1003{
1004    return floatx80_compare(a, b, s) == float_relation_equal;
1005}
1006
1007static inline bool floatx80_le(floatx80 a, floatx80 b, float_status *s)
1008{
1009    return floatx80_compare(a, b, s) <= float_relation_equal;
1010}
1011
1012static inline bool floatx80_lt(floatx80 a, floatx80 b, float_status *s)
1013{
1014    return floatx80_compare(a, b, s) < float_relation_equal;
1015}
1016
1017static inline bool floatx80_unordered(floatx80 a, floatx80 b, float_status *s)
1018{
1019    return floatx80_compare(a, b, s) == float_relation_unordered;
1020}
1021
1022static inline bool floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *s)
1023{
1024    return floatx80_compare_quiet(a, b, s) == float_relation_equal;
1025}
1026
1027static inline bool floatx80_le_quiet(floatx80 a, floatx80 b, float_status *s)
1028{
1029    return floatx80_compare_quiet(a, b, s) <= float_relation_equal;
1030}
1031
1032static inline bool floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *s)
1033{
1034    return floatx80_compare_quiet(a, b, s) < float_relation_equal;
1035}
1036
1037static inline bool floatx80_unordered_quiet(floatx80 a, floatx80 b,
1038                                           float_status *s)
1039{
1040    return floatx80_compare_quiet(a, b, s) == float_relation_unordered;
1041}
1042
1043/*----------------------------------------------------------------------------
1044| Return whether the given value is an invalid floatx80 encoding.
1045| Invalid floatx80 encodings arise when the integer bit is not set, but
1046| the exponent is not zero. The only times the integer bit is permitted to
1047| be zero is in subnormal numbers and the value zero.
1048| This includes what the Intel software developer's manual calls pseudo-NaNs,
1049| pseudo-infinities and un-normal numbers. It does not include
1050| pseudo-denormals, which must still be correctly handled as inputs even
1051| if they are never generated as outputs.
1052*----------------------------------------------------------------------------*/
1053static inline bool floatx80_invalid_encoding(floatx80 a)
1054{
1055#if defined(TARGET_M68K)
1056    /*-------------------------------------------------------------------------
1057    | With m68k, the explicit integer bit can be zero in the case of:
1058    | - zeros                (exp == 0, mantissa == 0)
1059    | - denormalized numbers (exp == 0, mantissa != 0)
1060    | - unnormalized numbers (exp != 0, exp < 0x7FFF)
1061    | - infinities           (exp == 0x7FFF, mantissa == 0)
1062    | - not-a-numbers        (exp == 0x7FFF, mantissa != 0)
1063    |
1064    | For infinities and NaNs, the explicit integer bit can be either one or
1065    | zero.
1066    |
1067    | The IEEE 754 standard does not define a zero integer bit. Such a number
1068    | is an unnormalized number. Hardware does not directly support
1069    | denormalized and unnormalized numbers, but implicitly supports them by
1070    | trapping them as unimplemented data types, allowing efficient conversion
1071    | in software.
1072    |
1073    | See "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL",
1074    |     "1.6 FLOATING-POINT DATA TYPES"
1075    *------------------------------------------------------------------------*/
1076    return false;
1077#else
1078    return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
1079#endif
1080}
1081
1082#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
1083#define floatx80_zero_init make_floatx80_init(0x0000, 0x0000000000000000LL)
1084#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
1085#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
1086#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
1087#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
1088
1089/*----------------------------------------------------------------------------
1090| Returns the fraction bits of the extended double-precision floating-point
1091| value `a'.
1092*----------------------------------------------------------------------------*/
1093
1094static inline uint64_t extractFloatx80Frac(floatx80 a)
1095{
1096    return a.low;
1097}
1098
1099/*----------------------------------------------------------------------------
1100| Returns the exponent bits of the extended double-precision floating-point
1101| value `a'.
1102*----------------------------------------------------------------------------*/
1103
1104static inline int32_t extractFloatx80Exp(floatx80 a)
1105{
1106    return a.high & 0x7FFF;
1107}
1108
1109/*----------------------------------------------------------------------------
1110| Returns the sign bit of the extended double-precision floating-point value
1111| `a'.
1112*----------------------------------------------------------------------------*/
1113
1114static inline bool extractFloatx80Sign(floatx80 a)
1115{
1116    return a.high >> 15;
1117}
1118
1119/*----------------------------------------------------------------------------
1120| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
1121| extended double-precision floating-point value, returning the result.
1122*----------------------------------------------------------------------------*/
1123
1124static inline floatx80 packFloatx80(bool zSign, int32_t zExp, uint64_t zSig)
1125{
1126    floatx80 z;
1127
1128    z.low = zSig;
1129    z.high = (((uint16_t)zSign) << 15) + zExp;
1130    return z;
1131}
1132
1133/*----------------------------------------------------------------------------
1134| Normalizes the subnormal extended double-precision floating-point value
1135| represented by the denormalized significand `aSig'.  The normalized exponent
1136| and significand are stored at the locations pointed to by `zExpPtr' and
1137| `zSigPtr', respectively.
1138*----------------------------------------------------------------------------*/
1139
1140void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
1141                                uint64_t *zSigPtr);
1142
1143/*----------------------------------------------------------------------------
1144| Takes two extended double-precision floating-point values `a' and `b', one
1145| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
1146| `b' is a signaling NaN, the invalid exception is raised.
1147*----------------------------------------------------------------------------*/
1148
1149floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status);
1150
1151/*----------------------------------------------------------------------------
1152| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1153| and extended significand formed by the concatenation of `zSig0' and `zSig1',
1154| and returns the proper extended double-precision floating-point value
1155| corresponding to the abstract input.  Ordinarily, the abstract value is
1156| rounded and packed into the extended double-precision format, with the
1157| inexact exception raised if the abstract input cannot be represented
1158| exactly.  However, if the abstract value is too large, the overflow and
1159| inexact exceptions are raised and an infinity or maximal finite value is
1160| returned.  If the abstract value is too small, the input value is rounded to
1161| a subnormal number, and the underflow and inexact exceptions are raised if
1162| the abstract input cannot be represented exactly as a subnormal extended
1163| double-precision floating-point number.
1164|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
1165| number of bits as single or double precision, respectively.  Otherwise, the
1166| result is rounded to the full precision of the extended double-precision
1167| format.
1168|     The input significand must be normalized or smaller.  If the input
1169| significand is not normalized, `zExp' must be 0; in that case, the result
1170| returned is a subnormal number, and it must not require rounding.  The
1171| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
1172| Floating-Point Arithmetic.
1173*----------------------------------------------------------------------------*/
1174
1175floatx80 roundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, bool zSign,
1176                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
1177                              float_status *status);
1178
1179/*----------------------------------------------------------------------------
1180| Takes an abstract floating-point value having sign `zSign', exponent
1181| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
1182| and returns the proper extended double-precision floating-point value
1183| corresponding to the abstract input.  This routine is just like
1184| `roundAndPackFloatx80' except that the input significand does not have to be
1185| normalized.
1186*----------------------------------------------------------------------------*/
1187
1188floatx80 normalizeRoundAndPackFloatx80(FloatX80RoundPrec roundingPrecision,
1189                                       bool zSign, int32_t zExp,
1190                                       uint64_t zSig0, uint64_t zSig1,
1191                                       float_status *status);
1192
1193/*----------------------------------------------------------------------------
1194| The pattern for a default generated extended double-precision NaN.
1195*----------------------------------------------------------------------------*/
1196floatx80 floatx80_default_nan(float_status *status);
1197
1198/*----------------------------------------------------------------------------
1199| Software IEC/IEEE quadruple-precision conversion routines.
1200*----------------------------------------------------------------------------*/
1201int32_t float128_to_int32(float128, float_status *status);
1202int32_t float128_to_int32_round_to_zero(float128, float_status *status);
1203int64_t float128_to_int64(float128, float_status *status);
1204int64_t float128_to_int64_round_to_zero(float128, float_status *status);
1205uint64_t float128_to_uint64(float128, float_status *status);
1206uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
1207uint32_t float128_to_uint32(float128, float_status *status);
1208uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
1209float32 float128_to_float32(float128, float_status *status);
1210float64 float128_to_float64(float128, float_status *status);
1211floatx80 float128_to_floatx80(float128, float_status *status);
1212
1213/*----------------------------------------------------------------------------
1214| Software IEC/IEEE quadruple-precision operations.
1215*----------------------------------------------------------------------------*/
1216float128 float128_round_to_int(float128, float_status *status);
1217float128 float128_add(float128, float128, float_status *status);
1218float128 float128_sub(float128, float128, float_status *status);
1219float128 float128_mul(float128, float128, float_status *status);
1220float128 float128_muladd(float128, float128, float128, int,
1221                         float_status *status);
1222float128 float128_div(float128, float128, float_status *status);
1223float128 float128_rem(float128, float128, float_status *status);
1224float128 float128_sqrt(float128, float_status *status);
1225FloatRelation float128_compare(float128, float128, float_status *status);
1226FloatRelation float128_compare_quiet(float128, float128, float_status *status);
1227float128 float128_min(float128, float128, float_status *status);
1228float128 float128_max(float128, float128, float_status *status);
1229float128 float128_minnum(float128, float128, float_status *status);
1230float128 float128_maxnum(float128, float128, float_status *status);
1231float128 float128_minnummag(float128, float128, float_status *status);
1232float128 float128_maxnummag(float128, float128, float_status *status);
1233float128 float128_minimum_number(float128, float128, float_status *status);
1234float128 float128_maximum_number(float128, float128, float_status *status);
1235bool float128_is_quiet_nan(float128, float_status *status);
1236bool float128_is_signaling_nan(float128, float_status *status);
1237float128 float128_silence_nan(float128, float_status *status);
1238float128 float128_scalbn(float128, int, float_status *status);
1239
1240static inline float128 float128_abs(float128 a)
1241{
1242    a.high &= 0x7fffffffffffffffLL;
1243    return a;
1244}
1245
1246static inline float128 float128_chs(float128 a)
1247{
1248    a.high ^= 0x8000000000000000LL;
1249    return a;
1250}
1251
1252static inline bool float128_is_infinity(float128 a)
1253{
1254    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
1255}
1256
1257static inline bool float128_is_neg(float128 a)
1258{
1259    return a.high >> 63;
1260}
1261
1262static inline bool float128_is_zero(float128 a)
1263{
1264    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
1265}
1266
1267static inline bool float128_is_zero_or_denormal(float128 a)
1268{
1269    return (a.high & 0x7fff000000000000LL) == 0;
1270}
1271
1272static inline bool float128_is_normal(float128 a)
1273{
1274    return (((a.high >> 48) + 1) & 0x7fff) >= 2;
1275}
1276
1277static inline bool float128_is_denormal(float128 a)
1278{
1279    return float128_is_zero_or_denormal(a) && !float128_is_zero(a);
1280}
1281
1282static inline bool float128_is_any_nan(float128 a)
1283{
1284    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
1285        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
1286}
1287
1288static inline bool float128_eq(float128 a, float128 b, float_status *s)
1289{
1290    return float128_compare(a, b, s) == float_relation_equal;
1291}
1292
1293static inline bool float128_le(float128 a, float128 b, float_status *s)
1294{
1295    return float128_compare(a, b, s) <= float_relation_equal;
1296}
1297
1298static inline bool float128_lt(float128 a, float128 b, float_status *s)
1299{
1300    return float128_compare(a, b, s) < float_relation_equal;
1301}
1302
1303static inline bool float128_unordered(float128 a, float128 b, float_status *s)
1304{
1305    return float128_compare(a, b, s) == float_relation_unordered;
1306}
1307
1308static inline bool float128_eq_quiet(float128 a, float128 b, float_status *s)
1309{
1310    return float128_compare_quiet(a, b, s) == float_relation_equal;
1311}
1312
1313static inline bool float128_le_quiet(float128 a, float128 b, float_status *s)
1314{
1315    return float128_compare_quiet(a, b, s) <= float_relation_equal;
1316}
1317
1318static inline bool float128_lt_quiet(float128 a, float128 b, float_status *s)
1319{
1320    return float128_compare_quiet(a, b, s) < float_relation_equal;
1321}
1322
1323static inline bool float128_unordered_quiet(float128 a, float128 b,
1324                                           float_status *s)
1325{
1326    return float128_compare_quiet(a, b, s) == float_relation_unordered;
1327}
1328
1329#define float128_zero make_float128(0, 0)
1330
1331/*----------------------------------------------------------------------------
1332| The pattern for a default generated quadruple-precision NaN.
1333*----------------------------------------------------------------------------*/
1334float128 float128_default_nan(float_status *status);
1335
1336#endif /* SOFTFLOAT_H */
1337